
Under review as a conference paper at ICLR 2023

CONTRASTIVE GRAPH FEW-SHOT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Prevailing supervised deep graph learning models often suffer from label sparsity
issue. Although many graph few-shot learning (GFL) methods have been developed
to avoid performance degradation in face of limited annotated data, they excessively
rely on labeled data, where the distribution shift in the test phase might result in
impaired generalization ability. Additionally, they lack a general purpose as their
designs are coupled with task or data-specific characteristics. To this end, we
propose a general and effective Contrastive Graph Few-shot Learning framework
(CGFL). CGFL leverages a self-distilled contrastive learning procedure to boost
GFL. Specifically, our model firstly pre-trains a graph encoder with contrastive
learning using unlabeled data. Later, the trained encoder is frozen as a teacher
model to distill a student model with a contrastive loss. The distilled model is
finally fed to GFL. CGFL learns data representation in a self-supervised manner,
thus mitigating the distribution shift impact for better generalization and making
model task and data-independent for a general graph mining purpose. Furthermore,
we introduce an information-based method to quantitatively measure the capability
of CGFL. Comprehensive experiments demonstrate that CGFL outperforms state-
of-the-art baselines on several graph mining tasks across various datasets in the
few-shot scenario. We also provide a quantitative measurement of CGFL’s success.

1 INTRODUCTION

Deep graph learning, e.g., graph neural networks (GNNs), has recently attracted tremendous atten-
tion due to its remarkable performance in various application domains, such as social/information
systems (Kipf & Welling, 2017; Hamilton et al., 2017), molecular chemistry/biology (Jin et al., 2017;
Hao et al., 2020), and recommendation (Ying et al., 2018; Fan et al., 2019). The success of GNNs
often relies on massive annotated samples, which contradicts the fact that it is expensive to collect
sufficient labels. This motivates the graph few-shot learning (GFL) study to tackle performance
degradation in the face of limited labeled data.

Previous GFL models are built on meta-learning (or few-shot learning) techniques, either metric-based
approaches (Vinyals et al., 2016; Snell et al., 2017) or optimization-based algorithms (Finn et al.,
2017). They aim to quickly learn an effective GNN adapted to new tasks with few labeled samples.
GFL has been applied to a variety of graph mining tasks, including node classification (Zhou et al.,
2019; Huang & Zitnik, 2020), relation prediction (Xiong et al., 2018; Lv et al., 2019; Zhang et al.,
2020), and graph classification (Chauhan et al., 2020; Ma et al., 2020). Despite substantial progress,
most previous GFL models still have the following limitations: (i) Impaired generalization. Existing
GFL methods excessively rely on labeled data and attempt to inherit a strong inductive bias for new
tasks in the test phase. However, a distribution shift exists between non-overlapping meta-training
data and meta-testing data. Without supervision signals from ground-truth labels, GFL may not learn
an effective GNN for novel classes of test data. This gap limits the meta-trained GNN’s generalization
and transferability. (ii) Constrained design. Most of the current GFL methods lack a general purpose
as they possess the premise that the designated task is universally the same prior across different
graph tasks or datasets, which in fact is not always guaranteed. For example, GSM (Chauhan et al.,
2020) needs to manually define a superclass of graphs, which cannot expand to node-level tasks. The
task or data-specific design limits the GFL’s utility for different graph mining tasks.

The above challenges call for a new generic GFL framework that can learn a generalizable, trans-
ferable, and effective GNN for various graph mining tasks with few labels. Fortunately, contrastive
learning has emerged to alleviate the dependence on labeled data, and learn label-irrelevant but

1

Under review as a conference paper at ICLR 2023

transferable representations from unsupervised pretext tasks for vision, language, and graphs (Chen
et al., 2020; Gao et al., 2021; You et al., 2020; Sohn et al., 2020). Thus, the natural idea is to leverage
contrastive learning to boost GFL.

In this work, we are motivated to develop a general and effective Contrastive Graph Few-shot
Learning framework (CGFL) with contrastive learning. To be specific, the proposed framework firstly
pre-trains a GNN by minimizing the contrastive loss between two views’ embeddings generated in two
augmented graphs. Later, we introduce a self-distillation step to bring additional elevation: the pre-
trained GNN is frozen as a teacher model and kept in the contrastive framework to distill a randomly
initialized student model by minimizing the agreement of two views’ embeddings generated by two
models. Both pre-training and the distillation steps can work at the meta-training and meta-testing
phases without requiring labeled data. Finally, the distilled student model is taken as the initialized
model fed to GFL for few-shot graph mining tasks. CGFL pre-trains GNN self-supervised, thus
mitigating the negative impact of distribution shift. The learned graph representation is transferable
and discriminable for new tasks in the test data. Besides, our simple and generic framework of CGFL
is applicable for different graph mining tasks. Furthermore, to quantitatively measure the capability
of CGFL, we introduce an information-based method to measure the quality of learned node (or
graph) embeddings on each layer of the model: we allocate each node a learnable variable as a noise
and train these variables to maximize the entropy while keeping the change of output as small as
possible. To summarize, our contributions in this work are:
• We develop a general and effective framework named CGFL to leverage a self-distilled contrastive

learning procedure to boost GFL. CGFL mitigates distribution shift impact and has the task and
data-independent capacity for a general graph mining purpose.

• We introduce an information-based method to quantitatively measure the capability of CGFL by
measuring the quality of learned node (or graph) embeddings. To the best of our knowledge, this is
the first study to explore GFL model measurement.

• Comprehensive experiments on multiple graph datasets demonstrate that CGFL outperforms
state-of-the-art methods for both node classification and graph classification tasks in the few-shot
scenario. Additional measurement results further show that CGFL learns better node (or graph)
embeddings than baseline methods.

