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ABSTRACT

Ensemble methods are commonly used for enhancing robustness in machine learn-
ing. However, due to the “transferability” of adversarial examples, the performance
of an ensemble model can be seriously affected even it contains a set of indepen-
dently trained sub-models. To address this issue, we propose an efficient data
transformation method based on a cute “weakness allocation” strategy, to diversify
non-robust features. Our approach relies on a fine-grained analysis on the relation
between non-robust features and adversarial attack directions. Moreover, our ap-
proach enjoys several other advantages, e.g., it does not require any communication
between sub-models and the construction complexity is also quite low. We conduct
a set of experiments to evaluate the performance of our proposed method and
compare it with several popular baselines. The results suggest that our approach
can achieve significantly improved robust accuracy over most existing ensemble
methods, and meanwhile preserve high clean accuracy.

1 INTRODUCTION

In the past decade, Deep neural networks (DNNs) have achieved prominent performance on a broad
range of real-world tasks (Goodfellow et al., 2016). However, a number of previous works show
that DNNs are susceptible to carefully-crafted manipulations, where the manipulated data are called
“adversarial examples” (Szegedy et al., 2014; Zhou et al., 2018; Heaven, 2019). The existence of
adversarial examples severely impedes the application of DNNs in security-conscious scenarios, such
as self-driving car (Rossolini et al., 2023; Zhu et al., 2021) and heath care (Newaz et al., 2020).

The adversarial training approach (Wang et al., 2023a; Madry et al., 2017) has gained significant
attention due to its great effectiveness for defending against adversarial examples. However, the
adversarial training approach often necessitates considerably high training time and large training
dataset (Gowal et al., 2021; Carmon et al., 2019). Moreover, it has been observed that adversarial
training is likely to incur certain decline in the accuracy on clean data, which also hinders the trained
model to be applied for many practical tasks (Tsipras et al., 2018; Zhang et al., 2019).

Another important approach to enhance adversarial robustness is ensemble training (Tramèr et al.,
2018). But recent studies (Demontis et al., 2019; Gao et al., 2022; Waseda et al., 2023) demonstrated
that an adversarial example can attack different models even they are trained independently, and this
phenomenon is the so-called “transferability” of adversarial examples. Hence, the strategy that
simply integrates different models trained on the same original dataset is not sufficient to guarantee
the overall robustness. To resolve this issue, different approaches have been proposed for maximizing
the “diversity" among sub-models; in general, these approaches can be categorized into two classes:
“simultaneous training” and “individual training” (Pang et al., 2019).

To reduce the similarity among sub-models, most existing “simultaneous training” methods attempt
to incorporate some penalty during each epoch of parameter updates. Kariyappa & Qureshi (2019)
proposed the “Gradient Alignment Loss (GAL)” method to minimize the gradient similarity between
sub-models directly. Further, Yang et al. (2021) proposed the “Transferability Reduced Smooth (TRS)”
method to improve GAL by adding a regularization term to increase the smoothness, as the models
with a smoother loss function can reduce the “transferability" of attacks. Yang et al. (2020) aimed to
isolate the adversarial vulnerability in each sub-model by distilling non-robust features, where the

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

sub-models can then generate diverse outputs being resilient against transfer attacks. Despite their
effectiveness for defending adversarial attacks, the simultaneous training methods often require a
substantial amount of memory since all the sub-models need to be stored in the GPUs in the training
stage, which could be prohibitive if the number of sub-models is not small (say, more than 10) and/or
their sizes are large. Additionally, the information interaction in parallel training can also cause extra
large communication cost.

Different from simultaneous training, most “individual training” methods train each sub-model
independently on a randomly transformed version of the given training dataset (Pang et al., 2019;
AprilPyone & Kiya, 2021). This “random transformation” strategy yields diverse datasets, and thus
different sub-models trained on these datasets can present diverse performances when confronting
an adversarial attack. The individual training approach has higher flexibility and also requires less
GPU memory, because the sub-models do not need to be stored simultaneously. Since there is
no communication between sub-models, individual training methods are more suitable for parallel
training with multiple GPUs. But unfortunately, recent studies showed that the commonly used
random transformations (e.g. image cropping and rescaling) are not that effective under adversarial
attacks (Athalye et al., 2018). The major cause of suppressing the performance of individual training
is that the “transferability” problem is still not well addressed.

Our contributions. To tackle the transferability obstacle, we consider developing a new data
transformation method for ensemble training. Our main contributions are summarized as follows:

– First, we propose a fine-grained analysis on the relation between non-robust features and adversarial
attack directions (Section 3). Being different from the previous analysis on non-robust features, our
new analysis provides us the hints that are particularly useful to allocate the potential vulnerability
directions to a set of sub-models, and therefore paves the way for designing our ensemble training
strategy.

– Second, we propose a data transform framework that can effectively promote the diversity of training
data for robust ensemble training. The framework consists of two steps: “frequency selection” and
“frequency transformation”, where the frequency is based on the Fourier transformation on the images.
We propose two efficient frequency transformations with low complexities on the identified non-
robust features. The first one is based on simple random noise, and the second one is a cute “targeted
attack transformation” that can modify the non-robust features more effectively (Section 4.2).

– Finally, we conduct a set of experiments to evaluate the adversarial robustness of our approach on
several benchmark datasets under the widely used attack algorithms. We also compare our approach
with several open-source ensemble methods, such as ADP (Pang et al., 2019), GAL (Kariyappa &
Qureshi, 2019), DVERGE (Yang et al., 2020), and TRS (Yang et al., 2021). Compared with those
baselines, the experimental results suggest that our proposed approach can significantly outperform
most of them in robust accuracy and also preserve comparable high clean accuracy.

1.1 OTHER RELATED WORKS

Data transformation for ensemble training. Guo et al. (2017) and Raff et al. (2019) proposed the
transformations that preserve semantic information to reduce the impact of adversarial perturbation.
AprilPyone & Kiya (2021) developed a training method that employs block-wise data transformations,
where the input image is partitioned into blocks based on some private key. LINAC Rusu et al. (2022)
uses a predetermined random seed (private key) to initialize and train a DNN to encode the input data,
serving as an encrypted input transformation.

Adversarial attack from frequency perspective. Wang et al. (2020) explained that the model’s
vulnerability to small distortions may be due to its dependence on high-frequency features. Yucel
et al. (2023) proposed a data augmentation method that reduces the reliance on high-frequency
components, so as to improve model’s robustness while maintaining clean accuracy. Maiya et al.
(2021) and Bernhard et al. (2021) respectively showed that to fully understand the vulnerability, we
should consider the distribution of the entire dataset with high and low frequencies.

2 PRELIMINARIES

Some notations. We consider the k-classification task: X → Y where X is the input data space
and Y = {1, 2, . . . , k} is the set of labels. A soft-classification model f(·;β) maps each x ∈ X
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to a vector f(x;β) ∈ Rk, where β is the parameter vector that needs to be trained. Its associated
hard-classification model is F (x;β) = argmaxi[f(x;β)]i where [·]i stands for the i-th coordinate.
The model f is usually equipped with a loss function ℓ(f(x;β), y), x ∈ X and y ∈ Y , which is
differentiable on β (e.g., cross-entropy loss). We refer to the accuracy on the original dataset as
“clean accuracy" and the accuracy on adversarial examples as “robust accuracy". We denote the
one-hot k-dimensional vector that corresponds to the target label y as yoh.

Definition 2.1 (Ensemble Model) Let M = {f1, ..., fM} be a set of sub-models for a k-
classification task. We build the ensemble model with the following function:

fE(x;β[1:M ]) =
1

M

∑
m∈[M ]

F̂m(x;βm), (1)

where β[1:M ] = {βm | 1 ≤ m ≤ M}, and F̂m(x;βm) is the one-hot k-dimensional vector of the
hard-classification model Fm(x;βm) of fm.

