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ABSTRACT

Any-to-any generation seeks to translate between arbitrary subsets of modalities,
enabling flexible cross-modal synthesis. Despite recent success, existing flow-
based approaches are challenged by its inefficiency, as they require large-scale
datasets often with restrictive pairing constraints, incur high computational cost
from modeling joint distribution, and multi-stage training pipeline. We propose
FlowBind, an efficient framework for any-to-any generation. Our approach is
distinguished by its simplicity: it learns a shared latent space capturing cross-
modal information, with modality-specific invertible flows bridging this latent
to each modality. Both components are optimized jointly under a single flow-
matching objective, and at inference the invertible flows act as encoders and de-
coders for direct translation across modalities. By factorizing interactions through
the shared latent, FlowBind naturally leverages arbitrary subsets of modalities for
training, and achieves competitive generation quality while substantially reducing
data requirements and computational cost. Experiments on text, image, and audio
demonstrate that FlowBind attains comparable quality while requiring up to 6×
fewer parameters and training 10× faster than prior methods.

1 INTRODUCTION

Recent progress in flow-based generative models has delivered state-of-the-art performance in multi-
modal generation. By conditioning on a given input modality, these models excel at specialist tasks
such as text-to-image (Esser et al., 2024; Labs et al., 2025) or text-to-audio synthesis (Liu et al.,
2024; Huang et al., 2023), demonstrating their strength in learning continuous cross-modal trans-
formations. However, these successes are largely confined to fixed input and output mapping, and
extending flow models to support true any-to-any generation, where arbitrary subsets of modalities
can be generated given any other subsets, remains an open challenge.

Bridging the gap from specialist to generalist flow models introduces fundamental hurdles, primarily
due to requirements of multi-modal data and computational cost. Frameworks that rely on a central
anchor modality, typically text (Tang et al., 2023), requires each modality to be paired with text
during training so that all modalities can be aligned through the shared text representation. This
design is restrictive, as it prevents the model from learning the rich, direct correlations that exist
beyond language. Conversely, methods that model the full joint conditioning of all modalities (Li
et al., 2025b) can achieve expressive generation performance but at a steep cost: they require some
fully-paired data for stable training, which is scarce, and their computational complexity often scales
quadratically with the number of modalities. These data and compute issue render them impractical
for real-world scenarios with a large and diverse set of modalities.

Beyond the computational cost, a significant hurdle for generalist models is the complexity of their
training pipelines. Rather than a single, unified process, these frameworks often rely on intricate,
multi-stage procedures. These stages separately optimize the encoding components for modality
alignment and the decoding components responsible for the model’s generative capabilities. This
staged approach is evident in prominent models; for instance, CoDi (Tang et al., 2023) employs a
multi-stage process that separates modality alignment from joint generation. Similarly, OmniFlow
(Li et al., 2025b) requires a distinct post-training phase after merging its core components. Such
multi-stage pipelines can be brittle, difficult to optimize, and hinder the development of truly seam-
less, end-to-end generative models.
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We introduce FlowBind, a simple flow-based model that addresses these limitations. FlowBind
introduces a learnable shared latent capturing cross-modal commonality, and connects each modality
to this latent through its own invertible flow. All components are trained jointly under a single
flow-matching objective, while the learned flows enable direct any-to-any translation at inference.
Because each flow requires only its modality paired with the latent, the method naturally supports
training with partially paired data while reducing computational cost. This design yields a simple,
efficient, and data-flexible solution for general-purpose any-to-any generation.

In summary, our main contributions are as follows: (1) We introduce a flow-based framework for
any-to-any generation that factorizes multi-modal interactions through a learnable shared latent,
enabling training from arbitrary paired data with low computation budget. (2) Our method jointly
optimizes both the shared latent and all modality-specific flows under a single flow-matching loss,
avoiding the multi-stage pipelines. (3) Experiments on text, image, and audio demonstrate that
FlowBind achieves competitive quality with substantially reduced data and computation compared
to representative baselines, while flexibly supporting any-to-any translation.

2 PRELIMINARIES

Flow Matching Conditional Flow Matching (Lipman et al., 2023) is a simulation-free framework
for learning a continuous transformation between a source distribution p0 and a target distribution
p1. This transformation is defined by an Ordinary Differential Equation (ODE), dzt

dt = vθ(zt, t),
where a drift network vθ parametrizes the time-dependent vector field. With linear interpolation
path zt = (1− t) z0 + t z1 with (z0, z1) ∼ (p0, p1), the target velocity is simply z1 − z0, and the
objective becomes:

LFM(θ) = E
[
∥vθ(zt, t)− (z1 − z0)∥2

]
. (1)

At the optimum, Eq. 1 yields the conditional expectation of the target velocity:

v⋆θ(x, t) = E[ z1 − z0 | zt = x ] . (2)

Generation is then performed by integrating the learned drifts over time:

zt1 = zt0 +

∫ t1

t0

vθ(zt, t) dt = ODESolve(zt0 , vθ, t0, t1) (3)

Note that, under standard Lipschitz conditions, the induced flow is invertible i.e., the ODE can be
integrated forward or backward in time to induce samples from p0 or p1.

Any-to-Any Generative Flows The goal of any-to-any generation is to learn a unified model that
can translate between arbitrary subsets of modalities. Given N modalities z = (z1, . . . , zN ), this
amounts to modeling their joint distribution p(z) so that for any Sin, Sout ⊆ {1, . . . , N}, the model
can perform any-to-any generation by sampling from conditional probability p(zSout |zSin).

Existing flow-based approaches address this problem by constructing continuous trajectories that
transform i.i.d. Gaussian noise z0 ∼ πprior into data samples z1 ∼ πdata. Representative examples
include CoDi (Tang et al., 2023) and OmniFlow (Li et al., 2025b), which mainly differ in how they
synchronize trajectories across modalities. CoDi learns modality-specific encoders that align all
modalities to a shared text embedding, which then serves as the conditioning signal for per-modality
denoising networks ϵi(zit, t, ĉ

text). In contrast, OmniFlow learns a time-decoupled joint velocity field
v(z1t1 , . . . , z

N
tN , t1, . . . , tN ), where the interpolation path for each modality is explicitly conditioned

with the other modalities to ensure alignment.

Despite their empirical success, existing flow-based methods face several limitations. First, they
cannot fully leverage arbitrary paired modalities for any-to-any generation: CoDi requires each
modality to be paired with text to establish a canonical embedding, while OmniFlow relies heavily
on fully paired data for stable training 1. Second, both methods require multi-stage training: CoDi
separately learns the shared representation and denoising networks, whereas OmniFlow pre-trains
drift networks for each modality pair before joint training. Finally, they operate in high-dimensional
representations, leading to substantial computational cost and slow convergence.

