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Abstract
We introduce LogicAsker, a novel approach001
for evaluating and enhancing the logical rea-002
soning capabilities of large language models003
(LLMs) such as ChatGPT and GPT-4. Despite004
their prowess in tasks like writing assistance,005
code generation, and machine translation, as-006
sessing LLMs’ ability to reason has been chal-007
lenging. Traditional evaluations often prioritize008
accuracy on downstream tasks over direct as-009
sessments of reasoning processes. LogicAsker010
addresses this gap by employing a set of atomic011
reasoning skills grounded in propositional and012
predicate logic to systematically examine and013
improve the reasoning prowess of LLMs. Our014
methodology reveals significant gaps in LLMs’015
learning of logical rules, with identified reason-016
ing failures ranging from 25% to 94% across017
different models. Moreover, we leverage these018
findings to construct targeted demonstration019
examples for in-context learning, notably en-020
hancing logical reasoning in models like GPT-4021
by up to 10%. To our knowledge, this is the022
first effort to utilize test case outcomes to effec-023
tively refine LLMs’ formal reasoning capabili-024
ties. We will make our code, data, and results025
publicly available to facilitate further research026
and replication of our findings.027

1 Introduction028

Large language models (LLMs), such as OpenAI’s029

GPT series have significantly impacted natural lan-030

guage processing, excelling in a variety of tasks031

including text generation, machine translation, and032

code generation (Gao et al., 2022, 2023a; Jiao033

et al., 2023). Notably, ChatGPT has achieved rapid034

adoption, reaching 100 million users in just two035

months (Hu, 2023). Despite their success, the true036

reasoning capabilities of these models remain un-037

der scrutiny.038

Reasoning, defined as the cognitive process039

of using logic to draw conclusions from given040

facts (Wei et al., 2022b,a), is crucial for complex041

interactions that go beyond straightforward text042

generation. Accurately assessing this ability in 043

LLMs is essential, yet challenging, as models may 044

correctly perform tasks merely relying on shortcuts 045

such as pattern recognition without truly engag- 046

ing in logical reasoning (Huang and Chang, 2022; 047

Huang et al., 2023; Liu et al., 2023). We provide a 048

motivating example in Appendix A. 049

To better handle these challenges, a well- 050

performing testing framework should be able to 051

define a set of skills that a) directly correspond 052

to the reasoning process, b) cannot be further 053

divided, c) cover all formal logical reasoning sce- 054

narios, and d) can identify LLMs’ weaknesses 055

and facilitate improving LLMs’ performance. 056

Property a) ensures that the task cannot be accom- 057

plished by other approaches, such as inferring from 058

the correlations of words, and the evaluation re- 059

sult directly reflects the model’s reasoning ability. 060

Property b) and c) ensure that the set of skills is fun- 061

damental and comprehensive, which can provide 062

helpful insights to accomplish Property d). 063

Based on these criteria, we propose LogicAsker, 064

an automatic framework to evaluate and improve 065

LLMs’ formal reasoning ability on a set of atomic 066

skills. We adopted the concept of Minimum Func- 067

tionality Tests (MFTs) (Ribeiro et al., 2020), which 068

are analogous to unit tests in software engineering, 069

where a collection of simple examples is used to 070

check a specific behavior within a capability. The 071

tests are particularly useful for detecting when mod- 072

els use shortcuts to handle complex inputs with- 073

out actually mastering the capability(Ribeiro et al., 074

2020). Specifically, we first construct the set of 075

atomic skills by collecting and combining all basic 076

principles and laws in propositional and predicate 077

logic, two fundamental systems used to formalize 078

reasoning procedures (Partee et al., 1990), together 079

with a set of common logical fallacies (Hurley and 080

Watson, 2020). Based on the skill set, LogicAs- 081

ker systematically generates reasoning questions 082

by converting standard logic expressions into nat- 083
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Figure 1: Overview of the LogicAsker framework.

ural languages. According to the questions and084

answers, LogicAsker calculates the LLM’s accu-085

racy on each skill, identifies the weaknesses of086

the LLM, and finally generates demonstration ex-087

amples to improve the LLM’s reasoning capacity088

using in-context-learning techniques (Brown et al.,089

2020). In addition, for a single skill, LogicAsker090

utilizes a wide range of vocabulary to translate it091

into various natural language queries and calculate092

the average performance over all queries, avoiding093

the result being affected by word correlations in094

the sentence.095

Table 1 compares our framework to previous096

studies, which provide datasets for testing the rea-097

soning ability of models. As seen, many of these098

datasets are not amenable and thus vulnerable to099

data leakage issues, i.e., can be memorized or ex-100

ploited by LLMs trained on the massive corpora101

from the Internet. Other programmable datasets102

are of limited scope. In contrast, our framework103

is the most comprehensive one and also the only104

one that can utilize the evaluation result to improve105

LLMs’ reasoning abilities.106

To assess the performance of LogicAsker, we107

conducted comprehensive testing on six widely de-108

ployed LLMs, including four commercial LLMs109

(GPT-3, ChatGPT, GPT-4, and Google Bard) and110

two open-source LLMs (Vicuna and Guanaco) four111

of which are ranked within the top 8 in the LLM112

Arena Leaderboard proposed by (Zheng et al.,113

2023).114

The results demonstrate that the test cases gen-115

erated by LogicAsker effectively identified logical116

reasoning failures in different commercial LLMs117

and research models at a rate (i.e., 1 − accuracy)118

ranging from 25% to 94%. Furthermore, the test 119

cases generated by LogicAsker can be utilized 120

to design demonstration examples for in-context 121

learning, improving LLMs’ logical reasoning abili- 122

ties. For example, in the case of GPT-4, applying 123

in-context learning using LogicAsker’s test cases 124

resulted in a substantial enhancement, improving 125

the logical reasoning ability from 75% to 85%. All 126

the code, data, and results will be released for re- 127

production and future research.1. 128

We summarize the main contributions of this 129

work as follows: 130

• We are the first work that formally defines 131

a set of 30 atomic skills and 208 extended 132

skills that an LLM should possess to perform 133

formal reasoning based on propositional logic 134

and predicate logic, two fundamental systems 135

of formal logic. 136

• We develop LogicAsker, a fully automatic tool 137

that can generate test cases under the basic 138

skills and provide insights into LLMs’ reason- 139

ing capacities, and we are the first work that 140

can create prompts based on testing results to 141

improve the performance of LLMs effectively. 142

• We perform a comprehensive empirical evalu- 143

ation of six widely deployed LLMs based on 144

logical reasoning ability. We demonstrate that 145

the test results by LogicAsker can be used to 146

effectively evaluate and improve the perfor- 147

mance of LLMs. 148

1https://drive.google.com/drive/folders/
19xj5XjnSbtlY1vvT0kbcKfY1FfvCnE9j?usp=share_link

2
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Table 1: Comparison with previous works.