Definition 2.2 (Adversarial Attack and Targeted Attack) Given a model f(·;β) and an input
(x, y) ∈ X × Y , the adversarial attack algorithm A returns a perturbed data x′ inside the lp
ball of radius ϵ > 0, which maximizes the loss function ℓ(f(·;β), ·), or minimizes the loss function
ℓ(f(·;β), yt) if given a target label yt ̸= y. For the latter one, we say it is a “targeted attack from y
to yt”. Usually we set p = 2 or p =∞.

As mentioned in Section 1, because our proposed approach is based on Fourier transform, we
introduce several necessary notations below. Given an image x of size L×N , the corresponding two-
dimensional discrete Fourier transform can be written as: for any 0 ≤ u ≤ L−1 and 0 ≤ v ≤ N −1,

x̃[u, v] =

L−1∑
s=0

N−1∑
t=0

x[s, t] · e−2jπ(us
L + vt

N ), (2)

where “j” denotes the imaginary unit, and “x̃[u, v]” is the entry in the u-th column and v-th row of
the Fourier matrix x̃ (“x[s, t]” is defined similarly for the original image x). The pixels of the image
x form the time domain, and the entries of x̃ form the frequency domain. For a frequency (u, v),
the amplitude is the absolute value

∣∣x̃[u, v]∣∣. We call a frequency (u, v) as a frequency feature.

3 FINE-GRAINED ANALYSIS ON ENSEMBLE MODEL VULNERABILITY

The previous work (Ilyas et al., 2019) categorizes the features learned by a model into robust and
non-robust features. It shows that adversarial vulnerability is a natural consequence of the presence
of highly predictive but non-robust features. Moreover, different models trained on the same dataset
often have similar non-robust features, and therefore an adversarial example usually exhibits the
unpleasant “transferability" property among them. Several other works also presented detailed
discussions on the impact of non-robust features (Benz et al., 2021; Springer et al., 2021). Following
those studies, a natural idea for tackling the transferability issue is to ensure that the sub-models
should have diverse non-robust features. In this section, we provide a fine-grained analysis on the
vulnerability of ensemble models and then conclude two important hints for achieving this “diversity”
goal.

The following definitions are inspired by (Ilyas et al., 2019). Note that different from the term
“feature” used in their article, we use “feature extractor” instead in our paper, since “feature” will be
particularly used for referring to image feature in time or frequency domain. A model f should be
comprised of a set of different feature extractors.

Definition 3.1 (Useful feature extractor) For a given data distribution D = X × Y , a feature
extractor θ : X → Rk is useful, if we have

E(x,y)∼D
[
yoh

⊤θ(x)
]
>

1

k
. (3)

Recall that yoh is the one-hot k-dimensional vector of the label y. So the inequality (3) implies that a
useful feature extractor can contribute to the model’s correct prediction.
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Definition 3.2 (robust and non-robust feature extractor) We use A(x) to denote the adversarial
example of a data item x as described in Definition 2.2. Let θ be a useful feature extractor. (1) We
say θ is robust if the following condition holds for any i (1 ≤ i ≤ k):

E(x,y)∼Di
[θ(A(x))]i >

1

k

where Di represents the i-th class data. We denote the set of these robust feature extractors as ΘR.

(2) The remaining useful feature extractors are non-robust. We assign these non-robust extractors
to k(k − 1) sets: {Θi,j | 1 ≤ i ̸= j ≤ k} as follows. Initially, all these k(k − 1) sets are empty.
Then we go through all the non-robust feature extractors. For each non-robust θ, there must exist at
least an index “i” such that

E(x,y)∼Di
[θ(A(x))]i ≤ 1/k;

we let j = argmaxs E(x,y)∼Di
[θ(A(x))]s and assign θ to Θi,j (note that j should be not equal to

i, or there are multiple indices achieving the maximum expectation and at least one is not equal to
i, since otherwise

∑k
s=1 E(x,y)∼Di

[θ(A(x))]s will less than 1). Eventually, these k(k − 1) sets are
constructed, where each Θi,j contains the feature extractors that are not robust to the attack from i to
j.

Remark 3.3 Intuitively, if a feature extractor is robust, it should have the capability to preserve
its contribution to the correct prediction even under perturbation. It is also worth noting that a
non-robust feature extractor θ could be assigned to multiple Θi,js.

Assume we have a standardly trained model f consisting of a set of useful feature extractors, and we
denote it as Θf . Each of them can be classified as robust or non-robust as Definition 3.2. Similar
with the formulation proposed in (Ilyas et al., 2019), we can represent the model as

f(x) =
∑

θ∈ΘR∩Θf

wθθ(x) +

k∑
i,j=1,i̸=j

∑
θ∈Θi,j∩Θf

wθθ(x), (4)

where each θ has a coefficient wθ ∈ R. We then conduct our analysis based on Equation (4). Some
recent works reveal that adversarial training method can obtain robust model through reducing the
dependence on non-robust feature extractors (Allen-Zhu & Li, 2022; Tsipras et al., 2018). However,
this strategy may cause certain downgrade performance on clean accuracy (because the non-robust
feature extractors also contribute to obtaining correct prediction). Fortunately, we are able to avoid
this dilemma in the context of ensemble training. Namely, we just need to keep the non-robust
features as diverse as possible, instead of entirely eliminating the dependence on those non-
robust feature extractors. To pave the way for realizing this goal, we introduce the definition of
vulnerability of ensemble model bellow.

Definition 3.4 (Vulnerability of ensemble model) Suppose fE is an ensemble model as described
in Definition 2.1, and its associated hard-classification model is denoted by FE: ∀x, FE(x) =
argmaxi[fE(x)]i. Given the data distribution D = X × Y , the vulnerability of FE is defined as:

Vr(FE) = E(x,y)∼D

[
I
{
FE(x) = y ∧ FE(A(x)) ̸= y

}]
, (5)

where I(·) represents the indicator function. Furthermore, for any target class yt, we can define the
vulnerability towards yt as Vr(FE, yt)=E(x,y)∼D

[
I
{
FE(x)=y ∧ FE(A(x))=yt

}]
.

The vulnerability of Definition 3.4 describes the success probability of an attack A to the ensemble
model FE. We have the following key inequality, which indicates that Vr(FE) is bounded by
considering all the attack directions, i.e.,

Vr(FE) ≤
∑
yt∈Y

Vr(FE, yt). (6)

The proof of Inequality (6) is placed in Appendix A.1. Moreover, if FE(A(x)) = yt, there are
at least M/k sub-models returning the wrong label yt due to the pigeonhole principle. Namely,
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“
∑M

m=1 I
(
[fm(A(x))]y < [fm(A(x))]yt

)
> M

k ” should be a necessary condition for successfully
attacking from y to yt. So it implies

Vr(FE, yt) ≤ E(x,y)∼D

[
I
( M∑

m=1

I
(
[fm(A(x))]y < [fm(A(x))]yt

)
>

M

k

)]
. (7)

From the upper bound (6), we can decrease the total vulnerability by reducing Vr(FE, yt) for
each yt. Also, from (7) we know that Vr(FE, yt) can be reduced by decreasing the chance of
“[fm(A(x))]y < [fm(A(x))]yt

” over m ∈ {1, 2, · · · ,M}. According to the Equation (4), the
inequality “

[
fm(A(x))

]
y
<

[
fm(A(x))

]
yt

” can be rewritten as

[ ∑
θ∈Θm

R

wθθ(A(x)) +
k∑

i,j=1,i̸=j

∑
θ∈Θm

i,j

wθθ(A(x))
]
y
<

[ ∑
θ∈Θm

R

wθθ(A(x)) +
k∑

i,j=1,i̸=j

∑
θ∈Θm

i,j

wθθ(A(x))
]
yt

, (8)

where Θm
R and Θm

i,j respectively denote the sets of robust and non-robust feature extractors for the
sub-model fm. Moreover, the set Θm

y,yt
should have relatively larger influence to the value of (8) than

other feature extractor set Θm
y,j with j ̸= yt, due to the outer operator “[·]yt

”. Therefore, we conclude
our first hint as an intuition for reducing Vr(FE).