1Although partially paired data can be used for training in principle, performance and stability are reported
to depend strongly on fully paired data; see Appendix B.2 of Li et al. (2025b).
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(a) Training both shared latent and drifts.

(cat meowing)

Backward
ForwardInference

“A baby cat is 
meowing on 
the grass”

Image Text

Audio

Shared Latent

(b) Inference with per-modality drifts.

Figure 1: An overview of FlowBind. (a) During training, we jointly learn the shared latent and
per-modality drift networks in a single stage. (b) At inference, the learned drift networks perform
flexible any-to-any generation by solving per-modality ODEs forward and backward in time.

3 FLOWBIND

To address the aforementioned challenges, we propose FlowBind, a unified flow-based framework
for any-to-any generation. FlowBind is designed to overcome key drawbacks of prior methods: it
supports single unified training procedure, operates with lower computational overhead, and fully
exploits partially paired data for effective learning.

The key idea of FlowBind is to replace the fixed Gaussian prior with a learnable, shared distribution
that encapsulates common information across modalities. This acts as a latent anchor, where each
modality is connected to it via their own invertible, per-modality flows (Figure 1). With this factor-
ization, FlowBind achieves alignment across modalities naturally via the shared distribution, unlike
existing approaches that anchor all modalities to text (Tang et al., 2023) or couples them through a
joint drift (Li et al., 2025b). Meanwhile, both the shared distribution and the per-modality flows are
learned jointly with only standard flow matching loss using partially paired data.

Formally, consider a subset of multi-modal data zS = {zi|i ∈ S} with S ⊂ {1, . . . , N}, which is
sampled from a joint distribution zS ∼ πS

data. Assume that there exists a shared latent z∗ ∼ πS
shared

that encompasses the common information of all individual modality in zS . Then for each i ∈ S,
FlowBind learns a straight interpolation path that bridges the data zi to the shared latent z∗ by:

zit = tzi + (1− t)z∗ (4)

∂zit
∂t

= vi(zit, t), (5)

where vi denotes the modality-specific velocity field. Note that multi-modal flows are factorized per
modality given the shared latent (Eq. 4), and the shared latent implicitly aligns these flows across
modality (Eq. 5). During training, the shared latent is instantiated as z∗ = Hϕ(z

S) through an
auxiliary encoder Hϕ, whose marginal approximates πshared and is optimized jointly with the per-
modality drift networks vθi (Figure 1(a)). At inference, FlowBind relies only on the learned drift
networks: owing to the invertibility of the direct flows, both inferring the shared latent from input
modalities and generating outputs from the latent are achieved by a single drift network per modality
(Figure 1(b)). Details of the training and inference procedures are provided in Section 3.1.

Following prior works (Esser et al., 2024; Liu et al., 2024), FlowBind operates in a compressed la-
tent space obtained by per-modality autoencoders. However, instead of high-dimensional latent, we
adopt compact and semantic representations extracted by strong encoders in each modality, paired
with decoders that reconstruct modality-specific details from the encoded feature. This design en-
ables FlowBind to focus on shared structure in a low-dimensional space, making cross-modality
alignment simpler and training both faster and efficient.

Taken together, FlowBind provides several advantages over existing approaches. By introducing a
shared latent space, FlowBind factorizes the multi-modal flow into independent per-modality drifts,
allowing them to operate in isolation with reduced computational cost. This factorization also natu-
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rally enables training with arbitrary paired modalities: since each drift network learns only to con-
nect its modality to the shared latent, learning does not depend on specific modalities or fully-paired
data. Finally, both the shared latent and modality-specific drifts are optimized jointly with a single
flow matching objective, avoiding the multi-stage training pipelines of prior works and yielding a
simple and efficient framework.

3.1 TRAINING AND INFERENCE

Learning Objective During training, the auxiliary encoder Hϕ and the set of modality-specific
drift networks {vθi}Ni=1 are optimized jointly under the flow matching framework in Eq. 4 and 5.
Given a partially paired sample zS , the auxiliary encoder produces a shared latent z∗ = Hϕ(z

S),
and for each modality i ∈ S, the drift network vθi is trained to approximate the velocity field along
the path between zi and z∗. This leads to the training objective:

L(θ, ϕ) = Et,zS ,z∗

[∑
i∈S

(∥∥vθi(zit, t)− (zi − z∗)
∥∥2)] , (6)

where θ = {θ1, ..., θN}. In principle, this couples the two components: drift networks learn to
predict the displacement toward each modality endpoint, while the auxiliary encoder is encouraged
to provide a shared latent from which every modality can be recovered to aid drift networks.

However, this formulation admits degenerate solutions. For example, if the encoder collapses to a
constant output such as z∗ = 0, the drift networks can trivially fit vi(zit, t) = zi with zit = tzi

and achieve the zero loss for t ∈ (0, 1], leaving the encoder with no meaningful supervision (Kim
et al., 2024). The underlying reason is that flow matching enforces transportation between two
fixed endpoints but does not itself constrain the distribution of encoder outputs. Prior works on
direct flow (Liu et al., 2025; He et al., 2025) address this by adding explicit regularizers, such as
contrastive losses on the encoder, but these introduce additional computation, hyperparameters, and
scalability bottlenecks especially with increasing number of modalities.

In contrast, we show that both stabilization and meaningful learning of the encoder can be achieved
within the flow-matching objective itself. Our approach is simple: for t ∈ (0, 1], we stop gradients
through the auxiliary encoder to stably train the drift networks, while at t=0, the encoder is directly
updated together with the drifts. Despite its simplicity, this scheme effectively prevents collapse and
provides the encoder with a meaningful learning signal, as we elaborate below.

Analysis on Encoder Objective To understand what the auxiliary encoder learns under our train-
ing strategy, we analyze the flow matching loss at t=0. Substituting the Bayes-optimal drift v⋆(zt, t)
(Eq. 2) into Eq. 6 at t = 0 gives encoder’s effective objective:

L(ϕ) = E
[
∥ v⋆(z∗, 0)− (zi − z∗) ∥22

]
= E

[
∥E[zi | z∗]− zi ∥22

]
= E

[
Var(zi | z∗)

]
. (7)

This shows that, at t=0, the encoder is explicitly optimized to minimize the conditional variance of
each modality given the shared latent. The term E

[
Var(zi | z∗)

]
, often referred to as the unexplained

variance, measures how much information about modality i remains outside of z∗. By the law
of total variance (Grimmett & Stirzaker, 2001), reducing this quantity equivalently increases the
explained variance of zi by z∗. Since the optimization is carried out jointly across all modalities, the
encoder is therefore driven to shape z∗ so that it retains predictive information about each modality,
ensuring that the shared latent becomes increasingly informative for cross-modal alignment.