Fully Au-
tomatic

Atomic
Skills

Formal
Rules

Include
Fallacies

Identify
Weakness

Improve
LLMs

LLMs∗

Tested
Example
Testbed

CLUTRR (Sinha et al., 2019) × × × × ✓ × - BERT
LogiQA (Liu et al., 2020) × × × × × × - BERT
RECLOR (Yu et al., 2020) × × × × ✓ × 2 GPT2
Soft Reasoner (Clark et al., 2020) ✓ × 1 × ✓ × - RoBERTa
LogicNLI (Tian et al., 2021) × × 7 × ✓ × - BERT
FOLIO (Han et al., 2022) × × × × × × 4 GPT3
LogicInference (Ontañón et al., 2022) ✓ × 19 × × × - T5
ProntoQA-OOD (Saparov et al., 2023) ✓ × 6 × ✓ × 4 GPT3.5
LogicAsker (Ours) ✓ ✓ 30 ✓ ✓ ✓ 6 GPT4

* We consider language models with more than 1 billion parameters as LLMs.

2 Preliminaries149

2.1 Formal Analysis of Reasoning Abilities150

“Reasoning” can be characterized into formal rea-151

soning and informal reasoning. The former is a152

systematic and logical process that follows a set of153

rules and principles, and the reasoning within these154

systems will provide valid results as long as one155

follows the defined rules (e.g., all A are B, all B are156

C; therefore, all A are C). The latter is a less struc-157

tured approach that relies on intuition, experience,158

and common sense to draw conclusions and solve159

problems (Huang and Chang, 2022; Bronkhorst160

et al., 2020) (e.g., Hong Kong residents have a high161

life expectancy; this is probably because they have162

healthy living habits). Generally, formal reasoning163

is more structured and reliable, whereas informal164

reasoning is more adaptable and open-ended but165

may be less reliable. In this paper, we focus on the166

formal reasoning process to systematically analyze167

LLMs’ reasoning abilities.168

To formalize reasoning procedures, two funda-169

mental systems are usually adopted, namely, propo-170

sitional logic and predicate logic. The former one171

deals with propositions or statements that can be172

either true or false, and utilizes logical operators173

including ∧ (and), ∨ (or), ¬ (not), → (inference),174

and ↔ (bidirectional) to connect these statements.175

The latter one, in contrast, extends propositional176

logic to deal with more complex statements that177

involve variables, quantifiers, and predicates. Both178

propositional logic and predicate logic contain vari-179

ous rules for the reasoning process. These rules can180

be categorized into equivalence rules and inference181

rules. Equivalent rules summarize the basic expres-182

sions that are equivalent in terms of truth value (e.g.,183

¬(P ∧Q)⇔ (¬P ) ∨ (¬Q)). Inference rules sum-184

marize the basic valid inference rules (e.g., from185

the premises: A → B, and A, we can infer B ).186

We refer to (Partee et al., 1990) for a more de-187

tailed explanation. Table 7-9 in Appendix B list 188

common inference rules in predicate logic and 189

propositional logic. Besides inference rules, for- 190

mal logic systems can also express common logical 191

fallacies, i.e., arguments that may sound convinc- 192

ing but are based on faulty logic and are, therefore, 193

invalid. We list the common logical fallacies in 194

Table 10. 195

2.2 Minimum Functionality Test 196

In this paper, we adopted the concept of Minimum 197

Functionality Tests (MFTs), introduced in (Ribeiro 198

et al., 2020), to evaluate the reasoning ability of 199

LLMs. MFTs are analogous to unit tests in soft- 200

ware engineering, where a collection of simple ex- 201

amples is used to check a specific behavior within 202

a capability. These tests involve creating small and 203

focused datasets that are particularly effective in 204

detecting whether models resort to shortcuts to han- 205

dle complex inputs, rather than truly mastering the 206

capability. 207

To apply MFTs in evaluating the reasoning abil- 208

ity of LLMs, we treated each formal logical rule 209

as an independent task and generated abundant test 210

cases for each task. Each test case was designed 211

to trigger logical failures in the LLMs, allowing us 212

to assess the strengths and weaknesses of LLMs in 213

the logical reasoning process, and providing a solid 214

foundation for further analysis and improvement. 215

3 LogicAsker 216

In this section, we introduce the design and imple- 217

mentation of LogicAsker, a novel tool to trigger 218

logical reasoning failures in large language models. 219

Figure 1 overviews the workflow of LogicAsker, 220

which consists of three main modules: test case 221

generation, weakness identification and in-context 222

learning (ICL) demonstration. In particular, the 223

test case generation module utilizes atomic skills 224
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Figure 2: Test case generation procedure.

