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Abstract

We introduce LogicAsker, a novel approach
for evaluating and enhancing the logical rea-
soning capabilities of large language models
(LLMs) such as ChatGPT and GPT-4. Despite
their prowess in tasks like writing assistance,
code generation, and machine translation, as-
sessing LLMs’ ability to reason has been chal-
lenging. Traditional evaluations often prioritize
accuracy on downstream tasks over direct as-
sessments of reasoning processes. LogicAsker
addresses this gap by employing a set of atomic
reasoning skills grounded in propositional and
predicate logic to systematically examine and
improve the reasoning prowess of LLMs. Our
methodology reveals significant gaps in LLMs’
learning of logical rules, with identified reason-
ing failures ranging from 25% to 94% across
different models. Moreover, we leverage these
findings to construct targeted demonstration
examples for in-context learning, notably en-
hancing logical reasoning in models like GPT-4
by up to 10%. To our knowledge, this is the
first effort to utilize test case outcomes to effec-
tively refine LLMs’ formal reasoning capabili-
ties. We will make our code, data, and results
publicly available to facilitate further research
and replication of our findings.

1 Introduction

Large language models (LLMs), such as OpenAl’s
GPT series have significantly impacted natural lan-
guage processing, excelling in a variety of tasks
including text generation, machine translation, and
code generation (Gao et al., 2022, 2023a; Jiao
et al., 2023). Notably, ChatGPT has achieved rapid
adoption, reaching 100 million users in just two
months (Hu, 2023). Despite their success, the true
reasoning capabilities of these models remain un-
der scrutiny.

Reasoning, defined as the cognitive process
of using logic to draw conclusions from given
facts (Wei et al., 2022b,a), is crucial for complex
interactions that go beyond straightforward text

generation. Accurately assessing this ability in
LLMs is essential, yet challenging, as models may
correctly perform tasks merely relying on shortcuts
such as pattern recognition without truly engag-
ing in logical reasoning (Huang and Chang, 2022;
Huang et al., 2023; Liu et al., 2023). We provide a
motivating example in Appendix A.

To better handle these challenges, a well-
performing testing framework should be able to
define a set of skills that a) directly correspond
to the reasoning process, b) cannot be further
divided, c) cover all formal logical reasoning sce-
narios, and d) can identify LL.Ms’ weaknesses
and facilitate improving LLMs’ performance.
Property a) ensures that the task cannot be accom-
plished by other approaches, such as inferring from
the correlations of words, and the evaluation re-
sult directly reflects the model’s reasoning ability.
Property b) and c) ensure that the set of skills is fun-
damental and comprehensive, which can provide
helpful insights to accomplish Property d).

Based on these criteria, we propose LogicAsker,
an automatic framework to evaluate and improve
LLMs’ formal reasoning ability on a set of atomic
skills. We adopted the concept of Minimum Func-
tionality Tests (MFTs) (Ribeiro et al., 2020), which
are analogous to unit tests in software engineering,
where a collection of simple examples is used to
check a specific behavior within a capability. The
tests are particularly useful for detecting when mod-
els use shortcuts to handle complex inputs with-
out actually mastering the capability(Ribeiro et al.,
2020). Specifically, we first construct the set of
atomic skills by collecting and combining all basic
principles and laws in propositional and predicate
logic, two fundamental systems used to formalize
reasoning procedures (Partee et al., 1990), together
with a set of common logical fallacies (Hurley and
Watson, 2020). Based on the skill set, LogicAs-
ker systematically generates reasoning questions
by converting standard logic expressions into nat-



Correct
Idempotent Laws /
/ \_Incorrect

Inference
Unrelated

(_contradiction

Eauivaence | Correct Inference
} ‘k Commutative Laws [ Unrelated

\_Incorrect -

‘ \_

| Correct
Modus Ponens /

Inference

( Unrelated
1.Propositional Logic \_ Incorrect
\_Inference |

~\_ModusTollens..

Affirming the Consiquence (Incorrect)

\_ Fallacy [ Denying the Antecedent (Incorrect)

LogicAsker

Correct
Quantifier Negation Laws
Incorrect

Equivalence | quantifier Movement Laws

) ) Universal Instantiation
2.Predicate Logic

Inference Existensial Generalization

Undistributed Middle

Fallacy Universal lllicit Commutativity

{_ Contradiction

{_contradiction

EEEE— Test Case Generation

|
Query

ChatGpT 4, Bard
-

Vicuna f Guanaco
=

Evaluate

Figure 1: Overview of the LogicAsker framework.

ural languages. According to the questions and
answers, LogicAsker calculates the LLM’s accu-
racy on each skill, identifies the weaknesses of
the LLLM, and finally generates demonstration ex-
amples to improve the LLLM’s reasoning capacity
using in-context-learning techniques (Brown et al.,
2020). In addition, for a single skill, LogicAsker
utilizes a wide range of vocabulary to translate it
into various natural language queries and calculate
the average performance over all queries, avoiding
the result being affected by word correlations in
the sentence.

Table 1 compares our framework to previous
studies, which provide datasets for testing the rea-
soning ability of models. As seen, many of these
datasets are not amenable and thus vulnerable to
data leakage issues, i.e., can be memorized or ex-
ploited by LLLMs trained on the massive corpora
from the Internet. Other programmable datasets
are of limited scope. In contrast, our framework
is the most comprehensive one and also the only
one that can utilize the evaluation result to improve
LLMs’ reasoning abilities.

To assess the performance of LogicAsker, we
conducted comprehensive testing on six widely de-
ployed LLMs, including four commercial LLMs
(GPT-3, ChatGPT, GPT-4, and Google Bard) and
two open-source LLMs (Vicuna and Guanaco) four
of which are ranked within the top 8 in the LLM
Arena Leaderboard proposed by (Zheng et al.,
2023).