More generally, when the drift networks are not optimal, Eq. 6 at t=0 decomposes into unexplained
variance and an approximation error of the drifts:

Proposition 1 (Equivalence at t = 0) For any parameters (θ, ϕ) and modality subset S, the flow
matching loss (Eq. 6) at t = 0 decomposes as follows:

L(θ, ϕ) =
∑
i∈S

E
[
Var(zi | z∗)

]
︸ ︷︷ ︸

unexplained variance

+
∑
i∈S

E
[∥∥ vθi(z∗, 0)− E[ zi − z∗ | z∗]

∥∥2]
︸ ︷︷ ︸

approximation error of vi
θ

.

A formal proof is provided in Appendix A.1.
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This decomposition reveals that even when the drift networks are imperfect, the auxiliary encoder
Hϕ is consistently driven to minimize unexplained conditional variance while simultaneously opti-
mizing the shared latent to enable better drift approximation of their targets. In this way, our training
strategy encourages the auxiliary encoder and the drift networks remain tightly coupled: the drifts
learn to predict each modality endpoint from the shared latent (t ∈ [0, 1]), while the encoder is
driven to shape the latent into a representation from which all modalities can be reliably recovered
(t = 0). During training, we balance the drifts and encoder training by sampling from the mixture
t ∼ (1− α)Unif(0, 1) + αδ(t = 0). The training procedure is given at Algorithm 1.

Inference After training, FlowBind performs versatile any-to-any generation relying solely on the
learned per-modality flows, without utilizing the auxiliary encoder. Given a source modality i, we
first project it onto the shared latent by integrating its backward flow, and then map the shared latent
to the target modality j via the corresponding forward flow:

ẑ∗ = ODESolve(zi, viθ, 1, 0), ẑj = ODESolve(ẑ∗, vjθ, 0, 1) (8)

When conditioning on multiple source modalities zS , FlowBind obtains per-modality latent esti-
mates ẑ(∗,i) by solving the corresponding backward flows independently. These estimates are then
aggregated into the shared latent ẑ∗ by simple averaging. Finally, the target modality is generated
by integrating its forward flow starting from ẑ∗. The inference procedure is given at Algorithm 2.

4 RELATED WORK

Any-to-Any Generation A prominent paradigm for any-to-any generation tokenizes all modal-
ities into a discrete space and trains a single sequence model to predict the unified stream auto-
regressively. In this setup, a powerful large language model performs cross-modal sequence gener-
ation, with tokenized data of all modalities. Some works (Team, 2024) focus on interleaved gen-
eration solely on text-image generation, while others (Wu et al., 2024; Zhan et al., 2024) extend to
broader multi-modal scenarios including speech (Wang et al., 2024) and even robotics (Lu et al.,
2024). Training these models typically involves multi-stage procedures and often instruction fine-
tuning which requires the dataset with detailed textual descriptions. Additionally, these works can
be computationally demanding during both training and inference.

Another line of work utilizes discrete diffusion models, often by adapting them to operate on dis-
crete token spaces (Rojas et al., 2025; Shi et al., 2025). These methods, which typically focus on
text-image generation tasks, leverage the high-quality synthesis capabilities of diffusion for multi-
modal scenario. For instance, UniDisc (Swerdlow et al., 2025) highlights the controllability of this
approach by framing various conditional generation tasks, such as inpainting.

Direct Flow-based Models Recent flow-based models (Liu et al., 2025; He et al., 2025) have
explored learning direct, data-to-data invertible mappings between two modalities, predominantly
focusing on text-image pairs. This approach represents a fundamental departure from traditional
generative flows that typically learn bridging from fixed prior distributions (e.g., standard Gaussian)
to target data distributions through conditional generation mechanisms. To facilitate these direct
transformations, existing methodologies designate latent distribution of one modality (i.e., source
distribution) as a learnable embedding. This is achieved by introducing an encoder for the source
modality and constructing additional loss terms that align the source and target modalities, such as
contrastive learning objectives.

While our approach shares foundational ideas with prior work, its emphasis and formulation differ.
Existing methods typically rely on multiple loss terms to stabilize training and to optimize endpoint
embeddings; in contrast, we employ a single, unified flow objective to achieve the same optimiza-
tion. Moreover, we pursue direct flows for multi-modality connectivity, whereas most prior efforts
have concentrated on two-modality settings—especially text–image generation.

5 EXPERIMENTS

We conduct an extensive evaluations on any-to-any generation tasks across text, image, and audio
modalities. For baselines, we mainly consider previous approaches on flow-based any-to-any gen-
erative modeling, namely CoDi (Tang et al., 2023) and OmniFlow (Li et al., 2025b). Qualitative
results on various input and output modality combinations are provided in the anonymized website:
https://sites.google.com/view/flowbind.
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Table 1: Comparison of computational cost. #(A-B) indicates the number of training samples for
each dataset combination. Training time for CoDi is omitted due to absence of training code and
details. For OmniFlow, we report the training time only for the final joint training stage.

Model Train Param. GPU-hr
Number of Traning Data

Joint Training
#(T–I) #(T–A) #(I–A) #(T–A–I)

CoDi 4.3B - 400M 3.5M 1.9K - NO

OmniFlow 3.2B 480hr* 28M 2.4M 200K 2.2M NO

FlowBind 568M 48hr 310K 96K 180K - YES

Tasks and Evaluation Protocol We consider all six possible one-to-one generation tasks that con-
sist of text, image and audio, and discuss its result in Sec. 5.2. Furthermore, we conduct qualitative
analysis under more complex many-to-many generation tasks in Sec. 5.3 to validate cross-modal
generation capability of FlowBind. We use an automated metrics for comprehensive evaluation on
one-to-one generation, where well-defined quality and alignment metrics are available. Specifically,
generation quality is assessed using established modality-specific measures: FID (Heusel et al.,
2017) for images, FAD (Kilgour et al., 2019) for audio, and CIDEr (Vedantam et al., 2015) for
text captions. Cross-modal alignment is evaluated through pairwise similarity metrics: CLIP scores
for text-image pairs (Hessel et al., 2021), CLAP scores for text-audio pairs (Elizalde et al., 2023),
and Audio-Image-Similarity (AIS) (Wu et al., 2022) for image-audio pairs. Evaluations are done
at held-out test set for image-audio and audio-text tasks, while we employ widely adopted zero-
shot benchmark in MS-COCO for text-to-image and image-to-text tasks. Detailed descriptions on
datasets and evaluation protocols are provided in Appendix D.