defined on the two formal logic systems and an225

inference synthesis approach to generate questions226

as test cases. Then, the generated cases are fed227

into the LLMs to reveal weaknesses and provide in-228

sights into the LLMs by the weakness identification229

process. Finally, LogicAsker utilizes these insights230

to construct ICL demonstrations to improve the231

reasoning abilities of the LLMs.232

3.1 Reasoning Skills233

Atomic skills. As described in Section 2.1, propo-234

sitional and predicate logic are two fundamental235

systems that formalize the reasoning process. The236

inference rules and equivalence laws in these two237

systems are atomic and can cover all correct reason-238

ing scenarios; therefore, we define these 30 rules239

as the set of atomic skills an LLM should possess240

to perform formal reasoning.241

Extended skills. Predicate logic extends propo-242

sitional logic to deal with more complex statements243

that involve variables, quantifiers, and predicates.244

In this regard, besides the unique equivalence and245

inference laws in predicate logic, we add quanti-246

fiers and variables to every rule in propositional247

logic to form the predicate version of the laws. Us-248

ing this approach, we expand the set of 30 atomic249

skills into a set of 208 extended skills. In Appendix250

C, we provide some concrete examples of these251

extended rules.252

3.2 Test Case Generation253

To generate logical questions, LogicAsker first254

adopts a rule-based method to generate logical ex-255

pressions systematically based on reasoning skills256

and then translates the logical expressions into nat-257

ural language. Figure 2 provides an overview of258

the procedure.259

Logic expression generation. To better control260

the process of logic expression generation, we first261

define the length of an inference problem by the262

number of syllogisms it involves. We use the in- 263

ference rules described in Section 2.1 to generate 264

inference expressions with length one. When a 265

longer inference (> 1) is specified, we start with a 266

base expression E0 := P1 ∧ P2 → C1 with length 267

one and expand the inference chain. Specifically, 268

we substitute the premises (either or both) of the 269

first inference with the conclusion of some other 270

syllogism and append the premises of those syllo- 271

gisms into the list of all premises. For example, we 272

can find another syllogism E1 := P3 ∧ P4 → P2 273

with P2 as the conclusion and then obtain a new 274

expression Enew := P1 ∧ P3 ∧ P4 → C1 with the 275

inference length of two. We can obtain inference 276

expressions of any length by recursively expanding 277

the inference chain as above. During the genera- 278

tion process, one can specify the desired rules and 279

length to allow complete control over expected test 280

cases. 281

In addition to the correct inference expression 282

created above, we generate three kinds of false in- 283

ference expressions: contradiction, unrelated, and 284

fallacy. A contradiction is generated by negating 285

the conclusion of a correct inference expression and 286

an unrelated is generated by replacing the conclu- 287

sion of a valid inference expression with an irrele- 288

vant statement. For example, for E0 := P1∧P2 → 289

C1, a contradiction is Ec := P1 ∧ P2 → ¬C1, an 290

unrelated can be Eu := P1 ∧ P2 → U1. We create 291

a fallacy by directly using the fallacy rules listed 292

in Section 2.1 for an inference length of one. For 293

a fallacy with a more extended length, we select a 294

fallacy rule as the base expression and expand the 295

inference chain using correct rules, ensuring the 296

expression’s incorrectness. 297

Natural language translation. Partially in- 298

spired by (Ontañón et al., 2022), translating a 299

clause into natural language involves a series of 300

patterns that depend on the structure of the clause. 301
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Simple propositions are transformed into one of the302

template patterns, such as “subject verb-action”,303

“subject predicate”, or “impersonal-action” with a304

predefined set of subjects, verbs, predicates, and305

impersonal actions that can be chosen randomly306

without repetition. For predicate clauses that in-307

volve constant or variables, we employ template308

“subject verb-action”, “subject predicate” to trans-309

lated them. Furthermore, each clause can be ren-310

dered in various modes, such as the present, past,311

or negated forms. Additionally, connectives like312

"or," "and," "implies," and "if and only if" also313

adhere to their designated patterns. For quantified314

clauses, we adopt patterns like "for all x, X", "there315

is at least one x for which X", and "some Xs are316

Y ,". To facilitate the generation process, we cu-317

rate extensive lists of potential subjects, including318

common names in English, and compile plausible319

predicates, actions, and impersonal actions. We320

provide a detailed illustration of the translation pro-321

cess in Appendix D.322

3.3 Weakness Identification323

Generally, LLMs are required to perform well on324

two tasks to respond appropriately to a query in-325

volving reasoning, i.e., instruction following and326

logical reasoning. The former ensures LLMs can327

understand the instructions in the query and re-328

spond as required. At the same time, the latter329

makes sure LLMs can successfully resolve the330

problem through reasoning.331

To measure the reasoning abilities of the LLMs,
we define the response accuracy as follows. Let
Nsatisfy denote the number of responses that satisfy
the requirement in the query (instruction follow-
ing), and Ncorrect denote the number of responses
that are correct (reasoning). In particular, since all
generated queries are formulated as yes-or-no ques-
tions, LogicAsker adopts an automatic approach
that searches for pre-defined keywords (e.g., "yes"
and "no") in sentences to identify qualified answers
and correct answers. The response accuracy is then
calculated by

Response Acc =
Ncorrect

Nsatisfy
.

This metric can directly reflect LLMs’ performance332

on reasoning, ruling out the instruction following333

factor.334

To reveal the weaknesses of LLMs, we gen-335

erate n test cases for each leaf node in the rule336

tree depicted in Figure 1. Then, we calculated the337

response accuracy of an LLM of each leaf node. 338

Based on the result, we can identify the weaknesses 339

of LLMs by listing the leaf nodes that receive the 340

lowest accuracy. In addition, by grouping the ac- 341

curacy by different attributes in the rule tree, we 342

can gain insights into the strengths and weaknesses 343

of LLMs on these attributes (e.g., performance on 344

predicate logic vs. propositional logic). 345

3.4 Improving LLMs 346

In-context learning (ICL) is a paradigm that enables 347

LLMs to learn tasks with examples in the form of 348

demonstrations (Brown et al., 2020). It leverages 349

task instructions and a few demonstration exam- 350

ples to convey the task semantics, which are then 351

combined with query questions to create inputs for 352

the language model to make predictions. ICL has 353

demonstrated impressive performance in various 354

natural language processing and code intelligence. 355

However, the performance of ICL is known to rely 356

on high-quality demonstrations (Gao et al., 2023b) 357

strongly. To fully unleash the potential of ICL, 358

LogicAsker utilizes the weak skills of each LLM 359

to construct both correct and incorrect examples 360

with expected answers and explanations as demon- 361

strations to facilitate the reasoning of LLMs. The 362

generation process follows a similar approach to 363

the test case generation described in § 3.2, with the 364

difference being that we append the correct answer 365

and a brief explanation at the end of each case. We 366

show an instance of the demonstration example and 367

generation process in Appendix E. 368

4 Experiments 369

4.1 Experimental Setup 370

We apply LogicAsker to test six popular LLMs, in- 371

cluding four from commercial companies and two 372

from open-source. Table 2 lists brief information 373

on these systems. Among them, four LLMs are 374

ranked within the top 8 in the LLM Arena Leader- 375

board proposed by (Zheng et al., 2023), according 376

to the assessment results in June 2023. We leave 377

details of how we access the model, the parameters 378

used, and the prompt we used in Appendix F. 379

4.2 Effectiveness of LogicAsker 380

We demonstrate the effectiveness of LogicAsker 381

through the overall performance of LLMs on the 382

test cases. We conduct two iterations of experi- 383

ments for a comprehensive assessment. In the first 384

iteration, we follow the setting in § 3.3 and set 385
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Table 2: Conversational LLMs used in the evaluation.