The results demonstrate that the test cases gen-
erated by LogicAsker effectively identified logical
reasoning failures in different commercial LLMs
and research models at a rate (i.e., 1 — accuracy)

ranging from 25% to 94%. Furthermore, the test
cases generated by LogicAsker can be utilized
to design demonstration examples for in-context
learning, improving LLMs’ logical reasoning abili-
ties. For example, in the case of GPT-4, applying
in-context learning using LogicAsker’s test cases
resulted in a substantial enhancement, improving
the logical reasoning ability from 75% to 85%. All
the code, data, and results will be released for re-
production and future research.!.

We summarize the main contributions of this
work as follows:

* We are the first work that formally defines
a set of 30 atomic skills and 208 extended
skills that an LLM should possess to perform
formal reasoning based on propositional logic
and predicate logic, two fundamental systems
of formal logic.

* We develop LogicAsker, a fully automatic tool
that can generate test cases under the basic
skills and provide insights into LLMs’ reason-
ing capacities, and we are the first work that
can create prompts based on testing results to
improve the performance of LLMs effectively.

* We perform a comprehensive empirical evalu-
ation of six widely deployed LLMs based on
logical reasoning ability. We demonstrate that
the test results by LogicAsker can be used to
effectively evaluate and improve the perfor-
mance of LLMs.

"https://drive.google.com/drive/folders/
19x35XjnSbt1Y1vvTOkbcKfY1FfvCnE9j?usp=share_link
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Table 1: Comparison with previous works.

Fully Au- Atomic Formal Include Identify Improve LLMs™ Example

tomatic Skills  Rules  Fallacies = Weakness LLMs Tested Testbed
CLUTRR (Sinha et al., 2019) X X X X v X - BERT
LogiQA (Liu et al., 2020) X X X X - BERT
RECLOR (Yu et al., 2020) X X X X v X 2 GPT2
Soft Reasoner (Clark et al., 2020) v X 1 X v X RoBERTa
LogicNLI (Tian et al., 2021) X X 7 X v X - BERT
FOLIO (Han et al., 2022) X X X X X X 4 GPT3
Logiclnference (Ontaiién et al., 2022) v X 19 X X X - T5
ProntoQA-OOD (Saparov et al., 2023) v X 6 X v X 4 GPT3.5
LogicAsker (Ours) v v 30 v v v 6 GPT4

* We consider language models with more than 1 billion parameters as LLMs

2 Preliminaries

2.1 Formal Analysis of Reasoning Abilities

“Reasoning” can be characterized into formal rea-
soning and informal reasoning. The former is a
systematic and logical process that follows a set of
rules and principles, and the reasoning within these
systems will provide valid results as long as one
follows the defined rules (e.g., all A are B, all B are
C, therefore, all A are C). The latter is a less struc-
tured approach that relies on intuition, experience,
and common sense to draw conclusions and solve
problems (Huang and Chang, 2022; Bronkhorst
etal., 2020) (e.g., Hong Kong residents have a high
life expectancy; this is probably because they have
healthy living habits). Generally, formal reasoning
is more structured and reliable, whereas informal
reasoning is more adaptable and open-ended but
may be less reliable. In this paper, we focus on the
formal reasoning process to systematically analyze
LLMs’ reasoning abilities.

To formalize reasoning procedures, two funda-
mental systems are usually adopted, namely, propo-
sitional logic and predicate logic. The former one
deals with propositions or statements that can be
either true or false, and utilizes logical operators
including A (and), V (or), — (not), — (inference),
and < (bidirectional) to connect these statements.
The latter one, in contrast, extends propositional
logic to deal with more complex statements that
involve variables, quantifiers, and predicates. Both
propositional logic and predicate logic contain vari-
ous rules for the reasoning process. These rules can
be categorized into equivalence rules and inference
rules. Equivalent rules summarize the basic expres-
sions that are equivalent in terms of truth value (e.g.,
—(PAQ) < (-P)V (—Q)). Inference rules sum-
marize the basic valid inference rules (e.g., from
the premises: A — B, and A, we can infer B ).

We refer to (Partee et al., 1990) for a more de-

tailed explanation. Table 7-9 in Appendix B list
common inference rules in predicate logic and
propositional logic. Besides inference rules, for-
mal logic systems can also express common logical
fallacies, i.e., arguments that may sound convinc-
ing but are based on faulty logic and are, therefore,
invalid. We list the common logical fallacies in
Table 10.

2.2 Minimum Functionality Test

In this paper, we adopted the concept of Minimum
Functionality Tests (MFTs), introduced in (Ribeiro
et al., 2020), to evaluate the reasoning ability of
LLMs. MFTs are analogous to unit tests in soft-
ware engineering, where a collection of simple ex-
amples is used to check a specific behavior within
a capability. These tests involve creating small and
focused datasets that are particularly effective in
detecting whether models resort to shortcuts to han-
dle complex inputs, rather than truly mastering the
capability.

To apply MFTs in evaluating the reasoning abil-
ity of LLMs, we treated each formal logical rule
as an independent task and generated abundant test
cases for each task. Each test case was designed
to trigger logical failures in the LLMs, allowing us
to assess the strengths and weaknesses of LLMs in
the logical reasoning process, and providing a solid
foundation for further analysis and improvement.

3 LogicAsker

In this section, we introduce the design and imple-
mentation of LogicAsker, a novel tool to trigger
logical reasoning failures in large language models.
Figure 1 overviews the workflow of LogicAsker,
which consists of three main modules: test case
generation, weakness identification and in-context
learning (ICL) demonstration. In particular, the
test case generation module utilizes atomic skills
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Figure 2: Test case generation procedure.

defined on the two formal logic systems and an
inference synthesis approach to generate questions
as test cases. Then, the generated cases are fed
into the LLMs to reveal weaknesses and provide in-
sights into the LLMs by the weakness identification
process. Finally, LogicAsker utilizes these insights
to construct ICL. demonstrations to improve the
reasoning abilities of the LLMs.