Implementation Details We employ EmbeddingGemma (Team et al., 2025) for textual semantic
latent, CLIP (Radford et al., 2021) for visual latent with Stable-UnCLIP (HuggingFace, 2025) as
decoder, and CLAP (Elizalde et al., 2023) features for audio synthesis conditioning. Note that these
modality-specific encoders and decoders are frozen during the training of FlowBind. We employ
MLP-based architecture with residual connections for both auxiliary encoders and drift networks,
with AdaLN-zero for time modulation (Peebles & Xie, 2023). More detailed information, including
the architectural and training specifications, can be found in Appendix C.1.

5.1 INSTANTIATION OF FLOWBIND

To highlight the claimed efficiency of FlowBind, we instantiate FlowBind as a relatively lightweight
model, and also train it on smaller dataset with simple single-stage training. We summarize the
details of our instantiation of FlowBind in Table 1, making comparison to previous flow-based any-
to-any generation models. Compared to baselines, FlowBind achieves any-to-any generation with
considerably less computations and efforts. When comparing the computational cost, FlowBind
operates on low-dimensional, compact representation space, yielding a lightweight model with less
than 1B trainable parameters. This design choice makes FlowBind to be trained much faster, using
about 10× less compute compared to OmniFlow, in terms of GPU-hours. We also use much smaller
data compared to baselines (0.15 % of CoDi or 1.79 % of OmniFlow). In subsequent sections,
we now demonstrate that our efficient any-to-any generation model can achieve strong cross-modal
generation capabilities.

5.2 RESULTS ON ONE-TO-ONE GENERATION

Effectiveness of FlowBind We demonstrate the effectiveness of FlowBind under all six pairwise
one-to-one generation scenarios in Table 2 and Table 3. While the core goal of FlowBind lies
on efficient modeling of any-to-any generation, we also observe the resulting model shows strong
capability in cross-modal generation tasks. Compared to CoDi and OmniFlow, FlowBind achieves
the best quality metrics in all six one-to-one generation tasks, while showing superior alignment
score on four tasks among six. We also note that baselines such as OmniFlow are initialized from
strong specialist model (i.e., SD3-Medium) that excels at text-image alignment, which explains their
particularly good performance on text-to-image alignment scores. As an overall, we conclude that
FlowBind shows promising performance on the evaluated one-to-one generation tasks.

6
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Table 2: Fidelity assessment on one-to-one evaluation benchmarks.

Category Model T → I I → T T → A A → T I → A A → I
FID ↓ CIDEr ↑ FAD ↓ CIDEr ↑ FAD ↓ FID ↓

Specialists

SD3-Medium 25.40 – – – – –
FLUX.1 22.06 – – – – –
LLaVA-NeXT – 109.3 – – – –
TangoFlux – – 1.41 – – –
AudioX – – 3.09 – – –
Qwen2-Audio – – – 4.64 – –
Seeing & Hearing – – – – 5.31 –
Sound2Vision – – – – – 42.55

Generalists

UnifiedIO2-L 21.54 134.7* 8.31 12.15 – –
CoDi 24.80 16.40 9.84 6.62 14.58 50.4
OmniFlow 22.97 44.20 4.20 31.79 5.67 106.03
FlowBind 17.39 46.26 4.19 55.11 2.50 26.60

Table 3: Alignment results on one-to-one evaluation benchmarks.

Category Model T → I I → T T → A A → T I → A A → I
CLIP ↑ CLIP ↑ CLAP ↑ CLAP ↑ AIS ↑ AIS ↑

Specialists

SD3-Medium 31.60 – – – – –
FLUX.1 31.06 – – – – –
LLaVA-NeXT – 32.14 – – – –
TangoFlux – – 42.71 – – –
AudioX – – 29.29 – – –
Qwen2-Audio – – – 17.09 – –
Seeing & Hearing – – – – 75.11 –
Sound2Vision – – – – – 62.39

Generalists

UnifiedIO2-L 30.71 30.73 13.48 18.68 – –
CoDi 30.26 26.24 10.79 17.94 61.55 74.26
OmniFlow 31.52 27.71 24.23 45.08 71.71 59.22
FlowBind 28.35 29.74 29.08 36.70 82.89 78.17

An interesting observation is that FlowBind exhibits substantial gains in the image-audio genera-
tion, where it significantly outperforms among generalists and even dedicated specialist, without
making modality-specific adjustments. We conjecture the impressive performance of FlowBind at
audio-image correspondence stems from the introduction of learnable shared latent space, which is
designed to contain meaningful information about each modality (Section 3.1) and learned directly
from audio-image pair. Instead of learning a shared latent space from arbitrarily paired data, CoDi
employs an text-anchored design, using only text-paired data during its multimodal alignment stage.
This design choice of CoDi makes alignment between non-text modality, such as audio-image align-
ment, to be indirectly captured with the aid of text. We also note that OmniFlow is also implicitly
relying on text representation, given the fact that its weights are initialized from pretrained text-to-
image and text-to-audio models at the beginning of second-stage any-to-any training. In contrast,
FlowBind can learn a shared latent space directly from given train pair, offering more suitable space
for cross-modal generation tasks.

Train Efficiency While showing promising performance compared to previous any-to-any gener-
ation models, we emphasize that FlowBind is trained with much less computations and efforts. As
previously shown in Table 1, the demonstrated strong performance of FlowBind is achieved using
6 times less training parameters and 10 times less compute compared to OmniFlow, which employs
the joint modeling approach. Our formulation of factorizing multimodal flow into per-modality
flows result in this efficiency, as it avoids the exponential scaling of parameters and computational
load inherent in the joint modeling approach.

Moreover, FlowBind employs a unified training objective, in contrast to prior works that require
complex multi-stage training pipelines. Consequently, FlowBind can be trained with less effort

7
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Rain falls 
heavily on a 
forested area.

The train 
tracks are 
lined with 

bluebonnets. (Train departing 
sound)

(A siren and horn 
sound)

a emergency 
vehicle siren wails 

and engine runs 
while a fire truck 
horn is triggered

An older man in 
a suit and tie on 

a bouton.

Input Output OutputInput

(raining sound)
(A man talking)

(a) many-to-one generation (b) one-to-many generation

Figure 2: Qualitative results on various many-to-many generation tasks. More results and compar-
isons with baselines are presented in Appendix E.

without cumbersome hyperparameters and additional computations that emerge from more complex
training procedure.