Hint (i): To decrease the vulnerability in the attack direction yt (i.e., each term Vr(FE, yt) in the
upper bound of (6)), it is reasonable to decrease the influence from the non-robust feature extractors
of Θm

y,yt
.

In Hint (i), a major difference from the previous analysis (Ilyas et al., 2019; Allen-Zhu & Li, 2022) is
that, we in particular relate each attack direction yt to some specific non-robust feature extractors,
where the benefit is that these correspondences can effectively help us to build the diverse ensemble
model. Moreover, According to the principle of ensemble methods, as long as at least M/2 + 1
sub-models are not successfully attacked, the ensemble model will successfully defend against the
attack. So we conclude the second hint that is also important for designing our approach.

Hint (ii): For each attack direction yt, we only need to consider manipulating the training data of
M/2 + 1 sub-models instead of all the M sub-models.

Overall, the above Hint (i) & (ii) play the key roles for inspiring our data transformation method in
Section 4.

4 OUR ENSEMBLE TRAINING METHOD

We first introduce our model and high-level idea in Section 4.1, and then elaborate on the technical
details for the data transformations in Section 4.2.

4.1 OVERVIEW OF OUR FRAMEWORK

Note that the feature extractors of a model depend on the given training data. Namely, any modification
on the features of the training data can implicitly influence the model. Thus, in this section we follow
the Hint (i) & (ii) of Section 3 to design an effective data transformation method. The transformation
is expected to modify the features of the training data, so as to enhance the robustness of the trained
ensemble model. We train a set of distinct sub-models on the transformed training data; these
sub-models can be integrated into an ensemble model being robust against adversarial attacks, while
preserving the clean accuracy of each sub-model as much as possible. We use “πm” to denote
the transformation for the m-th sub-model, 1 ≤ m ≤M , and formulate the following problem by
slightly modifying Definition 2.1 (replace x by the adversarial example A(x) for each sub-model):

minE(x,y)∼X×Yℓ
( 1

M

∑
m∈[M ]

F̂m

(
A(x);βm

)
, y
)

(9)

where βm is obtained by training on the transformed data, i.e., βm =
argmin

β
E(x,y)∼X×Y ℓ (fm (πm(x);β) , y) for each m ∈ {1, 2, · · · ,M}.
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The major challenge for solving the above problem (9) is how to design a set of appropriate trans-
formations {πm | 1 ≤ m ≤ M}, so that the obtained parameters β[1:M ] can yield sufficiently
diverse sub-models. To address this issue, we leverage the transformation from frequency domain
to guide the non-robust features of each sub-model to be as diverse as possible. Specifically, we
introduce a method called “Frequency Domain Transformation (FDT)” for constructing the set of
diverse training datasets {π1(X ), π2(X ), · · · , πM (X )}. FDT relies on a key “weakness allocation”
strategy. Roughly speaking, the strategy aims to promote the diversity of the constructed datasets,
and meanwhile preserve that the overall clean accuracy should not be sacrificed in the ensemble. The
details are presented in the next section.

4.2 FREQUENCY DOMAIN TRANSFORMATION

Before performing the transformation, we need to select a set of non-robust features. In time domain,
a simple observation is that an image feature is usually invariant under spatial translation, e.g., it can
appear at different positions in images. This property causes the challenge for directly identifying and
representing non-robust features in time domain. Thus we turn our attention to the frequency domain.
Moreover, some previous studies on robust learning already revealed that robust and non-robust
features are often deeply related to frequency domain (Wang et al., 2020; Bernhard et al., 2021;
Maiya et al., 2021).

Amplitude based selection. To identify the non-robust frequencies, a straightforward idea is to test
the robustness of each individual frequency and select the non-robust ones. Nevertheless, it may
takes a large computational cost since the number of frequencies is high (e.g., if the input image is
64× 64, the number of frequencies is also 64× 64 ≈ 4× 103). We propose an easy-to-implement
selection idea based on the amplitudes, since the amplitudes can be directly obtained via the Fourier
transformation with low complexity. According to the previous research (Ilyas et al., 2019; Benz et al.,
2021; Springer et al., 2021), a feature can be regarded as “robust” if it cannot be easily manipulated
by small perturbations. We observe that high-amplitude frequency features usually dominate the
ground truth of an image. Figure 4 in our Appendix illustrates an example to show that, if we keep
high-amplitude frequencies and remove low-amplitude ones, the image is changed slightly even with
adding certain noise (i.e., we can still recognize the ground truth from the modified image). This
observation suggests that high-amplitude frequency features are more strongly related to the semantic
information of image. So in our following approach, we maintain high-amplitude frequency features
as “robust features”, and select the frequencies with low amplitudes (by setting a threshold “τ ”) to
transform. Moreover, we can conveniently observe the performance changing through varying the
threshold τ in our experiment. Figure1 illustrates the amplitude-based selection.

Figure 1: We use a 5x5 image as a toy example,
where the intensity of the color indicates the mag-
nitude of the amplitude. In our amplitude-based
selection, we retain the high-amplitude frequencies
(i.e., the darker regions) and perform data transfor-
mations on the low-amplitude frequencies (i.e., the
white regions).

Following our frequency selection, we propose
two transformation methods for promoting the
diversity by using the identified non-robust fea-
tures. Our first approach is from a straight-
forward idea, which is just to replace the non-
robust features by random noise (due to the
space limit, we leave the details to Appendix
C). This method is very easy to implement in
practice. Though it can achieve certain degree
of improvement upon previous ensemble train-
ing methods, the performance is still not very
promising (as shown in our experiments). To
further improve the effectiveness, we propose
a more sophisticated approach called “targeted-
attack transformation”, which constructs a set
of different “substitute” features through attack-

ing the images to different targeted classes, and then use them to replace the selected non-robust
frequencies.

Targeted-attack transformation: We briefly explain our intuition first. It was shown that adversarial
attacks have the capability to manipulate non-robust features (Ilyas et al., 2019; Yang et al., 2020). In
particular, a targeted attack as introduced in Definition 2.2, aims at modifying non-robust features
that are associated with a specific target label. For instance, let us consider a data point (x, y) in the
original dataset X ×Y ; we set the target label as yt and obtain the corresponding adversarial example
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x′ (x′ contains the modified non-robust features that are associated with yt). When training a model
using (x′, y), intuitively it can be viewed as an “immunization” for defending the attack from y to yt;
and consequently, the chance that obtaining the wrong label yt for the data with label y decreases. In
other words, it becomes more difficult to attack the images with label y to yt than to the other classes.
We call the modified non-robust feature as a “substitute” feature derived by the targeted attack.

Motivated by this observation, we can construct different transformations by using k × (k − 1)
targeted attacks (since each label can be attacked to be the other k − 1 labels); these attacks can yield
different substitute features, and then we use these features to replace the corresponding non-robust
features in the original dataset (based on Hint (i) in Section 3); finally, the M transformed datasets are
obtained via an allocation algorithm, where each substitute feature is captured by at least M/2 + 1
datasets (based on Hint (ii) in Section 3). Overall, due to the completeness of the k × (k − 1)
targeted attacks, the M sub-models trained on those datasets can guarantee the robustness of the final
ensemble solution. We introduce some definitions for our transformation first.

Definition 4.1 (Strengthen a dataset) Let y1 ̸= y2 ∈ Y . If a given training dataset P contains at
least one adversarial example who has the original label y1 but is misclassified as y2, we say that P
has been strengthened by the attack direction from y1 to y2 (“−−→y1y2-direction” for short).

In other words, if P is not strengthened in −−→y1y2-direction, the model trained on P is more likely to
be fragile to the targeted attacks from y1 to y2. Also, the dataset P may have not been strengthened
in multiple different directions. So we define its “weakness set”W = {−−→y1y2 | 1 ≤ y1, y2 ≤ k, y1 ̸=
y2, and P has not been strengthened in −−→y1y2-direction}.