3.1 Reasoning SKkills

Atomic skills. As described in Section 2.1, propo-
sitional and predicate logic are two fundamental
systems that formalize the reasoning process. The
inference rules and equivalence laws in these two
systems are atomic and can cover all correct reason-
ing scenarios; therefore, we define these 30 rules
as the set of atomic skills an LLM should possess
to perform formal reasoning.

Extended skills. Predicate logic extends propo-
sitional logic to deal with more complex statements
that involve variables, quantifiers, and predicates.
In this regard, besides the unique equivalence and
inference laws in predicate logic, we add quanti-
fiers and variables to every rule in propositional
logic to form the predicate version of the laws. Us-
ing this approach, we expand the set of 30 atomic
skills into a set of 208 extended skills. In Appendix
C, we provide some concrete examples of these
extended rules.

3.2 Test Case Generation

To generate logical questions, LogicAsker first
adopts a rule-based method to generate logical ex-
pressions systematically based on reasoning skills
and then translates the logical expressions into nat-
ural language. Figure 2 provides an overview of
the procedure.

Logic expression generation. To better control
the process of logic expression generation, we first
define the length of an inference problem by the

number of syllogisms it involves. We use the in-
ference rules described in Section 2.1 to generate
inference expressions with length one. When a
longer inference (> 1) is specified, we start with a
base expression Ey := P; A P, — (' with length
one and expand the inference chain. Specifically,
we substitute the premises (either or both) of the
first inference with the conclusion of some other
syllogism and append the premises of those syllo-
gisms into the list of all premises. For example, we
can find another syllogism Fy := Ps A Py — P
with P, as the conclusion and then obtain a new
expression F,c, := P A P3 A Py — C with the
inference length of two. We can obtain inference
expressions of any length by recursively expanding
the inference chain as above. During the genera-
tion process, one can specify the desired rules and
length to allow complete control over expected test
cases.

In addition to the correct inference expression
created above, we generate three kinds of false in-
ference expressions: contradiction, unrelated, and
fallacy. A contradiction is generated by negating
the conclusion of a correct inference expression and
an unrelated is generated by replacing the conclu-
sion of a valid inference expression with an irrele-
vant statement. For example, for Fy := Py A P, —
(1, acontradiction is E,. := Py A P, — —(1, an
unrelated can be F,, := P; A P, — U;. We create
a fallacy by directly using the fallacy rules listed
in Section 2.1 for an inference length of one. For
a fallacy with a more extended length, we select a
fallacy rule as the base expression and expand the
inference chain using correct rules, ensuring the
expression’s incorrectness.

Natural language translation. Partially in-
spired by (Ontafién et al., 2022), translating a
clause into natural language involves a series of
patterns that depend on the structure of the clause.



Simple propositions are transformed into one of the
template patterns, such as “subject verb-action”,
“subject predicate”, or “impersonal-action” with a
predefined set of subjects, verbs, predicates, and
impersonal actions that can be chosen randomly
without repetition. For predicate clauses that in-
volve constant or variables, we employ template
“subject verb-action”, “subject predicate” to trans-
lated them. Furthermore, each clause can be ren-
dered in various modes, such as the present, past,
or negated forms. Additionally, connectives like
"or," "and," "implies," and "if and only if" also
adhere to their designated patterns. For quantified
clauses, we adopt patterns like "for all z, X", "there
is at least one x for which X", and "some Xs are
Y,". To facilitate the generation process, we cu-
rate extensive lists of potential subjects, including
common names in English, and compile plausible
predicates, actions, and impersonal actions. We
provide a detailed illustration of the translation pro-
cess in Appendix D.

3.3 Weakness Identification

Generally, LLMs are required to perform well on
two tasks to respond appropriately to a query in-
volving reasoning, i.e., instruction following and
logical reasoning. The former ensures LLMs can
understand the instructions in the query and re-
spond as required. At the same time, the latter
makes sure LLMs can successfully resolve the
problem through reasoning.

To measure the reasoning abilities of the LLMs,
we define the response accuracy as follows. Let
Niatisty denote the number of responses that satisfy
the requirement in the query (instruction follow-
ing), and Neorrect denote the number of responses
that are correct (reasoning). In particular, since all
generated queries are formulated as yes-or-no ques-
tions, LogicAsker adopts an automatic approach
that searches for pre-defined keywords (e.g., "yes"
and "no") in sentences to identify qualified answers
and correct answers. The response accuracy is then
calculated by

Ncorrect
Response Acc = ———

N, satisfy .
This metric can directly reflect LLMs’ performance
on reasoning, ruling out the instruction following
factor.

To reveal the weaknesses of LLMs, we gen-
erate n test cases for each leaf node in the rule
tree depicted in Figure 1. Then, we calculated the

response accuracy of an LLM of each leaf node.
Based on the result, we can identify the weaknesses
of LLMs by listing the leaf nodes that receive the
lowest accuracy. In addition, by grouping the ac-
curacy by different attributes in the rule tree, we
can gain insights into the strengths and weaknesses
of LLMs on these attributes (e.g., performance on
predicate logic vs. propositional logic).