Name Organization Launch Date Rank

GPT-4 OpenAI Mar 2023 1
ChatGPT OpenAI Nov 2022 4
GPT-3 (Brown et al., 2020) OpenAI Jun 2020 -
Bard Google Mar 2023 -
Vicuna-13b LMSYS Org Mar 2023 6
Guanaco-33b (Dettmers et al., 2023) UW May 2023 8

GPT-4 ChatGPT Bard Vicuna-13b GPT-3 Guanaco-33b
0.0

0.2

0.4

0.6

0.8

1.0

0.75

0.93

0.45

0.80

0.28

0.76

0.17

0.65

0.17

0.45

0.06

0.31

Weakness data
General data

Figure 3: Overall accuracy.

n = 10, resulting in 2080 cases. The second itera-386

tion is based on the first one, which focuses on the387

identified weaknesses of each LLM, i.e., the ten388

leaf nodes in Figure 1 with the lowest accuracy. We389

generated ten additional test cases for each weak-390

ness. These 100 test cases comprise our “weakness391

dataset, ” which will be utilized for further evalua-392

tion in 4.5.393

The overall performance of LLMs in the first394

and second iteration is shown in Figure 3. The395

result reveals that our framework can effectively396

expose logical failures in the first iteration, with397

LLM’s accuracy ranging from 31%-93%. When398

focusing on the weak skills of LLMs in the sec-399

ond iteration, we further reduce the accuracy to400

6%-75% for the LLMs. What’s surprising is that401

most of these LLMs achieved response accuracy402

even lower than random guesses (i.e., 50% here)403

when confronted with logical questions involving404

specific logical rules. This contradicts their remark-405

able performance in various LLM benchmarks, for406

example, achieving top 8 ranks on the LLM Arena407

Leaderboard. It suggests that existing benchmark408

datasets are not comprehensive enough to assess409

the generalization ability of LLMs in reasoning.410

4.3 Insights into Reasoning Abilities411

We conducted a comprehensive analysis to gain412

insights from the failures exposed by LogicAsker,413

obtaining three key observations from the evalua-414

Vicuna-13b GPT-4 Guanaco-33b ChatGPT Bard GPT-3

6

4

2

0
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Figure 4: Propositional minus predicate accuracy (%).
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0.57
0.65

0.75
0.79

0.96

0.34

0.57

0.750.77

0.87
0.95
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Inference
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Figure 5: Accuracy of different rule categories.

tion: 415

Most LLMs are better at easier logical skills. 416

We compared the performance of LLMs on propo- 417

sitional logic and predicate logic, the former of 418

which is simper in form while the latter involves 419

more complex quantifier manipulations. Figure 4 420

illustrates the difference between the accuracy and 421

response scores obtained for the two logic systems. 422

A positive value indicates a higher score in proposi- 423

tional logic, while a negative value indicates higher 424

scores in predicate logic. Notably, we observed 425

that most LLMs are better at propositional logic, 426

implying their limited ability in complex reasoning 427

scenarios. 428

Most LLMs are weak in recognizing logical 429

fallacies. Figure 5 presents the accuracy of LLMs 430

under different skill categories. Interestingly, we 431

discovered that among three types of skills, recog- 432

nizing fallacies has the lowest accuracy for most 433

LLMs, with Vicuna-13b being the only exception. 434

Particularly, Guanaco 33b achieved zero accuracy 435

on the fallacy task due to its tendency to provide 436

affirmative answers to most queries. It suggests 437
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that current LLMs are over-confident even in fal-438

lacies, which may be learned from the mistakes in439

pretraining data.440

Longer inference chains are more challenging.441

To assess the impact of inference length, we gen-442

erated test cases of varying lengths (i.e., ranging443

from 1 to 7) using randomly selected rules. For444

each length, we generated 100 test cases. Table 3445

shows the performance of LLMs on these test cases.446

Generally, most LLMs perform gradually worse as447

the inference length increases, indicating the in-448

creased complexity introduced by longer inference449

chains. Particularly, Guanaco 33b suffers from a450

severe prediction bias such that it tends to output451

affirmative answers to all questions, regardless of452

the inference length or logical complexity.453

Table 3: Accuracy with respect to inference length.

Length 1 3 5 7

GPT-4 0.92 0.85 0.78 0.74
ChatGPT 0.79 0.71 0.72 0.65
Bard 0.80 0.68 0.63 0.56
Vicuna 13b 0.63 0.62 0.52 0.48
GPT-3 0.68 0.52 0.60 0.56
Guanaco 33b 0.57 0.40 0.46 0.55

