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Abstract

Pre-trained multi-modal vision-language models (VLMs) excel in downstream
applications, especially in the few- and zero-shot settings. However, choosing
the optimal VLM for some downstream applications is challenging due to task
and dataset dependencies. Exhaustive evaluation of all VLMs is impractical and
requires the collection of a labeled dataset for evaluation. As the number of open-
source VLM variants increases, there is a need for an efficient model selection
strategy that does not require access to a curated evaluation dataset. To address this,
we introduce a novel task, LOVM: Language- Only Vision Model Selection, where
methods are expected to perform both model selection and performance prediction
based solely on a text description of the desired downstream application. We also
present an extensive LOVM benchmark consisting of ground-truth evaluations of
35 pre-trained VLMs and 23 datasets, enabling effective ranking and performance
prediction of VLMs. Our code, full paper, and dataset are available at https:
//github.com/orrzohar/LOVM.

1 Introduction
The growing impact of artificial intelligence (AI) is evident across various sectors, yet challenges
remain in applications like medicine that can’t easily amass the large labeled datasets required for
the standard supervised learning framework. Pre-trained vision-language models (VLMs) present a
promising solution for such downstream tasks due to their impressive zero-shot performance [Radford
et al., 2021, Jia et al., 2021], which unfortunately varies significantly across different domains. This
variability makes model selection non-trivial, which undermines the reliance solely on benchmark
dataset performance for effective VLM selection. Consequently, users aiming to select a VLM for
custom downstream applications frequently face a predicament: the lack of established performance
rankings for these specific, non-conventional tasks.

Figure 1: LOVM Motivation. Number of pre-
trained VLMs released on open-clip over time.

As the number of pre-trained VLMs increases (see
Fig. 1 [Ilharco et al., 2021]), the challenge of model
selection escalates. Exhaustive evaluation of all
available VLMs on a novel application requires
first the collection of a labeled dataset for evalua-
tion, and is also time and computationally demand-
ing. However, many users lack the resources or
technical proficiency to collect and label an evalua-
tion dataset and subsequently evaluate all available
VLMs. Consequently, the development of methods
that efficiently select the most suitable model for a
given task without relying on access to the down-
stream task dataset has become critically important.

Recent studies have demonstrated that text embed-
dings from VLMs can be used as a proxy for their
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Figure 2: An overview of an appli-
cation for LOVM methods. A user
can type into a search bar the details
of the desired task, and LOVM meth-
ods rank the available models.

corresponding image embeddings in various downstream tasks,
including classification and error slice discovery [Zhang et al.,
2023, Eyuboglu et al., 2022, Jain et al., 2022]. Specifically,
although Liang et al. [2022] has shown that there exists a
modality gap between text and image embeddings generated
from VLMs, the geometry of this modality gap permits cross-
modality transferability. This allows text to serve as a proxy
for images and vice versa. Therefore we aim to explore the
utilization of cross-modality transferability to estimate VLM
performance on a novel vision task using only text.

Herein, we propose a novel problem setting - Language-Only
VLM selection (LOVM) as a novel model selection task. In
the LOVM task, methods are expected to select the optimal
VLM and predict its performance given only a text description
of a downstream task, (see Fig. 2). Importantly, LOVM
eliminate the need to gather and annotate custom datasets, greatly simplifying the model selection
process for downstream users. To facilitate the development of LOVM methods in the future, we
collected a large dataset of ground-truth evaluations of 35 pre-trained VLMs on 23 datasets. We
then introduce the appropriate evaluation protocol and method quality metrics for the evaluation and
comparison of future LOVM methods. Our contributions can be summarized as follows:

• We propose a novel problem setting, LOVM: Language-Only VLM selection and per-
formance prediction. LOVM methods are expected to perform both model selection and
performance prediction using only a text description of the desired zero-shot application.

• We provide a benchmark consisting of 35 pre-trained VLMs and 23 datasets. We evaluated
all dataset-VLM combinations and reported their corresponding performance, and introduce
the corresponding LOVM evaluation metrics and protocols.

• In developing the LOVM baselines, we introduce several novel methodological contributions,
such as using LLM models to generate text proxies for images. Our text-based methods
outperform simple baselines - e.g., ImageNet benchmarking, showcasing LOVM’s potential.

2 Language-Only Vision Model Selection

In order to train and evaluate LOVM methods, we need the ground-truth (GT) zero-shot performance,
i.e., image-based evaluation of many VLMs (differing by architecture and pre-training) on many tasks
and datasets. Once collected, we can develop and evaluate LOVM methods. An ideal LOVM method
should be able to select the best performing VLM for a downstream vision task and estimate the
performance directly from text embeddings, eliminating the cost of image-based model selection. The
VLM, dataset selection criterion, and dataset collection procedure are detailed in Sec. 2.1. Finally,
the evaluation protocol of LOVM methods is described in Sec. 2.2. For a discussion on why we only
evaluate zero-shot performace, see App. Sec. D.

Background. We first recap how VLMs are used as in zero-shot vision tasks. Given a pre-trained
VLM v, along with an image X ∈ X or text Y ∈ Y input, we can obtain their L2-normalized
embeddings x or y from the image encoder fx : X 7→ Rn or the text encoder fy : Y 7→ Rn, where
n is the dimension of the shared multi-modal embedding space. To use a model v on a particular task,
one encodes the class prompts, Y c for class c using the model’s text encoder, producing the class
embeddings yc = fy(Y

c). To produce the final class prediction, one calculates the cosine similarity
of an image embedding with all the corresponding text embeddings to predict the class logits.

Task Definition In the LOVM task, for any downstream application/dataset d, methods are given a
set of pre-trained VLMs, V = {v0, v1, ..} ∈ V , a text description of the downstream task Yd (e.g.,
classification) and a list of the desired classes Y c

d ,∀c ∈ Cd where Cd is the number of classes in task
d. LOVM methods are expected to rank and predict the accuracy of the set of models (see Fig. 3, i):

pv,d = fLOVM(v, {Y c
d }

Cd
c=1, Yd), ∀ v ∈ V , (1)

where pv,d ∈ R is the relative/absolute performance of model v on dataset d.
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Figure 3: Language-Only Vision Model Selection Overview. (i) Task. a LOVM method is given a
set of pre-trained VLMs, a text description of the desired task, and the list of the classes of interest.
Given these, LOVM methods are expected to rank and predict the performance of all the available
models on the downstream task. (ii) Evaluation. Given the predicted (green) and ground-truth
(blue) VLM ranking and performance, we evaluate the LOVM method’s performance by accepted
list ranking and accuracy metrics. (iii) Data Collection. We exhaustively evaluated the selected 35
VLMs on the selected 23 datasets to produce the ground-truth (image-based) evaluations.

2.1 Data Collection and Benchmark Construction

To train and evaluate LOVM methods, we need the zero-shot ground-truth performance of many
VLM models on many downstream datasets. We, therefore, selected 35 VLMs and 23 Datasets and
then performed image-based evaluations of each model on all datasets - a total of 805 evaluations
using the prompting strategy discussed by Radford et al. [2021] (see Fig. 3, iii). The ground truth
zero-shot image-based model rankings and accuracies constitute the bulk of our benchmark.

Selected Datasets. The proposed LOVM benchmark utilizes a heterogeneous assortment of 23
datasets. These datasets exhibit variability in the number of classes, their target tasks, and correspond-
ing domains. The benchmark encompasses a comprehensive range of tasks such as classification,
scene understanding, geolocalization, and object counting, rendering it extensively applicable across
many applications. Further, the datasets span diverse domains, including natural, satellite, text, and
medical images (See Tab. 2). To ensure maximal compatibility, we have opted for tasks that permit the
utilization of the same VLM architecture, precluding any requisite alterations or additional training.
This approach necessitated the exclusion of tasks such as segmentation and object detection, which
mandate additional training modules, introducing noise during the evaluation of VLM performance.

VLM Candidates. We utilize the open-clip library [Ilharco et al., 2021], a diverse collection
of pre-trained VLMs spanning various architectures, including but not limited to CLIP and CoCa
models, and utilizing encoders such as ResNet, ConvNext, and ViT. These models have undergone
pre-training on various datasets, such as WIT [Radford et al., 2021], LAION 400m, and LAION
2b [Schuhmann et al., 2022], with different hyperparameters. From the 87 models currently available,
we have carefully selected 35 for our study. A comprehensive list of all models used in this benchmark
can be found in the App. Tab. 3. We avoided incorporating additional multi-modal models, such as
BEIT[Wang et al., 2023] and VLMO [Bao et al., 2022], as these models cannot be evaluated on the
same datasets. Currently, CLIP models comprise a significant portion of VLMs employed in practice.

2.2 LOVM Evaluation Protocol

On our benchmark, methods are expected to rank 35 pre-trained multi-modal models that differ
in architecture and pre-training datasets on 23 target datasets, and compare these rankings to the
ground-truth rankings (see Fig. 3 (ii)) and report the performance on each dataset and the average.

Model Ranking. When evaluating model ranking, one has access to the performance of all the
models on all the datasets besides the one being evaluated. We use the following metrics:

• Top-5 Recall (R5) – We used R5 to evaluate a LOVM method’s model ranking capability. It
is defined as the ratio of correctly identified models.
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• Kendall’s Rank Correlation (τ ) – We used τ to evaluate a LOVM method’s model selection
capability and give s fine-grained picture of how well the method ranked the high-performing
models and is defined as Kendall’s rank over the top-5 selected models.

Performance Prediction. When evaluating a model’s prediction on a dataset, the GT performance
of that model on all datasets and the performance of all models on that dataset are held out.

• Mean Absolute Error (L1) – We used L1 to evaluate a LOVM method’s performance
prediction capability. Specifically, we compute the L1 loss of all models’ predicted vs.
actual mean per-class recall/top-1 accuracy.

3 LOVM Baselines

The assessment of model performance in traditional supervised methods often relies on benchmark
dataset performance. Given that most pre-trained vision-language models (VLMs) are evaluated
on ImageNet, it is convenient to utilize it as a baseline for comparison (This is our ImageNet
Benchmark baseline). Alternatively, a large language model could generate many probable image
captions, which could be encoded using the different VLMs text encoder, producing the corresponding
text embeddings. Treating these embeddings as image-proxies, one can calculate different widely-
accepted scores (see Sec. 3.2) and fit a linear regression model to predict performance or rank VLMs.
Specifically, from every VLM-dataset combination, one extracts these scores and then fits the model:

pv,d = w · sv,d + b, (2)

siv,d = f i
feat(v,TextGen({Y c

d }
Cd
c=1, Yd)), (3)

where pv,d ∈ R is the relative/absolute performance of model v on dataset d, w, b are the weights and
bias of the linear model. siv, d is the i-th element in the score vector, sv,t = [s1v, d, s

2
v, d, ...]

T , produced
by the corresponding feature/score function f i

feat. The function TextGen is a function that generates
text given the class names, {Y c

d }
Cd
c=1 and task description Yd of the desired task/dataset d.

We discuss the different scores, siv, d, in Sec. 3.2 and the TextGen function in Sec. 3.1. To evaluate
model rankings on a dataset, we hold out the data for that particular dataset and fit a linear model
on all the other datasets. Meanwhile, to evaluate the performance prediction of some model on
a particular dataset, we hold out the data for that dataset and model and fit a linear model on the
remaining combinations. We refer to the baselines by the combination of scores used in the model.

3.1 Text Data Generation

The impressive progress in large language models (LLMs) [OpenAI, 2023, Touvron et al., 2023]
has rendered the generation of potential - and realistic - ‘image captions’ practically limitless, thus
rendering text data generation remarkably attainable. In our study, we employ GPT-3.5, tasked to
produce two distinct text-based datasets, each corresponding to a given vision task. These generated
datasets serve as the foundation for extracting essential features for our task.

Captions Dataset. To generate the captions dataset, Dcap, we prompt an LLM to generate realistic -
but confusing - captions for images containing the user-provided classes in the user-provided domain.
We extracted the dataset description and class names from each dataset and prompted the LLM to
generate ‘Generate long and confusing image captions’.

Synonyms Dataset. Prior studies have already leveraged synonyms to evaluate LLMs [van der Lee
et al., 2023]. For example, if an VLM has seen many instances of the class ‘chair’ referenced as a
‘chair’, ‘seat’, etc., we expect these embeddings to be closely located in the shared embedding space.
To evaluate this aspect of the VLM using text, we prompt an LLM to generate a list of semantically
similar/synonyms for every object class, which form the synonyms dataset, Dsyn.