3.4 Improving LLMs

In-context learning (ICL) is a paradigm that enables
LLMs to learn tasks with examples in the form of
demonstrations (Brown et al., 2020). It leverages
task instructions and a few demonstration exam-
ples to convey the task semantics, which are then
combined with query questions to create inputs for
the language model to make predictions. ICL has
demonstrated impressive performance in various
natural language processing and code intelligence.
However, the performance of ICL is known to rely
on high-quality demonstrations (Gao et al., 2023b)
strongly. To fully unleash the potential of ICL,
LogicAsker utilizes the weak skills of each LLM
to construct both correct and incorrect examples
with expected answers and explanations as demon-
strations to facilitate the reasoning of LLMs. The
generation process follows a similar approach to
the test case generation described in § 3.2, with the
difference being that we append the correct answer
and a brief explanation at the end of each case. We
show an instance of the demonstration example and
generation process in Appendix E.

4 Experiments

4.1 Experimental Setup

We apply LogicAsker to test six popular LLMs, in-
cluding four from commercial companies and two
from open-source. Table 2 lists brief information
on these systems. Among them, four LLMs are
ranked within the top 8 in the LLM Arena Leader-
board proposed by (Zheng et al., 2023), according
to the assessment results in June 2023. We leave
details of how we access the model, the parameters
used, and the prompt we used in Appendix F.

4.2 Effectiveness of LogicAsker

We demonstrate the effectiveness of LogicAsker
through the overall performance of LLMs on the
test cases. We conduct two iterations of experi-
ments for a comprehensive assessment. In the first
iteration, we follow the setting in § 3.3 and set



Table 2: Conversational LLMs used in the evaluation.

Name Organization Launch Date Rank
GPT-4 OpenAl Mar 2023 1
ChatGPT OpenAl Nov 2022 4
GPT-3 (Brown et al., 2020) OpenAl Jun 2020 -
Bard Google Mar 2023 -
“Vicuna-13b 1 LMSYS Org Mar2023 6
Guanaco-33b (Dettmers et al., 2023) UW May 2023 8
104 o= Generardnts l Propositional
ol
1T
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—21 .
4]
6] Predicate -
Vicuna-13b  GPT-4 Guanaco-33b ChatGPT  Bard GP%—3
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Vicuna-13b GPT-3 Guanaco-33b

Figure 3: Overall accuracy.

n = 10, resulting in 2080 cases. The second itera-
tion is based on the first one, which focuses on the
identified weaknesses of each LLM, i.e., the ten
leaf nodes in Figure 1 with the lowest accuracy. We
generated ten additional test cases for each weak-
ness. These 100 test cases comprise our “weakness
dataset, ” which will be utilized for further evalua-
tion in 4.5.

The overall performance of LLMs in the first
and second iteration is shown in Figure 3. The
result reveals that our framework can effectively
expose logical failures in the first iteration, with
LLM’s accuracy ranging from 31%-93%. When
focusing on the weak skills of LLMs in the sec-
ond iteration, we further reduce the accuracy to
6%-75% for the LLMs. What’s surprising is that
most of these LLMs achieved response accuracy
even lower than random guesses (i.e., 50% here)
when confronted with logical questions involving
specific logical rules. This contradicts their remark-
able performance in various LLM benchmarks, for
example, achieving top 8 ranks on the LLM Arena
Leaderboard. It suggests that existing benchmark
datasets are not comprehensive enough to assess
the generalization ability of LLMs in reasoning.

4.3 Insights into Reasoning Abilities

We conducted a comprehensive analysis to gain
insights from the failures exposed by LogicAsker,
obtaining three key observations from the evalua-

Figure 4: Propositional minus predicate accuracy (%).

B Equivalence
B Inference
W Fallacy

GPT-4 ChatGPT Bard Vicuna 13b GPT-3 Guanaco 33b

Figure 5: Accuracy of different rule categories.

tion:

Most LLMs are better at easier logical skills.
We compared the performance of LLMs on propo-
sitional logic and predicate logic, the former of
which is simper in form while the latter involves
more complex quantifier manipulations. Figure 4
illustrates the difference between the accuracy and
response scores obtained for the two logic systems.
A positive value indicates a higher score in proposi-
tional logic, while a negative value indicates higher
scores in predicate logic. Notably, we observed
that most LLLMs are better at propositional logic,
implying their limited ability in complex reasoning
scenarios.

Most LLMs are weak in recognizing logical
fallacies. Figure 5 presents the accuracy of LLMs
under different skill categories. Interestingly, we
discovered that among three types of skills, recog-
nizing fallacies has the lowest accuracy for most
LLMs, with Vicuna-13b being the only exception.
Particularly, Guanaco 33b achieved zero accuracy
on the fallacy task due to its tendency to provide
affirmative answers to most queries. It suggests



that current LLLMs are over-confident even in fal-
lacies, which may be learned from the mistakes in
pretraining data.

Longer inference chains are more challenging.
To assess the impact of inference length, we gen-
erated test cases of varying lengths (i.e., ranging
from 1 to 7) using randomly selected rules. For
each length, we generated 100 test cases. Table 3
shows the performance of LLMs on these test cases.
Generally, most LLMs perform gradually worse as
the inference length increases, indicating the in-
creased complexity introduced by longer inference
chains. Particularly, Guanaco 33b suffers from a
severe prediction bias such that it tends to output
affirmative answers to all questions, regardless of
the inference length or logical complexity.

Table 3: Accuracy with respect to inference length.

Length 1 3 5 7

GPT-4 092 085 078 0.74
ChatGPT 0.79 0.71 0.72 0.65
Bard 0.80 0.68 0.63 0.56
Vicuna 13b 0.63 0.62 052 048
GPT-3 0.68 0.52 0.60 0.56
Guanaco 33b 0.57 040 0.46 0.55

Case study: GPT-4 did not learn all logic rules
well. To provide a direct impression of what skills
LLMs cannot perform well, we list three atomic
rules in which GPT-4 has the lowest accuracy in
Table 4. While GPT-4 has an average accuracy of
93% over all skills, it only achieves 60% - 70%
accuracy on these skills, indicating that it cannot
perform these atomic skills smoothly.

