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Abstract

We study how to characterize and predict the
truthfulness of texts generated from large lan-
guage models (LLMs), which serves as a cru-
cial step in building trust between humans and
LLMs. Although several approaches based on
entropy or verbalized uncertainty have been pro-
posed to calibrate model predictions, these meth-
ods are often intractable, sensitive to hyperpa-
rameters, and less reliable when applied in gen-
erative tasks with LLMs. In this paper, we sug-
gest investigating internal activations and quan-
tifying LLM’s truthfulness using the local in-
trinsic dimension (LID) of model activations.
Through experiments on four question answer-
ing (QA) datasets, we demonstrate the effective-
ness of our proposed method. Additionally, we
study intrinsic dimensions in LLMs and their rela-
tions with model layers, autoregressive language
modeling, and the training of LLMs, revealing
that intrinsic dimensions can be a powerful ap-
proach to understanding LLMs. Code is available
at: https://github.com/fanyin3639/
LID-HallucinationDetection.

1. Introduction
Large language models (LLMs) have demonstrated remark-
able effectiveness in various generative natural language
processing (NLP) tasks, including QA, summarization, and
dialogue (Touvron et al., 2023a; Chowdhery et al., 2023;
OpenAI, 2023). However, deploying LLMs to more high-
stakes scenarios remains limited due to their tendency to
provide plausible but untruthful answers, even when they
are uncertain, also known as hallucinations (Ji et al., 2023).
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Figure 1. Detecting hallucinations with LIDs. LLM representa-
tions of correct answers have smaller intrinsic dimensions.

Hence, characterizing and eliciting the truthfulness of model
outputs is a crucial step towards constructing more reliable
LLMs and building user trust in models (Bommasani et al.,
2021; Kadavath et al., 2022; Zou et al., 2023).

Despite its importance, little is known about which infor-
mation within models most accurately characterizes their
truthfulness. A mainstream of work approaches this through
logit-level entropy-based uncertainty (Gal & Ghahramani,
2016; Malinin & Gales, 2020; Kuhn et al., 2022; Duan
et al., 2023) or verbalized uncertainty (Kadavath et al.,
2022; Zhou et al., 2023; Tian et al., 2023). However, com-
puting uncertainty is limited to classification tasks and be-
comes intractable for generative tasks due to infinite output
space. Moreover, extracting truthfulness only at the output
layer inevitably loses substantial information, leading to
sub-optimal performance.

Other approaches train linear probes to discover truthful-
ness directions in model internal representations (Azaria
& Mitchell, 2023; Li et al., 2023; Burns et al., 2022; Zou
et al., 2023; Marks & Tegmark, 2023). However, these
truthful directions do not always exist and can vary signifi-
cantly due to tasks, the layers being used, and the styles of
prompts. Therefore, determining whether a direction would
be beneficial for the task at hand can be cumbersome.

In this paper, we delve into the internal representations,
which have been shown to preserve more information and
geometric characteristics. Instead of seeking truthful di-
rections for each task, we leverage a more principled and
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generalizable feature to detect hallucinations: the discrep-
ancy in local intrinsic dimension (LID) (Levina & Bickel,
2004; Gomtsyan et al., 2019) of model activations. LID
reflects the minimal number of activations required to char-
acterize the current point without significant information
loss. A higher LID means that the current point lies in a
more complicated manifold and vice verse. LLM repre-
sentations, which are often high-dimensional vectors (e.g.,
4,096 for Llama-2-7B, Touvron et al. 2023b) are commonly
believed to lie in lower-dimensional manifolds because of
the inductive bias of the model and the natural structure in
human language (Marks & Tegmark, 2023). We hypothe-
size that truthful outputs, being closer to natural language,
are more structured and have smaller LIDs. On the other
hand, an untruthful continuation of a prompt hallucinated
by the model itself would mix human (prompt) and complex
model (continuation) distribution, leading to larger LIDs.
The discrepancy in LID would thus serve as a strong signal
to assess whether an output is truthful or not.

More specifically, our method is based on the well-
established maximum likelihood estimation (MLE) method
(Levina & Bickel, 2004) but proposes a simple yet effective
correction to 1) accommodate the non-linearity in language
representations (Gomtsyan et al., 2019); 2) select the opti-
mal set of representations. MLE approximates the count of
neighbors surrounding the current sample with a Poisson
process parameterized by the LID. It inherently supports
estimation for an individual sample while other estimators
mostly consider intrinsic dimension as a property of the
whole dataset. Our improvements enable more accurate
estimations of LIDs in representations.

Experiments with the Llama-2 (Touvron et al., 2023b) fam-
ily on four QA tasks prove the advantage of using LID meth-
ods over uncertainty methods, achieving an improvement
of 8% under AUROC. Compared with representation-level
methods like linear probes and t-SNE (Van der Maaten &
Hinton, 2008), we show that our method is more power-
ful while other methods fail to discover truthful directions.
Further ablation study shows that we could even leverage
out-of-distribution samples as neighbors to estimate the
LIDs, demonstrating the generalizability of our methods.

We further conduct a series of analyses on the intrinsic
dimensions in LLMs, revealing several intriguing properties
beyond its relations to hallucinations. Overall, we believe
intrinsic dimension is an insightful and powerful feature for
understanding LLMs. Below are our findings:

• Similar to the findings by Ansuini et al. (2019) on image
data, we observe a ‘hunchback’ shape in the intrinsic di-
mension of language generations: the intrinsic dimension
values increase in the first few layers and then gradually
decrease. The hallucination detection performance curve
follows a similar shape to the intrinsic dimension value

curve but is ‘shifted behind’ by one or two layers;
• We verify our hypothesis that mixing human and model

distributions increases intrinsic dimension by controlling
where the ‘mixing’ happens. We show that the intrinsic
dimensions for human answers are consistently lower than
untruthful model outputs at every position, exhibiting a
sharp decrease when the answer approaches the end;

• In addition to frozen foundation model, we are curious
about how instruction tuning, a technique widely adopted
to align LLMs, impacts intrinsic dimensions. We find
that as the instruction tuning progresses, the intrinsic
dimension of LLMs’ representations tends to increase.
Furthermore, intrinsic dimensions correlate with the gen-
eralization performance of the model.