3.2 Text-Derived Scores

There are many widely reported metrics for model transferability, dataset difficulty, and dataset gran-
ularity scores developed on image embeddings. We extract different commonly used features/metrics
from the text dataset embeddings and calculate their text-only counterparts.
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Table 1: LOVM Benchmark. The evaluation of the baselines’ averaged performance on the proposed
LOVM benchmark, when predicting the top-1 accuracy and mean per-class recall of the VLMs (see
App. Tab. 4, 5 for the breakdown). INB - ImageNet, C/G - Text Classification/Granularity scores.

used mean per-class recall top-1 accuracy
scores R5(↑) τ(↑) L1(↓) R5(↑) τ(↑) L1(↓)
INB 0.504 0.186 0.228 0.452 0.177 0.220

C 0.252 0.058 0.182 0.226 0.058 0.176
G 0.270 -0.014 0.141 0.252 -0.014 0.144

G+C 0.270 -0.014 0.141 0.252 -0.014 0.144
INB+C 0.513 0.200 0.182 0.452 0.223 0.176
INB+G 0.548 0.197 0.141 0.461 0.096 0.140

INB+G+C 0.548 0.197 0.141 0.461 0.096 0.140

Text Classification Scores (C). We use the generated captions dataset as image proxies and
evaluate the resulting model performance. Specifically, we replace the images with the generated
image captions and evaluate each model’s text top-1 accuracy (text-acc1) and f1-score (text-f1).

Dataset Granularity Scores (G). Cui et al. [2019] introduced the use of two widely used dataset
granularity measures for image classification, Fisher criterion [Fisher, 1936], ϕfisher and Silhouette
score [Rousseeuw, 1987], φsil, and their normalization constant, Class Dispersion score, ρdisp. The
Fisher criterion measures the degree of similarity of the classes or the extent of their separation. The
Silhouette score is a well-established metric used to quantify the tightness of the same-class samples
to the separation of different-class samples. The Class Dispersion score quantifies the degree of
same-class tightness or data cone radius. For detailed definitions of these metrics, see App. Sec. B.

ImageNet Benchmark (INB). We use the Imagenet performance of a VLM as the simplest baseline
for our LOVM methods. Here we assume that the performance of each model on all the downstream
tasks is exactly equal to the ImageNet performance. Methods often report ImageNet zero-shot
classification performance and it is therefore reasonable to believe we have this.

4 Experiments and Results

In Sec. 4.1, we evaluate the model selection capabilities of the proposed baselines on the LOVM
benchmark. In Sec. 4.2, we evaluate the proposed baselines’ performance prediction capabilities. We
then analyze score trends and draw insights in Sec. 4.3.

4.1 Model Selection

A core aspect of this benchmark is model selection, as it allows the user to quickly and easily
select the optimal model for the desired downstream task. From Tab. 1, we can see that, when
predicting/ranking by the models mean per-class recall, the (C+G)-baseline can achieve a top-5 recall
of 0.270, indicating that, on average, more than one model is correctly ranked as a top-5 performing
model. Meanwhile, the INB-baseline had a R5 of 0.504. Combining the text and ImageNet scores, the
(INB+G)-baseline achieves the highest recall of 0.548, a ∼ 15% improvement over the INB-baseline.
To observe more fine-grained ranking capability, studying Kendall’s rank correlation, the (G+C)-,
INB-, and (INB+C)-baselines achieve a τ of −0.014, 0.186, and 0.200, respectively.

Similar results can be seen when predicting the top-1 accuracy. The consistent improvement of
the baselines over the INB-baseline indicates the utility of both text-based and benchmark features.
Interestingly, C-score (or the text-acc1) appears to be more influential in predicting/ranking model’s
the top-1 accuracy than the mean per-class recall. To show that changing the LLM does not affect
these results, we re-ran our experiments with a different LLM and report the results in Sup. Sec. C.3

4.2 Performance Prediction

Based on Tab. 1, it is clear that the granularity scores (G) are instrumental to predicting a model’s
top-1 accuracy and mean per-class recall. The G-baseline approach can achieve an average L1
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error of 0.145 and 0.141 for predicting the mean-per-class recall and top-1 accuracy, respec-
tively. Adding any other scores does not lead to an improvement in performance prediction.

0.0 0.2 0.4 0.6 0.8 1.0
Predicted Accuracy

0.0

0.2

0.4

0.6

0.8

1.0

Gr
ou

nd
-Tr

ut
h 

Ac
cu

ra
cy

R2 = 0.55 Stanford Cars
country211
FER2013
GTSRB
Imagenet
MNIST
renderedsst2
stl10
SUN397
VOC2007
CIFAR100
CLEVR-DISTANCE
CLEVR-COUNT
Retinopathy
DMLab
DTD
euroSAT
flowers102
KITTI
Pcam
Oxford Pets
resisc45
SVHN

Figure 4: Predicted vs. Ground-Truth Ac-
curacy. Predicted vs. actual top-1 accuracy
on the proposed LOVM benchmark.

The INB-baseline, which uses Imagenet performance
as prediction, leads to a much higher L1 error of
0.228 and 0.220 compared to the text-base baselines
(text-based performance estimation outperformed
INB-baselines by ∼ 36%). Finally, adding the Im-
ageNet benchmark score to the text features in the
Unified baseline did not improve the L1 compared
to the text-only baseline. This is expected as the
imagenet performance cannot be used to predict the
performance on a different dataset. Fig. 4 shows the
predicted vs. ground-truth accuracy. Our approach
had a R2 score (or coefficient of determination) of
0.55, showing significant room for improvement in
accuracy prediction. To show that changing the LLM
does not affect these results, we re-ran our experiments with a different LLM in Sup. Sec. C.3

4.3 Insights into VLM Behavior

In this section, we visualize the dependence of the text-derived features on the pre-training datasets
and model architectures while averaging them across the different datasets (see Fig. 5).

Model Size. From studying Fig. 5, we can we can identify a clear trend of Fisher criterion and
Silhouette score improving with model size, while Class Dispersion score and Synonym Consistency
score degrade with model size. Silhouette score quantifies the degree of inter-class overlap or the
degree of overlap between different classes in the embedding space. As the model size of the
visual encoder increases, the embeddings from different classes become more and more orthogonal,
decreasing the inter-class overlap. Fisher criterion quantifies the degree of granularity a model
perceives the target datasets to be. As model size decreases, Fisher criterion decreases, or the degree
of perceived granularity increases.

Pre-training Dataset. When studying the effect of pre-training dataset size, it is clear that there
is a positive correlation between pre-training dataset size and all of the metrics when comparing
models of the same size. As the pre-training dataset increases, the intra-class similarity increases
more rapidly than the inter-class similarity; hence, different classes are more separated. Specifically,
Fisher criterion and Silhouette score increase or the degree of perceived granularity decreases, and
embeddings from different classes become less orthogonal, increasing the inter-class overlap. As the
pre-training dataset size increases, Class Dispersion score increases and the intra-class dispersion is
more condensed, leading to a smaller effective radius of a class dataset cone. Interestingly, larger
models are more affected by the increase in dataset size (as seen by the large slope of ViT-L compared
to ViT-B) - which could explain previous works’ observation that larger models benefit more when
trained on larger datasets [Fang et al., 2022].

Model Architecture. Pre-training datasets and model architectures significantly influence each
other. ResNets and ViTs, for instance, consistently demonstrated differing behaviors and appeared
to reside at distinct points on the class separation-dispersion trade-off curve. In particular, ResNets
displayed lower Class Dispersion score and Silhouette score, indicating challenges in encoding
instances of the same class within the feature space compared to ViTs. This may account for ResNets’
superior performance on datasets with low visual variation, like MNIST; as the visual variation is
relatively low, we would not expect the Class Dispersion score to be the limiting factor in model
performance, making them less affected by this aspect of the dataset. Intriguingly, ConvNEXT
models exhibited characteristics more in line with ViT-base models than ResNet-based ones. What
leads to variation between WIT and L400m remains unclear, necessitating further investigation.

5 Related Work

The Cross-Modality Transferability Phenomenon: Text as a Proxy For Images. While these
VLMs aim to project representations from different modalities into a shared embedding space, Liang
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Figure 5: Analyzing Score Trends. Average text scores depend on pre-training datasets and model
architecture on our text-derived scores. (left) scores quantifying inter-class similarity (right) scores
quantifying intra-class similarity. ResNet ( ) and ConvNext (× ) based models are grouped separately
to evaluate their effect on the score trends.

et al. [2022] found that corresponding image and text pairs don’t completely overlap in the embedding
space. Instead, a “modality gap” exists between the image embeddings and text embeddings sub-
space. Subsequently, Zhang et al. [2023] has found that this gap can be approximated as an orthogonal
constant between true pairs of image and text and is, therefore, parallel to the decision boundaries
for a given modality. This suggests that cross-modality transferability - using one modality as input
to the other’s classifier - is possible for these contrastively pre-trained VLMs. Several studies have
demonstrated the utility of the cross-modality transferability phenomenon in different tasks [Eyuboglu
et al., 2022, Jain et al., 2022, Zhang et al., 2023].

Unsupervised Accuracy Estimation. Unsupervised or label-free accuracy estimation aims to
estimate classifier model performance with only access to the unlabeled test set of a new task.
Platanios et al. [2017, 2016] proposed strategies to apply probabilistic modeling approaches, such
as the probabilistic logic or Bayesian modeling, to analyze and aggregate predictions from multiple
classifiers. Other works approach this task by fitting models on feature statistics of the target
dataset [Risser-Maroix and Chamand, 2023]. Some studies evaluated model agreement, where the
degree of agreement was correlated with model performance [Chen et al., 2021, Jiang et al., 2022].
All these methods assume access to the unlabeled dataset of the target task. Instead, our method only
requires text descriptions of the novel task to estimate the model’s performance.

6 Conclusion

In this work, we introduce a new problem setting and task LOVM, which aims to select the best-
performing VLMs for a downstream vision task by only using its textual description. To demonstrate
the feasibility of such a task, we show how large language models, in combination with the cross-
modal transferability phenomenon, can be leveraged for such a task. We exhaustively test these
methods on the proposed LOVM benchmark, consisting of 35 VLMs and 23 benchmark datasets.
Our findings validate the viability of our proposed LOVM task, with unified (both text scores and
INB) baselines outperforming the ImageNet benchmarking baseline. Furthermore, we found that the
granularity-based scores influence performance prediction and modal ranking more greatly. These
findings bolster the research direction of developing methods for VLM selection using text alone.

Our proposed LOVM benchmark aims to foster this research direction. We see two promising avenues
for future research: (i) improving text-based classification correlation with ground-truth accuracy
by either text generation, evaluation metrics, or cross-modal transferability, and (ii) introducing
new granularity and transferability scores to the text-only paradigm. Namely, we anticipate the
development of methods improving over our proposed baselines presented in Tab. 1. Our work aims
to facilitate future research in this area and provide a more accurate and reliable means of comparing
pre-trained VLMs, accelerating their utilization in downstream applications.
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A LOVM Benchmark Details

We evaluated 35 on 23, a total of 805 evaluations. This constituted the bulk of our compute with a
total of 4 days on an nvidia V100 instance. Evaluations were carried out using the CLIP_benchmark
repository (https://github.com/LAION-AI/CLIP_benchmark).

A.1 LOVM Benchmark - Datasets

The proposed LOVM benchmark comprises of 23 datasets, which were selected to maximize diversity.
Specifically, these datasets vary in the number of classes (2 to 1000), their target tasks, and domains.
The benchmark encompasses a comprehensive range of tasks such as classification, scene understand-
ing, geolocalization, object counting, and more, with the goal of rendering it extensively applicable
across many applications. Further, the datasets span diverse domains, including natural, satellite, text,
and medical images (See Tab. 2 for a comprehensive account of the datasets and their source). To
ensure maximal compatibility, we have opted for tasks that permit the utilization of the same VLM
architecture, precluding any requisite alterations or additional training. This approach necessitated
the exclusion of tasks such as segmentation and object detection, which mandate additional training
modules, introducing extraneous noise while evaluating VLM performance. However, it is worth
noting that previous transferability works have shown that these approaches may generalize to more
complex applications such as semantic segmentation [Pándy et al., 2022, Agostinelli et al., 2022].

A.2 LOVM Benchmark - Vision-Language Models

Tab. 3 presents a list of models and their corresponding pre-training datasets used in the LOVM
benchmark. We utilize the open-clip library [Ilharco et al., 2021], a diverse collection of pre-trained
VLMs spanning various architectures, including but not limited to CLIP and CoCa models, and
utilizing encoders such as ResNet, ConvNext, and ViT. These models have undergone pre-training on
various datasets, such as WIT [Radford et al., 2021], LAION 400m, and LAION 2b [Schuhmann et al.,
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Figure 6: Ground-Truth VLM Ranking. As can be seen, there is a lot of variation in the ground-
truth model ranking across both the natural image (left) and other (right) benchmarks.

2022], with different hyperparameters. From the 87 models currently available, we have carefully
selected 35 for our study. A comprehensive list of all models used in this benchmark can be found in
Tab. 3. We avoided incorporating additional multi-modal models, such as BEIT[Wang et al., 2023]
and VLMO [Bao et al., 2022], as these models utilize a shared text-image encoder and, therefore,
cannot be evaluated on the same datasets as CoCa and CLIP. Using models from the open-clip library
ensures maximum compatibility and reproducibility in our work. Currently, CLIP models comprise a
significant portion of VLMs employed in practice. Tab. 3 includes 35 entries, each identified by an
ID number. The first four columns indicate the ID number, model name, model abbreviation, and
pre-training dataset name. The fifth column shows the abbreviation of the pre-training dataset name.
The models listed in the table include ResNet (RN50, RN101, etc.) and Vision Transformer (ViT)
with different sizes (B/32, B/16, L/14, etc.), and the pre-training datasets include OpenAI’s WIT
dataset and two variants of LAION (L400m and L2b) datasets.