These insights provide a valuable understanding
of the strengths and weaknesses of each LLM when
handling logical questions, allowing us to uncover
specific areas that require improvement and poten-
tial avenues for enhancing overall performance.

4.4 Validity of Test Cases

In this section, we aimed to investigate the valid-
ity of the test cases generated by LogicAsker. To
achieve this, we randomly sampled 10% (208) of
the test cases generated during the first iteration
of the experiment in 4.2 and conduct manual in-
spection. Two annotators with bachelor’s degrees
were recruited to answer the questions manually.
Each test case was annotated as either valid or in-
valid based on the following three questions: a)
Is the question grammatically correct? b) Is the
question understandable and has only one interpre-

tation? ¢) Can the target answer be derived from
the question? A test case is considered valid only
when both annotator’s answer to the above ques-
tions are negative. The results of the annotation
are presented in Table 5. This result is statistically
sufficient to prove that the probability of LogicAs-
ker generating understandable and solvable logical
questions is larger than or equal to 0.94 (with p-
value 0.05), indicating that the queries created by
LogicAsker are highly reliable and valid.

4.5 LogicAsker to Improve Reasoning

In this section, we explore the potential of Logi-
cAsker in further improving the reasoning ability
of LLMs through in-context learning (ICL).

We employ LogicAsker to generate ICL demon-
strations tailored to address the weaknesses dataset
uncovered in the experiments of 4.2. For each
inference problem, we generated ICL demonstra-
tions that provide both the expected answer and an
explanation as described in § 3. We evaluate the
effectiveness of the ICL demonstrations generated
by LogicAsker by comparing the following prompt-
ing strategies: a) Zero-Shot: We provide only task
instructions without any ICL demonstrations. b)
Random Demonstrations: In addtion to the task
instruction, we also include four ICL demonstra-
tions selected randomly from the available rules. c)
Weakness ICL Demonstration: Instead of random
demonstrations, we include four ICL demonstra-
tions using the weakness rules identified in 4.2 with
balanced answer labels, i.e., two correct and two
incorrect.

We perform ICL with the GPT family on their
respective weakness datasets and report the results
in Table 6. In general, the weakness ICL demon-
strations are more effective than those random ICL
demonstrations. Though the latter one perform
slightly better on ChatGPT, it brings no improve-
ment to GPT-3. These findings demonstrate the
potential of LogicAsker in improving the reason-
ing ability of LLMs.

5 Related Work

Numerous recent studies have attempted to mea-
sure the reasoning ability of LLMs. One ap-
proach to gauge the reasoning abilities of LLMs
is by assessing their performance, such as accu-
racy, on tasks that demand reasoning skills, in-
cluding arithmetic reasoning (Cobbe et al., 2021;
Hendrycks et al., 2021; Amini et al., 2019; Patel



Table 4: Weakness of GPT-4

Rule Type Example Accuracy
De Morgan’s laws Correct  Jessica is making tea and it is overcast cannot both 0.6
be true. Therefore, Jessica is not making tea or it is
not overcast.
Conditional laws Incorrect Karen is not playing a game or it is sunny. There- 0.6
fore, the fact that Karen plays a game does not
imply that it is sunny.
Biconditional introduction Incorrect If Tom writes letters, then Bob is running. If Bob 0.7

runs, then Tom is writing letters. Therefore, it is
not true that Bob is running if and only if Tom is

writing letters.

Table 5: Validity of test cases.

Invalid Cases a b C Total
Count 4 3 0 7
Percentage 1.92% 1.44% 0.00% 3.37%

Table 6: Performance of ICL demonstrations by Logi-
cAsker.

Models Zero Random Weak
GPT-4 0.75 0.83 0.85
ChatGPT 0.45 0.64 0.56
GPT-3 0.17 0.16 0.39

et al., 2021; Miao et al., 2020; Ling et al., 2017;
Roy and Roth, 2016), commonsense reasoning (Tal-
mor et al., 2019; Geva et al., 2021; Clark et al.,
2018), symbolic reasoning (Wei et al., 2022b), un-
derstanding of words, dates, and causal relation-
ships (Aarohi Srivastava, 2022), generalization abil-
ity (Lake and Baroni, 2017; Anil et al., 2022), and
table reasoning ability (Nan et al., 2021). How-
ever, whether LLMs’ predictions are based on true
reasoning or simple heuristics remains unclear, as
most existing evaluations focus solely on accuracy
on end tasks and do not directly assess their reason-
ing processes.

There have also been efforts to develop metrics
and benchmarks that enable a more formal anal-
ysis of reasoning in LLMs. For instance, (Han
et al., 2022) use expert-written data to create a
dataset that contains first-order logic reasoning
problems, requiring models to determine the cor-
rectness of conclusions given a set of premises.
Similarly, (Saparov and He, 2022) utilizes one
predicate inference rule recursively to generate test
cases, while (Ontafién et al., 2022) adopts mainly
propositional logic rules and a randomized gen-

eration method to synthesize logical expressions
as test cases. Nonetheless, these methods either
lack generalizability or focus on a limited set of
deduction rules. Recently, (Saparov et al., 2023)
proposed a method to evaluate LLMs’ general de-
ductive reasoning capacity by employing all deduc-
tion rules in propositional logic, measuring their
ability to generalize to more complex proofs than
their demonstrations. In contrast, our work encom-
passes a broader scope, considering all deduction
rules and equivalent laws in propositional logic and
predicate logic, the two fundamental formal logic
systems. Additionally, our framework is designed
to provide a comprehensive insight into the models’
capacity for each particular rule and employ this
insight to enhance LLMs’ performance.