2. Related Work
Characterizing Model Truthfulness As LLMs improve,
it is increasingly crucial to ensure their safety and truthful-
ness (Hendrycks et al., 2021; Bommasani et al., 2021). An
important technique is to detect incorrect model outputs so
that users can decide when not to trust those outputs (Ka-
math et al., 2020; Ren et al., 2022). Existing techniques to-
wards this goal mainly fall into three categories: 1) entropy-
based uncertainty estimation (Malinin & Gales, 2020; Kuhn
et al., 2022; Duan et al., 2023; Lin et al., 2023). However,
those approximations are not accurate for LLMs since the
output space of LLMs is too large; 2) Verbalized uncer-
tainty (Kadavath et al., 2022; Tian et al., 2023; Zhou et al.,
2023; Xiong et al., 2023), i.e., directly asking LLMs to judge
their answers. It typically involves extra training as models
are not pre-trained with this objective; 3) Probing truthful-
ness direction (Zou et al., 2023; Azaria & Mitchell, 2023;
Li et al., 2023; Burns et al., 2022) that tries to find a truthful-
ness direction in model representations for a specific dataset.
The obtained direction usually does not generalize well. We
propose to use LIDs to detect hallucinations, which lever-
age geometric information that uncertainty-based methods
ignore and are more generalizable than truthful directions.

(Local) Intrinsic Dimension in Neural Models Neural
models are commonly believed to be redundant in terms of
their parameters and representations (Birdal et al., 2021).
Approaches to estimate intrinsic dimension of data mani-
folds (Levina & Bickel, 2004; Amsaleg et al., 2015; Facco
et al., 2017b) have been applied to understand the structure
in models. For example, Ma et al. (2018) use differences in
LID values to characterize adversarial image data; Ansuini
et al. (2019); Pope et al. (2020); Birdal et al. (2021) study
the relation between intrinsic dimensions and generaliza-
tion ability of models. Most related to ours, Tulchinskii
et al. (2023) train classifiers using ID values to identify
AI-generated texts in multiple languages. Different from
previous work, we focus more on LID for each individual
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sample, and use LID to identify incorrect model outputs.

3. LID for Characterizing Truthfulness
In this section, we formulate the problem of characteriz-
ing the truthfulness of model outputs. We review the MLE
framework for LID and introduce the modifications to ac-
count for the LLMs’ representations.

3.1. Problem Setup

Consider an L-layer causal LLM M that takes a se-
quence of N tokens X = [x1, x2, . . . , xN ] as input,
and generates a sequence of O-token continuation as
output M (X) = [xN+1, xN+2, . . . , xN+O]. M (X)
is generated in an autoregressive manner, where each
xN+i, i ∈ [1, . . . , O] is sampled from a distribution
over the model vocabulary V , conditioned on the prefix
[x1, x2, . . . , xN , xN+1, . . . , xN+i−1]:

XLi = (ML ◦ML−1 ◦ · · · ◦M0) ([x1, . . . , xN+i−1]) ,

p (xN+i| [x1 . . . , xN+i−1]) = softmax (WXLi + b) ,

where Mj , j ∈ [1 . . . L] is the j-th layer of the LLM M .
M0 is the embedding layer. W, b are the output projection
weights and bias. For later sections, we use Xji ∈ RD

to denote the j-th layer representation for the i-th con-
tinuation token xN+i, which is a D-dimensional vector.
We denote the probability distribution over a single token
xN+i as p(xN+i|·), and the whole sequential output M(X)
p(M(X)|·), respectively.

For a specific task with n points D =
{
X1, . . . , Xn

}
, we

aim to predict the truthfulness of each corresponding gen-
eration

{
M(X1) . . .M(Xn)

}
before knowing the ground

truth. Note that the truthfulness criteria might vary based
on the task being considered, which might be string match-
ing, semantic similarity, or any other human-based met-
rics. We use

{
Ŷ 1 . . . Ŷ n

}
to denote the ground truth, and

s
(
M(Xi), Ŷ i

)
∈ {0, 1} to denote the indicator function

for whether an input-output pair (Xi, M(Xi)) can be con-
sidered truthful. The goal of this paper is to propose a char-
acterizing feature that accurately reflects s

(
M(Xi), Ŷ i

)
.

While previous works on uncertainty estimation mostly
obtain the feature from the final predictive distribution
p(M(X)|·), we instead propose to explore the LID of inter-
mediate representations Xji.

3.2. MLE Estimator for LID

Here, we review the core idea of the MLE estimator for
LIDs (Levina & Bickel, 2004). Notice that while there are
other estimators available for intrinsic dimension (Costa
et al., 2005; Facco et al., 2017a; Campadelli et al., 2015),

MLE is specifically tailored for estimating ‘local’ intrinsic
dimension of an individual point, making it well-suited for
our application, unlike many others that estimate ‘global’
intrinsic dimension.

For the representation1 of a data point in D, Xi, the MLE
estimator, as its name suggests, conducts a maximum likeli-
hood estimation of the count of its neighbors using a Poisson
process, where the rate of the Poisson process is parameter-
ized by the intrinsic dimension m. Formally, it considers
the T nearest neighbors of Xi in D,

{
Xi1, . . . ,XiT

}
, and

a ball of radius R centered at Xi, SXi(R). The count of
neighbors inside balls of varying radius 0 < t < R can be
expressed by a binomial process as follows:

N
(
t, Xi

)
=

T∑
k=1

I
{
Xik ∈ SXi(t)

}
.