A.3 LOVM Benchmark - Ground-Truth Model Ranking

To evaluate the validity and generalizability of the LOVM benchmark, we first present the ground-
truth model ranking over all datasets to show that the model order is not constant across the datasets.
We organized the benchmarks from natural image classification (Fig. 6, left) to non-natural image
/ non-classification benchmarks (Fig. 6, right). As depicted in Fig. 6, the distribution exhibits a
non-uniform pattern, indicating the utility of LOVM methods and the importance of VLM selection
methods in general. Interestingly, ranking variations are more significant on the non-natural image /
non-classification benchmarks. This exemplifies the need for LOVM methods to contend with content
shift (i.e., changing what classes are in the target domain) and domain/task shift.

B Baseline Details

Fig. 7 shows an overview of our baselines. We first describe the prompting protocol used in Sec B.1.
We then give an in-detail description of the scores used in the study in Sec. B.2. In Sec. B.3, we give
additional details for the text dataset generation. Finally, in Sec. B.4, we describe how we use noise
to corrupt the text caption dataset when calculating text-acc1 and text-f1 scores.

Efficiency of our Baselines. Our text-based evaluations were ∼ 7× faster compared to the image
dataset evaluations.

B.1 Prompting Templates

We use the same prompting strategy introduced by Radford et al. [2021] to generate the model
zero-shot weights (see Fig. 10 for examples of templates from different datasets). Specifically, for
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Table 2: Details on the different benchmarks used in the study, including the number of classes, tasks,
and target domain.

Dataset Classes Task Domain

Imagenet [Deng et al., 2009] 1000 classification natural image
Stanford Cars [Krause et al., 2013] 196 classification natural image

Flowers102 [Nilsback and Zisserman, 2008] 102 classification natural image
CIFAR100 [Krizhevsky et al., 2009] 100 classification natural image

GTSRB [Stallkamp et al., 2011] 43 classification natural image
VOC2007 [Everingham et al., 2007] 20 classification natural image

Oxford Pets [Parkhi et al., 2012] 37 classification natural image
STL10 [Coates et al., 2011] 10 classification natural image
DTD [Cimpoi et al., 2014] 46 classification textural image

RESISC45 [Cheng et al., 2017] 45 classification satellite images
EuroSAT [Helber et al., 2019] 10 classification satellite images
MNIST [LeCun et al., 2010] 10 classification hand-writing

Retinopathy [Kaggle and EyePacs, 2015] 5 classification retina scan
PCam [Veeling et al., 2018] 2 classification histopathology
SUN397 [Xiao et al., 2010] 397 scene und. natural image

Country211 [Radford et al., 2021] 211 geolocation natural image
SVHN [Netzer et al., 2011] 10 OCR natural image

Rendered SST2 [Radford et al., 2021] 2 OCR text image
FER2013 [Dumitru Ian Goodfellow, 2013] 7 fac. exp. rec. natural image

CLEVR-C [Johnson et al., 2017] 8 object counting natural image
CLEVR-D [Johnson et al., 2017] 8 distance est. natural image

DMLab [Zhai et al., 2020] 6 distance est. synthetic
KITTI [Geiger et al., 2013] 4 distance est. natural image

Figure 7: Baselines Overview. (top left) Using a text description of a new task, we use a large
language model to generate the Image Caption and Class-Synonym datasets. We feed these text
datasets into a VLMs text encoder, which generates the text-derived multi-modal embeddings. Using
these embeddings, as well as the user-defined prompting strategies, we extract different scores.
Finally, we fit a linear model on the extracted scores to predict model ranking and accuracy. (bottom)
Schematic drawings of our different proposed scores.

every class c, we used the reported templates to produce the text prompts Y c and encoded these
prompts using the VLM text encoder, fy , to produce the text embeddings for class c, ŷc:

ŷc = fy(Y
c).

We then normalized each separate prompt by its L2 norm and averaged the resulting vector to produce
ȳc, or the unnormalized zero-shot weight of class c:

ȳc =
1

N

N∑
j=1

yc
j

||yc
j ||2

,
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Table 3: Translation of open clip to model/pre-training dataset names used in paper. When
renaming the datasets we tried to group models with similar optimization schemes to minimize the
number of pre-training datasets without causing undo overlap.

ID Model Name Dataset Name

1 RN50 RN50 openai WIT
2 RN101 RN101 openai WIT
3 RN50x4 RN50x4 openai WIT
4 RN50-16 RN50x16 openai WIT
5 RN50x64 RN50x64 openai WIT
6 ViT-B-32 ViT-B/32 laion400m_e31 L400m
7 ViT-B-32 ViT-B/32 laion400m_e32 L400m
8 ViT-B-32-quickgelu ViT-B/32 laion400m_e32 L400m
9 ViT-B-32 ViT-B/32 openai WIT

10 ViT-B-32 ViT-B/32 laion2b_s34b_b79k L2b-b
11 ViT-B-32 ViT-B/32 laion2b_e16 L2b-c
12 ViT-B-16 ViT-B/16 laion400m_e32 L400m
13 ViT-B-16 ViT-B/16 openai WIT
14 ViT-B-16-240 ViT-B/16-240 laion400m_e32 L400m
15 ViT-L-14 ViT-L/14 laion400m_e31 L400m
16 ViT-L-14 ViT-L/14 laion400m_e32 L400m
17 ViT-L-14 ViT-L/14 laion2b_s32b_b82k L2b-b
18 ViT-L-14 ViT-L/14 openai WIT
19 ViT-L-14-336 ViT-L/14-336 openai WIT
20 ViT-G-14 ViT-G/14 laion2b_s12b_b42k L2b-a
21 ViT-G-14 ViT-G/14 laion2b_s34b_b88k L2b-a
22 ViT-H-14 ViT-H/14 laion2b_s32b_b79k L2b-b
23 coca_ViT-B-32 CoCa-ViT-B/32 laion2b_s13b_b90k L2b-c
24 coca_ViT-B-32 CoCa-ViT-B/32 mscoco_finetuned_laion2b_s13b_b90k L2b-c + coco
25 coca_ViT-L-14 CoCa-ViT-L/14 laion2b_s13b_b90k L2b-c
26 coca_ViT-L-14 CoCa-ViT-L/14 mscoco_finetuned_laion2b_s13b_b90k L2b-c + coco
27 convnext_base ConvNEXT-B laion400m_s13b_b51k L400m-c
28 convnext_base_w ConvNEXT-BW laion2b_s13b_b82k L2b-d
29 convnext_base_w ConvNEXT-BW laion2b_s13b_b82k_augreg L2b-e
30 convnext_base_w ConvNEXT-BW laion_aesthetic_s13b_b82k L2b-f
31 convnext_base_w_320 ConvNEXT-BW-320 laion_aesthetic_s13b_b82k L2b-f
32 convnext_base_w_320 ConvNEXT-BW-320 laion_aesthetic_s13b_b82k_augreg L2b-g
33 convnext_large_d ConvNEXT-LD laion2b_s26b_b102k_augreg L2b-h
34 convnext_large_d_320 ConvNEXT-LD-320 laion2b_s29b_b131k_ft L2b-i
35 convnext_large_d_320 ConvNEXT-LD-320 laion2b_s29b_b131k_ft_soup L2b-j

where ȳc is then normalized again to produce the final zero-shot classification weight of class c,

yc =
ȳc

||ȳc||2
. (4)

B.2 Text-Derived Scores

We define the six scores we derived for model selection and performance prediction. The Text top-1
accuracy score and Text f1-score is used to estimate the VLMs’ performance on a vision task using
text as a proxy, while the Fisher criterion and Silhouette score are used to understand the VLM’s
capability to separate samples from different classes in the target task (inter-class similarity. To
estimate dataset granularity, we use Class Dispersion score. Finally, the Synonym Consistency score
allows us to evaluate the degree of content shift between the VLMs’ pre-training and target dataset
(intra-class similarity).

Text Classification scores. We use the generated captions dataset (see Sec. 3.1) as a proxy for
images and evaluate the resulting model performance. Specifically, we use the VLM text encoder to
generate text-derived multi-modal embeddings. We then corrupt these embeddings with Gaussian
noise to approximate image-instance variation (see Sec. B.4)and calculate their cosine similarity
with the class prompt embeddings - derived using the same prompt ensembling strategies proposed
by Radford et al. [2021] (see Fig. 7). We then calculate the text top-1 accuracy (text-acc1) and text
f1-score (text-f1).
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Fisher criterion, ϕfisher. The Fisher criterion [Fisher, 1936] has been widely used as a dataset
granularity measure and has recently been shown to be effective for classification by Cui et al. [2019].
The Fisher score measures the degree of similarity of the classes or the extent of their separation. In
VLMs, The quality of the class separation can be evaluated using text by assessing how close the
different (text-derived) class prompt embeddings are. We introduce the concept of Fisher criterion, a
score that quantifies how close the class prompt embeddings are to each other (see Fig. 7):

ϕfisher =
1

C

C∑
j=1

maxc,c̸=j

[
θ(yj ,yc)

]
, (5)

where yc is the class prompt embedding derived using the prompt ensembling strategies proposed
in Radford et al. [2021] for class c (see Sec. B.1), θ(·, ·) is a function that calculates the cosine
similarity between two vectors, and C is the number of classes.

Silhouette score, φsil. The silhouette score [Rousseeuw, 1987] is a well-established score that has
been used to quantify the tightness of the same-class samples to the separation of different-class
samples [Scheidegger et al., 2021, Cui et al., 2019]. Inspired by this score, we introduce the text-based
Silhouette score, φsil, which measures the separation of different-class samples in the caption dataset
Dcap. To do so, we evaluate the average cosine similarity of captions to the nearest other class by:

φsil =
1

C

C∑
j=1

maxc,c ̸=j

[
1

N

N∑
k=1

θ(Dcap[j]k,y
c)

]
, (6)

where yc is the class prompt embedding derived using the prompt ensembling strategies proposed
in Radford et al. [2021] for class c (see Sec. B.1), θ(·, ·) is a function that calculates the cosine
similarity between two vectors, and C is the number of classes. Dcap[j]k representing sample k of
class j in the caption dataset Dcap, and there is a total of N such samples in for each class.

Class Dispersion score, ρdisp. The Class Dispersion score is used as the normalization constant to
generate the Fisher and Silhouette scores, and it quantifies the degree of same-class tightness or data
cone radius (see Fig. 7).

ρdisp =
1

CN

C∑
c=1

N∑
k=1

θ(Dcap[c]k,y
c), (7)

where yc is the class prompt embedding derived using the prompt ensembling strategies proposed
in Radford et al. [2021] for class c (see Sec. B.1), θ(·, ·) is a function that calculates the cosine
similarity between two vectors, and C is the number of classes. Dcap[c]k representing sample k of
class c in the caption dataset Dcap, and there is a total of N such samples in for each class.

Synonym Consistency score, γsyn. Synonym consistency has been shown in large language models
to correlate with the degree of familiarity of the model with a particular concept [van der Lee et al.,
2023]. Using the Synonym dataset, we compare the cosine similarity between the text embedding
of each class and its corresponding synonyms. A high cosine similarity between the class and its
corresponding synonyms/supercategories indicates that the model is aware of the semantic meaning
of the class and is defined as:

γsyn =
1

CN

C∑
c=1

N∑
k=1

θ(Dsyn[c]k,y
c), (8)

where yc is the class prompt embedding derived using the prompt ensembling strategies proposed
in Radford et al. [2021] for class c (see Sec. B.1), θ(·, ·) is a function that calculates the cosine
similarity between two vectors, and C is the number of classes. Dsyn[c]k representing sample k of
class c in the synonym dataset Dsyn, and there is a total of N such samples in for each class.

B.3 Text Dataset Generation

To generate the Captions dataset, we used a large language model to generate realistic (but confusing)
image captions. It was necessary to request confusing image captions to get sufficient variation in
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Figure 8: Ablating Noise Injection Effect on Text Top-1 Accuracy. Without noise (sigma=0),
the text top-1 accuracy saturates on many datasets and models, with extremely high top-1 accuracy,
making the correlation between the ground-truth top-1 accuracy and text top-1 accuracy quite poor. By
corrupting the text embeddings with noise, we notice an improvement in correlation up to sigma=0.1,
after which the correlation is steadily corrupted.

the image captions. We used OpenAI’s ‘gpt-3.5-turbo-0301’ model with a temperature of 1. For the
synonym dataset, we reduced the temperature to 0.1 and only requested the synonyms themselves. We
then used the prompting templates with the synonym in place of the original class name to generate
Dsyn.

B.4 Text Classification and Noise Corruption

In this work, we introduce the use of Gaussian noise to corrupt text-derived multi-modal embeddings
to approximate image-instance variation. The corrupted embeddings are then used to calculate the
text top-1 accuracy and text-f1 score, which serves as a proxy for evaluating the performance of a
vision model. The scores are derived from the Captions dataset, a collection of complex but probable
image captions generated using a large language model for images containing the user-provided
classes in the user-provided domain and for the user-provided task. For more, see Sec. 3.1.