Data Efficiency In terms of data efficiency, FlowBind is able to achieve any-to-any generation
with much smaller training dataset, using 0.15 % of CoDi and 1.79 % of OmniFlow. We conjecture
the training can be done with much smaller dataset because we choose to model flow between low-
dimensional representations. By doing so, the cross-modal generation capability is decomposed into
inter-modal alignment and intra-modal generation in FlowBind. Our drift network is only required to
capture inter-modal correspondence, as per-modality frozen encoder-decoders take charge in captur-
ing intra-modal generative capability. This would enable FlowBind to quickly capture cross-modal
alignment with fewer datasets.

5.3 RESULTS ON MANY-TO-MANY GENERATION

Beyond the extensive evaluation on one-to-one generation, we conduct a qualitative analysis to as-
sess FlowBind’s capability as an any-to-any generation model, on more complex cross-modal gener-
ation tasks. As shown in Figure 2, FlowBind is capable of handling complex cross-modal generation
tasks, faithfully reflecting the input conditions in its outputs. Interestingly, we see even some detailed
components (Stars and Stripes printed on table) in input data appear again in output modalities, as
shown in the second row of Figure 2(a). This highlights the expressiveness of learned shared space in
FlowBind for cross-modal generation tasks, which enables aggregating necessary information from
multiple input conditions by averaging on latent. More qualitative examples are presented in Ap-
pendix. E and the anonymized website: https://sites.google.com/view/flowbind.

6 ANALYSIS

Table 4: Comparison of alignment scores be-
tween model that uses fixed text anchor and
learnable shared anchor. I-A represents the
image-audio dataset.

Model I → T A → T I → A

Text-anchoring 27.94 36.72 55.48

FlowBind w/o I-A 30.04 37.04 61.88

Fixed v.s. Learnable Shared Anchor Theo-
retical analysis in Section 3.1 implies that our
training objective yields a meaning shared an-
chor space. To further support this claim, we
conduct an empirical comparison between having
text modality as a fixed anchor and having learn-
able, shared latent space as an anchor. Similar to
the alignment procedure in CoDi, we consider a
text-anchoring baseline that directly utilizes text
modality as a fixed anchor. Since the image-audio

8
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pair cannot be used in this setting, we compare text-anchoring baseline with a variant of FlowBind
that excludes image-audio pair during training. The resulting data-controlled comparison, as re-
ported in Table 4, shows that cross-modal alignment can be improved by introducing learned shared
latent space. Specifically, FlowBind variant trained without image-audio pair still outperforms text-
anchoring variant in all three measured alignment scores. This suggests that employing learnable
shared latent space can be beneficial for cross-modal alignment in general, validating our proposed
objective in Equation. 7

Results in Table 4 demonstrate that FlowBind shows a better alignment than text-anchor variant for
image-to-audio task, which does not include the text modality. For this task, FlowBind benefits from
its relaxed data restriction, effectively modeling image-audio correspondence by directly learning
from paired data.

Table 5: Shared latent space yields
higher alignment measured in CKNNA.

Model T-A A-I

Latent 0.1965 0.1343

Shared Latent 0.2872 0.3026

Analysis on Shared Latent As mentioned in Sec-
tion 3.1, our learning objective is designed to produce a
shared latent representation that unifies information from
all input modalities. We analyze the characteristics of the
learned space, hypothesizing that it should exhibit strong
cross-modal alignment. To quantitatively evaluate the
alignment of shared latent representations across modal-
ities, we measure the CKNNA metric introduced in Huh
et al. (2024), comparing cross-modal alignment in shared
latent space and in per-modality encoder space. We follow the suggested procedure for computing
CKNNA measure, using at most 1024 samples with neighborhood size k set to 10. The analysis is
done for text-audio and audio-image alignment, the settings where held-out test set is available.

As shown in Table 5, our learned representation exhibits higher alignment scores with the learnable
shared latents, compared to the latents that are obtained from per-modality encoders. This quantita-
tively measured improvement in alignment validates our claim that shared latent space is not merely
for co-embedding features, but is for building a truly shared semantic space. Our framework suc-
cessfully learns a coherent, well-aligned latent space that bridges the semantic gap between different
modalities, thereby handling complex any-to-any generation task effectively.

In addition to the quantitative analysis, we conduct a qualitative analysis via exploration of shared
latent space by interpolation between two latents. As shown in Figure 3, we empirically observe
that the shared latent space is indeed a well-aligned, semantically meaningful space, enabling the
semantic of decoded image change gradually between two input images.

a dog in the 
grass on a tree

a dog on 
the bed

a teddy bear 
is on the bed

a teddy bear is 
on the bed

Figure 3: FlowBind’s shared latent space learn semantically meaningful space, allowing smooth
transition when interpolating between two latents. Data with blue boundary indicates input.

7 CONCLUSION

In this work, we introduce a novel framework for any-to-any multi-modal generation that directly
addresses the critical limitations of data scarcity and computational complexity inherent in prior
methods. By learning from arbitrarily paired data, our model alleviates the need for impractical
fully-paired or anchor-based datasets. The core of our approach is a shared latent space trained end-
to-end with a single, unified flow matching objective. This design not only simplifies the training
pipeline but also yields a computationally efficient and highly scalable system. Our experiments

9
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demonstrate that this approach achieves competitive performance, particularly in non-text-anchored
tasks, and learns a well-structured, semantically aligned latent space. We claim this data-flexible
and efficient framework represents a significant step towards building generalist generative models.

ETHICS STATEMENT

We have carefully reviewed the Code of Ethics and confirm that we adhere to the principles. To the
best of our knowledge, this work raises no ethical concerns.

REPRODUCIBILITY STATEMENT

We have made our best efforts to ensure the reproducibility of our experiments. We will release the
code in public when published, to enable others to replicate our results. For dataset, exact lists/splits
and preprocessing scripts for the datasets will be included in future code release. Regarding ex-
periment details, we believe the appendix provides comprehensive details of our method, including
algorithm pseudo-code (Algorithm B) and implementation details (Appendix C), and descriptions
of all datasets involved (Appendix C.3).
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A PROOFS AND JUSTIFICATIONS

A.1 EXPECTED CONDITIONAL VARIANCE

Setup. Let N ∈ N be the number of modalities and define the shared latent X := z∗ =
Hϕ(z

1, . . . , zN ) ∈ RdX . Fix i ∈ {1, . . . , N} and set

Y := zi − z∗ ∈ Rd, f(X) := viθ(X, 0) ∈ Rd, m(X) := E[Y | X] = E[zi − z∗ | z∗].
Assume square–integrability: E∥Y ∥22 < ∞ and E∥f(X)∥22 < ∞. (For vectors, Var(Z | X) :=
trCov(Z | X).)