Levina & Bickel (2004) propose to approximate the above
with a Poisson process of a certain rate λ (t). According to
the definition of λ, if we assume the density f is approx-
imately constant around Xi, and the volume V expands
proportionally to tm, i.e., V = Vmtm where m is the intrin-
sic dimension, we will have

λ (t) = f
dV

dt
= fVm mtm−1.

Then, the log-likelihood of the Poisson process can be
written as a function of the intrinsic dimension m and
θ = log f .

L (m, θ) =

∫ R

0

log λ (t) dNλ (t)−
∫ R

0

λ (t) dt. (1)

Maximizing the log-likelihood in Eq. 1, we have the follow-
ing formula for calculating the intrinsic dimension m:

m
(
R,Xi

)
=

 1

N(R,Xi)

N(R,Xi)∑
j=1

log
R

Qj

−1

, (2)

where Qj , j = 1, . . . T is the Euclidean distance to the j-th
nearest neighbor. The numerical calculation of Eq. 2 can be
further simplified as:

m
(
Xi

)
=

 1

T − 1

T−1∑
j=1

log
QT

Qj

−1

. (3)

3.3. Layer Selection and Distance-aware MLE

In the previous section, we discuss how to calculate LIDs
for a representation Xi. When it comes to LLMs, two chal-
lenges arise: 1) there will be a D-dimensional representation

1We use the representation from a middle layer and the last
token, elaborated in Section3.3. For simplicity, we omit the sub-
scripts for its position and layer.
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for each position at each layer, making it hard to select the
optimal representation to use; 2) MLE assumes constant den-
sity function f , which is unlikely to hold for causal LLMs
on complicated real data. Next, we discuss our solutions for
addressing those issues.

Layer Selection As mentioned earlier, LLMs generate a
D-dimensional representation for each token at each layer.
We select the token at the last position of Xi, i.e., Xi

−1 as
that representation contains all pertinent information from
preceding positions. This strategy aligns with other works
on probing truthful directions like Zou et al. (2023).

However, when it comes to layer selection, our empirical
evidence indicates that the representations from the last
layer might not yield the most informative feature. As in
Figure 3, the performance of predicting truthfulness with
LIDs correlates well with the absolute value of summed
LIDs over the test set, but exhibits a shift for one or two
layers. Based on this observation, we propose to empirically
selecting the layer l with the following criteria:

l = argmaxl

n∑
i=1

m
(
Xi

l{−1}

)
+ 1.

Distance-aware MLE To mitigate the non-uniformity of
density when applying MLE of the Poisson process, a
common practice involves adjusting the rate λ (t) of the
Poisson process. Gomtsyan et al. (2019) suggest to re-
place the original rate λ (t) = fVmmtm−1 as λ̂ (t) =
fVmmtm−1+ tmVmδ (t), where δ (R) is a correction func-
tion bounded by some geometric properties of the manifold
of Xi. For the exact form of δ (R), see Gomtsyan et al.
(2019). We will review the steps after the correction.

With the new rate, maximizing the log-likelihood in Eq. 1
we will have:

m̂
(
R,Xi

)
= m

(
R,Xi

)(
1 + δ (R)

R2

N (R,Xi)

)
. (4)

Then, with Taylor expansion on the second term in Eq. 4, we
can calculate the correction with the following polynomial
regression:

m̂
(
R,Xi

)
= m

(
R,Xi

)
+

l∑
j=1

ζjR
j +Θ

(
Rl+1

)
. (5)

The new steps will be to estimate ζj , and use the zero-order
term as the estimated m̂

(
Xi

)
:

m
(
Xi

)
= m̂

(
Xi

)
+

l∑
j=1

ζjQ
j
T +Θ

(
Ql+1

T

)
. (6)

Solving the polynomial regression in Eq. 6 can be con-
ducted by minimizing the weighted least squared errors. We

follow Gomtsyan et al. (2019) to use bootstrapping of D:
D1,D2, . . . ,Dp. We calculate the average of LIDs and dis-
tances, as well as the variance of LIDs. In practice, we find
that solely using the bootstrapping process brings improve-
ments of the truthfulness detection performance.

Q̄T =
1

p

p∑
i=1

QTp, m̄
(
Xi

)
=

1

p

p∑
i=1

m
(
Xi

)
p
,

σ(m(Xi)) =
1

p

p∑
i=1

(
m

(
Xi

)
p
− m̄

(
Xi

))2

.

Finally, the heteroskedastic weighted polynomial regression
is minimized to find the final LID over different numbers of
neighbors T :

min
T2∑

T=T1

1

σ(m(Xi))

m̂
(
Xi

)
−m(Xi)−

l∑
j=1

ζjQ
j
T

2

.

We call the method with distance-aware MLE estimation as
LID-GeoMLE, and the vanilla MLE method LID-MLE.

Clearly, for both LID-MLE and LID-GeoMLE, the esti-
mated LID is a function of hyperparameters T , the number
of neighbors, and n, the dataset size. While a small T and
n provide an estimation of LIDs with large variance, a T or
n that is too large will break the condition of local balls and
neighbors. We elaborate in Section 4.3 the effects of them
in the performance.

4. Experiments
In this section, we empirically demonstrate the effectiveness
of using LID to predict the truthfulness of model outputs,
outperforming uncertainty-based methods and classifiers
trained to predict truthfulness.