To evaluate the effectiveness of the text top-1 accuracy, we systematically increase the level of noise
corruption and plot the text top-1 accuracy against the ground-truth top-1 accuracy (See Fig. 8). We
quantify this correlation via the R2 score or the degree of explained variance. As we do not fit a
linear model to the predicted vs. ground-truth predictions, R2 ranges from 1 (perfect linear fit) to
−∞, where non of the variance is explained. The results show that, without noise corruption, the text
top-1 accuracy is too high and frequently saturates without any corruption. However, as the noise
level increases to 0.1, the text top-1 accuracy progressively improves until a better linear correlation
can be seen. This indicates that increasing noise corruption can better approximate image-instance
variation and improve the correlation of the text top-1 accuracy. Beyond 0.1, however, the correlation
between the text top-1 accuracy and top-1 accuracy progressively worsens. This shows that while
noise corruption helps improve the correlation of the text top-1 accuracy, there is a limit beyond
which further noise corruption degrades its effectiveness.
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Table 4: LOVM Benchmark (top-1 accuracy).We evaluate our method’s performance over 23
datasets and 35 pre-trained models. (top) Model Ranking results. (bottom) Performance Prediction
results. INB - ImageNet Benchmark score, C - Text Classification scores G - Granularity Scores.
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INB 0.80 0.80 0.00 0.60 0.40 0.00 0.00 1.00 0.60 0.20 0.40 0.60 1.00 0.00 0.20 0.00 0.80 0.00 1.00 0.20 0.60 0.60 0.60 0.452
C 0.00 0.20 0.20 0.60 0.40 0.00 0.00 0.60 0.40 0.40 0.20 0.40 0.00 0.20 0.20 0.20 0.00 0.20 0.40 0.20 0.40 0.00 0.00 0.226
G 0.40 0.40 0.20 0.20 0.40 0.00 0.00 0.40 0.20 0.20 0.80 0.20 0.40 0.20 0.00 0.20 0.40 0.00 0.40 0.20 0.40 0.00 0.20 0.252

G+C 0.40 0.40 0.20 0.20 0.40 0.00 0.00 0.40 0.20 0.20 0.80 0.20 0.40 0.20 0.00 0.20 0.40 0.00 0.40 0.20 0.40 0.00 0.20 0.252
INB+C 0.80 0.80 0.00 0.60 0.60 0.00 0.00 1.00 0.60 0.20 0.60 0.60 0.80 0.00 0.00 0.20 0.80 0.00 1.00 0.20 0.60 0.40 0.60 0.452
INB+G 0.80 0.80 0.00 0.60 0.40 0.00 0.00 1.00 0.60 0.20 0.40 0.60 1.00 0.00 0.40 0.00 0.80 0.20 1.00 0.40 0.60 0.40 0.40 0.461

INB+C+G 0.80 0.80 0.00 0.60 0.40 0.00 0.00 1.00 0.60 0.20 0.40 0.60 1.00 0.00 0.40 0.00 0.80 0.20 1.00 0.40 0.60 0.40 0.40 0.461

τ

INB 0.33 0.67 0.00 0.33 0.00 0.00 0.00 -0.20 1.00 0.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 -0.40 0.00 -1.00 0.33 1.00 0.177
C 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.058
G 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.014

C+G 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.014
INB+C 0.33 0.67 0.00 0.33 -0.33 0.00 0.00 0.00 1.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 0.33 0.00 -0.20 0.00 -1.00 0.00 1.00 0.223
INB+G 0.33 0.33 0.00 0.33 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.80 0.00 0.00 0.00 0.00 0.00 -0.60 0.00 -1.00 0.00 0.00 0.096

INB+C+G 0.33 0.33 0.00 0.33 0.00 0.00 0.00 0.00 1.00 0.00 0.00 1.00 0.80 0.00 0.00 0.00 0.00 0.00 -0.60 0.00 -1.00 0.00 0.00 0.096

L
1

INB 0.16 0.07 0.56 0.42 0.49 0.30 0.62 0.09 0.08 0.25 0.01 0.23 0.00 0.63 0.04 0.26 0.17 0.18 0.07 0.21 0.03 0.17 0.03 0.220
C 0.08 0.13 0.19 0.15 0.25 0.25 0.32 0.17 0.05 0.13 0.15 0.03 0.19 0.37 0.28 0.34 0.10 0.14 0.05 0.23 0.21 0.16 0.07 0.176
G 0.03 0.03 0.19 0.22 0.44 0.16 0.23 0.01 0.03 0.07 0.45 0.00 0.22 0.29 0.29 0.04 0.09 0.11 0.02 0.21 0.03 0.11 0.02 0.144

C+G 0.03 0.03 0.19 0.22 0.44 0.16 0.23 0.01 0.03 0.07 0.45 0.00 0.22 0.29 0.29 0.04 0.09 0.11 0.02 0.21 0.03 0.11 0.02 0.144
INB+C 0.08 0.13 0.19 0.15 0.25 0.25 0.32 0.17 0.05 0.13 0.15 0.03 0.19 0.37 0.28 0.34 0.10 0.14 0.05 0.23 0.21 0.16 0.07 0.176
INB+G 0.03 0.02 0.20 0.18 0.44 0.02 0.28 0.01 0.02 0.10 0.43 0.02 0.21 0.33 0.25 0.03 0.06 0.12 0.00 0.23 0.03 0.22 0.00 0.140

INB+C+G 0.03 0.02 0.20 0.18 0.44 0.02 0.28 0.01 0.02 0.10 0.43 0.02 0.21 0.33 0.25 0.03 0.06 0.12 0.00 0.23 0.03 0.22 0.00 0.140

Table 5: LOVM Benchmark (mean per-class recall). We evaluate our method’s performance over
23 datasets and 35 pre-trained models. (top) Model Ranking results. (bottom) Performance Prediction
results. INB - ImageNet Benchmark score, C - Text Classification scores G - Granularity Scores.
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INB 0.80 0.80 0.40 0.60 0.40 0.40 0.00 1.00 0.60 0.40 0.60 0.60 1.00 0.20 0.20 0.00 0.60 0.00 1.00 0.20 0.80 0.60 0.40 0.504
C 0.00 0.20 0.20 0.60 0.40 0.20 0.20 0.60 0.40 0.40 0.00 0.40 0.00 0.40 0.20 0.20 0.20 0.20 0.40 0.20 0.40 0.00 0.00 0.252
G 0.40 0.40 0.20 0.20 0.40 0.00 0.40 0.40 0.20 0.20 0.60 0.20 0.40 0.40 0.00 0.20 0.40 0.00 0.40 0.20 0.40 0.20 0.00 0.270

G+C 0.40 0.40 0.20 0.20 0.40 0.00 0.40 0.40 0.20 0.20 0.60 0.20 0.40 0.40 0.00 0.20 0.40 0.00 0.40 0.20 0.40 0.20 0.00 0.270
INB+C 0.80 0.80 0.40 0.60 0.60 0.40 0.00 1.00 0.60 0.40 0.80 0.60 0.80 0.20 0.00 0.20 0.80 0.00 1.00 0.20 0.80 0.40 0.40 0.513
INB+G 0.80 0.80 0.40 0.60 0.40 0.40 0.00 1.00 0.60 0.40 0.60 0.60 1.00 0.20 0.40 0.20 0.60 0.20 1.00 0.40 0.80 0.60 0.60 0.548

INB+C+G 0.80 0.80 0.40 0.60 0.40 0.40 0.00 1.00 0.60 0.40 0.60 0.60 1.00 0.20 0.40 0.20 0.60 0.20 1.00 0.40 0.80 0.60 0.60 0.548

τ

INB 0.67 0.67 0.00 0.33 0.00 0.00 0.00 0.00 1.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 -0.33 0.00 -0.40 0.00 -0.33 -0.33 0.00 0.186
C 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.058
G 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.014

C+G 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.014
INB+C 0.67 0.67 0.00 0.33 -0.33 0.00 0.00 -0.20 1.00 0.00 1.00 1.00 0.67 0.00 0.00 0.00 0.00 0.00 -0.20 0.00 0.00 0.00 0.00 0.200
INB+G 0.67 0.33 0.00 0.33 0.00 0.00 0.00 0.00 1.00 0.00 1.00 1.00 0.80 0.00 0.00 0.00 0.33 0.00 -0.60 0.00 -0.33 -0.33 0.33 0.197

INB+C+G 0.67 0.33 0.00 0.33 0.00 0.00 0.00 0.00 1.00 0.00 1.00 1.00 0.80 0.00 0.00 0.00 0.33 0.00 -0.60 0.00 -0.33 -0.33 0.33 0.197

L
1

INB 0.16 0.07 0.58 0.42 0.49 0.52 0.61 0.09 0.08 0.26 0.01 0.26 0.00 0.50 0.03 0.26 0.17 0.18 0.06 0.21 0.03 0.17 0.08 0.228
C 0.07 0.13 0.21 0.15 0.25 0.29 0.31 0.18 0.04 0.16 0.17 0.06 0.20 0.30 0.29 0.35 0.09 0.15 0.05 0.23 0.21 0.18 0.12 0.182
G 0.14 0.03 0.25 0.16 0.44 0.23 0.19 0.01 0.01 0.12 0.46 0.03 0.30 0.15 0.28 0.03 0.08 0.09 0.04 0.16 0.02 0.01 0.02 0.141

C+G 0.14 0.03 0.25 0.16 0.44 0.23 0.19 0.01 0.01 0.12 0.46 0.03 0.30 0.15 0.28 0.03 0.08 0.09 0.04 0.16 0.02 0.01 0.02 0.141
INB+C 0.07 0.13 0.21 0.15 0.25 0.29 0.31 0.18 0.04 0.16 0.17 0.06 0.20 0.30 0.29 0.35 0.09 0.15 0.05 0.23 0.21 0.18 0.12 0.182
INB+G 0.14 0.03 0.25 0.16 0.44 0.23 0.19 0.01 0.01 0.12 0.46 0.03 0.30 0.15 0.28 0.03 0.08 0.09 0.04 0.16 0.02 0.01 0.02 0.141

INB+C+G 0.14 0.03 0.25 0.16 0.44 0.23 0.19 0.01 0.01 0.12 0.46 0.03 0.30 0.15 0.28 0.03 0.08 0.09 0.04 0.16 0.02 0.01 0.02 0.141

C Additional Results

C.1 LOVM Per-Dataset Breakdown

Here, we show the per-dataset breakdown of our main results. In Tab. 4, we show our model ranking
and performance prediction results for top-1 accuracy. In Tab. 5, we show our model ranking and
performance prediction results for mean per-class recall.
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Table 6: Effect of Using Different LLM. This table shows the results of re-running our baselines
with a different LLM (gpt-3.5-turbo-16k instead of gpt-3.5-turbo-0301). We evaluate mean per-class
recall and top-1 accuracy for various combinations of datasets and models. INB - ImageNet Baseline,
C - Text Classification scores, G - Granularity scores.

Used Mean Per-Class Recall Top-1 Accuracy
Scores R5(↑) τ(↑) L1(↓) R5(↑) τ(↑) L1(↓)
INB 0.504 0.186 0.228 0.452 0.177 0.220

C 0.365 0.072 0.144 0.357 0.043 0.145
G 0.252 0.014 0.133 0.243 0.029 0.135

G+C 0.365 0.072 0.133 0.357 0.043 0.129
INB+C 0.504 0.223 0.144 0.461 0.200 0.145
INB+G 0.522 0.191 0.133 0.461 0.212 0.135

INB+G+C 0.522 0.191 0.133 0.470 0.078 0.129

C.2 Ablation Experiments

To understand the utility of each of our extracted scores, we exhaustively ablated their effect on top-1
accuracy model ranking and performance prediction (Tab. 7 and Tab. 8), and mean per-class recall
model ranking and performance prediction (Tab. 9 and Tab. 10). Specifically, we ablated each score’s
impact on the resulting model’s performance. As can be seen, using more than ∼ 3 features at a time
seldom improves performance. Future work can investigate the use of more sophisticated models
that may be able to utilize more scores in predicting model ranking and performance. Specifically,
for ranking models, text classification and scores quantifying intra-class similarity (Class Dispersion
score & Synonym Consistency score) were the most dominant, while for performance prediction,
granularity scores quantifying both inter- and inta- class similarity was the most important. This

We ablate the model ranking performance to understand each extracted score’s effect on ranking
models. The text classification scores and scores quantifying intra-class similarity were the most
consequential in predicting model ranking. Specifically, in ranking models, the text-f1 score, Class
Dispersion score (ρdisp), and Synonym Consistency score (γsyn) where the most dominant (Tab. 7
rows 8 & 11, Tab. 9 row 38). Overall, it seems like the text classification excelled at fine-grained
ranking (as quantified by τ ), while the inter-class granularity scores improved the coarse ranking
prediction (as quantified by R5. Meanwhile, granularity scores quantifying inter- and intra- class
similarity were the most dominant for performance prediction. Specifically, Class Dispersion score
(ρdisp), Synonym Consistency score (γsyn), and Silhouette score (φsil) were the most influential (Tab. 8
rows 26 & 41, Tab. 10 row 60). INB does not aid performance prediction, indicating that getting a
course estimation of dataset difficulty dominates performance prediction.