Objective at t=0.
Li(θ, ϕ) = E

[
∥f(X)− Y ∥22

]
.

Decomposition with orthogonality. Add and subtract m(X) and expand:

∥f(X)− Y ∥22 = ∥f(X)−m(X)∥22 + ∥m(X)− Y ∥22 + 2⟨f(X)−m(X), m(X)− Y ⟩.
Taking expectations and conditioning on X ,

E[⟨f(X)−m(X), m(X)− Y ⟩] = E
[〈
f(X)−m(X), E[m(X)− Y | X]

〉]
= 0,

since E[m(X)− Y | X] = m(X)− E[Y | X] = 0. Equivalently,

m(X)− Y ⊥ L2(σ(X)) and f(X)−m(X) ∈ L2(σ(X)).

Thus,

Li(θ, ϕ) = E
[
∥Y −m(X)∥22

]
+ E

[
∥f(X)−m(X)∥22

]
= E

[
Var(zi | z∗)

]︸ ︷︷ ︸
unexplained variance

+ E
[
∥ viθ(z∗, 0)− E[zi − z∗ | z∗] ∥22

]︸ ︷︷ ︸
distance to Bayes

.

Consequently,

min
θ

Li(θ, ϕ) = E
[
Var(zi | z∗)

]
, attained by viθ

⋆
(z∗, 0) = E[zi | z∗]− z∗.

Summed objective. For S ⊆ {1, . . . , N}, define

Lt=0(θ, ϕ) := E

[∑
i∈S

∥ viθ(z∗, 0)− (zi − z∗) ∥22

]
.

Summing the above identity over i ∈ S and using linearity of expectation,

Lt=0(θ, ϕ) =
∑
i∈S

E
[
Var(zi | z∗)

]
+

∑
i∈S

E
[
∥ viθ(z∗, 0)− E[zi − z∗ | z∗] ∥22

]
,

hence

min
θ

Lt=0(θ, ϕ) =
∑
i∈S

E
[
Var(zi | z∗)

]
, with viθ

⋆
(z∗, 0) = E[zi | z∗]− z∗ ∀i ∈ S.

Implication. By the Law of Total Variance, Var(zi) = E[Var(zi | z∗)] + Var(E[zi | z∗]), so
minimizing the unexplained part E[Var(zi | z∗)] equivalently maximizes the explained variance
Var(E[zi | z∗]). Because the decomposition holds for any (θ, ϕ), gradients w.r.t. ϕ (the encoder)
continually act to reduce the summed unexplained variance across modalities.

A.2 DISCUSSION ON LAW OF TOTAL VARIANCE

Recall. From the t=0 decomposition in the previous section, for each i ∈ S we have

Li(θ, ϕ) = E
[
Var(zi | z∗)

]︸ ︷︷ ︸
unexplained

+E
[
∥ viθ(z∗, 0)− E[zi − z∗ | z∗] ∥22

]︸ ︷︷ ︸
distance to Bayes

.

The first term depends only on the encoder via z∗.
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Law of Total Variance our t=0 formulation
Li(θ, ϕ) = E

[
Var(zi | z∗)

]︸ ︷︷ ︸
unexplained

+E
[∥∥ viθ(z∗, 0)− E[zi−z∗ | z∗]

∥∥2
2

]
︸ ︷︷ ︸

distance to Bayes

,

there are concrete benefits to reducing it:

By the law of total variance,
Var(zi) = E

[
Var(zi | z∗)

]
+ Var

(
E[zi | z∗]

)
. (9)

Since Var(zi) is fixed, any reduction of the unexplained term E[Var(zi | z∗)] necessarily increases
the explained term Var(E[zi | z∗]). Equivalently, a larger fraction of the variability of zi is cap-
tured through the same shared latent z∗. In the multimodal setting, applying equation 9 to each i
concentrates cross-modal structure in z∗ and thereby promotes alignment across modalities.

Consequences for Latent Design and Alignment Aggregating over i ∈ S, minimizing∑
i∈S E[Var(zi | z∗)] compels the shared latent z∗ to encode information that is jointly predic-

tive for all modalities, which in turn increases each Var(E[zi | z∗]) through the same bottleneck.
At t=0, writing f i

θ(z
∗) := viθ(z

∗, 0) and mi(z
∗) := E[zi − z∗ | z∗], this strategy simultaneously

(i) drives f i
θ(z

∗) toward the Bayes target mi(z
∗) and (ii) reallocates variability from unexplained to

explained, yielding an aligned latent space that strengthens downstream predictors for all i ∈ S.

B TRAINING AND INFERENCE

This section presents the detailed training and inference algorithms to provide a clear understanding
of each procedural formally.

Algorithm 1: Training

Input : Minibatch {zSb}Bb=1;
Aux encoder Hϕ;
Flows {viθ}Ni=1 (params θ);
Time sampler t∼p(t).
Output: Loss L

1 for each step do
2 Sample {zSb}Bb=1;
3 for b = 1 to B do
4 z∗b ← Hϕ(z

Sb)

5 Draw tb ∼ p(t) for b = 1, . . . , B;
6 L ← 0, M ← 0 for b = 1 to B do
7 for each i ∈ Sb do
8 zt ← (1− tb)z

∗
b + tbz

i
b ;

9 û← viθ(zt, tb);
10 u⋆ ← z i

b − z∗b ;
11 L ← L+ ∥û− u⋆∥22;
12 M ←M + 1;

13 if M > 0 then
14 L ← L/M ;
15 return L

Algorithm 2: Inference

Input : Sources S with {zi}i∈S ; target j;
Learned flows {viθ}Ni=1; ODESOLVE.
Output: ẑ j .
// Encode sources to shared

latent (t : 1→0)
1 for each i ∈ S do
2 ẑ∗,i ← ODESOLVE(zi, viθ, 1, 0);

3 ẑ∗ ← 1
|S|

∑
i∈S ẑ∗,i;

// Decode to target (t : 0→1)

4 ẑ j ← ODESOLVE(ẑ∗, vjθ, 0, 1);
5 return ẑ j

C IMPLEMENTATION DETAILS

C.1 ENCODERS AND DECODERS FOR EACH MODALITY

For image, we use CLIP (Radford et al., 2021) for visual latent with Stable-UnCLIP (HuggingFace,
2025) as decoder. For audio, we use CLAP (Elizalde et al., 2023) features for conditioning on
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AudioLDM (Liu et al., 2023). For text, we find that existing text autoencoders such as Optimus (Li
et al., 2020) has limited reconstruction abilities. Therefore, we use EmbeddingGemma (Team et al.,
2025) for text encoder, and train its decoder with simple reconstruction objective. We use pretrained
Gemma3-1B (Team et al., 2025) for initialization and finetune it on two epochs of all texts used in
Table 6. Note that these modality-specific encoders and decoders are frozen during the training of
FlowBind, thereby not counted as a trained parameters when reporting trainable parameters.