2 RELATED WORK

Few-Shot Learning on Graphs. Many GFL models have been proposed to solve various graph
mining problems in face of label sparsity issue, such as node classification (Zhou et al., 2019; Yao
et al., 2020; Ding et al., 2020; Huang & Zitnik, 2020; Wang et al., 2022), relation prediction (Xiong
et al., 2018; Lv et al., 2019; Chen et al., 2019; Zhang et al., 2020), and graph classification (Chauhan
et al., 2020; Ma et al., 2020; Guo et al., 2021; Wang et al., 2021). They are built on meta-learning
(or few-shot learning) techniques that can be categorized into two major groups: (1) metric-based
approaches (Vinyals et al., 2016; Snell et al., 2017); (2) optimization-based algorithms (Finn et al.,
2017). For the first group, they learn effective similarity metrics between few-shot support data and
query data. For example, GPN (Ding et al., 2020) conducts node informativeness propagation to build
weighted class prototypes for a distance-based node classifier. The second group proposes to learn
well-initialized GNN parameters that can be fast adapted to new graph tasks with few labeled data.
For instance, G-Meta (Huang & Zitnik, 2020) builds local subgraphs to extract subgraph-specific
information and optimizes GNN via MAML (Finn et al., 2017). Unlike prior efforts that rely on
labeled data and have the task and data-specific design, we aim to build a novel framework that
explores unlabeled data and has a generic design for a general graph mining purpose.
Self-Supervised Learning on Graphs. Recently, self-supervised graph learning (SGL) has attracted
significant attention due to its effectiveness in pre-training GNN and competitive performance in
various graph mining applications. Previous SGL models can be categorized into two major groups:
generative or contrastive, according to their learning tasks (Liu et al., 2020; Sohn et al., 2020). The
generative models learn graph representation by recovering feature or structural information on
the graph. The task can solely recover adjacency matrix alone (You et al., 2018) or along with
the node features (Hu et al., 2020b). As for the contrastive methods, they firstly define the node
context which can be node-level or graph-level instances. Then, they perform contrastive learning
by either maximizing the mutual information between the node-context pairs (Hassani & Ahmadi,
2020; Velickovic et al., 2019; Sun et al., 2020) or by discriminating context instances (Qiu et al.,

2

Under review as a conference paper at ICLR 2023

2020; Zhu et al., 2021). In addition to above strategy, recently random propagation applies graph
augmentation (Rong et al., 2020) for semi-supervised learning (Feng et al., 2020). Motivated by the
success of SGL, we propose to leverage it to boost GFL.

3 PRELIMINARY

GNNs. A graph is represented as G “ pV,E,Xq, where V is the set of nodes, E Ď V ˆ V is the set
of edges, and X is the set of node attributes. GNNs (Hamilton et al., 2017; Xu et al., 2019) learn
compact representations (embeddings) by considering both graph structure E and node attribute X .
To be specific, let fθp¨q denote a GNN encoder with parameter θ, the updated embedding of node v at
the l-th layer of GNN can be formulated as:

hplq
v “ Mphpl´1q

v , thpl´1q
u | @u P Nvu; θq, (1)

where Nv denotes the neighbor set of v; Mp¨q is the message passing function for neighbor infor-
mation aggregation, such as a mean pooling layer followed by a fully-connected (FC) layer; hp0q

v

is initialized with node attribute Xv. The whole graph embedding can be computed over all nodes’
embeddings as:

h
plq
G “ READOUTthplq

v | @v P V u, (2)
where the READOUT function can be a simple permutation invariant function such as summation.

GFL Setting and Problem. Let Cbase and Cnovel denote the base classes set and novel (new) classes
set in training data Ttrain and testing data Ttest, respectively. Similar to the general meta-learning
problem (Finn et al., 2017), the purpose of graph few-shot learning (GFL) is to train a GNN encoder
fθp¨q over Cbase, such that the trained GNN encoder can be quickly adapted to Cnovel with few
labels per class. Note that there is no overlapping between base classes and novel classes, i.e.,
Cbase X Cnovel “ H. In K-shot setting, during the meta-training phase, a batch of classes (tasks) is
randomly sampled from Cbase, where K labeled instances per class are sampled to form the support
set S for model training and the remaining instances are taken as the query set Q for model evaluation.
After sufficient training, the model is further transferred to the meta-testing phase to conduct N -way
classification over Cnovel (N is the number of novel classes), where each class is only with K labeled
instances. GFL applies to different graph mining problems, depending on the class meaning. Each
class corresponds to a node label for the node classification problem or corresponds to a graph label
for the graph classification problem. In this work, we will study both node classification and graph
classification problems under the few-shot setting, which are formally defined as follows:
Problem 1 Few-Shot Node Classification. Given a graph G “ pV,E,Xq and labeled nodes of
Cbase, the problem is to learn a GNN fθp¨q to classify nodes of Cnovel, where each class in Cnovel
only has few labeled nodes.

Problem 2 Few-Shot Graph Classification. Given a set of graphs G and labeled graphs of Cbase,
the problem is to learn a GNN fθp¨q to classify graphs of Cnovel, where each class in Cnovel only has
few labeled graphs.
Unlike previous studies that rely on labeled data of Ttrain and Ttest for GFL model training and
adaption, we consider both unlabeled graph information and labeled data to learn GFL model for
solving the above problems.

4 METHODOLOGY

Figure 1 illustrates the proposed CGFL framework, which includes two phases: self-distilled graph
contrastive learning and graph few-shot learning (GFL). In the first phase (Figure 1(a)), the framework
pre-trains a GNN encoder with contrastive learning, then introduces knowledge distillation to elevate
the pre-trained GNN in a self-supervised manner. The distilled GNN is finally fed to the GFL phase
(Figure 1(b)) for few-shot graph mining tasks. In addition to the proposed framework, we introduce
an information-based method to measure the superiority of CGFL quantitatively.