C.3 Large Language Model Ablation

We re-ran our experiments with a different large language model (gpt-3.5-turbo-16k) to assess the
impact of the choice Large Language Model (LLM) on our results. Tab. 6 presents the outcomes of
these experiments, including mean per-class recall and top-1 accuracy across various datasets and
model combinations. Notably, while some variations in performance metrics were observed, it is
important to emphasize that these variations do not substantially alter the overall conclusions of our
study. Our findings consistently demonstrate the effectiveness of LOVM, irrespective of the specific
LLM used for text dataset generation.

C.4 Raw Model Ranking Details

To illustrate the model ranking of the naive (ImageNet Benchmark) baseline to some text-based
approaches, we visualize the raw ranking prediction of each method. We sort the datasets from natural
image classification (Fig. 9 left) to non-natural image / non-classification benchmarks (Fig. 9 right).
Here, the evident failure of the ImageNet Benchmark baseline to capture dataset-specific changes in
ranking is apparent. As the benchmark approach ranks models by their ImageNet performance, the
model ranking is constant for all datasets. Meanwhile, integrating the text features produces a ranking
distribution with a discernible positive correlation between the ground truth and the predicted model
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Table 7: LOVM Model Selection Ablation. Here, we ablate all the different scores used in our
baselines for model ranking by top-1 accuracy. We separated the text classification (C) base scores,
and the granularity-based scores that quantify inter- and intra-class similarity. aIN - Imagenet
Accuracy, ϕfisher - Fisher criterion, text-f1 - caption dataset f1-score, text-acc1 - text top-1 accuracy,
γsyn - Synonym Consistency score, φsil - Silhouette score, ρdisp - Class Dispersion score.

Scores Metrics

Row ID aIN text-f1 text-acc1 γsyn ρdisp φsil ϕfisher τ (↑) R5 (↑)

M
od

el
R

an
ki

ng

1 ✓ × × × × × × 0.177 0.452
2 × ✓ × × × × × 0.058 0.226
3 × × ✓ × × × × 0.029 0.191
4 × × × ✓ × × × 0.000 0.183
5 × × × × ✓ × × -0.014 0.243
6 × × × × × ✓ × -0.014 0.252
7 × × × × × × ✓ 0.000 0.165
8 ✓ ✓ × × × × × 0.223 0.452
9 ✓ × ✓ × × × × 0.200 0.452

10 ✓ × × ✓ × × × 0.188 0.426
11 ✓ × × × ✓ × × 0.096 0.461
12 ✓ × × × × ✓ × 0.078 0.417
13 ✓ × × × × × ✓ 0.110 0.426
14 × ✓ ✓ × × × × 0.029 0.226
15 × ✓ × ✓ × × × 0.043 0.191
16 × ✓ × × ✓ × × 0.014 0.209
17 × ✓ × × × ✓ × 0.014 0.217
18 × ✓ × × × × ✓ 0.000 0.183
19 × × ✓ ✓ × × × 0.043 0.191
20 × × ✓ × ✓ × × 0.014 0.209
21 × × ✓ × × ✓ × 0.014 0.191
22 × × ✓ × × × ✓ 0.000 0.174
23 × × × ✓ ✓ × × 0.000 0.200
24 × × × ✓ × ✓ × 0.014 0.235
25 × × × ✓ × × ✓ 0.000 0.174
26 × × × × ✓ ✓ × 0.014 0.209
27 × × × × ✓ × ✓ 0.000 0.165
28 × × × × × ✓ ✓ 0.014 0.200
29 ✓ ✓ ✓ × × × × 0.107 0.443
30 ✓ ✓ × ✓ × × × 0.174 0.443
31 ✓ ✓ × × ✓ × × 0.188 0.435
32 ✓ ✓ × × × ✓ × 0.145 0.443
33 ✓ ✓ × × × × ✓ 0.096 0.417
34 ✓ × ✓ ✓ × × × 0.159 0.435
35 ✓ × ✓ × ✓ × × 0.188 0.443
36 ✓ × ✓ × × ✓ × 0.116 0.443
37 ✓ × ✓ × × × ✓ 0.110 0.426
38 ✓ × × ✓ ✓ × × 0.110 0.426
39 ✓ × × ✓ × ✓ × 0.188 0.417
40 ✓ × × ✓ × × ✓ 0.110 0.417
41 ✓ × × × ✓ ✓ × 0.067 0.435
42 ✓ × × × ✓ × ✓ 0.110 0.426
43 ✓ × × × × ✓ ✓ 0.110 0.426
44 × ✓ ✓ ✓ × × × 0.000 0.209
45 × ✓ ✓ × ✓ × × 0.014 0.200
46 × ✓ ✓ × × ✓ × 0.014 0.200
47 × ✓ ✓ × × × ✓ 0.014 0.209
48 × ✓ × ✓ ✓ × × 0.000 0.217
49 × ✓ × ✓ × ✓ × 0.014 0.217
50 × ✓ × ✓ × × ✓ 0.000 0.191
51 × ✓ × × ✓ ✓ × 0.014 0.209
52 × ✓ × × ✓ × ✓ 0.014 0.217
53 × ✓ × × × ✓ ✓ 0.014 0.209
54 × × ✓ ✓ ✓ × × 0.014 0.217
55 × × ✓ ✓ × ✓ × 0.014 0.209
56 × × ✓ ✓ × × ✓ 0.043 0.191
57 × × ✓ × ✓ ✓ × 0.014 0.191
58 × × ✓ × ✓ × ✓ 0.014 0.200
59 × × ✓ × × ✓ ✓ 0.014 0.200
60 × × × ✓ ✓ ✓ × 0.014 0.200
61 × × × ✓ ✓ × ✓ 0.000 0.165
62 × × × ✓ × ✓ ✓ 0.014 0.191
63 × × × × ✓ ✓ ✓ 0.014 0.191
64 ✓ ✓ ✓ ✓ × × × 0.151 0.452

Scores Metrics

Row ID aIN text-f1 text-acc1 γsyn ρdisp φsil ϕfisher τ (↑) R5 (↑)

65 ✓ ✓ ✓ × ✓ × × 0.107 0.443
66 ✓ ✓ ✓ × × ✓ × 0.064 0.435
67 ✓ ✓ ✓ × × × ✓ 0.133 0.443
68 ✓ ✓ × ✓ ✓ × × 0.145 0.426
69 ✓ ✓ × ✓ × ✓ × 0.157 0.443
70 ✓ ✓ × ✓ × × ✓ 0.075 0.417
71 ✓ ✓ × × ✓ ✓ × 0.113 0.452
72 ✓ ✓ × × ✓ × ✓ 0.096 0.417
73 ✓ ✓ × × × ✓ ✓ 0.096 0.417
74 ✓ × ✓ ✓ ✓ × × 0.159 0.435
75 ✓ × ✓ ✓ × ✓ × 0.128 0.443
76 ✓ × ✓ ✓ × × ✓ 0.075 0.417
77 ✓ × ✓ × ✓ ✓ × 0.113 0.452
78 ✓ × ✓ × ✓ × ✓ 0.139 0.426
79 ✓ × ✓ × × ✓ ✓ 0.139 0.426
80 ✓ × × ✓ ✓ ✓ × 0.058 0.409
81 ✓ × × ✓ ✓ × ✓ 0.110 0.417
82 ✓ × × ✓ × ✓ ✓ 0.110 0.426
83 ✓ × × × ✓ ✓ ✓ 0.101 0.426
84 × ✓ ✓ ✓ ✓ × × -0.029 0.209
85 × ✓ ✓ ✓ × ✓ × -0.029 0.217
86 × ✓ ✓ ✓ × × ✓ -0.014 0.217
87 × ✓ ✓ × ✓ ✓ × 0.014 0.200
88 × ✓ ✓ × ✓ × ✓ 0.014 0.226
89 × ✓ ✓ × × ✓ ✓ 0.014 0.217
90 × ✓ × ✓ ✓ ✓ × 0.014 0.217
91 × ✓ × ✓ ✓ × ✓ 0.000 0.226
92 × ✓ × ✓ × ✓ ✓ 0.014 0.209
93 × ✓ × × ✓ ✓ ✓ 0.014 0.209
94 × × ✓ ✓ ✓ ✓ × 0.014 0.209
95 × × ✓ ✓ ✓ × ✓ 0.014 0.209
96 × × ✓ ✓ × ✓ ✓ 0.014 0.209
97 × × ✓ × ✓ ✓ ✓ 0.014 0.200
98 × × × ✓ ✓ ✓ ✓ 0.014 0.226
99 ✓ ✓ ✓ ✓ ✓ × × 0.072 0.426

100 ✓ ✓ ✓ ✓ × ✓ × 0.058 0.435
101 ✓ ✓ ✓ ✓ × × ✓ 0.133 0.443
102 ✓ ✓ ✓ × ✓ ✓ × 0.078 0.443
103 ✓ ✓ ✓ × ✓ × ✓ 0.090 0.452
104 ✓ ✓ ✓ × × ✓ ✓ 0.133 0.443
105 ✓ ✓ × ✓ ✓ ✓ × 0.119 0.443
106 ✓ ✓ × ✓ ✓ × ✓ 0.104 0.417
107 ✓ ✓ × ✓ × ✓ ✓ 0.104 0.417
108 ✓ ✓ × × ✓ ✓ ✓ 0.128 0.435
109 ✓ × ✓ ✓ ✓ ✓ × 0.128 0.443
110 ✓ × ✓ ✓ ✓ × ✓ 0.104 0.417
111 ✓ × ✓ ✓ × ✓ ✓ 0.104 0.417
112 ✓ × ✓ × ✓ ✓ ✓ 0.128 0.435
113 ✓ × × ✓ ✓ ✓ ✓ 0.101 0.400
114 × ✓ ✓ ✓ ✓ ✓ × -0.029 0.217
115 × ✓ ✓ ✓ ✓ × ✓ -0.043 0.209
116 × ✓ ✓ ✓ × ✓ ✓ -0.029 0.217
117 × ✓ ✓ × ✓ ✓ ✓ 0.014 0.217
118 × ✓ × ✓ ✓ ✓ ✓ 0.014 0.209
119 × × ✓ ✓ ✓ ✓ ✓ 0.014 0.209
120 ✓ ✓ ✓ ✓ ✓ ✓ × 0.055 0.443
121 ✓ ✓ ✓ ✓ ✓ × ✓ 0.061 0.435
122 ✓ ✓ ✓ ✓ × ✓ ✓ 0.090 0.435
123 ✓ ✓ ✓ × ✓ ✓ ✓ 0.090 0.443
124 ✓ ✓ × ✓ ✓ ✓ ✓ 0.128 0.435
125 ✓ × ✓ ✓ ✓ ✓ ✓ 0.128 0.435
126 × ✓ ✓ ✓ ✓ ✓ ✓ -0.029 0.217
127 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.046 0.426
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Table 8: LOVM Model Prediction Ablation. Here, we ablate all the different scores used in
our baselines for predicting model top-1 accuracy. We separated the text classification (C) base
scores, and the granularity-based scores that quantify inter- and intra-class similarity. aIN - Imagenet
Accuracy, ϕfisher - Fisher criterion, text-f1 - caption dataset f1-score, text-acc1 - text top-1 accuracy,
γsyn - Synonym Consistency score, φsil - Silhouette score, ρdisp - Class Dispersion score.