Datasets & Models We consider four generative QA
tasks: TriviaQA (Joshi et al., 2017), CoQA (Reddy et al.,
2019), HotpotQA (Yang et al., 2018), and TydiQA-GP
(English) (Clark et al., 2020). These datasets cover dif-
ferent formats of QA including open-book (CoQA), closed-
book (TriviaQA, HotpotQA), and reading comprehension
(TydiQA-GP) and several capacities of LLMs. For each of
the datasets, we generate outputs for 2,000 samples from
the validation sets and test the methods with those samples.

We evaluate with the decoder-only Transformer-based
Llama-2 (Touvron et al., 2023b), 7B and 13B, which are
cutting-edge public foundation models whose internal rep-
resentations are accessible. In our preliminary experiments,
we have also tested on Llama, OPT (Zhang et al., 2022)
and have similar observations as Llama-2. We report addi-
tional results with Mistral-7B-v0.12 based on experiments

2https://mistral.ai/news/announcing-mistral-7b/
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Method CoQA TydiQA TriviaQA HotpotQA Averaged
0-shot 0-shot 0-shot 5-shot 0-shot 5-shot 0-shot

Llama-2-7B
Pred. Entropy 0.715 0.590 0.697 0.768 0.650 0.669 0.663
LN-Pred. Entropy 0.725 0.621 0.678 0.756 0.631 0.725 0.664
Semantic Entropy 0.690 0.705 0.718 0.781 0.664 0.728 0.694
SAPLMA 0.666 0.628 0.624 0.641 0.536 0.599 0.614
P(True) 0.638 0.608 0.471 0.651 0.444 0.593 0.540

LID-MLE 0.758 0.735 0.754 0.761 0.701 0.731 0.737
LID-GeoMLE 0.767 0.738 0.771 0.791 0.708 0.729 0.746

Llama-2-13B
Pred. Entropy 0.745 0.630 0.751 0.752 0.738 0.765 0.716
LN-Pred. Entropy 0.753 0.618 0.716 0.731 0.724 0.769 0.702
Semantic Entropy 0.758 0.740 0.736 0.786 0.708 0.781 0.736
SAPLMA 0.645 0.597 0.651 0.699 0.578 0.621 0.618
P(True) 0.649 0.624 0.511 0.662 0.518 0.581 0.576

LID-MLE 0.763 0.745 0.748 0.777 0.747 0.758 0.751
LID-GeoMLE 0.772 0.759 0.775 0.793 0.749 0.769 0.764

Table 1. Main results of predicting output correctness for four generative QA tasks. We compare our LID methods: LID-MLE, LID-
GeoMLE with entropy-based and verbalized uncertainty estimation methods and a trained classifier. We show the results with Llama-2 7B
and 13B. Results demonstrate the superior performance of our LID methods. The best scores are bold.

TydiQA CoQA

Pred. Entropy 0.630 0.712
LN-Pred. Entropy 0.619 0.723
Semantic Entropy 0.568 0.665

LID-MLE 0.722 0.752
LID-GeoMLE 0.734 0.761

Table 2. Results on Mistral-7B-v0.1. We only report TydiQA and
CoQA results based on our additional experiments during the
rebuttal period.

we have during the rebuttal period. Following the inference
convention as in Touvron et al. (2023b), we conduct both
zero-shot and few-shot inference. But for few-shot infer-
ence, we exclude the in-context examples when computing
model representations. See inference examples with our
prompt format in Appendix A.

Methods & Baselines For LID-MLE and LID-GeoMLE,
we use 500 nearest neighbors when estimating LIDs for
all datasets. We compare our methods with entropy-based
uncertainty, verbalized uncertainty, and trained truthfulness
classifiers on representations.

More specifically, for entropy-based ones, we consider pre-
dictive entropy (Pred. Entropy), length-normalized predic-
tive entropy (LN-Pred. Entropy) (Malinin & Gales, 2020),
and semantic entropy (Semantic Entropy) (Kuhn et al.,

2022). Since precisely calculating the entropy is intractable
over the infinite output space of generative QA tasks, we
use Monte Carlo estimation of entropy on sampled out-
puts Malinin & Gales (2020). Formally, Pred. Entropy =
1
N

∑N
i=1 logp (yi|x), where yi, i = 1 . . . N is the N sam-

pled outputs. LN-Pred. Entropy simply replaces the
log-likelihood with the length-normalized log-likelihood:
LN-Pred. Entropy = 1

N

∑N
i=1

1
|yi| logp (yi|x). Semantic

Entropy groups outputs that are semantically equivalent
to each other and calculate the entropy among groups:
Semantic Entropy = 1

|C|
∑|C|

i=1 logp (Ci|x), where Ci is
the summed likelihood of outputs in the i-th group. All
entropy-based methods are sensitive to the choice of temper-
ature in decoding and the number of sampled outputs. We
follow Kuhn et al. (2022), and set the temperature to be 0.5
and the number of generated samples to be 10.

For verbalized uncertainty, we use P (True) (Kadavath et al.,
2022), which asks the model itself if its answer is correct.
Then, take the probability for the model outputting the token
‘True’ as the truthfulness score.

For trained classifiers, we implement SAPLMA (Azaria &
Mitchell, 2023) that train a multi-layer classifier on each
dataset with 3,000 examples (1,500 truthful and 1,500 un-
truthful) to predict a binary truthfulness label for each exam-
ple. The training setup follows Azaria & Mitchell (2023).

Evaluation Setup We use the area under the receiver op-
erator characteristic curve (AUROC) to evaluate the effec-
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tiveness of all baselines and our proposed LID method. The
truthfulness prediction task is viewed as a binary classifi-
cation task, and AUROC measures the performance under
varying thresholds. The indicator function of truthfulness
is given by s (yi, ŷi) = I (RougeL (yi, ŷi) ≥ 0.5), follow-
ing (Kuhn et al., 2022), where RougeL (Lin, 2004) score
is a substring matching measurement commonly used to
evaluate generative QA tasks. We show that the results is
robust across different indicator function in Appendix B.