Case study: GPT-4 did not learn all logic rules454

well. To provide a direct impression of what skills455

LLMs cannot perform well, we list three atomic456

rules in which GPT-4 has the lowest accuracy in457

Table 4. While GPT-4 has an average accuracy of458

93% over all skills, it only achieves 60% - 70%459

accuracy on these skills, indicating that it cannot460

perform these atomic skills smoothly.461

These insights provide a valuable understanding462

of the strengths and weaknesses of each LLM when463

handling logical questions, allowing us to uncover464

specific areas that require improvement and poten-465

tial avenues for enhancing overall performance.466

4.4 Validity of Test Cases467

In this section, we aimed to investigate the valid-468

ity of the test cases generated by LogicAsker. To469

achieve this, we randomly sampled 10% (208) of470

the test cases generated during the first iteration471

of the experiment in 4.2 and conduct manual in-472

spection. Two annotators with bachelor’s degrees473

were recruited to answer the questions manually.474

Each test case was annotated as either valid or in-475

valid based on the following three questions: a)476

Is the question grammatically correct? b) Is the477

question understandable and has only one interpre-478

tation? c) Can the target answer be derived from 479

the question? A test case is considered valid only 480

when both annotator’s answer to the above ques- 481

tions are negative. The results of the annotation 482

are presented in Table 5. This result is statistically 483

sufficient to prove that the probability of LogicAs- 484

ker generating understandable and solvable logical 485

questions is larger than or equal to 0.94 (with p- 486

value 0.05), indicating that the queries created by 487

LogicAsker are highly reliable and valid. 488

4.5 LogicAsker to Improve Reasoning 489

In this section, we explore the potential of Logi- 490

cAsker in further improving the reasoning ability 491

of LLMs through in-context learning (ICL). 492

We employ LogicAsker to generate ICL demon- 493

strations tailored to address the weaknesses dataset 494

uncovered in the experiments of 4.2. For each 495

inference problem, we generated ICL demonstra- 496

tions that provide both the expected answer and an 497

explanation as described in § 3. We evaluate the 498

effectiveness of the ICL demonstrations generated 499

by LogicAsker by comparing the following prompt- 500

ing strategies: a) Zero-Shot: We provide only task 501

instructions without any ICL demonstrations. b) 502

Random Demonstrations: In addtion to the task 503

instruction, we also include four ICL demonstra- 504

tions selected randomly from the available rules. c) 505

Weakness ICL Demonstration: Instead of random 506

demonstrations, we include four ICL demonstra- 507

tions using the weakness rules identified in 4.2 with 508

balanced answer labels, i.e., two correct and two 509

incorrect. 510

We perform ICL with the GPT family on their 511

respective weakness datasets and report the results 512

in Table 6. In general, the weakness ICL demon- 513

strations are more effective than those random ICL 514

demonstrations. Though the latter one perform 515

slightly better on ChatGPT, it brings no improve- 516

ment to GPT-3. These findings demonstrate the 517

potential of LogicAsker in improving the reason- 518

ing ability of LLMs. 519

5 Related Work 520

Numerous recent studies have attempted to mea- 521

sure the reasoning ability of LLMs. One ap- 522

proach to gauge the reasoning abilities of LLMs 523

is by assessing their performance, such as accu- 524

racy, on tasks that demand reasoning skills, in- 525

cluding arithmetic reasoning (Cobbe et al., 2021; 526

Hendrycks et al., 2021; Amini et al., 2019; Patel 527
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Table 4: Weakness of GPT-4

Rule Type Example Accuracy

De Morgan’s laws Correct Jessica is making tea and it is overcast cannot both
be true. Therefore, Jessica is not making tea or it is
not overcast.

0.6

Conditional laws Incorrect Karen is not playing a game or it is sunny. There-
fore, the fact that Karen plays a game does not
imply that it is sunny.

0.6

Biconditional introduction Incorrect If Tom writes letters, then Bob is running. If Bob
runs, then Tom is writing letters. Therefore, it is
not true that Bob is running if and only if Tom is
writing letters.

0.7

Table 5: Validity of test cases.

Invalid Cases a b c Total

Count 4 3 0 7
Percentage 1.92% 1.44% 0.00% 3.37%

Table 6: Performance of ICL demonstrations by Logi-
cAsker.

Models Zero Random Weak

GPT-4 0.75 0.83 0.85
ChatGPT 0.45 0.64 0.56
GPT-3 0.17 0.16 0.39

et al., 2021; Miao et al., 2020; Ling et al., 2017;528

Roy and Roth, 2016), commonsense reasoning (Tal-529

mor et al., 2019; Geva et al., 2021; Clark et al.,530

2018), symbolic reasoning (Wei et al., 2022b), un-531

derstanding of words, dates, and causal relation-532

ships (Aarohi Srivastava, 2022), generalization abil-533

ity (Lake and Baroni, 2017; Anil et al., 2022), and534

table reasoning ability (Nan et al., 2021). How-535

ever, whether LLMs’ predictions are based on true536

reasoning or simple heuristics remains unclear, as537

most existing evaluations focus solely on accuracy538

on end tasks and do not directly assess their reason-539

ing processes.540

There have also been efforts to develop metrics541

and benchmarks that enable a more formal anal-542

ysis of reasoning in LLMs. For instance, (Han543

et al., 2022) use expert-written data to create a544

dataset that contains first-order logic reasoning545

problems, requiring models to determine the cor-546

rectness of conclusions given a set of premises.547

Similarly, (Saparov and He, 2022) utilizes one548

predicate inference rule recursively to generate test549

cases, while (Ontañón et al., 2022) adopts mainly550

propositional logic rules and a randomized gen-551

eration method to synthesize logical expressions 552

as test cases. Nonetheless, these methods either 553

lack generalizability or focus on a limited set of 554

deduction rules. Recently, (Saparov et al., 2023) 555

proposed a method to evaluate LLMs’ general de- 556

ductive reasoning capacity by employing all deduc- 557

tion rules in propositional logic, measuring their 558

ability to generalize to more complex proofs than 559

their demonstrations. In contrast, our work encom- 560

passes a broader scope, considering all deduction 561

rules and equivalent laws in propositional logic and 562

predicate logic, the two fundamental formal logic 563

systems. Additionally, our framework is designed 564

to provide a comprehensive insight into the models’ 565

capacity for each particular rule and employ this 566

insight to enhance LLMs’ performance. 567

6 Conclusion 568

In this paper, we present LogicAsker, an automated 569

tool designed to comprehensively evaluate and im- 570

prove the formal reasoning abilities of LLMs under 571

a set of atomic skills. 572

Our research demonstrated the efficacy of Logi- 573

cAsker in identifying logical reasoning failures in a 574

diverse set of widely deployed LLMs, we achieved 575

a substantial success rate in revealing reasoning 576

flaws in these models, ranging from 25% to 94%. 577

Additionally, we utilized the test cases from Log- 578

icAsker to design in-context learning demonstra- 579

tions, which effectively enhance the logical rea- 580

soning capabilities of LLMs, e.g., improving from 581

75% to 85% for GPT-4. 582

By providing insights into the strengths and 583

weaknesses of LLMs in reasoning, we are able 584

to improve the reliability and trustworthiness of 585

these models. The release of all the code and data 586

aims to facilitate replication and encourage further 587

research in this crucial area. 588
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Limitations589