Scores Metrics

Row ID aIN text-f1 text-acc1 γsyn ρdisp φsil ϕfisher L1 (↓) )

M
od

el
Pr

ed
ic

tio
n

1 ✓ × × × × × × 0.220
2 × ✓ × × × × × 0.176
3 × × ✓ × × × × 0.177
4 × × × ✓ × × × 0.188
5 × × × × ✓ × × 0.200
6 × × × × × ✓ × 0.222
7 × × × × × × ✓ 0.170
8 ✓ ✓ × × × × × 0.189
9 ✓ × ✓ × × × × 0.184

10 ✓ × × ✓ × × × 0.215
11 ✓ × × × ✓ × × 0.205
12 ✓ × × × × ✓ × 0.215
13 ✓ × × × × × ✓ 0.168
14 × ✓ ✓ × × × × 0.179
15 × ✓ × ✓ × × × 0.190
16 × ✓ × × ✓ × × 0.186
17 × ✓ × × × ✓ × 0.180
18 × ✓ × × × × ✓ 0.160
19 × × ✓ ✓ × × × 0.183
20 × × ✓ × ✓ × × 0.177
21 × × ✓ × × ✓ × 0.179
22 × × ✓ × × × ✓ 0.159
23 × × × ✓ ✓ × × 0.199
24 × × × ✓ × ✓ × 0.197
25 × × × ✓ × × ✓ 0.154
26 × × × × ✓ ✓ × 0.144
27 × × × × ✓ × ✓ 0.163
28 × × × × × ✓ ✓ 0.165
29 ✓ ✓ ✓ × × × × 0.191
30 ✓ ✓ × ✓ × × × 0.197
31 ✓ ✓ × × ✓ × × 0.189
32 ✓ ✓ × × × ✓ × 0.187
33 ✓ ✓ × × × × ✓ 0.159
34 ✓ × ✓ ✓ × × × 0.196
35 ✓ × ✓ × ✓ × × 0.189
36 ✓ × ✓ × × ✓ × 0.185
37 ✓ × ✓ × × × ✓ 0.156
38 ✓ × × ✓ ✓ × × 0.212
39 ✓ × × ✓ × ✓ × 0.220
40 ✓ × × ✓ × × ✓ 0.156
41 ✓ × × × ✓ ✓ × 0.140
42 ✓ × × × ✓ × ✓ 0.160
43 ✓ × × × × ✓ ✓ 0.166
44 × ✓ ✓ ✓ × × × 0.184
45 × ✓ ✓ × ✓ × × 0.187
46 × ✓ ✓ × × ✓ × 0.186
47 × ✓ ✓ × × × ✓ 0.170
48 × ✓ × ✓ ✓ × × 0.190
49 × ✓ × ✓ × ✓ × 0.189
50 × ✓ × ✓ × × ✓ 0.160
51 × ✓ × × ✓ ✓ × 0.148
52 × ✓ × × ✓ × ✓ 0.163
53 × ✓ × × × ✓ ✓ 0.168
54 × × ✓ ✓ ✓ × × 0.183
55 × × ✓ ✓ × ✓ × 0.187
56 × × ✓ ✓ × × ✓ 0.159
57 × × ✓ × ✓ ✓ × 0.148
58 × × ✓ × ✓ × ✓ 0.159
59 × × ✓ × × ✓ ✓ 0.168
60 × × × ✓ ✓ ✓ × 0.149
61 × × × ✓ ✓ × ✓ 0.155
62 × × × ✓ × ✓ ✓ 0.162
63 × × × × ✓ ✓ ✓ 0.154
64 ✓ ✓ ✓ ✓ × × × 0.200

Scores Metrics

Row ID aIN text-f1 text-acc1 γsyn ρdisp φsil ϕfisher L1 (↓) )

65 ✓ ✓ ✓ × ✓ × × 0.193
66 ✓ ✓ ✓ × × ✓ × 0.191
67 ✓ ✓ ✓ × × × ✓ 0.167
68 ✓ ✓ × ✓ ✓ × × 0.198
69 ✓ ✓ × ✓ × ✓ × 0.200
70 ✓ ✓ × ✓ × × ✓ 0.161
71 ✓ ✓ × × ✓ ✓ × 0.151
72 ✓ ✓ × × ✓ × ✓ 0.156
73 ✓ ✓ × × × ✓ ✓ 0.163
74 ✓ × ✓ ✓ ✓ × × 0.198
75 ✓ × ✓ ✓ × ✓ × 0.198
76 ✓ × ✓ ✓ × × ✓ 0.159
77 ✓ × ✓ × ✓ ✓ × 0.154
78 ✓ × ✓ × ✓ × ✓ 0.154
79 ✓ × ✓ × × ✓ ✓ 0.162
80 ✓ × × ✓ ✓ ✓ × 0.145
81 ✓ × × ✓ ✓ × ✓ 0.158
82 ✓ × × ✓ × ✓ ✓ 0.164
83 ✓ × × × ✓ ✓ ✓ 0.149
84 × ✓ ✓ ✓ ✓ × × 0.186
85 × ✓ ✓ ✓ × ✓ × 0.193
86 × ✓ ✓ ✓ × × ✓ 0.169
87 × ✓ ✓ × ✓ ✓ × 0.153
88 × ✓ ✓ × ✓ × ✓ 0.173
89 × ✓ ✓ × × ✓ ✓ 0.177
90 × ✓ × ✓ ✓ ✓ × 0.156
91 × ✓ × ✓ ✓ × ✓ 0.169
92 × ✓ × ✓ × ✓ ✓ 0.174
93 × ✓ × × ✓ ✓ ✓ 0.156
94 × × ✓ ✓ ✓ ✓ × 0.159
95 × × ✓ ✓ ✓ × ✓ 0.166
96 × × ✓ ✓ × ✓ ✓ 0.169
97 × × ✓ × ✓ ✓ ✓ 0.159
98 × × × ✓ ✓ ✓ ✓ 0.150
99 ✓ ✓ ✓ ✓ ✓ × × 0.203
100 ✓ ✓ ✓ ✓ × ✓ × 0.199
101 ✓ ✓ ✓ ✓ × × ✓ 0.165
102 ✓ ✓ ✓ × ✓ ✓ × 0.154
103 ✓ ✓ ✓ × ✓ × ✓ 0.164
104 ✓ ✓ ✓ × × ✓ ✓ 0.165
105 ✓ ✓ × ✓ ✓ ✓ × 0.161
106 ✓ ✓ × ✓ ✓ × ✓ 0.164
107 ✓ ✓ × ✓ × ✓ ✓ 0.171
108 ✓ ✓ × × ✓ ✓ ✓ 0.164
109 ✓ × ✓ ✓ ✓ ✓ × 0.160
110 ✓ × ✓ ✓ ✓ × ✓ 0.165
111 ✓ × ✓ ✓ × ✓ ✓ 0.169
112 ✓ × ✓ × ✓ ✓ ✓ 0.163
113 ✓ × × ✓ ✓ ✓ ✓ 0.154
114 × ✓ ✓ ✓ ✓ ✓ × 0.163
115 × ✓ ✓ ✓ ✓ × ✓ 0.175
116 × ✓ ✓ ✓ × ✓ ✓ 0.178
117 × ✓ ✓ × ✓ ✓ ✓ 0.159
118 × ✓ × ✓ ✓ ✓ ✓ 0.164
119 × × ✓ ✓ ✓ ✓ ✓ 0.162
120 ✓ ✓ ✓ ✓ ✓ ✓ × 0.161
121 ✓ ✓ ✓ ✓ ✓ × ✓ 0.171
122 ✓ ✓ ✓ ✓ × ✓ ✓ 0.173
123 ✓ ✓ ✓ × ✓ ✓ ✓ 0.162
124 ✓ ✓ × ✓ ✓ ✓ ✓ 0.164
125 ✓ × ✓ ✓ ✓ ✓ ✓ 0.165
126 × ✓ ✓ ✓ ✓ ✓ ✓ 0.166
127 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.168
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Table 9: LOVM Model Selection Ablation. Here, we ablate all the different scores used in our
baselines for model ranking by mean per-class recall. We separated the text classification (C) base
scores, and the granularity-based scores that quantify inter- and intra-class similarity. aIN - Imagenet
Accuracy, ϕfisher - Fisher criterion, text-f1 - caption dataset f1-score, text-acc1 - text top-1 accuracy,
γsyn - Synonym Consistency score, φsil - Silhouette score, ρdisp - Class Dispersion score.

Scores Metrics

Row ID aIN text-f1 text-acc1 γsyn ρdisp φsil ϕfisher τ (↑) R5 (↑)

M
od

el
R

an
ki

ng

1 ✓ × × × × × × 0.186 0.504
2 × ✓ × × × × × 0.058 0.252
3 × × ✓ × × × × 0.029 0.191
4 × × × ✓ × × × -0.014 0.217
5 × × × × ✓ × × 0.014 0.261
6 × × × × × ✓ × -0.014 0.270
7 × × × × × × ✓ 0.000 0.157
8 ✓ ✓ × × × × × 0.200 0.513
9 ✓ × ✓ × × × × 0.200 0.513

10 ✓ × × ✓ × × × 0.116 0.487
11 ✓ × × × ✓ × × 0.177 0.530
12 ✓ × × × × ✓ × 0.186 0.504
13 ✓ × × × × × ✓ 0.072 0.478
14 × ✓ ✓ × × × × 0.029 0.235
15 × ✓ × ✓ × × × 0.072 0.243
16 × ✓ × × ✓ × × 0.014 0.243
17 × ✓ × × × ✓ × 0.014 0.252
18 × ✓ × × × × ✓ 0.014 0.235
19 × × ✓ ✓ × × × 0.072 0.252
20 × × ✓ × ✓ × × 0.043 0.243
21 × × ✓ × × ✓ × 0.043 0.226
22 × × ✓ × × × ✓ 0.043 0.217
23 × × × ✓ ✓ × × -0.014 0.217
24 × × × ✓ × ✓ × 0.000 0.252
25 × × × ✓ × × ✓ 0.000 0.174
26 × × × × ✓ ✓ × 0.000 0.226
27 × × × × ✓ × ✓ 0.000 0.165
28 × × × × × ✓ ✓ 0.000 0.217
29 ✓ ✓ ✓ × × × × 0.145 0.487
30 ✓ ✓ × ✓ × × × 0.214 0.504
31 ✓ ✓ × × ✓ × × 0.200 0.504
32 ✓ ✓ × × × ✓ × 0.180 0.496
33 ✓ ✓ × × × × ✓ 0.122 0.496
34 ✓ × ✓ ✓ × × × 0.194 0.496
35 ✓ × ✓ × ✓ × × 0.180 0.504
36 ✓ × ✓ × × ✓ × 0.180 0.504
37 ✓ × ✓ × × × ✓ 0.122 0.496
38 ✓ × × ✓ ✓ × × 0.197 0.548
39 ✓ × × ✓ × ✓ × 0.130 0.487
40 ✓ × × ✓ × × ✓ 0.072 0.470
41 ✓ × × × ✓ ✓ × 0.159 0.487
42 ✓ × × × ✓ × ✓ 0.058 0.487
43 ✓ × × × × ✓ ✓ 0.072 0.487
44 × ✓ ✓ ✓ × × × 0.000 0.243
45 × ✓ ✓ × ✓ × × 0.043 0.235
46 × ✓ ✓ × × ✓ × 0.043 0.235
47 × ✓ ✓ × × × ✓ 0.000 0.226
48 × ✓ × ✓ ✓ × × 0.029 0.252
49 × ✓ × ✓ × ✓ × 0.043 0.243
50 × ✓ × ✓ × × ✓ 0.101 0.252
51 × ✓ × × ✓ ✓ × 0.043 0.252
52 × ✓ × × ✓ × ✓ 0.043 0.243
53 × ✓ × × × ✓ ✓ 0.043 0.243
54 × × ✓ ✓ ✓ × × 0.043 0.243
55 × × ✓ ✓ × ✓ × 0.043 0.252
56 × × ✓ ✓ × × ✓ 0.101 0.261
57 × × ✓ × ✓ ✓ × 0.043 0.226
58 × × ✓ × ✓ × ✓ 0.000 0.226
59 × × ✓ × × ✓ ✓ 0.000 0.226
60 × × × ✓ ✓ ✓ × 0.000 0.226
61 × × × ✓ ✓ × ✓ 0.000 0.165
62 × × × ✓ × ✓ ✓ 0.000 0.209
63 × × × × ✓ ✓ ✓ 0.014 0.226
64 ✓ ✓ ✓ ✓ × × × 0.145 0.478

Scores Metrics

Row ID aIN text-f1 text-acc1 γsyn ρdisp φsil ϕfisher τ (↑) R5 (↑)

65 ✓ ✓ ✓ × ✓ × × 0.130 0.478
66 ✓ ✓ ✓ × × ✓ × 0.130 0.487
67 ✓ ✓ ✓ × × × ✓ 0.145 0.487
68 ✓ ✓ × ✓ ✓ × × 0.194 0.496
69 ✓ ✓ × ✓ × ✓ × 0.186 0.504
70 ✓ ✓ × ✓ × × ✓ 0.122 0.496
71 ✓ ✓ × × ✓ ✓ × 0.171 0.504
72 ✓ ✓ × × ✓ × ✓ 0.122 0.496
73 ✓ ✓ × × × ✓ ✓ 0.122 0.496
74 ✓ × ✓ ✓ ✓ × × 0.194 0.496
75 ✓ × ✓ ✓ × ✓ × 0.180 0.496
76 ✓ × ✓ ✓ × × ✓ 0.122 0.496
77 ✓ × ✓ × ✓ ✓ × 0.171 0.513
78 ✓ × ✓ × ✓ × ✓ 0.122 0.496
79 ✓ × ✓ × × ✓ ✓ 0.122 0.496
80 ✓ × × ✓ ✓ ✓ × 0.116 0.487
81 ✓ × × ✓ ✓ × ✓ 0.058 0.478
82 ✓ × × ✓ × ✓ ✓ 0.072 0.478
83 ✓ × × × ✓ ✓ ✓ 0.072 0.487
84 × ✓ ✓ ✓ ✓ × × 0.000 0.243
85 × ✓ ✓ ✓ × ✓ × 0.000 0.252
86 × ✓ ✓ ✓ × × ✓ 0.043 0.252
87 × ✓ ✓ × ✓ ✓ × 0.014 0.235
88 × ✓ ✓ × ✓ × ✓ 0.043 0.235
89 × ✓ ✓ × × ✓ ✓ 0.043 0.235
90 × ✓ × ✓ ✓ ✓ × 0.043 0.243
91 × ✓ × ✓ ✓ × ✓ 0.029 0.261
92 × ✓ × ✓ × ✓ ✓ 0.043 0.243
93 × ✓ × × ✓ ✓ ✓ 0.043 0.243
94 × × ✓ ✓ ✓ ✓ × 0.043 0.252
95 × × ✓ ✓ ✓ × ✓ 0.043 0.252
96 × × ✓ ✓ × ✓ ✓ 0.043 0.252
97 × × ✓ × ✓ ✓ ✓ 0.043 0.235
98 × × × ✓ ✓ ✓ ✓ 0.014 0.261
99 ✓ ✓ ✓ ✓ ✓ × × 0.116 0.478