4.1 SELF-DISTILLED GRAPH CONTRASTIVE LEARNING

GNN Contrastive Pre-training. In the first phase, we firstly introduce contrastive learning to
pre-train GNN. Inspired by the representation bootstrapping technique (Grill et al., 2020), our method

3

Under review as a conference paper at ICLR 2023

augment
2 views

Node dropping
Edge dropping
Attribute mask

!!!

!!

unlabeled !

stop grad
loss

target GNN f"($)

online GNN f#($)

FC

FC FC embedding &#

update weights by
exponential moving average

stop grad
loss

teacher GNN f#!($)

student GNN f#"($) FC

FC

FC embedding z′#"

stop weight sharing

embedding ℎ′#!

(a) self-distilled graph contrastive learning phase

norm

norm

… support data

support
prototypes

query data

outer loop
update

inner loop
update

support loss

query loss…

support data

support
prototypes

query data

inner loop
update

support loss

query loss

copy meta-trained
weights

…

…

copy distilled model for GFL
copy pre-trained model for distillation

GNN

GNN

support set

query set

support set

query set

meta-training set

meta-testing set

*$
*%

embedding ℎ"

augment
2 views

!∗∗

!∗

unlabeled !

shared graph
augmentation
strategy

(b) graph few-shot learning phase

Figure 1: The framework of CGFL: (a) self-distilled graph contrastive learning phase which pre-trains
a GNN encoder with contrastive learning and further evaluates the model with knowledge distillation
in a self-supervised manner; (b) graph few-shot learning phase which takes the distilled student
network as the initialized model and employs a meta-learning algorithm for model optimization.

learns node (or graph) representation by discriminating context instances. Specifically, two GNN
encoders: an online GNN fθp¨q and a target GNN fξp¨q, are introduced to encode two randomly
augmented views of a given graph. The online GNN is supervised under the target GNN’s output,
while the target GNN is updated by the online GNN’s exponential moving average. The contrastive
pre-training step is shown in Figure 1(a).
Graph Augmentation: The given graph G is processed with randomly data augmentations to generate
a contrastive pair (G1, G2) as the input for two GNN branches (online branch and target branch) of
the following GNN training. In this work, we apply a combination of stochastic node feature masking,
edge removing, and node dropping with constant probabilities for graph augmentation.
GNN Update: With the generated graph pair (G1, G2), the online GNN fθp¨q and the target GNN
fξp¨q are respectively utilized to process G1 and G2 for node (or graph) embeddings generation. Both
GNNs have the same architecture, while a two-layer FC (one-layer FC) is attached after an online
GNN (target GNN) to refine embedding. The reason that two branches have different FC layers is to
prevent the prediction of the online model from being exactly the same as the output of the target
model, thus avoiding the learned representation collapse. Later, to enforce online GNN’s embeddings
zθ approximate the target GNN’s embeddings hξ , the mean squared error between them is formulated
as the objective function:

Lθ,ξ “ ∥zθ ´ hξ∥22 “ 2 ´ 2 ¨
zθ, hξ

∥zθ∥2 ¨ ∥hξ∥2
. (3)

The parameters θ of online GNN are updated with Adam optimizer (Kingma & Ba, 2015):

θ Ð Adampθ,∇θLθ,ξ, ηq, (4)

where η is the learning rate. The target GNN provides the regression target to supervise the online
GNN, and its parameters ξ are updated as the exponential moving average (EMA) of the online GNN
parameters θ. More precisely, ξ is updated as follows:

ξ Ð τξ ` p1 ´ τqθ, (5)

where τ P r0, 1s is the decay rate. Note that the target GNN stops the backpropagation from Lθ,ξ,
and it is only updated by EMA.

Contrastive Distillation. With the pre-trained GNN fθp¨q obtained in the previous step, we introduce
a self-distillation step to elevate fθp¨q. This is inspired by the Born-again strategy (Furlanello et al.,
2018), which implies a well-trained teacher can boost a random initialized identical student. The
distillation step adopts a similar contrastive framework as the previous step, as shown in Figure 1(a).

4

Under review as a conference paper at ICLR 2023

Specifically, we load the pre-trained GNN fθp¨q and take it as the teacher model fθtp¨q. The teacher
model is frozen and applied to distill a student model fθsp¨q. Two augmented views (G˚, G˚˚) of
a graph G are generated and fed to fθtp¨q and fθsp¨q, respectively. Later, the student’s normalized
output is forced to approximate the teacher’s normalized output as follows:

Lθs “ ∥z1
θs ´ h1

θt∥
2
2 “ 2 ´ 2 ¨

z1
θs
, h1

θt

∥z1
θs
∥2 ¨ ∥h1

θt
∥2

, (6)

z1
θs “

zθs
∥zθs∥2

, h1
θt “

hθt

∥hθt∥2
, (7)

where zθs and hθt are teacher’s output embeddings and student’s output embeddings, respectively.
The student model is updated as follows:

θs Ð Adampθs,∇θsLθs , ηq. (8)

Different from EMA (Eqn. 5) for target GNN update in contrastive pre-training, the teacher model is
frozen and can be seen as a special case of EMA:

θt Ð τθt ` p1 ´ τqθs, τ “ 1. (9)

4.2 GRAPH FEW-SHOT LEARNING

In the GFL phase, we take the distilled student GNN fθsp¨q generated in the former phase as the
initialized GNN model and employ the optimization-based algorithm, i.e., model-agnostic meta-
learning (MAML) (Finn et al., 2017), to train the model for few-shot graph mining tasks. During
meta-training, for task Ti, the task specific parameters θ1

s,i is computed using a number of gradient
descent updates over the support set Si of Ti (i.e., inner-loop):