Definition 4.2 (Diversity of weakness sets) Given M datasets {P1, P2 · · · , PM} with their corre-
sponding weakness sets {W1,W2, · · · ,WM}, we define their diversity:

Div(P1, P2, · · · , PM )=1− |W1 ∩W2 ∩· · ·∩ WM |
max{|W1|, |W2|,· · ·, |WM |}

.

It is easy to see that the higher the value Div(P1, P2, · · · , PM ), the more diverse the corresponding
weakness sets. A higher diversity suggests that the vulnerabilities of the M sub-models trained
on those datasets are more likely to be different. To achieve a nice performance in terms of both
accuracy and robustness, we need to take account of the diversity function “Div” for designing the
transformations. The basic principle is:

On the one hand, our transformed datasets should have a sufficiently large number of diverse
substitute features, so that one adversarial attack cannot easily capture more than half of the M
sub-models. On the other hand, the datasets should also maintain the major information of the
original input as much as possible, since otherwise the clean accuracy may decline due to the added
substitute features.

To provide an appropriate trade-off, we propose the following constrained optimization objective: let
C be the set of all the

(
M

M/2

)
combinations of M/2-size subsets from {1, 2, · · · ,M}, and then

max
P1,P2,··· ,PM

min{|W1|, |W2|, · · · , |WM |} (10)

s.t. ∀{i1, i2, · · · , iM/2} ∈ C, Div(Pi1 , Pi2 , · · · , PiM/2
) = 1. (11)

We maximize the objective function of (10) because we want to minimize the modification degree
for each transformed dataset. Intuitively, a large weakness set indicates that the corresponding
dataset is not changed significantly by the transformation, and thus the clean accuracy is likely
to be well preserved. The constraint (11) guarantees that any M/2 datasets have the intersection
Wi1 ∩Wi2 ∩ · · · ∩WiM/2

= ∅, that is, they do not share any common direction. Consequently, the
ensemble solution should be robust to any attack direction. To achieve this twofold goal, we design
an efficient allocation strategy together with an attack-guided transformation on the training data.
Specifically, the procedure consists of the following two stages.

Stage (1): allocating the weakness sets to the sub-models. For each −−→y1y2−direction, 1 ≤ y1, y2 ≤
k, there are at most ⌈M2 ⌉ − 1 sets that contain this direction (due to the constraint (11)), so the sum∑

1≤i≤M |Wi| is no larger than k(k − 1) ∗ (⌈M2 ⌉ − 1). Therefore, the maximum value of Eq (10) is
no larger than

7
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k(k − 1) ∗ (⌈M
2
⌉ − 1)/M (12)

based on the pigeonhole principle. We assign the total k(k−1)∗(⌈M2 ⌉−1) directions (each direction
is duplicated to be ⌈M2 ⌉ − 1 copies) to M sets in a round-robin way, where the number of directions
assigned to each set is no larger than the upper bound (12). Please refer to Figure 2 for an example.

Figure 2: Assign the attack directions to five sub-models for a three-class classification task.

Stage (2): constructing the new datasets. Following the allocation, we transform the original dataset,
denoted by Pori, to align with the assigned weakness sets for the M sub-models correspondingly.
Using the same notations of Definition 4.2, we denote the waiting-to-construct dataset for the m-th
sub-model as Pm (which is initialized to be ∅), 1 ≤ m ≤ M . First, we divide Pori into k subsets
C1, C2, · · · , Ck, where each Cj corresponds to the label j, for 1 ≤ j ≤ k; further, each Cj is equally
partitioned to k − 1 disjoint parts {Cj,1, Cj,2, · · · , Cj,k−1} at random. For each data (x, j) in Cj,i,
we attack it from j to h (let h = i+ j mod k) to obtain the adversarial perturbation; then we only
substitute the low-amplitude frequencies of x with the perturbation, and other frequencies (which
have their amplitudes higher than the aforementioned threshold τ ) remain unchanged. We denote
the new dataset as C ′

j,i. Finally, we add C ′
j,i to Pm if the

−→
i h-direction is not in the weakness set

Wm. From the construction method of the weakness sets, we know that the
−→
i h-direction can appear

in at most ⌈M2 ⌉ − 1 weakness sets. So, the set C ′
i,j can be added to at least ⌈M2 ⌉ different Pms.

Consequently, the completeness for defending the k(k − 1) attack directions can be guaranteed,
i.e., the constraint (11)is satisfied. Due to the space limit, the full details are shown in Appendix D.
Figure 3 shows the schematic diagram of the construction process, and the full details are shown in
Appendix D.

Figure 3: A schematic diagram of the construction process. In the allocation stage, each C ′
j,i is added

to Pm if the
−→
i h-direction is not in the weakness setWm, h = i+ j mod k.

8
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Remark 4.3 We are aware of some previous robust learning approaches that also depend on data
modification (Allen-Zhu & Li, 2022; Tsipras et al., 2018). But their approaches usually tend to
completely eliminate non-robust features. Our method is quite different, where the goal is to leverage
the carefully selected non-robust features to weaken the transferability among sub-models. For each
sub-model, we only modify the non-robust features corresponding to certain directions, rather than all
non-robust features, and therefore the modification yields relatively lower impact on clean accuracy.
Moreover, we partition each class (Cj) into k− 1 subsets {Cj,1, Cj,2, · · · , Cj,k−1}, with each subset
being attacked to a specified class. This step eliminates the need to attack each data point across all
classes, thereby reducing the computational complexity of constructing the new datasets.

5 EXPERIMENTS

We conduct our experiments on the widely used image datasets CIFAR-10, CIFAR-100 (Krizhevsky
& Hinton, 2009), and Tiny-ImageNet-200 (Deng et al., 2009). As for the baselines, we reproduce the
existing ensemble models including ADP (Pang et al., 2019), GAL (Kariyappa & Qureshi, 2019),
DVERGE (Yang et al., 2020), and TRS (Yang et al., 2021), with their released codes and recommended
hyperparameter settings. As for our approach, “FDT-random” and “FDT-target” respectively denote
the methods utilizing random noise based transformation and target-attack transformation; “FDT-
hybrid” represents the method that combines both, that is, we set two frequency selection thresholds
τ1 and τ2 (τ1 < τ2), and perform random and target-attack transformations on the frequencies less
than τ1 and the frequencies between τ1 and τ2, respectively (due to the space limit, more details are
shown in Appendix E). We train each sub-model based on ResNet-20 (He et al., 2016) and use Adam
optimizer (Kingma & Ba, 2015) with an initial learning rate of 0.001 for 200 epochs. To further test
their performance on neural network with larger scale, we also use WideResNet28-10 (Zagoruyko
& Komodakis, 2016) to train the sub-models and the results are placed in our supplement. All the
experiments are implemented with PyTorch (Paszke et al., 2017) on a single NVIDIA GeForce RTX
3090 with 24GB of memory and 1TB of storage. We assess the performance of our models through 5
repeated runs and compute error bars. Utilizing the numpy library, we calculate the standard deviation
and subsequently derive the standard error of the mean (SEM).

Varying the number of sub-models. We take the ResNet-20 model trained on CIFAR-10 as an
example and test the performance of FDT with different numbers of sub-models in the ensemble.
In this experiment, we set the frequency selection threshold τ to be 0.8. Then we evaluate the
performance of FDT-hybrid under FGSM (Madry et al., 2017) , PGD (Carlini et al., 2019), and
AutoAttack (AA) (Croce & Hein, 2020) attack methods with l∞ perturbations of size ϵ = 0.02.
The results in Table 1 indicate that our clean accuracy has relatively smaller change as the number
increases, while the robust accuracy can be substantially improved from 3 to 20 sub-models.