6 Conclusion

In this paper, we present LogicAsker, an automated
tool designed to comprehensively evaluate and im-
prove the formal reasoning abilities of LLMs under
a set of atomic skills.

Our research demonstrated the efficacy of Logi-
cAsker in identifying logical reasoning failures in a
diverse set of widely deployed LLMs, we achieved
a substantial success rate in revealing reasoning
flaws in these models, ranging from 25% to 94%.
Additionally, we utilized the test cases from Log-
icAsker to design in-context learning demonstra-
tions, which effectively enhance the logical rea-
soning capabilities of LLMs, e.g., improving from
75% to 85% for GPT-4.

By providing insights into the strengths and
weaknesses of LLMs in reasoning, we are able
to improve the reliability and trustworthiness of
these models. The release of all the code and data
aims to facilitate replication and encourage further
research in this crucial area.



Limitations

This paper identifies two primary limitations that
highlight areas for future research:

* Although our ICL (In-Context Learning) method
significantly enhances the logical reasoning capa-
bilities of large language models (LLMs), there
remains a performance gap compared to human-
level reasoning. Further refinements and innova-
tions in model training and architecture may be
necessary to bridge this gap.

* Our method is currently applicable only to LLMs
that possess robust in-context learning capabil-
ities. LLMs lacking this feature may not ben-
efit from our approach. Future studies could
explore fine-tuning methods to extend the ap-
plicability of our improvements across a broader
spectrum of LLMs, potentially enhancing models
with weaker or no inherent in-context learning
abilities.
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A Motivating Example

We provide a motivating example to illustrate the
challenge of evaluating the logic reasoning ability
of LLMs. Consider the following inference exam-
ple: Either it is raining, or Tom will play
football; if it rains, then the floor will
be wet; the floor is dry; therefore, Tom
will play football. We may encounter the
following challenges: 1) If an LLM concludes cor-
rectly, it is unclear whether the response stems from
reasoning or merely relies on simple heuristics such
as memorization or word correlations (e.g., “dry
floor” is more likely to correlate with “playing foot-
ball”’). 2) If an LLM fails to reason correctly, it
is not clear which part of the reasoning process it
failed (i.e., inferring not raining from floor being
dry or inferring playing football from not raining).
3) There is a lack of a system that can organize
such test cases to cover all other formal reasoning
scenarios besides implication, such as logical equiv-
alence (e.g., If A then B, if B then A; therefore, A
if and only if B). 4) Furthermore, understanding
an LLM’s performance on such test cases provides
little guidance on improving the reasoning ability
of the LLM.

B Logical Rules and Fallacies

We list all the logic equivalence rules in Table 7-
8, logic inference rules in Table 9, and common
logical fallacies in Table 10.

C Extended Rules

C.1 Equivalent Extension

The equivalent rule extension is based on the fol-
lowing fact:

(A& B,Va(A)} F {Va(B)}

(i.e., if A and B are equivalent, and for all x, A is
true, then for all x, B is also true), and

(A& B,3x(A) F {32(B)}

(i.e., if A and B are equivalent, and there exist x
such that A is true, then there exist x such that B
is true). For example, the predicate version of the
DeMorgan’s law

-(PANQ) < —PV-Q
will become

Va(=(P(x) A Q(2))) & Va(=P(x) V ~Q(z)),
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and
S (—(P(x) A Q) & Jx(—P(z) V ~Q(x)).

In this example, the goal is to extend the proposi-
tional equivalence law to its predicate version by
adding quantifiers. To achieve this goal, we first
note that DeMorgan’s law states that "P and Q can-
not both be true" (e.g., Alice is happy and Bob is
happy cannot both be true) is equivalent to "either
not P or not Q" (e.g., either Alice is not happy or
Bob is not happy). Since the two expressions are
equivalent, we can add the same quantifier to both
sides and the equivalence will still hold. There-
fore, by adding a "for all" quantifier to both sides,
we obtain "for all x, P(x) and Q(x) cannot both be
true" (for all persons in the room, the person likes
Charley and the person likes David cannot both be
true) is equivalent to "for all x, either not P(x) or
not Q(x)" (e.g., for all person in the room, either the
person doesn’t like Charley or the person doesn’t
like David). Before the extension, the law can only
be applied to simple propositions (e.g., P = "Alice
is happy", Q = "Bob is happy"), but after extension,
the law can be applied to predicates with variables
and quantifiers (e.g., P(x) = "x likes Charley", Q(x)
"x likes David") The same also applies to the
"exist" quantifier.

C.2 Inference Extension

The inference rule extension is based on the follow-
ing fact:

[ANB — O} F [V, (A) AVz, (B) — Yz, (O)},

(i.e., if A and B imply C, then for all x, A is true
and for all x, B is true implies for all x, C is true)

{AAB = C} F {3, (A)AVz, (B) — 3z, (C)}.

(i.e., if A and B imply C, there exists x such that
A is true and for all x, B is true implies there
exists x such that C is true). Since all proposi-
tional inference rules are of the form P A Q — C,
we can transform them into their predicate form
Vz, P(x) AVz,Q(x) — Vx,C(x) and 3z, P(x) A
Va, Q(x) — Jx, C(x) following similar procedure
in the previous section.

D Natural Language Translation

D.1 Algorithm

Given an input: a logic clause of the form
[operator, Clausey, Clausegpl], where the



Table 7: Propositional logic equivalence laws.

Law Logical Equivalence Example
Idempotent laws PANP& P I am a teacher and I am a teacher < [ am a
teacher.
PVP& P It’s raining or it’s raining < it’s raining.
Commutative laws PAQ < QAP It is cold and it is winter < It is winter and
it is cold.
PVvQ&eQVP You can go to the party or you can study <

You can study or you can go to the party.