θ1
s,i Ð θs ´ α∇θsL

Si

Ti
pθsq, (10)

where α is the learning step size, LSi

Ti
denotes the downstream task loss over Si. In this work, we

employ prototypical loss (Snell et al., 2017) for node or graph classification, which uses embeddings
extracted from the support set by a neural network as the class prototype, and the query set is classified
according to the distance between its embeddings and prototypes. The task-specific parameter θ1

s,i is
further utilized to compute the loss over query set Qi of Ti: LQi

Ti
pfθ1

s,i
q. Later, LQi

Ti
pfθ1

s,i
q of a batch

of randomly sampled tasks are summed up to update the model parameters θs (i.e., outer-loop):

θs Ð θs ´ β∇θs

ÿ

i

LQi

Ti
pfθ1

s,i
q, (11)

where β is the learning step size. During meta-testing, the same procedure above is applied using
the final meta-updated parameter θ˚

s for novel tasks (without outer-loop). In particular, θ˚
s is learned

from knowledge across meta-training tasks and is the optimal parameter to quickly adapt to novel
tasks. Note that the GFL algorithm can be applied to different graph mining problems by changing
the task meaning, i.e., each task corresponds to a node class (or graph class) for node classification
(or graph classification).

4.3 QUANTITATIVE MEASUREMENT OF GFL

The previous GFL studies target developing better methods in performance while none of them
has thought about model capability measurement. In light of this, we extend the measurement of
neural network model (Ma et al., 2019) to graph data and quantitatively show why different GFL
models can learn node (or graph) representations at different extents. The proposed method provides
a measurement of information encoded in GNN for the input graph. Specifically, let Z denote the
GNN hidden state of a GFL model, and the information of the input graph G encoded by Z can be
measured by mutual information MIpG;Zq:

MIpG;Zq “ HpGq ´ HpG|Zq, (12)

where Hp¨q denotes the entropy; HpGq is a constant; HpG|Zq represents the amount of discarded in-
formation after G is processed by GNN and encoded by Z. We can compute HpG|Zq by decomposing
it into the node level:

HpG|Zq “

ż

zPZ

ppzqHpG|zqdz, (13)

5

Under review as a conference paper at ICLR 2023

where z “ fpxq denotes GNN hidden state corresponding to attribute x of a node. HpG|zq reflects
how much information from x is discarded by z during the forward propagation. To disentangle
information components of individual nodes from the whole graph, we assume that each node is
independent of the other and have:

HpG|zq “
ÿ

i

Hpxi|zq, (14)

where xi denotes a random variable of i-th node attribute in the graph. Then, we introduce a noise
perturbation-based method to approximate Hpxi|zq. Specifically, let rxi “ xi ` ϵi (ϵi „ N p0,Σi “

σ2
i Iq) and we aim to optimize the following loss function:

Lpσq “ Eϵ∥fprxiq ´ z∥2´β
n

ÿ

i“1

Hprxi|zq|ϵi„N p0,σ2
i Iq, (15)

where σ = rσ1, σ2, ¨ ¨ ¨ , σns are learnable parameters; β is a trade-off weight. In particular, the first
term of the above objective minimizes the difference between the encoded embedding of noisy input
and the hidden state while the second term encourages a high conditional entropy according to the
maximum entropy principle. In this way, we have pp rxi|zq “ ppϵiq and Hpxi|zq is approximated by
Hprxi|zq:

Hp rxi|zq “ pp rxi|zq log pp rxi|zq9 log σi ` C, (16)
where C “ 1

2 logp2πeq. By taking Eqn. 16 into Eqn. 15, we can optimize Lpσq with Adam optimizer
and obtain the optimal σ for computing the overall discarded information HpG|Zq. Furthermore,
we can explain GFL model’s capability by comparing discarded information of different models.
Ideally, we expect the GFL model to encode valid node (or graph) embeddings as much as possible
and therefore discard information as small as possible.

5 EXPERIMENTS

We conduct extensive experiments on multiple graph datasets to evaluate the model performance
compared with state-of-the-art models. We first describe experimental settings and then discuss the
performance comparison of different models. Finally, discarded information is computed to show the
capabilities of different GFL models. More experimental results are provided in Appendix C.

5.1 EXPERIMENTAL SETUP

Datasets. We use multiple graph datasets to conduct experiments: for the node classification task, we
use ogbn-arxiv (Hu et al., 2020a), Tissue-PPI (Hamilton et al., 2017), Fold-PPI (Zitnik & Leskovec,
2017), Cora (Sen et al., 2008), and Citeseer (Sen et al., 2008); for the graph classification task, we
use datasets in (Chauhan et al., 2020), i.e., Letter-High, Triangles, Reddit-12K, and Enzymes. The
detailed information of datasets is illustrated in Appendix A.
Baseline Methods. We employ a variety of baseline methods for model comparison in two tasks.
For few-shot node classification, we use node2vec (Grover & Leskovec, 2016), DeepWalk (Perozzi
et al., 2014), Meta-GNN (Zhou et al., 2019), FS-GIN (Xu et al., 2019), FS-SGC (Wu et al., 2019),
No-Finetune (Triantafillou et al., 2019), Finetune (Triantafillou et al., 2019), KNN (Triantafillou et al.,
2019), ProtoNet (Snell et al., 2017), MAML (Finn et al., 2017), G-Meta (Huang & Zitnik, 2020),
and TENT (Wang et al., 2022). For few-shot graph classification, we utilize WL (Shervashidze et al.,
2011), Graphlet (Shervashidze et al., 2009), AWE (Ivanov & Burnaev, 2018), Graph2Vec (Narayanan
et al., 2017), Diffpool (Lee et al., 2019), CapsGNN (Xinyi & Chen, 2018), GIN (Xu et al., 2019),
GIN-KNN (Xu et al., 2019), GSM-GCN (Chauhan et al., 2020), GSM-GAT (Chauhan et al., 2020),
and AS-MAML (Ma et al., 2020). Details of baselines are illustrated in Appendix B.
Experimental Settings. In CGFL, we use GCN (Kipf & Welling, 2017) as the GNN backbone for
the node classification task, including two-layer graph convolution and one-layer FC. The graph
classification task adds an extra average pooling operation as a readout layer. In the pretraining
phase, we pre-train GNN on the unlabeled graph dataset with contrastive learning. For graph data
augmentation, the node drop rate is 15%, the edge removing rate is 15%; and the feature masking
rate is 20%. The mini-batch size is set to 2,048, and the learning rate is set to 0.05 with a decay factor
= 0.9. Meanwhile, the τ in exponential moving average is 0.999. We consider both inductive and
transductive settings. For the inductive setting (CGFL-I), we only use unlabeled data in the training