Table 1: Performance of FDT-hybrid with different sub-model numbers on CIFAR-10.
Sub-model numbers 3 5 8 12 20

Clean accuracy 90.20 ± 0.03 90.75±0.03 91.35±0.05 91.51 ±0.06 91.86±0.07
FGSM (ϵ= 0.02) 58.04 ± 0.13 61.66± 0.15 62.41 ± 0.11 63.96 ± 0.12 64.27 ± 0.14
PGD (ϵ=0.02) 20.01 ± 0.04 26.10± 0.07 29.20± 0.05 29.78 ± 0.08 29.71± 0.07

AutoAttack (ϵ=0.02) 19.42± 0.04 25.37± 0.05 27.33± 0.04 28.12± 0.07 28.92± 0.07

Results for white-box attack. To maintain consistency with the baseline ensemble methods from
the literature, we ensemble three ResNet-20 sub-models here and evaluate the robust accuracy using
ϵ = 0.01 and ϵ = 0.02. In the white-box attack setting, the attacker has full knowledge of the
models, including model parameters, architecture, and ensemble training strategy. To evaluate the
adversarial robustness of the ensemble, we conduct the following white-box attacks: PGD, FGSM,
BIM (Goodfellow et al., 2015), MIM (Dong et al., 2018), C&W (Carlini & Wagner, 2017) and
AutoAttack (AA). The attacks are implemented using AdverTorch (Ding et al., 2019). We take the
robust and clean accuracies, and average training time per epoch as the evaluation metrics.

Table 2 presents the obtained robust accuracies of the baseline ensemble methods on CIFAR-10 and
CIFAR-100. In addition, we show the average training time per epoch of different ensemble methods.
The experimental results suggest that our FDT-random method can achieve higher adversarial
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Table 2: Robust and Clean Accuracy (%) and average training time of different ensemble methods
against white-box attacks on CIFAR-10 and CIFAR-100. “ϵ” and “λ” stand for the l∞ norm of the
adversarial perturbation and the coefficient of C&W attack respectively.

CIFAR-10 ADP GAL DVERGE TRS FDT-random FDT-target FDT-hybrid
Clean accuracy 91.84 91.81 91.37 69.60 89.88± 0.02 90.16 ± 0.04 90.20± 0.03
FGSM (ϵ=0.01) 59.48 44.97 70.05 34.54 66.96± 0.12 72.88± 0.12 72.24± 0.12
FGSM (ϵ=0.02) 53.38 30.58 56.33 21.65 46.28 ± 0.10 55.54 ± 0.09 58.04 ± 0.13
PGD (ϵ= 0.01) 14.45 1.35 40.55 13.52 45.42 ± 0.09 46.58 ± 0.07 48.48 ± 0.09
PGD (ϵ = 0.02) 2.95 0.34 11.49 2.22 12.24 ± 0.03 15.08 ± 0.05 20.01 ± 0.04
BIM (ϵ= 0.01) 14.15 1.37 40.51 13.71 45.24 ± 0.03 46.86 ± 0.04 48.57± 0.05
BIM (ϵ = 0.02) 3.01 0.27 10.65 1.98 11.68± 0.03 14.86± 0.03 16.63 ± 0.02
MIM (ϵ= 0.01) 20.38 2.05 44.74 15.85 47.73± 0.05 49.97 ± 0.06 51.48 ± 0.07
MIM (ϵ= 0.02) 5.11 0.69 14.76 3.01 15.14 ± 0.04 18.27± 0.02 20.09 ± 0.03
AA (ϵ= 0.01) 1.80 0.00 43.34 10.86 46.09± 0.09 48.83± 0.08 51.56 ± 0.08
AA (ϵ= 0.02) 0.00 0.00 13.72 0.60 9.38 ± 0.05 15.70 ± 0.05 19.42 ± 0.04

C&W (λ = 0.1) 20.96 31.57 52.35 18.94 45.01± 0.10 55.48 ± 0.10 56.08 ± 0.11

CIFAR-100 ADP GAL DVERGE TRS FDT-random FDT-target FDT-hybrid
Clean accuracy 67.04 67.70 66.16 66.63 66.29 ± 0.11 67.64 ± 0.08 66.70± 0.09
FGSM (ϵ =0.01) 17.82 16.89 33.94 26.22 35.42± 0.12 40.46± 0.14 39.85 ± 0.14
FGSM (ϵ = 0.02) 10.53 7.80 26.61 18.99 22.40± 0.05 32.30± 0.06 30.27± 0.08
PGD (ϵ = 0.01) 0.80 0.11 14.62 0.89 21.54 ± 0.06 22.19 ± 0.05 24.93± 0.05
PGD (ϵ = 0.02) 0.01 0.02 4.25 0.08 4.84 ± 0.03 7.27 ± 0.02 8.63± 0.03
BIM (ϵ = 0.01) 0.68 0.23 14.85 0.86 21.10 ± 0.09 22.39 ± 0.07 24.35± 0.06
BIM (ϵ = 0.02) 0.02 0.0 4.07 0.09 4.80 ± 0.04 6.80± 0.05 8.40± 0.05
MIM (ϵ = 0.01) 0.78 0.12 16.82 1.17 23.14 ± 0.06 24.68± 0.10 27.09 ± 0.09
MIM (ϵ = 0.02) 0.01 0.02 5.31 0.08 6.47 ± 0.03 8.87 ± 0.04 10.19 ± 0.05
AA (ϵ= 0.01) 0.01 0.00 11.23 0.07 16.02± 0.09 16.03± 0.09 16.41 ± 0.12
AA (ϵ= 0.02) 0.00 0.00 2.72 0.04 3.12± 0.04 4.54 ± 0.05 5.47± 0.07

C&W (λ = 0.1) 0.74 3.70 10.68 7.77 25.07 ± 0.10 29.43 ± 0.09 30.66± 0.13

Time (s) ADP GAL DVERGE TRS FDT-random FDT-target FDT-hybrid
CIFAR-10 30.15 69.92 134.33 350.42 37.04 108.22 114.23

CIFAR-100 30.34 69.71 129.25 344.92 37.12 108.43 113.87

robustness over other baselines on both CIFAR-10 and CIFAR-100, with the training time only higher
than ADP (and much lower than other baselines). Furthermore, the FDT-hybrid ensemble method
achieves an even better robustness than FDT-random, though its running time is higher since it needs
to perform the target-attack transformation.

Summary on other experimental results placed in Appendix F. We also conduct the experiments
to examine the performance of FDT under black-box attack, and assess the transferability of our
method across various sub-models. The results indicate the competitive robustness of our method in
defending against black-box attacks. Then, we evaluate the trade-off between clean accuracy and
robust accuracy by varying the frequency selection threshold τ . The result shows that the ensemble
model has lower clean accuracy and higher robust accuracy with the increasing of τ . Moreover, we
included some ablation studies on datasets and model architectures. These experiments demonstrate
that our method performs the best among ensemble-based baseline methods.

6 CONCLUSION AND FUTURE WORK

In this paper, we present a novel data transformation approach to improve the robustness of ensemble
models against adversarial attacks. By leveraging the frequency based features and strategically
allocating adversarial examples, we demonstrate the effectiveness of our method in enhancing
adversarial robustness while maintaining high accuracy on clean data. As for the future work, we
can consider other types of transformation methods (e.g., beyond using frequency) to improve the
ensemble robustness. Also, it is interesting to consider more complicated scenarios for ensemble
training, such as federated learning with concerning the privacy issue.
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A OMITTED PROOFS

A.1 PROOF OF INEQUALITY (6):∑
yt∈Y Vr(FE, yt)

=
∑

yt∈Y E(x,y)∼D

[
I
{
FE(x) = y ∧ FE(A(x)) = yt

}]
=

∑
yt∈Y

∑
(x,y)∈D p(x,y)

[
I
{
FE(x) = y ∧ FE(A(x)) = yt

}]
.

Then, we interchange the order of summation, and so the above equation is equal to∑
(x,y)∈D p(x,y)

∑
yt∈Y

[
I
{
FE(x) = y ∧ FE(A(x)) = yt

}]
= E(x,y)∼D

[∑
yt∈Y I

{
FE(x) = y ∧ FE(A(x)) = yt

}]
.