Associative laws (PANQ)ANR< PA(QAR) It is raining and it is cold, and also it is
winter < It is raining, and also, it is cold
and it is winter.

(PVQ)VR< PV (QVR) Either I will go to the park or I will go to
the library is true, or I will go to the cinema
& I will go to the park or either I will go to
the library or I will go to the cinema is true.

Distributive laws ~ PA(QV R) < (PAQ)V (P AR) Itis raining and either I have an umbrella
or I have a raincoat < It is raining and I
have an umbrella, or it is raining and I have
a raincoat.

PV(QAR)< (PVQ)AN(PVR) Either I will go to the park, or it is cloudy
and it is cold < Either I will go to the park
or it is cloudy is true, and either I will go to
the park or it is cold is true.

DeMorgan’s laws  —(P A Q) < =PV —Q It is not true that it’s both cold and raining
& It’s not cold or it’s not raining.
-(PVQ)& -PA-Q It’s not true that I will study or play < I
won’t study and I won’t play.
Complement laws —(—P) < P It is not the case that it is not raining < It
is raining.
PA-P < False It is raining and it is not raining.
PV -P & True It is raining or it is not raining.
Conditional laws P—->Q&-PVQ If it rains, then I'll stay at home < It

doesn’t rain or I stay at home.
Bidirectional laws (P <> Q) < (PAQ)V (-P A—=Q) TI'll go to the park if and only if it’s sunny
& Either it’s sunny and I go to the park, or
it’s not sunny and I don’t go to the park.
Identity laws PANTrue < P It is raining and it is true < It is raining.
PV False < P I will study or it’s false < I will study.
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Table 8: Predicate logic quantifier laws.

Law Logical Equivalence Example

Quantifier Negation —VaP(z) < Jz—P(x) It is not the case that all birds can
fly < There exists a bird that can-
not fly.

—JdzxP(z) & Vz—P(x) There is no human that can live
forever < All humans cannot live
forever.

Quantifier Distribution ~ Vz(P(x) A Q(x)) & VzP(z) AVxQ(x) Every student is smart and dili-
gent < Every student is smart,
and every student is diligent.

Jz(P(z) V Q(z)) & JzP(x) V3zQ(x) There is a person who is either a
doctor or a lawyer < There is a
person who is a doctor, or there
is a person who is a lawyer.

Quantifier Commutation JzIyP(x,y) < JyIzP(z,y) There exists a child and a toy
such that the child owns the toy
< There exists a toy and a child
such that the child owns the toy.

VaVyP(x,y) < YyVeP(z,y) For all parents and children, the
parent loves the child < For all
children and parents, the parent
loves the child.

Quantifier Transposition JzVyP(z,y) < YyIzP(z,y) There exists a food that all people
like is not generally equivalent to
For all people, there exists a food
that they like.

VadyP(z,y) < JyVeP(z,y) For every person, there exists a
food that they like is not generally
equivalent to There exists a food
that every person likes.

Quantifier Movement V(P — Q(x)) & (P — VzQ(x)) For every child, if it is raining
then they are inside < If it is
raining, then every child is in-
side when the notion of raining
doesn’t depend on the specific
child.

Jz(PAQ(x)) & (P A3JxQ(x)) There exists a student who is tall
and a good basketball player <
There is a tall student and there
exists a student who is a good bas-
ketball player when the notion of
being tall doesn’t depend on the
specific student.
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Table 9: Propositional and predicate logic inference rules.

Inference Rule

Logical Form

Example

Universal Instantiation
Existential Generalization
Modus Ponens

Modus Tollens

Transitivity

Disjunctive Syllogism

Addition

Simplification

Conjunction

Constructive Dilemma

VaP(z) F P(c)
P(c) - 3z P(x)
{P—QPHEQ
{P—Q,-Q}F-P

{P—-Q,Q—>R}-P—R

{PvQ,~P}FQ
(PVQ,~Q}F P
{P}FPVQ
{QtFPVQ
{(PAQ}F P
{PAQIEQ
{(P.Q}FPAQ

{P—>QR—S,PVRIFQVS

All birds have wings. Hence, this
crow has wings.

This apple is red. Hence, there exists
ared apple.

If it rains, the street gets wet. It is
raining. Hence, the street is wet.

If I study, I will pass the test. I did not
pass the test. Hence, I did not study.
If it rains, I take my umbrella. If I
take my umbrella, I won’t get wet.
Hence, if it rains, I won’t get wet.
Either it’s raining or it’s snowing. It’s
not raining. Hence, it’s snowing.
Either it’s raining or it’s snowing. It’s
not snowing. Hence, it’s raining.

It is raining. Hence, it is raining or it
is snowing.

It is snowing. Hence, it is raining or
it is snowing.

It is raining and it is cold. Hence, it
is raining.

It is raining and it is cold. Hence, it
is cold.

It is raining. It is cold. Hence, it is
raining and it is cold.

If it rains, I’1l stay at home. If I work,
I’ll be tired. Either it will rain or I’ll
work. Hence, I'll either stay at home
or be tired.

Table 10: Common fallacies.

Name

Logical Form

Example

Affirming the Consequent
Denying the Antecedent

Affirming a Disjunct

Denying a Conjunct

Ilicit Commutativity

Undistributed Middle

P—qqkp
p—q,pk g

pVq,pk—q

-(pANq),—pkq

pP—>qFq—p

Va(P(z) = Q(x)), Qa) - P(a)

If I study, I will pass the test. I passed
the test. Therefore, I studied.

If it rains, the street gets wet. It is not
raining. Therefore, the street is not wet.
Either I will study or I will fail the test.
I studied. Therefore, I will not fail the
test.

I’m not both hungry and thirsty. I'm
not hungry. Therefore, I’m thirsty.

If I am in Paris, then I am in France.
Therefore, if I am in France, I am in
Paris.