6

Under review as a conference paper at ICLR 2023

Table 1: Few-shot node classification results. The best results are highlighted in bold while the
best baseline results are underlined. -I and -T denote inductive and transductive settings of CGFL,
respectively. Teacher indicates the CGFL model without knowledge distillation.

Method Tissue-PPI Fold-PPI Cora Citeseer ogbn-arxiv

3-shot 5-shot 3-shot 5-shot 3-shot 5-shot 3-shot 5-shot 3-shot 5-shot

node2vec 48.5˘3.3 49.3˘3.9 36.6˘3.7 37.4˘1.9 25.7˘1.3 26.9˘3.0 20.0˘2.5 21.7˘2.9 28.9˘4.0 29.5˘3.7
DeepWalk 46.2˘4.8 47.4˘3.6 35.0˘4.4 36.3˘3.2 25.6˘0.8 26.7˘2.0 21.2˘0.6 22.6˘ 2.7 30.3˘2.1 31.5˘3.4
Meta-GNN 50.8˘8.1 53.5˘1.5 30.8˘5.4 33.5˘2.1 76.8˘0.9 79.2˘1.9 69.4˘1.4 72.6˘1.9 27.3˘1.2 30.2˘3.6

FS-GIN 49.2˘2.4 51.5˘3.0 36.7˘2.1 39.1˘1.4 53.5˘1.6 56.2˘2.8 50.2˘2.6 53.2˘3.8 33.6˘4.2 36.8˘2.5
FS-SGC 49.8˘3.8 52.3˘2.2 38.0˘1.6 40.9˘3.9 57.2˘2.1 60.3˘1.2 52.0˘2.1 54.4˘2.5 34.7˘0.5 37.3˘1.0

No-Finetune 51.6˘0.6 55.0˘2.1 37.6˘1.7 39.9˘3.6 61.2˘1.2 64.5˘1.3 54.9˘1.7 58.3˘2.5 36.4˘1.4 38.8˘2.0
Finetune 52.1˘1.3 54.3˘2.4 37.0˘2.2 40.0˘2.6 63.5˘0.8 65.7˘2.1 57.8˘1.8 59.0˘2.9 35.9˘1.0 38.6˘2.5

KNN 61.9˘2.5 65.2˘3.2 43.3˘3.4 46.2˘1.9 67.8˘1.4 70.3˘3.6 60.6˘1.4 63.2˘1.6 39.2˘1.5 42.3˘1.8
ProtoNet 54.6˘2.5 57.5˘2.9 38.2˘3.1 41.3˘1.1 42.6˘3.7 56.6˘2.9 55.5˘1.5 58.0˘3.7 37.2˘1.7 39.7˘1.7
MAML 74.5˘5.1 77.4˘2.7 48.2˘6.2 51.3˘3.3 65.7˘0.9 68.8˘1.1 63.1˘1.6 65.7˘1.7 38.9˘2.1 41.3˘2.4

GPN 77.3˘3.0 79.0˘3.6 57.0˘4.7 58.2˘3.7 73.1˘2.4 76.1˘2.2 68.3˘1.4 71.1˘2.0 44.4˘3.5 48.2˘4.0
RALE 76.6˘3.3 79.2˘3.3 57.8˘4.5 58.8˘3.3 62.8˘3.1 65.9˘3.2 69.9˘2.3 71.3˘2.2 45.1˘2.7 47.8˘1.5
G-Meta 76.8˘2.9 79.4˘2.6 56.1˘5.9 59.0˘2.5 71.9˘2.9 74.5˘2.0 67.8˘2.2 70.8˘3.8 45.1˘3.2 48.2˘3.1
TENT - - - - 64.8˘4.1 69.2˘4.5 54.2˘3.4 62.0˘2.3 55.6˘3.1 62.9˘3.7

Teacher-I 77.9˘2.6 80.8˘1.7 58.8˘3.4 61.3˘3.6 78.2˘1.3 80.9˘1.9 70.0˘1.3 72.7˘1.8 52.0˘2.0 54.9˘1.6
CGFL-I 78.7˘2.8 81.5˘3.6 59.5˘4.1 62.0˘2.0 78.5˘1.5 81.2˘1.5 70.6˘1.2 73.1˘2.0 52.8˘1.8 55.6˘1.1

Teacher-T 79.8˘3.1 82.9˘1.3 63.0˘3.6 65.6˘2.2 80.0˘2.7 82.6˘1.9 72.1˘1.1 75.0˘1.5 54.3˘2.7 58.4˘3.9
CGFL-T 80.9˘3.0 84.1˘3.2 66.9˘3.4 69.0˘2.7 80.7˘1.9 83.5˘3.0 72.6˘1.6 75.3˘2.0 55.2˘2.5 58.7˘2.7

1 2 3 4 5
Shot number

20

30

40

50

60

Ac
cu

ra
cy

ogbn-arxiv

Ours
G-Meta
MAML
ProtoNet

1 2 3 4 5
Shot number

30

45

60

75

90

Ac
cu

ra
cy

Tissue-PPI

Ours
G-Meta
MAML
ProtoNet

(a) Impact of shot number.