For each (x, y), without loss of generality, let FE(A(x)) = y0. For yt ̸= y0, I
{
FE(x) = y ∧

FE(A(x)) = yt
}
= 0. For yt = y0, I

{
FE(x) = y ∧ FE(A(x)) = yt

}
= I

{
FE(x) = y

}
. So the

above equation is equal to

E(x,y)∼D

[
I
{
FE(x) = y

}]
= E(x,y)∼D

[
I
{
FE(x) = y ∧ (FE(A(x)) ̸= y ∨ FE(A(x)) = y)

}]
= E(x,y)∼D

[
I
{
FE(x) = y ∧ FE(A(x)) ̸= y

}
+ I

{
FE(x) = y ∧ FE(A(x)) = y

}]
.

We split I(.) because FE(A(x)) ̸= y and FE(A(x)) = y are mutually exclusive. Then, the above
equation is equal to

Vr(FE) + E(x,y)∼D

[
I
{
FE(x) = y ∧ FE(A(x)) = y

}]
≥ Vr(FE)

Overall, we can obtain the inequality (6):
∑

yt∈Y Vr(FE, yt) ≥ Vr(FE)

B FREQUENCY SELECTION

Figure 4 illustrates an example to show that, if we keep high-amplitude frequencies and remove
low-amplitude ones, the image is changed slightly even with adding certain noise (i.e., we can
still recognize the ground truth from the modified image). On the other hand, if we keep the low-
amplitude frequencies only, the semantic information is almost missing. This observation suggests
that high-amplitude frequency features are more strongly related to the semantic information of
image.

C RANDOM NOISE BASED TRANSFORMATION

Random noise based transformation: This approach substitutes the identified non-robust frequen-
cies with Gaussian noise. For an N ×N image, we take the non-robust frequencies based on the
pre-specified threshold τ , and replace them with random vector for each sub-model in our experiment.
In particular, to further increase the randomness, we perform this transformation for each epoch in the
training stage. If we select the top s non-robust frequencies, the overall dimensionality of the edited
random feature should be s× E (we concatenate those s-dimensional features together), where E is
the number of epochs. For example, if N = 32, s = N2/2, and E = 200, the overall dimensionality
can be as large as 105. Because these M features are random and have high dimensions, they are
very likely to be nearly orthogonal with each other (this phenomenon in high-dimensional geometry
can be proved by the central limit theorem (Wegner, 2021)). As a consequence, they tend to yield
diverse training results for the sub-models.
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Figure 4: The first and second rows are the figures by adding random noise to high-amplitude and
low-amplitude frequencies, respectively. “20% changed” for the first row means we remove the 20%
lowest-amplitudes frequencies, and add small noise to the remaining high-amplitude frequencies.
“20% changed” for the second row means we remove the 20% highest-amplitude frequencies, and
add small noise to the remaining low-amplitude frequencies. “50% changed" and “80% changed"
follow the same procedure as “20% changed".

The implementation details are as follows. Giver an image x, we perform Fourier Transform on x
and also on a generated Gaussian noise n0. Then, we can obtain the low-amplitude frequencies and
high-amplitude frequencies of x by setting an amplitude threshold. Next, we generate two masks
(M1 and M2) to select high-amplitude frequencies and low-amplitude frequencies. We add the
low-amplitude frequencies of n0 (i.e., M2(n0)) to high-amplitude frequencies of x (i.e., M1(x)),
and obtain the transformation of x (denoted as π(x)). Finally, we transform π(x) to time domain by
inverse Fourier transform and train the model with π(x).

D ALGORITHM OF FDT

Algorithm 1 shows the overall framework of training an ensemble model with FDT. It illustrates that
our data transformation is performed at each iteration.

Algorithm 1 Training ensemble model with FDT
Input: dataset X × Y , the number of sub-models M , and the epoch number E,
Output: sub-model β1, β2, · · · , βM

for i = 1 to E do
for each (x, y) in X × Y do

Perform frequency selection on x;
for j = 1 to M do
πj(x)← Perform data transformation on x at the selected frequencies;
train βj on (πj(x), y)

end for
end for

end for

Algorithm 2 shows the details of targeted-attack transformation method on the whole dataset. For
each specific image x, we obtain the targeted class according to the allocation scheme mentioned
in “Stage (1)”. Then, we use targeted PGD attack to obtain the adversarial sample x′. After that,
we perform Fourier Transform on x and x′, and we can obtain the low-amplitude frequencies and
high-amplitude frequencies of x by setting an amplitude threshold. Next, we generate two masks
(M1 and M2) to select high-amplitude frequencies and low-amplitude frequencies. We add the
low-amplitude frequencies of x′ (i.e., M2(x

′)) to high-amplitude frequencies of x (i.e., M1(x)), and
obtain the transformation of x (denoted as π(x)). Finally, we transform π(x) to time domain by
inverse Fourier transform.
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Algorithm 2 Targeted-attack Transformation
Input: dataset Pori, number M , steps s, class number k
Output: Transformed data P1, P2, · · · , PM

Divide the dataset Pori into k parts {C1, C2, · · · , Ck} according to labels
Randomly partition the dataset Cj equally into disjoint k − 1 parts {Cj,1, Cj,2, · · · , Cj,k−1}
Initialize P1, P2, · · · , PM with empty set;
m← 0
for j = 1 to k do

for i = 1 to k − 1 do
C ′

j,i ← calculate targeted attack example in Cj,i with label i+ j mod k and perform data
transformation on each image;
for s = 1 to ⌈M2 ⌉ + 1 do
m← m+ 1 mod M ;
Append C ′

j,i to Pm;
end for

end for
end for

E IMPLEMENT

In this section, we provide more experimental details. In our work, we utilize the CIFAR-10
(Krizhevsky & Hinton, 2009), CIFAR-100 (Krizhevsky & Hinton, 2009), and Tiny-ImageNet-200
(Deng et al., 2009). We acknowledge Alex Krizhevsky for the creation of CIFAR-10 and CIFAR-100,
which are released under the MIT license. We also acknowledge Deng et al. (2009) for the ImageNet
dataset Tiny-ImageNet-200, which permits non-commercial research use. In the testing process, the
primary reason for selecting FGSM (Madry et al., 2017), PGD (Carlini et al., 2019), BIM (Goodfellow
et al., 2015), MIM (Dong et al., 2018), CW(Carlini & Wagner, 2017) as attack methods is to keep
consistent with the baseline methods from the literature. Further, we select AA (Croce & Hein,
2020) because it is also a popular attack method and more powerful than those base methods. To
reduce the computational complexity of targeted attacks, we leverage the transferability of adversarial
examples and utilize a pre-trained simple network (VGG11(Simonyan & Zisserman, 2014)) structure
for targeted attacks.

Further, we introduce the implement of “FDT-random”, “FDT-target” and “FDT-hybrid” here. For
“FDT-random”, we perform Fourier Transform on x and also on a generated Gaussian noise n0. Then,
we can obtain the low-amplitude frequencies and high-amplitude frequencies of x by setting an
amplitude threshold. Next, we generate two masks (M1 and M2) to select high-amplitude frequencies
and low-amplitude frequencies. We add the low-amplitude frequencies of n0 (i.e., M2(n0)) to
high-amplitude frequencies of x (i.e., M1(x)), and obtain the transformation of x (denoted as π(x)).
Finally, we transform π(x) to time domain by inverse Fourier transform and train the model with
π(x). For “FDT-target”, we obtain the targeted class according to the allocation scheme mentioned
in “Stage (1)”. Then, we use targeted PGD attack to obtain the adversarial sample x′. After that,
perform the same steps as with FDT-random (we substitute n0 with x′). For FDT-hybrid, we set two
frequency selection thresholds τ1 and τ2 (τ1 < τ2), and generate three masks to select the frequencies:
M1 for the high-amplitude frequencies (amplitude > τ2 ), M2 for the middle part (τ1 < amplitude
< τ2 ), and M3 for the small part (amplitude < τ1). Next, we combine M1(x),M2(x

′) and M3(n0)
to obtain the transformation π(x).