C.2 ARCHITECTURE

We employ Multi-Layer Perceptron (MLP) for both the flow models {vθi}Ni=1 and the joint estima-
tor Hϕ. AdaLN (Peebles & Xie, 2023) is applied to all drift networks for better time modulation.
For the auxiliary encoder, each modality input is processed by lightweight modality-specific mod-
ules (modality-specific parameters), which are subsequently averaged across all output. To enhance
training robustness, we incorporate a fixed variance term as a hyperparameter that regularizes the
learned representations.

C.3 TRAINING DATASET

We employ all three types of paired data across text, image and audio. We do not use triple data in
our experiments. We summarize the details about training dataset in Table 6.

Table 6: Dataset summary.
Type Dataset name Size Description

Text–Image LAION-COCO 242k available subset of eV (2025), filtered by aesthetic scores > 5.0.
Captions are synthetically generated.

Flickr-30k 30k Sentence-based image descriptions.

Text–Audio AudioCaps v2 91k Natural language description audio captioning dataset that is
parsed from Youtube.

Audio–Image VGGSound 184k Large-scale dataset from YouTube

C.4 TRAINING RECIPE

We trained the model for 200k iterations using the Adam optimizer and a global batch size of 1024.
The total training process requires approximately 48 GPU-hours on NVIDIA H100. To train each
drift network, we normalized the latent representations of each modality to match their respective
scales. During training, we follow Kim et al. (2024) to randomly apply the velocity prediction
objective at the endpoint of the flow (i.e., t = 1) which empirically improves training stability.

D EVALUATION SETUP

Our experiment was done by below benchmarks.

Eval Dataset Speicalists
Text-to-Image MSCOCO-30k Stable-Diffusion3 (Esser et al., 2024)

FLUX.1 (Black Forest Labs, 2024)
Image-to-Text COCO Kaparthy Llava-Next (Li et al., 2025a)

Text-to-Audio
AudioCaps Test set

TangoFlux (Hung et al., 2024)
AudioX (Tian et al., 2025)

Audio-to-Text Qwen2-Audio (Mei et al., 2024)

Image-to-Audio VGGSound Test set Seeing&Heering (Xing et al., 2024)
Audio-to-Image Sound2Vision (Sung-Bin et al., 2024)

Audio-Image-Similarity (AIS) We followed SonicDiffusion (Biner et al., 2024) to measure rela-
tive AIS on audio-image evaluations. In contrast to other alignment metrics, AIS is a reference-based
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metric to compensate different scales of measured cosine similarity. For audio-to-image evaluation,
AIS is defined as a ratio of audios in testset that achieve worse cosine similarity than conditioning
audio, measured with genrated image. For example, AIS is zero if the generated image is not aligned
at all and thus shows least cosine similarity among test set audios. The similarity is measured using
wav2clip (Wu et al., 2022) audio embedding and image CLIP (Radford et al., 2021) embedding
from ViT-B/32 model. We generalize AIS metric for image-to-audio generation in a symmetric way,
counting the ratio of images in test set that gives lower cosine similarity compared to conditioning
image.

E QUALITATIVE RESULTS

In this section, we present more qualitative results on various any-to-any generation, includig one-
to-one (Figure 4 and 5), one-to-many (Figure 6 and 7), and many-to-one (Figure 8 and 10) gen-
eration. Qualitative results on various input and output modality combinations are provided in the
anonymized website: https://sites.google.com/view/flowbind.

It shows that FlowBind faithfully translate input modalities into another modalities while preserv-
ing content. Compared to baseline, FlowBind exhibits stronger qualitative results especially on
challenging many-to-one generation tasks. Specifically, we observe that the baselines struggle to
preserve the heterogeneous contents of different modalities, often failing to produce content of one
of two modalities. Compared to this, FlowBind faithfully generates outputs that preserve the content
of all input modalities, showcasing the advantage of FlowBind in any-to-any geneation tasks.

A busy street 
with several cars 
and buses driving 

on it.

The baseball 
player is throwing 

the ball hard.

There are many 
teddy bears 

sitting on the 
shelves.

A group of biker 
turning into a 

curb

FlowBind  CoDi  OmniFlow Conditions

Figure 4: Results on text-to-image generation.
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FlowBind  CoDi  OmniFlow Conditions
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he is kissing 
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a plate of fires 
and a piece of 
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Figure 5: Results on image-to-text generation.
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FlowBind  CoDi  OmniFlow Condition

(A Train 
passing by, 

horning) railroad train 
at.

A drill is fired

a train clanks its 
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passes by 

followed by a 
train whistle
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talking and 
whispering
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woman who is 

speaking in her 
speech at a speech 
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a woman giving a 
speech

(A woman 
speeching)

(A siren and 
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engine runs while a 
fire truck horn is 

triggered

A siren wails and 
police car passes 

by

four cars passing for 
police to go back 

south after fire but 
come opposite car 

speeds.

Figure 6: Results on audio-to-{text, image} generation.
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FlowBind  CoDi  OmniFlow Condition
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(People are yelling)

Figure 7: Results on image-to-{text+audio} generation.
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FlowBind  CoDi  OmniFlow 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Figure 8: Results on text-to-{image+audio} generation.
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FlowBind  CoDi  OmniFlow 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Input Conditions

Figure 9: Results on {text+audio}-to-image generation.
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FlowBind  CoDi Input Image 

Input Text: A sunset over ocean, casting orange and pink 
hues across the sky.

FlowBind  CoDi Input Image 

Input Text: A quiet garden with colorful flowers blooming.

Figure 10: Results on {text+image}-to-image generation.
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F QUANTITATIVE RESULTS ON MANY-TO-MANY GENERATION TASKS

In this section, we quantitatively evaluate FlowBind on many-to-one and one-to-many generation
tasks to assess its performance in realistic any-to-any generation scenarios. To this end, we construct
a synthetic triplet dataset by extending the AudioCaps text–audio pairs. Following a protocol similar
to OmniFlow, we generate the missing image modality using FLUX.1-schnell (Labs et al., 2025),
conditioned on the text annotations. This yields a triplet (text, audio, image) dataset that enables
quantitative evaluation of many-to-many generation.