For TriviaQA and HotpotQA, we evaluate with both zero-
shot and 5-shot in-context inference. We evaluate CoQA
and TydiQA-GP with zero-shot as the context is long.

4.1. Sanity Check

To gain insights about the reliability of MLE-based esti-
mators, we apply MLE-based methods on synthetic data
with known ground truth dimensions, showing that they can
approximately give the correct estimation. Additionally, we
compare the intrinsic dimension obtained by MLE-based
methods and other popular methods: KNN (Costa et al.,
2005) and TwoNN (Facco et al., 2017a).

For synthetic data, we simulate two popular manifolds,
namely a sphere and a norm, both having an original di-
mension of 4,096 and intrinsic dimensions of 10 and 20
(Table 3). We find that GeoMLE in general produces the
most accurate estimation on those datasets, although MLE
shows more negative bias. For real datasets, TwoNN and
MLE-based methods give approximately similar estima-
tions. Overall, MLE-based methods produce reasonable
estimates in both scenarios. It is safe to assume that MLE
offers a practical approximation for applications, especially
when the true value of intrinsic dimension is not directly
relevant to the application but rather comparisons of the
values. Furthermore, note that MLE inherently estimates
‘local’ intrinsic dimension while other methods are ‘global’
estimators. Based on the points above, we adopt MLE-based
methods in our study.

4.2. Main Results

The main results for Llama-2 are summarized in Table
1. The partial results for Mistral-7B-v0.1 are in Table
2. See Appendix C for the corresponding frequency his-
tograms. Overall, we observe that LID-GeoMLE outper-
forms entropy-based methods by 0.05 points for 7B and
0.03 points for 13B on AUROC, while verbalized uncer-
tainty are not comparable to the above methods. Notably,
the performance of uncertainty-based methods is contingent
on whether we present in-context examples to the LLMs
while LID methods are more stable regarding this. For
example, on TriviaQA with 0-shot, LID methods outper-
form the best entropy-based uncertainty estimation by 8%.
The improvements comparing LID-MLE and LID-GeoMLE

Dataset m TwoNN KNN MLE GeoMLE

Sphere 10 8.78 4 8.63 8.65
Sphere noise 10 13.97 4 11.45 9.64
Norm 20 17.54 9 15.54 20.33
Norm noise 20 17.81 2 15.72 22.36

TriviaQA T 10.10 5 9.37 8.68
F 15.45 10 12.43 11.97

CoQA T 16.21 - 14.50 13.98
F 17.79 - 16.62 16.10

Table 3. Sanity Check on intrinsic dimension estimate. We com-
pare MLE with other famous estimates on synthetic data and our
QA datasets. All with 1000 samples. For synthetic data, the col-
umn ‘m’ represents the ground-truth intrinsic dimensions. For
simulated data, we report results on truthful (T) and untruthful (F)
samples. KNN cannot provide reasonable estimates on CoQA.

TriviaQA HotpotQA TydiQA CoQA

TriviaQA 0.748 0.729 0.734 0.745
HotpotQA 0.724 0.747 0.726 0.724
TydiQA 0.765 ↑ 0.744 0.745 0.736
CoQA 0.747 0.753 ↑ 0.751 ↑ 0.763

Table 4. Robustness to cross-task neighbors. Performance when
the neighbors are from different datasets. The left column is the
neighbors’ dataset while the top column shows the tested dataset.
The performance in general decreases slightly but is still effective.

suggest that a more sophisticated LID estimation method
would bring additional benefits to the truthfulness prediction
performance.

Moreover, notice that another representation-level method,
SAPLMA, fails to match the performance of LID-based
methods. This implies that LID-based methods remain pow-
erful when truthful directions are hard to obtain. We show in
Appendix D that dimension reduction methods like t-SNE
also fail to find such directions. The findings in (Marks &
Tegmark, 2023) might not hold in a practical scenario.

4.3. Robustness Study

We study the robustness of our proposed LID technique.

Robustness to hyperparameters n and T . We investi-
gate how the performance and LIDs vary as a function of
different numbers of dataset size n and neighbors T .

As illustrated in Figure 2, the performance on AUROC
increases as we consider more neighbors, reaching its maxi-
mum as the number of neighbors used approaches the total
dataset size. The performance of using LID method is com-
parable to or better than the best entropy-based uncertainty
estimation methods even with around 200 neighbors.

6
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Figure 2. Robustness to n and T . Performance and intrinsic dimen-
sion as a function of the number of neighbors and total reference
points. Both plots use the number of neighbors as X-axis. Differ-
ent line styles indicate different numbers of reference points.

The intrinsic dimension shows a decreasing trend when we
consider more neighbors, moving within the range of 6 to 30.
The intrinsic dimension value will be lower with the same
number of neighbors but with a larger dataset size. Again,
MLE methods provide just approximations to the actual
intrinsic dimension, which may contain bias but is of no
direct concern in this application of detecting hallucinations.

Robustness to cross-task reference To understand how gen-
eralizable the LID feature is and whether we can use LIDs
in the wild, we conduct experiments where the neighbors
come from a different dataset. Results are shown in Table 4.
We find that there is only a small decrease in performance
in general, demonstrating the features used to estimate in-
trinsic dimension are generalizable to out-of-domain tasks.
Also, notice that we observe some performance boosts when
the reference samples come from a dataset that models have
better performance on. For example, TydiQA reference sam-
ples improve the detection on HotpotQA. We leave further
investigation to this observation to future work.