10 20 30 40 50 100
Label rate

20

30

40

50

60

Ac
cu

ra
cy

ogbn-arxiv

Ours
G-Meta
MAML
ProtoNet

10 20 30 40 50 100
Label rate

30

40

50

60

70

80

90

Ac
cu

ra
cy

Tissue-PPI

Ours
G-Meta
MAML
ProtoNet

(b) Impact of label rate.

Figure 2: Impact of shot number and label rate on node classification.

set; for the transductive setting (CGFL-T), we use unlabeled data in both training data and testing
data. Additionally, for pre-trained models without knowledge distillation elevation, we refer to them
as Teacher-I and Teacher-T for two settings, respectively. In GFL phase, we employ MAML to
fine-tune the model. We implement CGFL by PyTorch and train it on NVIDIA V100 GPUs. The
code is in the supplementary material.

5.2 FEW-SHOT NODE CLASSIFICATION

Overall Performance. The performances of all models for 3/5-shot node classification are reported
in Table 1. According to this Table, we have several findings: (1) CGFL outperforms all baseline
methods on all datasets, showing the superiority of our model for few-shot node classification; (2)
The improvement of CGFL-I over baseline methods ranges from 1.1% to 50% (3-shot) and from
2.1% to 51% (5-shot). Simultaneously, this value of CGFL-T ranges from 4.8% to 55.0% (3-shot)
and from 4.5% to 56.6% (5-shot). The significant improvement demonstrates the effectiveness of
contrastive pre-training and self-distillation in learning rich node representations from unlabeled
graph data and alleviating the label-hungry issue; (3) CGFL-T (or Teacher-T) is better than CGFL-I
(or Teacher-I). It indicates that the model gets benefits from unlabeled data in the meta-testing set,
thus improving generalization ability over testing data; (4) CGFL gains an additional boost compared
with the pre-trained teacher model without any label cost in distillation, showing the effectiveness of
contrastive distillation.

Impact of Shot Number. In Figure 2a, we show the performance of our model (CGFL-T) under
different shot numbers (1 to 5) compared with some selected baselines. It is easy to see that
CGFL achieves better accuracy across different shot numbers. The result demonstrates our model’s
performance is robust for node classification. Note that we only show results on two datasets and the
results on the other datasets (i.e., ogbn-arxiv and Tissue-PPI) are shown in Appendix C.1. The same
goes for the following analyses.
Impact of Training Label Rate. We further evaluate CGFL’s performance under different training
label rates (10%, 20%, 30%, 40%, 50%, 100%) compared with baseline methods for 3-shot node

7

Under review as a conference paper at ICLR 2023

Table 3: Few-shot graph classification results. The best results are highlighted in bold while the
best baseline results are underlined. -I and -T denote inductive and transductive settings of CGFL,
respectively. Teacher indicates the CGFL model without knowledge distillation.

Method Letter-High Triangles Reddit-12K Enzymes

5-shot 10-shot 5-shot 10-shot 5-shot 10-shot 5-shot 10-shot

WL 65.27˘7.67 68.39˘4.69 51.25˘4.02 53.26˘2.95 40.26˘5.17 42.57˘3.69 55.78˘4.72 58.47˘3.84
Graphlet 33.76˘6.94 37.59˘4.60 40.17˘3.18 43.76˘3.09 33.76˘6.94 37.59˘4.60 53.17˘5.92 55.30˘3.78

AWE 40.60˘3.91 42.20˘2.87 39.36˘3.85 42.58˘3.11 30.24˘2.34 33.44˘2.04 43.75˘1.85 45.58˘2.11
Graph2Vec 66.12˘5.21 68.17˘4.26 48.38˘3.85 50.16˘4.15 27.85˘4.21 29.97˘3.17 55.88˘4.86 58.22˘4.30

Diffpool 58.69˘6.39 61.59˘5.21 64.17˘5.87 67.12˘4.29 35.24˘5.69 37.43˘3.94 45.64˘4.56 49.64˘4.23
CapsGNN 56.60˘7.86 60.67˘5.24 65.40˘6.13 68.37˘3.67 36.58˘4.28 39.16˘3.73 52.67˘5.51 55.31˘4.23

GIN 65.83˘7.17 69.16˘5.14 63.80˘5.61 67.30˘4.35 40.36˘4.69 43.70˘3.98 55.73˘5.80 58.83˘5.32
GIN-KNN 63.52˘7.27 65.66˘8.69 58.34˘3.91 61.55˘3.19 41.31˘2.84 43.58˘2.80 57.24˘7.06 59.34˘5.24
GSM-GCN 68.69˘6.50 72.80˘4.12 69.37˘4.92 73.11˘3.94 40.77˘4.32 44.28˘3.86 54.34˘5.64 58.16˘4.39
GSM-GAT 69.91˘5.90 73.28˘3.46 71.40˘4.34 75.60˘3.67 41.59˘4.12 45.67˘3.68 55.42˘5.74 60.64˘3.84
AS-MAML 70.23˘1.53 73.19˘1.17 71.56˘1.17 75.56˘2.39 41.90˘1.65 45.66˘1.11 56.03˘1.85 60.79˘2.74

Teacher-I 71.43˘5.23 73.62˘2.93 71.93˘3.51 76.21˘2.87 42.32˘4.48 46.31˘3.84 57.53˘3.16 61.12˘4.80
CGFL-I 72.12˘4.88 74.08˘3.30 72.34˘3.42 76.91˘2.98 42.85˘4.62 46.89˘4.96 57.94˘2.85 61.66˘4.61