This paper identifies two primary limitations that590

highlight areas for future research:591

• Although our ICL (In-Context Learning) method592

significantly enhances the logical reasoning capa-593

bilities of large language models (LLMs), there594

remains a performance gap compared to human-595

level reasoning. Further refinements and innova-596

tions in model training and architecture may be597

necessary to bridge this gap.598

• Our method is currently applicable only to LLMs599

that possess robust in-context learning capabil-600

ities. LLMs lacking this feature may not ben-601

efit from our approach. Future studies could602

explore fine-tuning methods to extend the ap-603

plicability of our improvements across a broader604

spectrum of LLMs, potentially enhancing models605

with weaker or no inherent in-context learning606

abilities.607
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A Motivating Example800

We provide a motivating example to illustrate the801

challenge of evaluating the logic reasoning ability802

of LLMs. Consider the following inference exam-803

ple: Either it is raining, or Tom will play804

football; if it rains, then the floor will805

be wet; the floor is dry; therefore, Tom806

will play football. We may encounter the807

following challenges: 1) If an LLM concludes cor-808

rectly, it is unclear whether the response stems from809

reasoning or merely relies on simple heuristics such810

as memorization or word correlations (e.g., “dry811

floor” is more likely to correlate with “playing foot-812

ball”). 2) If an LLM fails to reason correctly, it813

is not clear which part of the reasoning process it814

failed (i.e., inferring not raining from floor being815

dry or inferring playing football from not raining).816

3) There is a lack of a system that can organize817

such test cases to cover all other formal reasoning818

scenarios besides implication, such as logical equiv-819

alence (e.g., If A then B, if B then A; therefore, A820

if and only if B). 4) Furthermore, understanding821

an LLM’s performance on such test cases provides822

little guidance on improving the reasoning ability823

of the LLM.824

B Logical Rules and Fallacies825

We list all the logic equivalence rules in Table 7-826

8, logic inference rules in Table 9, and common827

logical fallacies in Table 10.828

C Extended Rules829

C.1 Equivalent Extension830

The equivalent rule extension is based on the fol-
lowing fact:

{A ⇔ B, ∀x(A)} ⊢ {∀x(B)}

(i.e., if A and B are equivalent, and for all x, A is
true, then for all x, B is also true), and

{A ⇔ B, ∃x(A)} ⊢ {∃x(B)}

(i.e., if A and B are equivalent, and there exist x
such that A is true, then there exist x such that B
is true). For example, the predicate version of the
DeMorgan’s law

¬(P ∧Q) ⇔ ¬P ∨ ¬Q

will become

∀x(¬(P (x) ∧Q(x))) ⇔ ∀x(¬P (x) ∨ ¬Q(x)),

and

∃x(¬(P (x) ∧Q(x))) ⇔ ∃x(¬P (x) ∨ ¬Q(x)).

In this example, the goal is to extend the proposi- 831

tional equivalence law to its predicate version by 832

adding quantifiers. To achieve this goal, we first 833

note that DeMorgan’s law states that "P and Q can- 834

not both be true" (e.g., Alice is happy and Bob is 835

happy cannot both be true) is equivalent to "either 836

not P or not Q" (e.g., either Alice is not happy or 837

Bob is not happy). Since the two expressions are 838

equivalent, we can add the same quantifier to both 839

sides and the equivalence will still hold. There- 840

fore, by adding a "for all" quantifier to both sides, 841

we obtain "for all x, P(x) and Q(x) cannot both be 842

true" (for all persons in the room, the person likes 843

Charley and the person likes David cannot both be 844

true) is equivalent to "for all x, either not P(x) or 845

not Q(x)" (e.g., for all person in the room, either the 846

person doesn’t like Charley or the person doesn’t 847

like David). Before the extension, the law can only 848

be applied to simple propositions (e.g., P = "Alice 849

is happy", Q = "Bob is happy"), but after extension, 850

the law can be applied to predicates with variables 851

and quantifiers (e.g., P(x) = "x likes Charley", Q(x) 852

= "x likes David") The same also applies to the 853

"exist" quantifier. 854

C.2 Inference Extension 855

The inference rule extension is based on the follow-
ing fact:

{A∧B → C} ⊢ {∀x, (A)∧∀x, (B) → ∀x, (C)},

(i.e., if A and B imply C, then for all x, A is true
and for all x, B is true implies for all x, C is true)

{A∧B → C} ⊢ {∃x, (A)∧∀x, (B) → ∃x, (C)}.

(i.e., if A and B imply C, there exists x such that 856

A is true and for all x, B is true implies there 857

exists x such that C is true). Since all proposi- 858

tional inference rules are of the form P ∧Q → C, 859

we can transform them into their predicate form 860

∀x, P (x)∧∀x,Q(x) → ∀x,C(x) and ∃x, P (x)∧ 861

∀x,Q(x) → ∃x,C(x) following similar procedure 862

in the previous section. 863

D Natural Language Translation 864

D.1 Algorithm 865

Given an input: a logic clause of the form 866

[operator, ClauseA, ClauseB], where the 867
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Table 7: Propositional logic equivalence laws.

Law Logical Equivalence Example

Idempotent laws P ∧ P ⇔ P I am a teacher and I am a teacher ⇔ I am a
teacher.

P ∨ P ⇔ P It’s raining or it’s raining ⇔ it’s raining.

Commutative laws P ∧Q ⇔ Q ∧ P It is cold and it is winter ⇔ It is winter and
it is cold.

P ∨Q ⇔ Q ∨ P You can go to the party or you can study ⇔
You can study or you can go to the party.

Associative laws (P ∧Q) ∧R ⇔ P ∧ (Q ∧R) It is raining and it is cold, and also it is
winter ⇔ It is raining, and also, it is cold
and it is winter.

(P ∨Q) ∨R ⇔ P ∨ (Q ∨R) Either I will go to the park or I will go to
the library is true, or I will go to the cinema
⇔ I will go to the park or either I will go to
the library or I will go to the cinema is true.