5. Analysis
In this section, we conduct a series of analyses on the char-
acteristics of intrinsic dimensions of LLM representations.
In the first two parts, we study how the intrinsic dimensions
of model representations change across layers and during
the autoregressive language modeling process. In the last
part, we investigate how the effects of instruction tuning
on intrinsic dimensions. Our study reveals that intrinsic
dimension is indeed an insightful tool to understand LLMs.

5.1. The aggregated LIDs exhibit a hunchback shape in
intermediate layers

To study the characteristics of the intrinsic dimensions in-
sider the model layers, we aggregate individual LIDs and
present the trends of the aggregated LIDs across different
model layers. As depicted in Figure 3, across the four

datasets, the intrinsic dimensions exhibit a hunchback shape,
akin to the observation in the vision domain (Ansuini et al.,
2019): the averaged LID values initially increase from the
bottom to middle layers, and then decrease from the middle
to the top layers. Note that intrinsic dimensions represent
how many dimensions are needed to encode the informa-
tion without significant loss. The observed hunchback phe-
nomenon suggests that LLMs gradually capture the informa-
tion in the context in the first few layers, and then condense
them in the last layers to map to the vocabulary.

Furthermore, we observe a close relation between the in-
trinsic dimension values and the performance of predicting
individual truthfulness. The two curves: the LID curve with
dots (blue) and the detection performance curve (orange)
show similar trends. Nevertheless, there is a ‘shifting be-
hind’ effect: the variants in LID values are reflected one
or two layers later in the prediction of truthfulness. We
hypothesize that once the model encodes sufficient infor-
mation, as indicated by the absolute LID values, additional
transformations in later blocks are required to convert these
encoded features into indicators of truthfulness. Empirical
verification and further investigation of this phenomenon
could be explored in future work.

5.2. The intrinsic dimensions are consistently lower for
human answers at different positions

Next, to investigate how intrinsic dimensions vary when
modeling truthful and untruthful outputs, we compare the
LIDs of untruthful answers with the LIDs of their corre-
sponding ground-truth answers at each position, using an-
other set of complete correct answers as reference points.
We use the TriviaQA dataset as an example. Figure 4 illus-
trates the aggregated results. We observe that the intrinsic di-
mensions of ground-truth are consistently lower than model
generations at different positions. For ground-truth answers,
a sharp decrease in the intrinsic dimensions happens when
approaching the end of generations while this phenomenon
does not hold for incorrect generations. This explains why
selecting the last token gives the best performance when
working with representations (Zou et al., 2023).

To conduct a controlled study, we construct a few examples
where we explicitly mix human and model answers: we
prompt the model with the first half of the correct answers
but ask the model to generate the rest. As in Table 9, the
mixed answers usually have higher LIDs compared to both
human and model answers, even when the model answer
is incorrect. This supports our hypothesis that incorrect
answers mix more manifolds and thus have higher LIDs.
More examples are displayed in Appendix E.
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Figure 3. Plots for the aggregated LID values across model layers on the four QA datasets. The X-axis is the layer id, which is layer 1 to
layer 30 for Llama-2-7B. The left Y-axis is the aggregated LID values and the right Y-axis is the detection performance (AUROC) values.
The detection performance curve is in orange and the LID curve is in blue with markers. We show that there is a hunchback shape in the
LID values across layers. The LID values closely correlate with the performance of detection and exhibit a ‘shift behind’ phenomenon.

Figure 4. Bars for intrinsic dimensions of ground-truth answers
(orange dashed line) and untruthful model generations (blue line)
as the language modeling proceeds. The X-axis represents buckets
of different ratios of the total lengths.

Answer these questions: Q: Who played
the title roll in the Flint films? A:

- Model output: John Cusack [7.54, 8.61, 13.34, 5.05]
- Ground-truth: James Coburn [7.88, 9.96, 4.79]
- Mixed output: James Garner [7.87, 8.72, 4.58 , 6.98]

Table 5. Examples of mixing distributions increases LIDs. The
Blue part is the model continuation for the ground-truth. The
numbers in the list represent LID value for each position.

5.3. The intrinsic dimensions increase while instruction
tuning and correlate with model performance

Finally, we study how instruction tuning affects LLMs’ in-
trinsic dimensions. Instruction tuning adapts a pre-trained
LLM to solve diverse tasks by training LLMs to follow
declarative human instructions (Wang et al., 2022; Taori
et al., 2023). We follow this paradigm and investigate the
representation LIDs.

Experimental Setup We use the SUPER-NI (Wang et al.,

Figure 5. Plots for the accuracy and intrinsic dimension on Triv-
iaQA and TydiQA during instruction tuning. The X-axis is the
training steps. We train 3,000 steps in total and show checkpoints
every 300 steps. The Y-axis is the performance for the top two
figures and the aggregated LID values for the bottom two figures.

2022) for training, which contains 756 training tasks and 200
examples for each training task. We fine-tune a Llama-2-7B
model for 3,000 steps, roughly 3 epochs, on SUPER-NI’s
training set. We track every 300 steps during the tuning
process and evaluate those checkpoints for their accuracy
on TydiQA and TriviaQA, as well as the intrinsic dimension
footprints. For both TydiQA and TriviaQA, we randomly
sample 1,000 test examples and repeat the experiments three
times. We use T=500 nearest neighbors for estimating the
LIDs on TriviaQA and TydiQA.

The intrinsic dimension grows while training for a longer
time As illustrated in Figure 5, instruction tuning brings a
performance boost for both TriviaQA and TydiQA, while the
boost is more significant for TydiQA. We also find that the
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aggregated LID values show an increasing trend along with
the training process, although there are more fluctuations for
TriviaQA than TydiQA. During instruction tuning, models
are tuned on diverse tasks and composed distributions. The
increase in intrinsic dimensions of LLM representations
possibly implies that they become richer.