Teacher-T 75.20˘4.34 78.35˘1.95 78.55˘3.75 81.03˘3.37 44.80˘4.85 48.95˘4.03 59.85˘2.34 62.30˘3.29
CGFL-T 75.97˘5.02 79.10˘4.23 79.32˘4.05 81.78˘3.30 45.55˘3.67 49.32˘4.21 60.34˘4.04 62.97˘2.92

classification, as shown in Figure 2b. It is easy to see that (1) CGFL has better results across different
label rates; (2) CGFL achieves larger improvement over baseline models when label rate becomes
lower (e.g., 10%), showing contrastive pre-training and self-distillation of CGFL lead to more
significant improvement for label sparsity case.
Impact of Data Augmentation. As a key step for contrastive learning in CGFL, graph augmentation
plays an important role in affecting model performance. Here we conduct experiments to evaluate the
model performance with different augmentation strategies. We consider three graph augmentations
- node dropping (ND), feature masking (FM), edge removing (ER), and their combinations for
CGFL phase and report their performances in Figure 3. It is easy to find that the combination of
three augmentation strategies works better than a single augmentation or the combination of two
augmentations. It demonstrates that various graph augmentations are able to generate sufficient
contrastive pairs for a better model.

ogbn-arxiv
48

50

52

54

56

Ac
cu

ra
cy

ND
ER

FM
ND+ER

ER+FM
ND+FM

ND+ER+FM

Tissue-PPI
72

74

76

78

80

82

Ac
cu

ra
cy

Figure 3: Impact of data aug. on node classification.

Table 2: Info. loss for node classification.

Method Layer ogbn-arxiv Tissue-PPI

GNN-1 385.15 788.30
G-Meta GNN-2 383.39 789.78

FC 374.42 753.85

GNN-1 305.29 663.38
CGFL-I GNN-2 300.29 650.59

FC 290.99 612.98

GNN-1 276.30 533.86
CGFL-T GNN-2 267.33 525.42

FC 264.23 503.86

Loss Information Comparison. In Section 4.3, we propose to compute graph information discarded
in the GFL model. Here, we compare results between CGFL and a selected baseline method (G-Meta)
in Table 2. From this table, the amount of discarded information in each layer of CGFL is smaller
than baseline models. This may be because CGFL can learn more label-irrelevant information from
unlabeled graph data, which somehow shows the superiority of CGFL in learning node embeddings
for node classification.

5.3 FEW-SHOT GRAPH CLASSIFICATION

Overall Performance. The results of all models for 5/10-shot graph classification are reported in
Table 3. Similar to the findings obtained from Table 1, according to this table: (1) CGFL outperforms
all baseline models, showing its superiority for few-shot graph classification; (2) The improvement
of CGFL-I over baseline models ranges from 0.95% to 38.36% (5-shot) and from 0.8% to 34.33%
(10-shot). Meanwhile, this value of CGFL-T ranges from 5.65% to 46.21% (5-shot) and from 2.18%
to 41.51% (10-shot). This demonstrates the effect of contrastive pre-training and self-distillation in
learning rich graph embedding from unlabeled data; (3) CGFL-T (or Teacher-T) outperforms CGFL-I
(or Teacher-I), showing that unlabeled data in testing set improves model’s generalization; (4) CGFL
is better than teacher model as contrastive distillation step further elevates the model.

8

Under review as a conference paper at ICLR 2023

5 10 15 20
Shot number

65

70

75

80

85

Ac
cu

ra
cy

Letter-High

Ours
GSM-GAT
GSM-GCN
AS-MAML

5 10 15 20
Shot number

64

68

72

76

80

84

88

Ac
cu

ra
cy

Triangles

Ours
GSM-GAT
GSM-GCN
AS-MAML

(a) Impact of shot number.

10 20 30 40 50 100
Label rate

58

63

68

73

78

Ac
cu

ra
cy

Letter-High

Ours
GSM-GAT
GSM-GCN
AS-MAML

10 20 30 40 50 100
Label rate

55

60

65

70

75

80

Ac
cu

ra
cy

Triangles

Ours
GSM-GAT
GSM-GCN
AS-MAML

(b) Impact of label rate.

Figure 4: Impact of shot number and label rate on graph classification.

Impact of Shot Number. In Figure 4a, we report our model’s result under different shot numbers
(5, 10, 15, 20) compared with some selected baselines. Similar to Figure 2a, CGFL consistently
outperforms baseline methods across different shot numbers, showing the robustness of CGFL. Note
that we only show results on two datasets (e.g., Letter-High and Triangles), and the results on the
other datasets are shown in Appendix C.2. The same goes for the following analyses.
Impact of Training Label Rate. In Figure 4b, we report our model’s performance under different
training label rates compared with baseline models for 5-shot graph classification. The phenomenon
is similar to the node task: our model achieves better accuracy across different label rates; the
performance gaps between CGFL and baseline methods are larger when the label rate is lower. Again,
this shows the significance of CGFL when labeled data is limited.
Impact of Data Augmentation. We also study the impact of graph augmentation on few-shot
graph classification task. According to Figure 5, we find that the combination of three augmentation
strategies brings the best performance, showing the importance of sufficient contrastive pairs on
model training.

Letter-High
68

70

72

74

76

Ac
cu

ra
cy

ND
ER

FM
ND+ER

ER+FM
ND+FM

ND+ER+FM

Triangles
72

74

76

78

80

Ac
cu

ra
cy

Figure 5: Impact of data aug. on graph classification.

Table 4: Info. loss for graph classification.

Method Layer Letter-High Triangles

GNN-1 1286.67 1520.94
GSM-GAT GNN-2 1250.54 1487.42

FC 1105.96 1364.11

GNN-1 932.23 1276.77
CGFL-I GNN-2 920.58 1219.91

FC-3 892.03 1107.56

GNN-1 792.65 923.35
CGFL-T GNN-2 780.59 894.09

FC 765.73 885.35

Loss Information Comparison. Finally, we compute the discarded graph information of our
model and a selected baseline method (GSM-GAT), as shown in Table 4. Obviously, the amount of
information discarded in CGFL is less than baseline models. It somehow shows the superiority of
CGFL in learning graph embeddings for graph classification.