All dogs are animals. My cat is an ani-
mal. Therefore, my cat is a dog.
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clauses are also of the form [operator, Clausey,
Clausep], the algorithm will do the following:

1. Single Proposition Clause: If the clause is

just a single proposition, the algorithm finds
this proposition’s natural language form and
returns it. The natural language form is ob-
tained by combining vocabularies according
to certain templates (e.g., subject + action).

c__ 9

. Negation: If the clause starts with a “=" op-
erator, the algorithm then translates the rest
of the clause based on a negation template,
making sure to negate the statement.

. Quantifiers: For clauses that start with “V”’
(meaning for all items) or “J” (meaning there
is at least one item), it translates these into nat-
ural language, adjusting the phrasing based on
whether we’re asserting something positively
or negating it.

. Logical Connectives: If the clause combines
propositions using logical operators like “A”,
“Vv7, “—=” (implies), or “«<” (if and only if),
the function translates these into natural lan-
guage phrases that express the relationship
between the propositions.

Subjects

* X, y, Z, James, Mary, Robert, Patricia, John,
Jennifer, Michael, Linda, William, Elisabeth,
David, Barbara, Richard, Susan, Joseph, Jes-
sica, Thomas, Sarah, Charles, Karen, Alice,
Benjamin, Daniel, Emily, George, Helen, lan,
Julie.

Predicates

* a cashier, a janitor, a bartender, a server, an
office clerk, a mechanic, a carpenter, an elec-
trician, a nurse, a doctor, a police officer, a
taxi driver, a soldier, a politician, a lawyer,
a scientist, an astronaut, a poet, an artist, a
sailor, a writer, a musician, poor, rich, happy,
sad, fast, curious, excited, bored, tired, joy-
ful, intelligent, skilled, efficient, meticulous,
creative.

Actions

* make tea, makes tea, making tea, drink wa-
ter, drinks water, drinking water, read a book,
reads a book, reading a book, play tennis,
plays tennis, playing tennis, play squash,
plays squash, playing squash, play a game,
plays a game, playing a game, go running,
goes running, running, work, works, working,

D.2 Example

Consider the expression: [Vz, —, A(z), B(x)].
Here’s how the function would translate it:

sleep, sleeps, sleeping, cook, cooks, cooking,
listen to a song, listens to a song, listening to
a song, write a letter, writes a letter, writing

) a letter, drive a car, drives a car, driving a car,
1. It sees the “Va” quantifier and adds “For all

x,” to the sentence and continues to process
the clause [—, A(x), B(x)l].

. It sees the “—” operator, which means
“if...then...”. It connects the two operands with
the operator and obtains “For all x, if A(x),
then B(z)”. Then, it continues to process the
clauses A(x), B(x).

. Since A(x), B(z) are single proposition
clauses, the function looks up the vocabulary
and synthesizes the natural language versions
of the proposition. For example, A(x) = “z
drinks water”, B(x) = “x is a cashier”.

. It constructs the sentence: “For all z, if ©
drinks water, then x is a cashier”.

climb a mountain, climbs a mountain, climb-
ing a mountain, take a plane, takes a plane,
taking a plane, paint a picture, paints a picture,
painting a picture.

Impersonal Candidates

E

* snowing, snows, doesn’t snow, snow, raining,
rains, doesn’t rain, rain, sunny, is sunny, is
not sunny, be sunny, cloudy, is cloudy, is not
cloudy, be cloudy, windy, is windy, is not
windy, be windy, cold, is cold, is not cold,
be cold, late, is late, is not late, be late, over-
cast, iS overcast, is not overcast, be overcast,
foggy, is foggy, is not foggy, be foggy, humid,
is humid, is not humid, be humid.

Demonstration Examples

D.3 Vocabulary

We list the vocabulary used in our experiment:

The following is a three-shot demonstration exam-
ple used in our experiment:
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Consider the following premises: For all u,
u is not a doctor. There is at least one u for
which the claim that u is a doctor and the
claim that u will drive a car cannot both be
true. We cannot infer that: There is at least
one u for which u will drive a car. Because
this is a logical fallacy of the existential
denying a conjunct.

Consider the following premises: For all x,
x will not drive a car or x will play tennis.
There is at least one x for which x will drive
a car or x will drink water. We cannot infer
that: There is at least one x for which x will
play tennis. Because the conclusion is not
related to the premises

Consider the following premises: For all x,
X is a scientist or x is curious. There is at
least one x for which x is not a scientist or x
will sleep. We cannot infer that: There is at
least one x for which x is curious. Because
the conclusion is not related to the premises

Now answer the following question:

Consider the following premises: For all x,
x will work or x is a poet. For all x, x will
not work. Can we infer the following from
them? Answer yes or no: There is at least
one x for which x is not a poet.

F Accessing LLMs

To access these LLMs, we use the OpenAl APIs
of GPT-4 2 (gpt4), ChatGPT > (gpt-3.5-turbo)
and GPT-3* (text-davinci-0@3), the webpage of
Bard >, and the open-source weights of Vicuna-
13b ¢ and Guanaco-33b 7. For GPT families, we
use default hyper-parameters in the APIs.

G Prompting LLMs

We prompt the LLMs to answer the test cases gener-
ated by LogicAsker. The prompt template we used
is "Consider the following premises: [Premises].

Zhttps://openai.com/gpt-4

*https://openai.com/blog/chatgpt/

*https://beta.openai.com/docs/models/gpt-3

>https://bard.google.com/

®https://lmsys.org/blog/2023-03-30-vicuna/

"https://huggingface.co/timdettmers/guanaco-33b-
merged
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Can we infer the following from them? Answer yes
or no: [Conclusion]". We set the system prompt of
GPT APIs to blank.