The aggregated LID values correctly predict fluctuations
in generalization ability during training We observe that
the performance on both TriviaQA and TydiQA reaches a
local minimum at some intermediate checkpoints during
instruction tuning, while the intrinsic dimensions decrease
correspondingly. For example, at step 600 and step 1800,
the performance for TriviaQA fluctuates and reaches the
local minimum. This is reflected in the curve of LID values,
where at step 600 and step 1800, the LID values are the
lowest locally. Similar observations exist for TydiQA at
step 1800. This suggests that one may use the intrinsic
dimension as a signal to select model checkpoints.

6. Discussion
In this section, we want to discuss some limitations of LID.
First, as model representations are trained with data from
the human distribution, the truthfulness LID characterizes is
mainly based on the world knowledge, i.e., it is distinguish-
ing whether models are generating content consistent with
world knowledge or not. The performance of LID to detect
other properties of model generations besides truthfulness
is yet to be explored. For example, if the generated content
is faithful to some context, or if it is adversarial or harmful.

Second, the performance of LID on different formats of
inputs and outputs like multi-modal and code-switching
inputs and document-level outputs, is not explored in this
work.

7. Conclusion
In this paper, we proposed to use LIDs to characterize and
predict the correctness of LLM outputs, which achieved
better performance compared to prior methods. We showed
several empirical observations about model intrinsic dimen-
sions, including the variants of them with model layers,
autoregressive language modeling, and the effects of instruc-
tion tuning. This opened up a new direction to consider
quantifying model truthfulness for future work.
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We propose to quantify and characterize model hallucina-
tions through intrinsic dimensions of model intermediate
representations. On the one hand, this method itself helps
people abstain from trusting incorrect generations. On the
other hand, it can serve as the backbone for some hallucina-
tion mitigation methods.

This paper mainly discusses LLM generations in English.
Results may be biased towards the English-speaking popula-
tion. However, adapting this LID method to other languages
does not require much additional effort. Moreover, the pa-
per focuses primarily on question-answering scenarios. We
encourage future work to implement this method on diverse
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A. Dataset and Inference Details
For datasets without context (HotpotQA and TriviaQA), we use the following textual input as prompts:

Answer these questions: \n Q: [question] \n A:

For datasets with context (TydiQA-GP and CoQA), we have the following template for prompts:

Answer these questions based on the context:\n Context: [a passage or a paragraph] \n Question: [question] Answer:

Table 6 shows some examples from those datasets with our inference format.

TriviaQA

- Answer the following questions: \n Q: The Great Barrier Reef is located off the coast of which Australian state? \n A:
- Answer the following questions: \n Q: Whose 2006 album ””Back to Black”” had 6 Grammy Award nominations and five
wins, tying the record for the most wins by a female artist in a single night, and made her the first British singer to win 5
Grammys?\n A:
- Answer the following questions: \n Q: Who directed The Cable Guy? \n A:

HotpotQA

- Answer these questions: \n Q: Which film was created first, Tex or Miracle? \n A:
- Answer these questions: \n Q: When was the company, of which Ernest Walter Hives was one time chairman, founded ? \n A:

CoQA

- Answer these questions based on the context: \n Context: Annie was helping her little brother Max pick flowers from the
garden. They wanted to put the flowers in a jar to put on the kitchen table. Mother’s Day was the next day and their mother
loved fresh flowers. After they picked flowers and put them in a jar, Max asked Annie if they could have a snack. Annie took
Max into the kitchen and got out an apple to slice up. They sat down at the table looking at the flowers and ate their apple slices.
There was a window in the kitchen that let in sunlight. ””Hey!”” Max said, pointing at one of the roses in the jar. ””There’s
something moving on that rose.”” Annie looked more closely at the flowers. ””It’s a ladybug,”” she said. ””We need to take it
back outside.”” Suddenly the ladybug began flying around the kitchen. Max jumped up and ran around trying to catch it. At last
he clapped his hands around it. ””Careful!”” said Annie. Max walked outside and let the ladybug go. \n Question: Was Max an
older brother? \n Answer:

TydiQA-GP

- Answer the following question based on the information in the given passage: \n Passage: The Kingdom of Aksum (also
known as the Kingdom of Axum, or the Aksumite Empire) was an ancient kingdom located in what is now Tigray Region
(northern Ethiopia) and Eritrea.[2][3]. Axumite Emperors were powerful sovereigns, styling themselves King of kings, king of
Aksum, Himyar, Raydan, Saba, Salhen, Tsiyamo, Beja and of Kush.[4] Ruled by the Aksumites, it existed from approximately
100 AD to 940 AD. The polity was centered in the city of Axum and grew from the proto-Aksumite Iron Age period around the
4th century BC to achieve prominence by the 1st century AD. Aksum became a major player on the commercial route between
the Roman Empire and Ancient India. The Aksumite rulers facilitated trade by minting their own Aksumite currency, with the
state establishing its hegemony over the declining Kingdom of Kush. It also regularly entered the politics of the kingdoms
on the Arabian Peninsula and eventually extended its rule over the region with the conquest of the Himyarite Kingdom. The
Manichaei prophet Mani (died 274 AD) regarded Axum as one of the four great powers of his time, the others being Persia,
Rome, and China.[2][5] \n Question: When did the Kingdom of Aksum end? \n Answer:

Table 6. Examples of datasets.