Distributive laws P ∧ (Q ∨R) ⇔ (P ∧Q) ∨ (P ∧R) It is raining and either I have an umbrella
or I have a raincoat ⇔ It is raining and I
have an umbrella, or it is raining and I have
a raincoat.

P ∨ (Q ∧R) ⇔ (P ∨Q) ∧ (P ∨R) Either I will go to the park, or it is cloudy
and it is cold ⇔ Either I will go to the park
or it is cloudy is true, and either I will go to
the park or it is cold is true.

DeMorgan’s laws ¬(P ∧Q) ⇔ ¬P ∨ ¬Q It is not true that it’s both cold and raining
⇔ It’s not cold or it’s not raining.

¬(P ∨Q) ⇔ ¬P ∧ ¬Q It’s not true that I will study or play ⇔ I
won’t study and I won’t play.

Complement laws ¬(¬P ) ⇔ P It is not the case that it is not raining ⇔ It
is raining.

P ∧ ¬P ⇔ False It is raining and it is not raining.
P ∨ ¬P ⇔ True It is raining or it is not raining.

Conditional laws P → Q ⇔ ¬P ∨Q If it rains, then I’ll stay at home ⇔ It
doesn’t rain or I stay at home.

Bidirectional laws (P ↔ Q) ⇔ (P ∧Q) ∨ (¬P ∧ ¬Q) I’ll go to the park if and only if it’s sunny
⇔ Either it’s sunny and I go to the park, or
it’s not sunny and I don’t go to the park.

Identity laws P ∧ True ⇔ P It is raining and it is true ⇔ It is raining.
P ∨ False ⇔ P I will study or it’s false ⇔ I will study.
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Table 8: Predicate logic quantifier laws.

Law Logical Equivalence Example

Quantifier Negation ¬∀xP (x) ⇔ ∃x¬P (x) It is not the case that all birds can
fly ⇔ There exists a bird that can-
not fly.

¬∃xP (x) ⇔ ∀x¬P (x) There is no human that can live
forever ⇔ All humans cannot live
forever.

Quantifier Distribution ∀x(P (x) ∧Q(x)) ⇔ ∀xP (x) ∧ ∀xQ(x) Every student is smart and dili-
gent ⇔ Every student is smart,
and every student is diligent.

∃x(P (x) ∨Q(x)) ⇔ ∃xP (x) ∨ ∃xQ(x) There is a person who is either a
doctor or a lawyer ⇔ There is a
person who is a doctor, or there
is a person who is a lawyer.

Quantifier Commutation ∃x∃yP (x, y) ⇔ ∃y∃xP (x, y) There exists a child and a toy
such that the child owns the toy
⇔ There exists a toy and a child
such that the child owns the toy.

∀x∀yP (x, y) ⇔ ∀y∀xP (x, y) For all parents and children, the
parent loves the child ⇔ For all
children and parents, the parent
loves the child.

Quantifier Transposition ∃x∀yP (x, y) ⇔ ∀y∃xP (x, y) There exists a food that all people
like is not generally equivalent to
For all people, there exists a food
that they like.

∀x∃yP (x, y) ⇔ ∃y∀xP (x, y) For every person, there exists a
food that they like is not generally
equivalent to There exists a food
that every person likes.

Quantifier Movement ∀x(P → Q(x)) ⇔ (P → ∀xQ(x)) For every child, if it is raining
then they are inside ⇔ If it is
raining, then every child is in-
side when the notion of raining
doesn’t depend on the specific
child.

∃x(P ∧Q(x)) ⇔ (P ∧ ∃xQ(x)) There exists a student who is tall
and a good basketball player ⇔
There is a tall student and there
exists a student who is a good bas-
ketball player when the notion of
being tall doesn’t depend on the
specific student.
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Table 9: Propositional and predicate logic inference rules.

Inference Rule Logical Form Example

Universal Instantiation ∀xP (x) ⊢ P (c) All birds have wings. Hence, this
crow has wings.

Existential Generalization P (c) ⊢ ∃xP (x) This apple is red. Hence, there exists
a red apple.

Modus Ponens {P → Q,P} ⊢ Q If it rains, the street gets wet. It is
raining. Hence, the street is wet.

Modus Tollens {P → Q,¬Q} ⊢ ¬P If I study, I will pass the test. I did not
pass the test. Hence, I did not study.

Transitivity {P → Q,Q → R} ⊢ P → R If it rains, I take my umbrella. If I
take my umbrella, I won’t get wet.
Hence, if it rains, I won’t get wet.

Disjunctive Syllogism {P ∨Q,¬P} ⊢ Q Either it’s raining or it’s snowing. It’s
not raining. Hence, it’s snowing.

{P ∨Q,¬Q} ⊢ P Either it’s raining or it’s snowing. It’s
not snowing. Hence, it’s raining.

Addition {P} ⊢ P ∨Q It is raining. Hence, it is raining or it
is snowing.

{Q} ⊢ P ∨Q It is snowing. Hence, it is raining or
it is snowing.

Simplification {P ∧Q} ⊢ P It is raining and it is cold. Hence, it
is raining.

{P ∧Q} ⊢ Q It is raining and it is cold. Hence, it
is cold.

Conjunction {P,Q} ⊢ P ∧Q It is raining. It is cold. Hence, it is
raining and it is cold.

Constructive Dilemma {P → Q,R → S, P ∨R} ⊢ Q ∨ S If it rains, I’ll stay at home. If I work,
I’ll be tired. Either it will rain or I’ll
work. Hence, I’ll either stay at home
or be tired.

Table 10: Common fallacies.

Name Logical Form Example

Affirming the Consequent p → q, q ⊢ p If I study, I will pass the test. I passed
the test. Therefore, I studied.

Denying the Antecedent p → q,¬p ⊢ ¬q If it rains, the street gets wet. It is not
raining. Therefore, the street is not wet.

Affirming a Disjunct p ∨ q, p ⊢ ¬q Either I will study or I will fail the test.
I studied. Therefore, I will not fail the
test.

Denying a Conjunct ¬(p ∧ q),¬p ⊢ q I’m not both hungry and thirsty. I’m
not hungry. Therefore, I’m thirsty.

Illicit Commutativity p → q ⊢ q → p If I am in Paris, then I am in France.
Therefore, if I am in France, I am in
Paris.