100 ✓ ✓ ✓ ✓ × ✓ × 0.130 0.487
101 ✓ ✓ ✓ ✓ × × ✓ 0.145 0.487
102 ✓ ✓ ✓ × ✓ ✓ × 0.130 0.487
103 ✓ ✓ ✓ × ✓ × ✓ 0.130 0.478
104 ✓ ✓ ✓ × × ✓ ✓ 0.116 0.496
105 ✓ ✓ × ✓ ✓ ✓ × 0.180 0.487
106 ✓ ✓ × ✓ ✓ × ✓ 0.122 0.496
107 ✓ ✓ × ✓ × ✓ ✓ 0.122 0.496
108 ✓ ✓ × × ✓ ✓ ✓ 0.122 0.496
109 ✓ × ✓ ✓ ✓ ✓ × 0.180 0.496
110 ✓ × ✓ ✓ ✓ × ✓ 0.136 0.496
111 ✓ × ✓ ✓ × ✓ ✓ 0.136 0.504
112 ✓ × ✓ × ✓ ✓ ✓ 0.136 0.496
113 ✓ × × ✓ ✓ ✓ ✓ 0.072 0.487
114 × ✓ ✓ ✓ ✓ ✓ × 0.000 0.252
115 × ✓ ✓ ✓ ✓ × ✓ 0.000 0.243
116 × ✓ ✓ ✓ × ✓ ✓ 0.029 0.252
117 × ✓ ✓ × ✓ ✓ ✓ 0.014 0.235
118 × ✓ × ✓ ✓ ✓ ✓ 0.043 0.252
119 × × ✓ ✓ ✓ ✓ ✓ 0.043 0.261
120 ✓ ✓ ✓ ✓ ✓ ✓ × 0.130 0.496
121 ✓ ✓ ✓ ✓ ✓ × ✓ 0.116 0.496
122 ✓ ✓ ✓ ✓ × ✓ ✓ 0.116 0.504
123 ✓ ✓ ✓ × ✓ ✓ ✓ 0.116 0.487
124 ✓ ✓ × ✓ ✓ ✓ ✓ 0.122 0.496
125 ✓ × ✓ ✓ ✓ ✓ ✓ 0.122 0.496
126 × ✓ ✓ ✓ ✓ ✓ ✓ 0.043 0.252
127 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.116 0.487

ranking. The unified approach also captures more significant ranking variation in the non-natural
image / non-classification benchmarks.

C.5 Domain Shift Experiment

An obvious obstacle to text-based model performance prediction methods is the difficulty in describing
distribution shifts. For example, VLMs evaluated on ImageNet and ImageNet-v2 will get the same
text-predicted accuracy while the actual performance differs. Meanwhile, for some domain shifts -
like ImageNet and ImageNet sketch - this shift can be described via text. We want to evaluate how
capable text-only methods are at estimating the dataset difficulty under such shifts and compare them
to well-accepted image-based approaches.

Dataset Description Similarity. We extract each dataset’s description from either the abstract
or introduction section of the original manuscript. Subsequently, we extract the text embeddings
for all dataset descriptions using a pre-trained CLIP model. We then compute the cosine similarity
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Table 10: LOVM Model Prediction Ablation. Here, we ablate all the different scores used in
our baselines for mean per-class recall prediction. We separated the text classification (C) base
scores, and the granularity-based scores that quantify inter- and intra-class similarity. aIN - Imagenet
Accuracy, ϕfisher - Fisher criterion, text-f1 - caption dataset f1-score, text-acc1 - text top-1 accuracy,
γsyn - Synonym Consistency score, φsil - Silhouette score, ρdisp - Class Dispersion score.

Scores Metrics

Row ID aIN text-f1 text-acc1 γsyn ρdisp φsil ϕfisher L1 (↓) )

M
et

ri
c

Pr
ed

ic
tio

n

1 ✓ × × × × × × 0.228
2 × ✓ × × × × × 0.182
3 × × ✓ × × × × 0.183
4 × × × ✓ × × × 0.192
5 × × × × ✓ × × 0.206
6 × × × × × ✓ × 0.232
7 × × × × × × ✓ 0.175
8 ✓ ✓ × × × × × 0.196
9 ✓ × ✓ × × × × 0.190

10 ✓ × × ✓ × × × 0.226
11 ✓ × × × ✓ × × 0.219
12 ✓ × × × × ✓ × 0.229
13 ✓ × × × × × ✓ 0.178
14 × ✓ ✓ × × × × 0.182
15 × ✓ × ✓ × × × 0.192
16 × ✓ × × ✓ × × 0.194
17 × ✓ × × × ✓ × 0.189
18 × ✓ × × × × ✓ 0.165
19 × × ✓ ✓ × × × 0.190
20 × × ✓ × ✓ × × 0.190
21 × × ✓ × × ✓ × 0.188
22 × × ✓ × × × ✓ 0.162
23 × × × ✓ ✓ × × 0.212
24 × × × ✓ × ✓ × 0.223
25 × × × ✓ × × ✓ 0.160
26 × × × × ✓ ✓ × 0.152
27 × × × × ✓ × ✓ 0.180
28 × × × × × ✓ ✓ 0.181
29 ✓ ✓ ✓ × × × × 0.197
30 ✓ ✓ × ✓ × × × 0.203
31 ✓ ✓ × × ✓ × × 0.197
32 ✓ ✓ × × × ✓ × 0.194
33 ✓ ✓ × × × × ✓ 0.164
34 ✓ × ✓ ✓ × × × 0.203
35 ✓ × ✓ × ✓ × × 0.196
36 ✓ × ✓ × × ✓ × 0.193
37 ✓ × ✓ × × × ✓ 0.163
38 ✓ × × ✓ ✓ × × 0.228
39 ✓ × × ✓ × ✓ × 0.232
40 ✓ × × ✓ × × ✓ 0.165
41 ✓ × × × ✓ ✓ × 0.156
42 ✓ × × × ✓ × ✓ 0.178
43 ✓ × × × × ✓ ✓ 0.179
44 × ✓ ✓ ✓ × × × 0.192
45 × ✓ ✓ × ✓ × × 0.192
46 × ✓ ✓ × × ✓ × 0.191
47 × ✓ ✓ × × × ✓ 0.173
48 × ✓ × ✓ ✓ × × 0.197
49 × ✓ × ✓ × ✓ × 0.197
50 × ✓ × ✓ × × ✓ 0.165
51 × ✓ × × ✓ ✓ × 0.156
52 × ✓ × × ✓ × ✓ 0.171
53 × ✓ × × × ✓ ✓ 0.176
54 × × ✓ ✓ ✓ × × 0.195
55 × × ✓ ✓ × ✓ × 0.192
56 × × ✓ ✓ × × ✓ 0.160
57 × × ✓ × ✓ ✓ × 0.153
58 × × ✓ × ✓ × ✓ 0.170
59 × × ✓ × × ✓ ✓ 0.174
60 × × × ✓ ✓ ✓ × 0.141
61 × × × ✓ ✓ × ✓ 0.165
62 × × × ✓ × ✓ ✓ 0.166
63 × × × × ✓ ✓ ✓ 0.160
64 ✓ ✓ ✓ ✓ × × × 0.206

Scores Metrics

Row ID aIN text-f1 text-acc1 γsyn ρdisp φsil ϕfisher L1 (↓) )

65 ✓ ✓ ✓ × ✓ × × 0.201
66 ✓ ✓ ✓ × × ✓ × 0.199
67 ✓ ✓ ✓ × × × ✓ 0.170
68 ✓ ✓ × ✓ ✓ × × 0.210
69 ✓ ✓ × ✓ × ✓ × 0.203
70 ✓ ✓ × ✓ × × ✓ 0.168
71 ✓ ✓ × × ✓ ✓ × 0.161
72 ✓ ✓ × × ✓ × ✓ 0.169
73 ✓ ✓ × × × ✓ ✓ 0.172
74 ✓ × ✓ ✓ ✓ × × 0.207
75 ✓ × ✓ ✓ × ✓ × 0.205
76 ✓ × ✓ ✓ × × ✓ 0.166
77 ✓ × ✓ × ✓ ✓ × 0.162
78 ✓ × ✓ × ✓ × ✓ 0.169
79 ✓ × ✓ × × ✓ ✓ 0.171
80 ✓ × × ✓ ✓ ✓ × 0.152
81 ✓ × × ✓ ✓ × ✓ 0.167
82 ✓ × × ✓ × ✓ ✓ 0.173
83 ✓ × × × ✓ ✓ ✓ 0.163
84 × ✓ ✓ ✓ ✓ × × 0.195
85 × ✓ ✓ ✓ × ✓ × 0.197
86 × ✓ ✓ ✓ × × ✓ 0.170
87 × ✓ ✓ × ✓ ✓ × 0.160
88 × ✓ ✓ × ✓ × ✓ 0.180
89 × ✓ ✓ × × ✓ ✓ 0.182
90 × ✓ × ✓ ✓ ✓ × 0.156
91 × ✓ × ✓ ✓ × ✓ 0.173
92 × ✓ × ✓ × ✓ ✓ 0.177
93 × ✓ × × ✓ ✓ ✓ 0.165
94 × × ✓ ✓ ✓ ✓ × 0.156
95 × × ✓ ✓ ✓ × ✓ 0.172
96 × × ✓ ✓ × ✓ ✓ 0.173
97 × × ✓ × ✓ ✓ ✓ 0.163
98 × × × ✓ ✓ ✓ ✓ 0.151
99 ✓ ✓ ✓ ✓ ✓ × × 0.211
100 ✓ ✓ ✓ ✓ × ✓ × 0.203
101 ✓ ✓ ✓ ✓ × × ✓ 0.172
102 ✓ ✓ ✓ × ✓ ✓ × 0.164
103 ✓ ✓ ✓ × ✓ × ✓ 0.176
104 ✓ ✓ ✓ × × ✓ ✓ 0.178
105 ✓ ✓ × ✓ ✓ ✓ × 0.162
106 ✓ ✓ × ✓ ✓ × ✓ 0.177
107 ✓ ✓ × ✓ × ✓ ✓ 0.178
108 ✓ ✓ × × ✓ ✓ ✓ 0.172
109 ✓ × ✓ ✓ ✓ ✓ × 0.162
110 ✓ × ✓ ✓ ✓ × ✓ 0.175
111 ✓ × ✓ ✓ × ✓ ✓ 0.177
112 ✓ × ✓ × ✓ ✓ ✓ 0.172
113 ✓ × × ✓ ✓ ✓ ✓ 0.165
114 × ✓ ✓ ✓ ✓ ✓ × 0.160
115 × ✓ ✓ ✓ ✓ × ✓ 0.178
116 × ✓ ✓ ✓ × ✓ ✓ 0.182
117 × ✓ ✓ × ✓ ✓ ✓ 0.168
118 × ✓ × ✓ ✓ ✓ ✓ 0.165
119 × × ✓ ✓ ✓ ✓ ✓ 0.164
120 ✓ ✓ ✓ ✓ ✓ ✓ × 0.164
121 ✓ ✓ ✓ ✓ ✓ × ✓ 0.181
122 ✓ ✓ ✓ ✓ × ✓ ✓ 0.182
123 ✓ ✓ ✓ × ✓ ✓ ✓ 0.173
124 ✓ ✓ × ✓ ✓ ✓ ✓ 0.172
125 ✓ × ✓ ✓ ✓ ✓ ✓ 0.171
126 × ✓ ✓ ✓ ✓ ✓ ✓ 0.168
127 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.175

between the descriptions of the downstream datasets to the original pre-training dataset to quantify
how different the two datasets are.

Prompt Embedding Similarity. We use the cosine similarity between dataset-specific and generic
class prompts to evaluate domain shift. Specifically, based on the original list of class prompts from
CLIP, we pick the ones that best describe our target dataset. For instance, for the ImageNet-sketch
dataset, we selected prompts such as “A sketch of a {c}” or “A doodle of a {c}”. Then, we use the
text encoder from a pre-trained CLIP model to extract embeddings from dataset-specific and generic
class prompts and compute the cosine similarity between each pair. We use the mean cosine similarity
to measure how similar the target dataset is to the pre-training dataset. The dataset-specific prompts
can be found in the following subsection.
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Figure 9: Raw Model Ranking. (top) ImageNet benchmark approach assumes the same model
ranking for all datasets and cannot predict fine-grained model ranking. (bottom) The unified approach
can adjust the coarse ImageNet rankings for a more realistic model ranking.