TriviaQA HotpotQA TydiQA CoQA

Llama-2-7B 0.66 0.26 0.44 0.57
Llama-2-13B 0.72 0.33 0.50 0.62

Table 7. Accuracy of Llama-2-7B and Llama-2-13B on the four datasets with s (yi, ŷi) = I (RougeL (yi, ŷi) ≥ 0.5)

The performance with LLama-2 is shown in Table 7, which roughly matches the publicly reported performance.
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B. Different Indicator Functions
We evaluate the sensitivity of our methods towards different indicator functions. We consider two new indicator functions:

1) s (yi, ŷi) = I (RougeL (yi, ŷi) ≥ 0.3), i.e., changing the thresholds in the Rouge-L metric from 0.5 to 0.3;

2) s (yi, ŷi) = I (NLI (yi, ŷi) == entailment). We use a natural language inference (NLI) model to judge the semantic
similarity of two answers as the indicator function. The model is tuned for judging whether a premise semantically entails a
hypothesis, where the ground-truth answer is used as the premise and the model-generated answer is used as the hypothesis.
The NLI model is based on T5-XXL from Honovich et al. (2022).

We evaluate with TriviaQA and CoQA on Llama-2-7B. The only difference with our main results is that the indicator
functions are changed to the above two functions. Results are shown in Table 8. We show that despite of small performance
variants, LID-MLE and LID-GeoMLE outperform the best uncertainty-based methods across different indicator functions.

Method CoQA TriviaQA
0-shot

TriviaQA
5-shot

Rouge-L ≥ 0.3

Semantic Entropy 0.683 0.726 0.791
SAR (Duan et al., 2023) 0.694 0.731 0.795
LID-MLE 0.744 0.761 0.783
LID-GeoMLE 0.756 0.784 0.801

NLI Entailment

Semantic Entropy 0.666 0.715 0.779
SAR (Duan et al., 2023) 0.671 0.758 0.783
LID-MLE 0.723 0.762 0.783
LID-GeoMLE 0.735 0.781 0.790

Table 8. Detect incorrect answers for Llama-2-7B on TriviaQA and CoQA. We use two other indicator functions based on Rouge-L
threshold of 0.3 and NLI entailment. Results demonstrate that LID methods is robust to different indicator functions.
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C. Frequency Histogram

Figure 6. Frequencies of the LID values for truthful and untruthful data on TriviaQA, with Llama-2-7B (left) and Llama-2-13B (right).
X-axis is the LID values while Y-axis is the number of occurs.

Figure 7. Frequencies of the LID values for truthful and untruthful data on CoQA, with Llama-2-7B (left) and Llama-2-13B (right).
X-axis is the LID values while Y-axis is the number of occurs.

Figure 8. Frequencies of the LID values for truthful and untruthful data on HotpotQA, with Llama-2-7B (left) and Llama-2-13B (right).
X-axis is the LID values while Y-axis is the number of occurs.
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D. Visualization of truthful and untruthful answers with t-SNE
We show the t-SNE scatters that reduce the dimensions of original representations into a two-dimensional space. On CoQA
and TydiQA, there are vague clusters of truthful and untruthful generations. But on TriviaQA and HotpotQA, there is no
clear cluster. Overall, the visualization shows that dimension reduction methods like t-SNE fail to distinguish truthful
answers from untruthful answers.

Figure 9. t-SNE on CoQA. Figure 10. t-SNE on TydiQA.

Figure 11. t-SNE on TriviaQA. Figure 12. t-SNE on HotpotQA.
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E. Examples for the controlled mixing data
We show more examples or our synthetic experiments where we ask models to continue a ground-truth answer,

Answer these questions: Q: Who played the title roll in the Flint films? A:

- Model output: John Cusack [7.54, 8.61, 13.34, 5.05]
- Ground-truth: James Coburn [7.88, 9.96, 4.79]
- Mixed output: James Garner [7.87, 8.72, 4.58 , 6.98]

Answer these questions: Q: Which man other than Billy McNeill and Martin O’Neil
has managed both Aston Villa and Celtic? A:

- Model output: 1970s Celtic manager Jock Stein.
[7.98, 8.05, 8.98, 7.08, 8.76, 10.15, 8.22, 11.30, 9.22, 6.78, 6.76, 8.57, 7.33, 6.87]
- Ground-truth: DR JOSEF VENGLOS
[8.32, 7.66, 8.11, 8.87, 8.80, 7.74, 8.38, 10.76, 5.74]
- Mixed output: DR JOSEF SMEDA
[8.32, 7.66, 8.11, 8.87, 8.80, 7.50, 11.17, 7.46]

Answer these questions: Q: Which famous vehicle has used license plates SCV
00919 and SCV 1 (through to SCV 9)? A:

- Model output: 007’s Aston Martin DB5
[9.50, 10.02, 11.33, 9.06, 8.82, 10.25, 8.07, 9.75, 6.79, 8.46, 6.70]
- Ground-truth: The Popemobile
[9.00, 9.23, 9.53, 6.72]
- Mixed output: The Black Pearl
[9.00, 8.52, 11.39, 7.04, 7.86]

Answer these questions: Q: In the J. M. Barrie play who was the resourceful
butler to the Earl of Loam? A:

- Model output: Jeeves
[8.75, 10.51, 6.43]
- Ground-truth: THE ADMIRABLE CRICHTON
[6.74, 7.82, 9.03, 9.86, 9.91, 10.19, 10.02, 12.58, 5.41]
- Mixed output: THE ADMIRABLE BERTIEl
[[6.74, 7.82, 9.03, 9.86, 9.91, 7.39, 8.11, 7.29]

Answer these questions: Q: With what invention do you associate the name of Mr.
Whitcomb Judson? A:

- Model output: The sewing machine
[9.46, 9.75, 9.40, 5.55, 7.49]
- Ground-truth: ZIP fastener
[8.69, 10.32, 11.12, 6.47]
- Mixed output: ZIP PERl
[[8.69, 10.32, 8.37, 9.05]

Table 9. Examples of mixing distributions increases LIDs.
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