Tables 7 and 8 report the results for many-to-one and one-to-many settings, respectively, comparing
FlowBind with other flow-based models. Note that for all alignment metrics (CLIP, CLAP, AIS),
higher values indicate better alignment. FlowBind achieves competitive or superior alignment across
these tasks and, in particular, exhibits a reduced tendency to ignore either modality in the many-to-
one generation setting.

Table 7: Many-to-one generation alignment performances.

(T+A)→ I (T+I)→ A (I+A)→ T

Method CLIP (T→I) AIS (A→I) CLAP (T→A) AIS (I→A) CLIP (I→T) CLAP (A→T)

CoDi 25.17 57.52 4.85 61.28 24.04 20.66
OmniFlow 24.06 54.90 7.68 59.32 26.38 36.07
FlowBind 25.57 57.93 28.13 76.02 27.83 35.21

Table 8: One-to-many generation alignment performances.

T→ (I+A) I→ (T+A) A→ (T+I)

Method CLIP (T→I) CLAP (T→A) CLIP (I→T) AIS (I→A) CLAP (A→T) AIS (A→I)

CoDi 26.61 10.99 25.73 58.65 18.03 57.14
OmniFlow 24.71 12.92 26.36 63.99 36.07 54.22

FlowBind 25.02 29.12 27.98 74.34 36.79 59.99

G DATA FLEXIBILITY OF FLOWBIND
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Figure 11: Performance of FlowBind varying
fractions of Image–Audio data

FlowBind demonstrates data flexibility, effectively
working with arbitrary partially paired data. The
ablation experiment in Table 4 supports this claim,
showing that the zero-shot performance of Flow-
Bind on the image-to-audio task are reasonable even
without trained with image-audio pairs. In this sec-
tion, we extend the evaluation by testing the ratio
of paired data. Specifically, we comprehensively
assess our method under varying fractions of par-
tially paired data by expanding the experiments in
Table 4. We vary the ratio of Image–Audio paired
data (i.e., VGGSound) subsampled to different frac-
tions (e.g., 0%, 1%, 3%, 10%, 30%, 100%), and
alignment scores are measured. The results, shown
in Figure 11, demonstrate FlowBind’s robustness to
varying ratios of partially paired data, showing rea-
sonable perfomrance on image-to-audio generation
even with 1% or 3% of the subset.
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H ROBUSTNESS OF PLAIN AVERAGING

To further assess the robustness of FlowBind under competing source modalities in many-to-one
generation, we constructed a conflict set by randomly pairing audio clips with text prompts that
deliberately describe different semantics. We then performed (T + A) → I generation with plain
averaging in the shared latent space, and present the results in Figure 12.

A cozy living
room.

A forest
path.

A quiet
alleyway at

night.

A rooftop
terrace with

a view.
A city street
with buildings.

A garden
with flowers.

(Food cooking)

(Cat meowing)

(Water flowing)

(Train passing)

(Cello playing)

(Animal crying)

Figure 12: Results on conflicting conditions of {text+audio}-to-image generation.

In this challenging setup, FlowBind faithfully reflects the two conflicting conditions in most cases,
rather than collapsing to an incoherent blend or ignoring one modality.

We believe this robustness is the benefits of the shared latent space learned by FlowBind: as men-
tioned in Table 5, the shared latent achieves strong cross-modal alignment. As the shared latent space
is well-structured and semantically aligned, even simple averaging leads to stable and meaningful
behavior under conflicting conditions.

I FLOWBIND LATENT VISUALIZATION

To further analyze the interpretability of the shared latent space and visualize the relationship be-
tween latents and generated content, we provide an additional t-SNE plot of FlowBind’s shared
latent space along with representative generated images.

In detail, we sampled 5,000 random text prompts from the MS-COCO evaluation set, encoded each
prompt into FlowBind’s shared latent space, and then performed clustering in this space using k-NN
with k=15 which is shown in Figure 13a. For some clusters, we decoded the top 5 center features
into images, as shown in Figure 13b. The images within the same cluster appear semantically very
close, indicating that the shared latent space aligns meaningful semantic structure and that nearby
latents correspond to coherent variations in the generated content.
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(a) t-SNE visualization of the shared latent space using MS-COCO captions. Clusters are
formed by k-NN with k = 15.

(b) Example image clusters decoded from latent points within a randomly selected
cluster. Each color boundary represents a distinct cluster, as shown in 13a.

Figure 13: Visualization of shared latent space of FlowBind and corresponding generated images.

These examples in Figure 13b show that samples drawn from the same cluster in the shared latent
space are semantically coherent (e.g., office scenes, tennis players, food dishes, trains, animals),
while different clusters capture clearly distinct concepts. This supports that our shared latent space
forms representations according to high-level semantics, so that nearby latent points correspond to
consistent and meaningful variations in the generated images.
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J FLOWBIND WITH ADDITIONAL MODALITY

To demonstrate the scalability of FlowBind, we extend our framework to an additional modality,
namely 3D point clouds. We use the Pix3D dataset (Sun et al., 2018), which contains 10k pairs
of (Image, Point cloud), and adopt a pre-trained modality-specific autoencoder from (Yang et al.,
2019). All other settings are kept the same as in our main experiments (Section 5); adding a new
modality only introduces its modality-specific drift network, leading to approximately linear growth
in the total number of parameters.

Figure 14 presents the qualitative results for cross-modal generation of image-point clouds, demon-
strating strong performance while preserving the geometry of the underlying object and overall
consistency of the shape.

More importantly, as shown in Figure 15, FlowBind also achieves reasonable performance on un-
seen cross-modal combinations (e.g., text→ point clouds and point clouds→ text), indicating that
our framework can effectively exploit arbitrarily partially paired data, owing to its central learnable
anchor design.

Input Output

(a) Results on point clouds-to-image generation

Input Output

(b) Results on image-to-point clouds generation

Figure 14: Cross modal generation results on image–point clouds

The chair has 
pillow in grey 

fabric.

The daylight 
table with 

bowls

Input Output

(a) Results on point clouds-to-text generation

a wooden chair

the bookcase 
with books in it

Input Output

(b) Results on text-to-point clouds generation

Figure 15: Cross-modal generation results on text–point clouds. FlowBind handles cross-modal
generations unseen during training by effectively leveraging arbitrarily partially paired data.
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