F ADDITIONAL EXPERIMENTAL RESULTS

In this section, we provide more experimental results. Firstly, we evaluate the performance of FDT
under black-box attacks on the CIFAR-10 and CIFAR-100 in Appendix F.1 Then we present the
trade-off between clean accuracy and robust accuracy on the CIFAR-100 using FDT method in
Appendix F.2. This trade-off sheds light on the effectiveness of FDT with changing the trade-off
parameter. Additionally, in Appendix F.3, we compare the transferability across various sub-models
with the baseline methods. Then, we extend our experiments to SVHN, Tiny-ImageNet-200, and
WideResNet-28-10 in Appendix F.4. We also conduct the ablation studies on weakness set allocation,
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amplitude-based selection and model architecture in Appendix F.5. Furthermore, we compare our
method with more state-of-the-art methods in Appendix F.6.

F.1 RESULTS FOR BLACK-BOX ATTACK

In the black-box setting, the attacker’s knowledge usually is limited to the original training dataset
and has no information about the model. This setting represents a more practical attack scenario.
The attacker can train a surrogate model to generate transferable adversarial examples and transfer
them to the target ensemble model. We utilize a single ResNet-20 model as the surrogate model.
Adversarial examples are generated on the surrogate model using the SPSA algorithm (Spall, 1992).
Figure 5 shows the robust accuracy of ensemble models against black-box attacks under different
degrees of perturbation. As we can see, FDT-hybrid ensemble training strategies outperform the other
ensemble training strategy against black-box attacks both on CIFAR10 and CIFAR100. The results
show the competitive robustness of our method against black-box attacks.

(a) (b)

Figure 5: Robust Accuracy for different ensemble models against black-box attack with different
perturbation scale ϵ.

F.2 TRADE-OFF BETWEEN CLEAN AND ROBUST ACCURACY

In this section, we explore the trade-off between clean accuracy and robust accuracy by varying the
frequency selection threshold τ (as mentioned in Section 4.2). To assess the adversarial robustness,
we utilize the PGD attack under l∞ perturbations of size ϵ = 0.01 as a benchmark. We train a set of
ResNet-20 FDT-hybrid models on CIFAR-10 CIFAR-100 with various frequency selection threshold
τ ∈ {0.4, 0.6, 0.8, 1.0, 1.2, 1.6}. Figure 6 shows that the ensemble model has lower clean accuracy
and higher robust accuracy with the increasing of τ .

(a) (b)

Figure 6: (a) shows the trade-off on CIFAR-10 while (b) on CIFAR-100. From left to right, we
decrease the trade-off parameter τ for FDT.
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F.3 TRANSFERABILITY ACROSS VARIOUS SUB-MODELS

To further investigate the diversity between sub-models, we conduct an analysis by generating
adversarial examples using one sub-model and evaluating their accuracy on other target sub-models.
The accuracy of these adversarial examples among sub-models is visualized in Figure 7, considering
different ensemble training methods on the CIFAR10 dataset. The experimental results indicate
that FDT exhibits comparable performance to DVERGE and TRS in reducing the transferability of
adversarial samples across different sub-models. This demonstrates that FDT not only enhances
the diversity of weaknesses within the dataset but also weakens the transferability of adversarial
examples between sub-models.
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Figure 7: Pair-wise adversarial transferability between sub-models against PGD attack with ϵ = 0.02
on CIFAR-10.

F.4 EXPERIMENTAL RESULTS ON ADDITIONAL DATASETS AND ARCHITECTURE

In this section, we extend our experiments to additional datasets (SVHN, Tiny-ImageNet-200) and
architecture (WideResNet-28-10).

Table 3 presents the performance of ensemble methods trained with ResNet-20 on SVHN against
several widely used white-box attacks. The experimental results demonstrate that all ensemble
models achieve comparable levels of clean accuracy. Specifically, the FDT approach exhibits better
robust accuracy than the other methods. These observations highlight the effectiveness of FDT in
achieving favorable clean accuracy and robustness of ensemble models, while concurrently mitigating
the computational cost during the training phase.

We also extend our experiment to the sub-models trained with WideResNet-28-10 on CIFAR-10.
Table 4 shows the performance of the models facing various whitebox attacks. The results indicate
that FDT maintains good performance even on more complex network structures. We also evaluated
the robustness of an ensemble of eight sub-models, with the results presented in Table 5.

Table 6 is the result of ensemble methods trained with WideResNet-28-10 on Tiny-ImageNet-200.
We test the robustness of different methods under widely used white-box attacks. Due to the high
time complexity of the TRS, we do not compare with it here. The experimental results show that
all ensemble models achieve comparable levels of clean accuracy while FDT-hybrid achieves better
robust accuracy than other methods.
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Table 3: Robust Accuracy (%) of different ensemble methods against white-box attacks on SVHN.
The ϵ and λ stand for the l∞ norm of the adversarial perturbation and the coefficient of C&W attack
respectively. The last column is the ensemble model trained with FDT-hybrid.

SVHN ADP GAL DVERGE TRS FDT-hybrid
clean accuracy 96.83 94.66 96.28 94.52 96.73 ± 0.12
FGSM (ϵ=0.01) 84.38 80.2 85.6 72.87 90.13 ± 0.09
FGSM (ϵ=0.02) 78.08 41.5 81.4 53.9 86.78± 0.07
PGD (ϵ= 0.01) 51.01 50.1 53.31 54.43 59.42 ± 0.07
PGD (ϵ = 0.02) 17.74 8.24 17.42 18.86 22.74 ± 0.04
BIM (ϵ= 0.01) 54.38 47.73 52.08 53.71 57.91± 0.08
BIM (ϵ = 0.02) 21.26 8.1 14.58 18.05 20.23 ± 0.05
MIM (ϵ= 0.01) 61.24 51.96 58.51 56.32 62.14± 0.08
MIM (ϵ= 0.02) 24.84 5.14 23.22 21.95 25.37 ± 0.04
AA (ϵ= 0.01) 49.92 48.39 52.02 52.83 57.54± 0.09
AA (ϵ= 0.02) 16.13 6.90 16.95 17.48 20.12 ± 0.05

C&W (λ = 0.1) 55.81 49.94 66.82 52.74 72.14± 0.11

Table 4: Robust Accuracy (%) of different ensemble methods against white-box attacks on CIFAR-10.
The ϵ and λ stand for the l∞ norm of the adversarial perturbation and the coefficient of C&W attack
respectively. The architecture of sub-model is WRN-28-10.

CIFAR-10 ADP GAL DVERGE FDT-hybrid
clean accuracy 92.99 82.14 94.32 94.18 ± 0.06
FGSM (ϵ=0.01) 60.04 44.94 71.01 80.64 ± 0.05
FGSM (ϵ=0.02) 51.69 36.83 50.43 60.09 ± 0.05
PGD (ϵ= 0.01) 11.09 22.10 44.25 64.64 ± 0.07
PGD (ϵ = 0.02) 2.54 5.06 13.27 26.0 ± 0.03
BIM (ϵ= 0.01) 15.81 22.62 46.53 67.36 ± 0.10
BIM (ϵ = 0.02) 4.50 5.43 17.38 32.36 ± 0.06
MIM (ϵ= 0.01) 18.18 25.97 44.21 64.36 ± 0.08
MIM (ϵ= 0.02) 4.72 7.81 12.83 25.64 ± 0.05
AA (ϵ= 0.01) 9.38 19.34 43.23 63.45 ± 0.08
AA (ϵ= 0.02) 1.17 3.93 12.49 25.23 ± 0.04

C&W (λ = 0.1) 37.81 19.05 46.32 47.23 ± 0.10

F.5 MORE ABLATION STUDIES

In this section, We explore the ablation studies on weakness set allocation, amplitude-based selection
and model architecture.