Image-Text Embedding. We wanted to compare with widely used dataset difficulty approaches.
One common approach is to use the confidence of a model’s prediction to determine a dataset’s
difficulty. To do so, we first n images from the target dataset and extract image embeddings for each
of the n images. This simulates the scenario where we only have access to n images from the target
dataset to estimate model performance, where n is much smaller than the dataset size. Then, we
embed the class prompt into text embeddings and compute the prediction logits between each image
embedding and class embeddings. Lastly, we compute the entropy score Ethayarajh et al. [2022] and
max prediction logit Feng et al. [2022] to determine dataset difficulty.

Image Embedding Distance. Another common approach is estimating the difference in distribution
between the test and train sets Scheidegger et al. [2021]. We, therefore, use the distance between the
target and pre-training image embeddings to quantify dataset difficulty. Similar to the image-text
embedding approach, we first sample n images from the target dataset to extract image embedding
using a pre-trained CLIP image encoder. Additionally, we sample m images from the pre-training
dataset to extract image embeddings. We only sample m examples since these VLMs are typically
pre-trained on an internet-scale dataset, which makes it challenging to embed and compute distance
measures on the entire pre-training dataset. We then compute the L2 distances between the target and
pre-training datasets. We use max, min & mean L2 to quantify dataset difficulty.

Datasets. To evaluate the feasibility and effectiveness of each, we use the following variants of
ImageNet. Each dataset captures a different distribution shift from the original ImageNet:

• ImageNet: The original ImageNet dataset.
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Table 11: Dataset difficulty prediction. Here we evaluate different method’s ability to rank
variations of dataset based on their difficulty. Ground truth is based on CLIP’s zero-shot performance
on each dataset. We evaluate each method based on Kendall’s rank correlation (τ ). IN - ImageNet,
V2 - ImageNet-v2, A - ImageNet Adversarial, R - Imagenet Rendition, S - ImageNet Sketch.

Method Metric Raw Value Rank τ (↑)
IN V2 A R S IN V2 A R S

True Performance acc (↑) 0.762 0.701 0.771 0.889 0.602 3 4 2 1 5 1.000
Text Sim. cosine (↑) 0.807 0.808 0.781 0.832 0.786 3 2 5 1 4 0.200

Prompt Embedding Sim. cosine (↑) 0.820 0.820 0.801 0.808 0.774 1 1 4 3 5 0.105
Image-Text Embedding entropy (↑) 10.819 ± 1.6e-4 9.210 ± 1.5e-4 8.922 ± 1.8e-4 10.309 ± 1.4e-4 10.837 ± 1.4e-4 2 5 4 3 1 -0.200
Image-Text Embedding max logits (↑) 0.273 ± 0.032 0.264 ± 0.035 0.252 ± 0.027 0.260 ± 0.028 0.271 ± 0.029 1 3 5 4 2 -0.400
Image Embedding Dist. min L2 (↓) 0.768 ± 0.084 0.790 ± 0.090 0.850 ± 0.068 0.796 ± 0.079 0.753 ± 0.093 2 3 5 4 1 -0.600
Image Embedding Dist. mean L2 (↓) 1.422 ± 0.013 1.414 ±0.014 1.412 ± 0.013 0.413 ± 0.014 1.411 ± 0.012 5 4 2 3 1 -0.200
Image Embedding Dist. max L2 (↓) 1.099 ± 0.036 1.103 ± 0.041 1.131 ± 0.033 1.089 ± 0.038 1.077 ± 0.033 3 4 5 2 1 -0.200

• ImageNet Version 2 (ImageNet-v2): A new test set for ImageNet sampled a decade later.

• ImageNet Sketch (ImageNet-s): A ImageNet test set dataset with sketch-like iamges.

• ImageNet Rendition (ImageNet-r): contains art, cartoons, deviantart, graffiti, embroidery,
graphics, origami, paintings, patterns, plastic objects, plush objects, sculptures, sketches,
tattoos, toys, and video game renditions of ImageNet classes.

• ImageNet Adversarial (ImageNet-a): A real-world distribution shift ImageNet dataset
with changes in image style, blurriness, camera operation, and geographic location.

We extract descriptions of each dataset from either the abstract or induction section of their original
manuscript. The description used for each dataset is as shown here:

• LAION400m: “a dataset with CLIP-filtered 400 million image-text pairs.”

• ImageNet: “a benchmark in object category classification and detection on hundreds of
object categories.”

• ImageNet Version 2: “three test sets with 10,000 new images each. Importantly, these test
sets were sampled after a decade of progress on the original ImageNet dataset.”

• ImageNet Adversarial: “real-world distribution shift datasets consisting of changes in
image style, image blurriness, geographic locations.”

• ImageNet Rendition: “art, cartoons, DeviantArt, graffiti, embroidery, graphics, origami,
paintings, patterns, plastic objects, plush objects, sculptures, sketches, tattoos, toys, and
video game renditions of ImageNet classes.”

• ImageNet Sketch: “a new dataset consisting of sketch-like images, that matches the
ImageNet classification validation set in categories and scale”

The dataset-specific prompts used for the prompt embedding distance metric are listed in Fig. 10.

Evaluation. We use Kendall’s rank correlation (τ ) to evaluate our method’s ability to rank the
datasets in terms of their difficulties. Since image-text embedding and ImageNet embedding distance
require sampling from the target dataset, we run our evaluation 1,000 times with different samples
and compute the average metric. We also compute the standard deviations of the 1,000 run to estimate
the variability of random samples.

We show the results of using our strategies to estimate domain shift in Tab 11. Based on the results, it
is clear that none of the current methods can capture the dataset difficulty. Furthermore, the variability
based on the standard deviation makes our results heavily dependent on the samples drawn from the
target dataset, again suggesting these approaches’ limitations.

D Limitations

Our study, while extensive, is not without limitations. Primarily, our focus rests on zero-shot tasks
due to the nature of the LOVM’s design. The framework’s primary aim is to determine the best model
for a given task when there is no access to the downstream task dataset. Under these circumstances,
fine-tuning or linear probing is not viable, as they require access to labeled or unlabeled images from
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# imagenet prompts
imagenet = [
f’a bad photo of a {c}.’,
f’a photo of many {c}.’,
f’a bright photo of a {c}.’,
f’a photo of a clean {c}.’,
f’a photo of a dirty {c}.’,
f’a photo of my {c}.’,
f’a photo of the cool {c}.’,
f’a close-up photo of a {c}.’,
f’a bright photo of the {c}.’,
f’a photo of the dirty {c}.’,
f’a photo of the {c}.’,
f’a good photo of the {c}.’,
f’a photo of one {c}.’,
f’a close-up photo of the {c}.’,
f’a photo of a {c}.’,
f’a photo of the clean {c}.’,
f’a photo of a large {c}.’,
f’a photo of a nice {c}.’,
f’a good photo of a {c}.’,
f’a photo of the nice {c}.’,
f’a photo of the small {c}.’,
f’a photo of the weird {c}.’,
f’a photo of the large {c}.’,
f’a photo of a cool {c}.’,
f’a photo of a small {c}.’,
]

# imagenet v2 prompts
imagenet_v2 = [
f’a bad photo of a {c}.’,
f’a photo of many {c}.’,
f’a bright photo of a {c}.’,
f’a photo of a clean {c}.’,
f’a photo of a dirty {c}.’,
f’a photo of my {c}.’,
f’a photo of the cool {c}.’,
f’a close-up photo of a {c}.’,
f’a bright photo of the {c}.’,
f’a photo of the dirty {c}.’,
f’a photo of the {c}.’,
f’a good photo of the {c}.’,
f’a photo of one {c}.’,
f’a close-up photo of the {c}.’,
f’a photo of a {c}.’,
f’a photo of the clean {c}.’,
f’a photo of a large {c}.’,
f’a photo of a nice {c}.’,
f’a good photo of a {c}.’,
f’a photo of the nice {c}.’,
f’a photo of the small {c}.’,
f’a photo of the weird {c}.’,
f’a photo of the large {c}.’,
f’a photo of a cool {c}.’,
f’a photo of a small {c}.’,

]

# imagenet-a prompts
imagenet-a = [
f’a bad photo of a {c}.’,
f’a bad photo of the {c}.’,
f’a cropped photo of the {c}.’,
f’a photo of a hard to see {c}.’,
f’a photo of a dirty {c}.’,
f’a dark photo of the {c}.’,
f’a pixelated photo of the {c}.’,
f’a cropped photo of a {c}.’,
f’a photo of the dirty {c}.’,
f’a blurry photo of the {c}.’,
f’a photo of a weird {c}.’,
f’a blurry photo of a {c}.’,
f’a pixelated photo of a {c}.’,
f’a photo of the weird {c}.’,

]

# imagenet-s prompts
imagenet-s = [
f’a drawing of a {c}.’,
f’a doodle of a {c}.’,
f’a sketch of a {c}.’,
f’a doodle of the {c}.’,
f’a sketch of the {c}.’,

]

# imagenet-r prompts
imagenet-r = [
f’a sculpture of a {c}.’,
f’a rendering of a {c}.’,
f’graffiti of a {c}.’,
f’a tattoo of a {c}.’,
f’the embroidered {c}.’,
f’a drawing of a {c}.’,
f’the plastic {c}.’,
f’a painting of the {c}.’,
f’a painting of a {c}.’,
f’a sculpture of the {c}.’,
f’a plastic {c}.’,
f’a rendering of the {c}.’,
f’a {c} in a video game.’,
f’the origami {c}.’,
f’the {c} in a video game.’,
f’a origami {c}.’,
f’the toy {c}.’,
f’a rendition of a {c}.’,
f’a cartoon {c}.’,
f’art of a {c}.’,
f’a sketch of the {c}.’,
f’a embroidered {c}.’,
f’a plushie {c}.’,
f’the cartoon {c}.’,
f’the plushie {c}.’,
f’graffiti of the {c}.’,
f’a toy {c}.’,
f’a tattoo of the {c}.’

]

Figure 10: Prompting Templates Examples. Above can be examples of different prompting
templates used in the study. When using a prompting template, the ‘{c}’ character is replaced by the
class name.
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the downstream task dataset. If such data were available, the more straightforward approach would
be to address the conventional transferability problem as detailed in prior works. The ideal scenario
we envision for using LOVM is one where a user with minimal technical expertise seeks to conduct a
vision task. In this situation, the user can utilize a LOVM method to discern the most suitable model
and the relevant classes, enabling them to deploy the model without needing to delve into technical
nuances. However, if one possesses data for fine-tuning, conducting a direct evaluation on this small
dataset is likely the most accurate course of action. This constraint stems from the fact that LOVM
methods cannot make differential predictions without access to the fine-tuning data. Predicting the
performance after fine-tuning or linear probing would heavily depend on the correlation between the
results pre and post- fine-tuning/linear probing, a scenario we aim to avoid in the design of LOVM.
However, previous work has shown some correlation exists, so there may be some transferability to
fine-tuned/linear probed models [Wong et al., 2022].

Secondly, as discussed in Sec. C.5, even datasets bearing identical content may encounter a domain
shift. Such shifts can be clearly explained in some cases, such as when comparing ImageNet-
regular/rendition/sketch, but in others, the shift may be more elusive. For instance, when comparing
ImageNet to ImageNet-a, or when class distribution shifts occur, identifying the source of the shift
becomes challenging. In these scenarios, LOVM methods might struggle to accurately predict the
performance of a VLM, though model selection might be marginally affected.

Thirdly, the scope of VLMs in our work is currently confined to those trained with a contrastive loss.
The contrastive loss is central to the cross-modal transferability [Liang et al., 2022, Zhang et al.,
2023, Eyuboglu et al., 2022], and it is currently unclear if models not utilizing any contrastive loss
will exhibit the same behavior. Additional architectures, such as ones using unified text and image
encoders, is an interesting research direction and can also be incorporated in future works.

Finally, while the utility of text-only solutions described in Sec. C.5 warrants continued investigation,
it may be necessary to incorporate unlabeled test images to gauge domain shifts. Combining LOVM
methods with these image-based evaluations remains a promising area of ongoing research.

E Broader Impacts

Our work simplifies selecting vision-language models (VLMs) for specific tasks, increasing the
accessibility of artificial intelligence (AI) applications. However, this accessibility may be a double-
edged sword. On the one hand, it could democratize AI applications, allowing smaller entities or
independent researchers to utilize AI technologies more effectively. On the other hand, this easy
access might also enable malicious entities to deploy harmful applications more readily, posing risks
to sectors such as information security and personal privacy.

Moreover, despite our methodology’s efficiencies, it carries the risk of sub-optimal model selection
due to inherent limitations. Inaccuracies could lead to inefficient resource allocation or inferior
performance in real-world applications, particularly in high-stakes fields such as healthcare or
autonomous driving. Overall, while our work contributes to the efficiency and accessibility of AI
applications, it highlights the need for vigilance and continuous refinement to mitigate potential
negative impacts.
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