Undistributed Middle ∀x(P (x) → Q(x)), Q(a) ⊢ P (a) All dogs are animals. My cat is an ani-
mal. Therefore, my cat is a dog.
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clauses are also of the form [operator, ClauseA,868

ClauseB], the algorithm will do the following:869

1. Single Proposition Clause: If the clause is870

just a single proposition, the algorithm finds871

this proposition’s natural language form and872

returns it. The natural language form is ob-873

tained by combining vocabularies according874

to certain templates (e.g., subject + action).875

2. Negation: If the clause starts with a “¬” op-876

erator, the algorithm then translates the rest877

of the clause based on a negation template,878

making sure to negate the statement.879

3. Quantifiers: For clauses that start with “∀”880

(meaning for all items) or “∃” (meaning there881

is at least one item), it translates these into nat-882

ural language, adjusting the phrasing based on883

whether we’re asserting something positively884

or negating it.885

4. Logical Connectives: If the clause combines886

propositions using logical operators like “∧”,887

“∨”, “→” (implies), or “↔” (if and only if),888

the function translates these into natural lan-889

guage phrases that express the relationship890

between the propositions.891

D.2 Example892

Consider the expression: [∀x, →, A(x), B(x)].893

Here’s how the function would translate it:894

1. It sees the “∀x” quantifier and adds “For all895

x,” to the sentence and continues to process896

the clause [→, A(x), B(x)].897

2. It sees the “→” operator, which means898

“if...then...”. It connects the two operands with899

the operator and obtains “For all x, if A(x),900

then B(x)”. Then, it continues to process the901

clauses A(x), B(x).902

3. Since A(x), B(x) are single proposition903

clauses, the function looks up the vocabulary904

and synthesizes the natural language versions905

of the proposition. For example, A(x) = “x906

drinks water”, B(x) = “x is a cashier”.907

4. It constructs the sentence: “For all x, if x908

drinks water, then x is a cashier”.909

D.3 Vocabulary910

We list the vocabulary used in our experiment:911

Subjects 912

• x, y, z, James, Mary, Robert, Patricia, John, 913

Jennifer, Michael, Linda, William, Elisabeth, 914

David, Barbara, Richard, Susan, Joseph, Jes- 915

sica, Thomas, Sarah, Charles, Karen, Alice, 916

Benjamin, Daniel, Emily, George, Helen, Ian, 917

Julie. 918

Predicates 919

• a cashier, a janitor, a bartender, a server, an 920

office clerk, a mechanic, a carpenter, an elec- 921

trician, a nurse, a doctor, a police officer, a 922

taxi driver, a soldier, a politician, a lawyer, 923

a scientist, an astronaut, a poet, an artist, a 924

sailor, a writer, a musician, poor, rich, happy, 925

sad, fast, curious, excited, bored, tired, joy- 926

ful, intelligent, skilled, efficient, meticulous, 927

creative. 928

Actions 929

• make tea, makes tea, making tea, drink wa- 930

ter, drinks water, drinking water, read a book, 931

reads a book, reading a book, play tennis, 932

plays tennis, playing tennis, play squash, 933

plays squash, playing squash, play a game, 934

plays a game, playing a game, go running, 935

goes running, running, work, works, working, 936

sleep, sleeps, sleeping, cook, cooks, cooking, 937

listen to a song, listens to a song, listening to 938

a song, write a letter, writes a letter, writing 939

a letter, drive a car, drives a car, driving a car, 940

climb a mountain, climbs a mountain, climb- 941

ing a mountain, take a plane, takes a plane, 942

taking a plane, paint a picture, paints a picture, 943

painting a picture. 944

Impersonal Candidates 945

• snowing, snows, doesn’t snow, snow, raining, 946

rains, doesn’t rain, rain, sunny, is sunny, is 947

not sunny, be sunny, cloudy, is cloudy, is not 948

cloudy, be cloudy, windy, is windy, is not 949

windy, be windy, cold, is cold, is not cold, 950

be cold, late, is late, is not late, be late, over- 951

cast, is overcast, is not overcast, be overcast, 952

foggy, is foggy, is not foggy, be foggy, humid, 953

is humid, is not humid, be humid. 954

E Demonstration Examples 955

The following is a three-shot demonstration exam- 956

ple used in our experiment: 957
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Consider the following premises: For all u,
u is not a doctor. There is at least one u for
which the claim that u is a doctor and the
claim that u will drive a car cannot both be
true. We cannot infer that: There is at least
one u for which u will drive a car. Because
this is a logical fallacy of the existential
denying a conjunct.

Consider the following premises: For all x,
x will not drive a car or x will play tennis.
There is at least one x for which x will drive
a car or x will drink water. We cannot infer
that: There is at least one x for which x will
play tennis. Because the conclusion is not
related to the premises

Consider the following premises: For all x,
x is a scientist or x is curious. There is at
least one x for which x is not a scientist or x
will sleep. We cannot infer that: There is at
least one x for which x is curious. Because
the conclusion is not related to the premises

Now answer the following question:

Consider the following premises: For all x,
x will work or x is a poet. For all x, x will
not work. Can we infer the following from
them? Answer yes or no: There is at least
one x for which x is not a poet.

958

F Accessing LLMs959

To access these LLMs, we use the OpenAI APIs960

of GPT-4 2 (gpt4), ChatGPT 3 (gpt-3.5-turbo)961

and GPT-34 (text-davinci-003), the webpage of962

Bard 5, and the open-source weights of Vicuna-963

13b 6 and Guanaco-33b 7. For GPT families, we964

use default hyper-parameters in the APIs.965

G Prompting LLMs966

We prompt the LLMs to answer the test cases gener-967

ated by LogicAsker. The prompt template we used968

is "Consider the following premises: [Premises].969

2https://openai.com/gpt-4
3https://openai.com/blog/chatgpt/
4https://beta.openai.com/docs/models/gpt-3
5https://bard.google.com/
6https://lmsys.org/blog/2023-03-30-vicuna/
7https://huggingface.co/timdettmers/guanaco-33b-

merged

Can we infer the following from them? Answer yes 970

or no: [Conclusion]". We set the system prompt of 971

GPT APIs to blank. 972
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