Table 7 presents the results across different model architectures, including ResNet20, ResNet50,
WRN28-10, and WRN34-10. While larger models generally achieve higher clean and robust accuracy,
the results suggest that our method consistently enhances robustness under various attack scenarios,
demonstrating its applicability across diverse architectures.

Table 8 compares the performance of FDT-hybrid with different weakness set allocation methods on
CIFAR-10. The results indicate that our proposed allocation method achieves better clean accuracy
and robustness under various attack scenarios than randomly uniform allocation.

Table 9 presents the results of FDT-hybrid with various combinations of selection thresholds τ1 and
τ2 on CIFAR-10. The experiments reveal the impact of different thresholds on both clean accuracy
and robustness under adversarial attacks. As τ2 increases, robustness improves across all metrics, but
clean accuracy decreases. For a fixed τ2, increasing τ1 generally leads to a trade-off between clean
accuracy and robustness. Setting τ1 = 0.2 and τ2 = 0.8 achieves a relatively balanced performance,
maintaining both competitive clean accuracy and robust accuracy under various attacks.
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Table 5: Robust Accuracy (%) of an ensemble of eight sub-models against white-box attacks on
CIFAR-10. The ϵ and λ stand for the l∞ norm of the adversarial perturbation and the coefficient of
C&W attack respectively. The architecture of sub-model is WRN-28-10.

CIFAR-10 FDT-hybrid
clean accuracy 93.72 ± 0.11
FGSM (ϵ=0.01) 86.31± 0.07
FGSM (ϵ=0.02) 67.29 ± 0.06
PGD (ϵ= 0.01) 72.02 ± 0.07
PGD (ϵ = 0.02) 45.42± 0.05
BIM (ϵ= 0.01) 73.68 ± 0.10
BIM (ϵ = 0.02) 44.53± 0.06
MIM (ϵ= 0.01) 71.36 ± 0.06
MIM (ϵ= 0.02) 45.24 ± 0.06
AA (ϵ= 0.01) 70.45 ± 0.08
AA (ϵ= 0.02) 44.23 ± 0.07

C&W (λ = 0.1 72.37 ± 0.11

Table 6: Robust Accuracy (%) of different ensemble methods against white-box attacks on Tiny-
ImageNet-200. The ϵ and λ stand for the l∞ norm of the adversarial perturbation and the coefficient
of C&W attack respectively. The last column is the ensemble model trained with FDT-hybrid.

Tiny-ImageNet-200 ADP GAL DVERGE FDT-hybrid
clean accuracy 49.88 45.7 51.46 64.21 ± 0.06

FGSM (ϵ = 0.01) 10.46 1.24 22.82 21.73 ± 0.04
FGSM (ϵ = 0.02) 4.38 0.59 18.42 19.28 ± 0.04
PGD (ϵ = 0.01) 0.02 0.02 3.6 4.76 ± 0.02
PGD (ϵ = 0.02) 0.02 0.01 0.34 0.45 ± 0.01
BIM (ϵ = 0.01) 0.07 0.02 3.35 4.81 ± 0.03
BIM (ϵ = 0.02) 0.03 0.01 0.28 0.32± 0.00
MIM (ϵ = 0.01) 0.11 0.02 4.36 6.13 ± 0.03
MIN (ϵ = 0.02) 0.03 0.01 0.41 0.48 ± 0.00
AA (ϵ = 0.01) 0 0 0 2.66 ± 0.02
AA (ϵ = 0.02) 0 0 0 0.02± 0.00
CW (λ = 0.01) 2.36 0.13 9.54 19.47± 0.06

F.6 COMPARE WITH ADVERSARIAL TRAINING

We use target attacks in our data transformation, which differs significantly from adversarial training.
First, we employ a simple pre-trained network (VGG11 in our experiment) to compute adversarial
examples, thereby accelerating the training process. Second, we only utilize the low amplitude
part of the adversarial examples for data transformation, which helps maintain the model’s clean
accuracy. We compare our method with several popular approaches (Wang et al., 2023b; Rade &
Moosavi-Dezfooli, 2021; Xu et al., 2023) on CIFAR-10 using AutoAttack under l∞ perturbations
(ϵ = 8/255). Wang et al. (2023b) generated training datasets using a diffusion model, followed by
adversarial training on these datasets. For fairness, we compare our method with the version proposed
by Wang et al. (2023b) that uses 50k generated images. Rade & Moosavi-Dezfooli (2021) used
“helper example” to help the adversarial training. Xu et al. (2023) proposed Dynamics-Aware Robust
Training, which encourages the decision boundary to adjust in a way that prioritizes increasing smaller
margins. We use WideResNet-28-10 as the sub-model and ensemble eight sub-models without using
generated data. The results in Table 10 indicate that, although the robustness of our method is not
the highest, it maintains clean accuracy with almost no decline. Moreover, our method does not
require additional generated data or adversarial training, and even with the need for ensembling, the
training efficiency remains relatively high. This suggests a potential way to enhance robustness while
minimizing the decrease in clean accuracy.
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Table 7: Robust Accuracy (%) of different ensemble methods against white-box attacks on Cifar10.
The ϵ and λ stand for the l∞ norm of the adversarial perturbation and the coefficient of C&W attack
respectively.

CIFAR10 ResNet20 ResNet50 WRN28-10 WRN34-10
clean accuracy 90.02 93.23 94.18 94.63

FGSM (ϵ = 0.01) 72.24 76.65 80.64 81.04
FGSM (ϵ = 0.02) 58.04 58.59 60.09 60.92
PGD (ϵ = 0.01) 48.48 60.23 64.64 65.38
PGD (ϵ = 0.02) 20.01 24.35 26.00 27.42
BIM (ϵ = 0.01) 48.57 60.43 67.36 68.29
BIM (ϵ = 0.02) 16.63 23.57 32.36 33.86
MIM (ϵ = 0.01) 51.48 60.81 64.36 64.71
MIN (ϵ = 0.02) 20.09 24.54 25.64 26.42
AA (ϵ = 0.01) 51.56 60.48 63.45 64.01
AA (ϵ = 0.02) 19.42 24.21 25.23 26.39
CW (λ = 0.01) 56.08 56.55 57.23 57.52

Table 8: Performance of FDT-hybrid with different weakness set allocation method on CIFAR-10.
The other settings are consistent with those in Table 1.

allocation method Clean accuracy FGSM (ϵ= 0.02) PGD (ϵ=0.02) AutoAttack (ϵ=0.02)
Uniform Random 89.32 56.20 18.24 17.89

Ours 90.20 58.04 20.01 19.42

Table 9: Performance of FDT-hybrid with different selection thresholds τ1 and τ2 on CIFAR-10. The
other settings are consistent with those in Table 1.

thresholds Clean accuracy FGSM (ϵ= 0.02) PGD (ϵ=0.02) AutoAttack (ϵ=0.02)
τ1 = 0.2, τ2 = 0.7 91.03 56.62 17.74 17.60
τ1 = 0.2, τ2 = 0.8 90.20 58.04 20.01 19.42
τ1 = 0.2, τ2 = 0.9 89.46 58.48 20.12 19.57
τ1 = 0.4, τ2 = 0.7 89.75 56.89 17.93 17.82
τ1 = 0.4, τ2 = 0.8 89.08 58.21 20.01 19.47
τ1 = 0.4, τ2 = 0.9 88.44 58.53 20.09 19.61
τ1 = 0.6, τ2 = 0.7 89.62 53.35 15.27 14.63
τ1 = 0.6, τ2 = 0.8 88.84 55.33 15.42 15.24
τ1 = 0.6, τ2 = 0.9 88.12 55.46 15.83 15.47

Table 10: Clean accuracy and robust accuracy (%) of different methods against AutoAttack under l∞
perturbations (ϵ = 8/255) on CIFAR-10.

CIFAR-10 clean accuracy robust accuracy
(Wang et al., 2023b) 86.15 55.71

(Rade & Moosavi-Dezfooli, 2021) 84.90 49.08
(Xu et al., 2023) 85.55 54.69

OURS (FDT-hybrid) 93.72 34.61
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