6 CONCLUSION

In this paper, to tackle the limitations of existing GFL models in learning generalized graph represen-
tation and constrained design for a specific task, we propose a general and effective framework named
CGFL - Contrastive Graph Few-shot Learning framework. CGFL leverages a self-distilled con-
trastive learning procedure to boost GFL, in which the GNN encoder is pre-trained with contrastive
learning and further elevated with knowledge distillation in a self-supervised manner. Additionally,
we introduce an information-based method to compute the amount of graph information discarded by
the GFL model. Extensive experiments on multiple graph datasets demonstrate that CGFL outper-
forms state-of-the-art baseline methods for both node classification and graph classification tasks in
the few-shot scenario. The discarded information value further shows the superiority of CGFL in
learning node (or graph) embeddings.

9

Under review as a conference paper at ICLR 2023

ETHICS STATEMENT

We do not see that this work will impose any ethical risks to the society. In general, we should take
care to ensure that machine learning algorithms (including Graph Few-shot Learning) are not applied
to illegal downstream tasks that are harmful to society.

REPRODUCIBILITY STATEMENT

For the reproducibility of our work, we provide the source code for CGFL along with the submission
in the supplementary materials. The datasets and other baselines related to our experiments are
described in Appendix A and B.

REFERENCES

Jatin Chauhan, Deepak Nathani, and Manohar Kaul. Few-shot learning on graphs via super-classes
based on graph spectral measures. In ICLR, 2020.

Mingyang Chen, Wen Zhang, Wei Zhang, Qiang Chen, and Huajun Chen. Meta relational learning
for few-shot link prediction in knowledge graphs. In EMNLP-IJCNLP, 2019.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In ICML, 2020.

Kaize Ding, Jianling Wang, Jundong Li, Kai Shu, Chenghao Liu, and Huan Liu. Graph prototypical
networks for few-shot learning on attributed networks. In CIKM, 2020.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural
networks for social recommendation. In WWW, 2019.

Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang Yang, Evgeny
Kharlamov, and Jie Tang. Graph random neural networks for semi-supervised learning on graphs.
In NeurIPS, 2020.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In ICML, 2017.

Tommaso Furlanello, Zachary Lipton, Michael Tschannen, Laurent Itti, and Anima Anandkumar.
Born again neural networks. In ICML, 2018.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. SimCSE: Simple contrastive learning of sentence
embeddings. In EMNLP, 2021.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi
Azar, et al. Bootstrap your own latent: A new approach to self-supervised learning. In NeurIPS,
2020.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In KDD, 2016.

Zhichun Guo, Chuxu Zhang, Wenhao Yu, John Herr, Olaf Wiest, Meng Jiang, and Nitesh V Chawla.
Few-shot graph learning for molecular property prediction. In WWW, 2021.

William L Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In NeurIPS, 2017.

Zhongkai Hao, Chengqiang Lu, Zhenya Huang, Hao Wang, Zheyuan Hu, Qi Liu, Enhong Chen, and
Cheekong Lee. Asgn: An active semi-supervised graph neural network for molecular property
prediction. In KDD, 2020.

Kaveh Hassani and Amir Hosein Khas Ahmadi. Contrastive multi-view representation learning on
graphs. In ICML, 2020.

10

Under review as a conference paper at ICLR 2023

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In NeurIPS,
2020a.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. Gpt-gnn: Generative
pre-training of graph neural networks. In KDD, 2020b.

Kexin Huang and Marinka Zitnik. Graph meta learning via local subgraphs. In NeurIPS, 2020.

Sergey Ivanov and Evgeny Burnaev. Anonymous walk embeddings. In ICML, 2018.

Wengong Jin, Connor W Coley, Regina Barzilay, and Tommi Jaakkola. Predicting organic reaction
outcomes with weisfeiler-lehman network. In NeurIPS, 2017.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In ICLR, 2017.

Junhyun Lee, Inyeop Lee, and Jaewoo Kang. Self-attention graph pooling. In ICML, 2019.

Xiao Liu, Fanjin Zhang, Zhenyu Hou, Zhaoyu Wang, Li Mian, Jing Zhang, and Jie Tang. Self-
supervised learning: Generative or contrastive. arXiv preprint arXiv:2006.08218, 2020.

Xin Lv, Yuxian Gu, Xu Han, Lei Hou, Juanzi Li, and Zhiyuan Liu. Adapting meta knowledge graph
information for multi-hop reasoning over few-shot relations. In EMNLP-IJCNLP, 2019.

Haotian Ma, Yinqing Zhang, Fan Zhou, and Quanshi Zhang. Quantifying layerwise information
discarding of neural networks. arXiv preprint arXiv:1906.04109, 2019.

Ning Ma, Jiajun Bu, Jieyu Yang, Zhen Zhang, Chengwei Yao, Zhi Yu, Sheng Zhou, and Xifeng Yan.
Adaptive-step graph meta-learner for few-shot graph classification. In CIKM, 2020.

Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui Chen, Yang Liu,
and Shantanu Jaiswal. graph2vec: Learning distributed representations of graphs. arXiv preprint
arXiv:1707.05005, 2017.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representa-
tions. In KDD, 2014.

Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding, Kuansan Wang,
and Jie Tang. GCC: graph contrastive coding for graph neural network pre-training. In KDD, 2020.

Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. In ICLR, 2020.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 2008.

Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt.
Efficient graphlet kernels for large graph comparison. In AISTATS, 2009.

Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M
Borgwardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 2011.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. In
NeurIPS, 2017.

Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raffel, Ekin Do-
gus Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-supervised learning
with consistency and confidence. NeurIPS, 2020.

Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. Infograph: Unsupervised and semi-
supervised graph-level representation learning via mutual information maximization. In ICLR,
2020.

11

Under review as a conference paper at ICLR 2023

Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Utku Evci, Kelvin Xu, Ross
Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, et al. Meta-dataset: A dataset
of datasets for learning to learn from few examples. arXiv preprint arXiv:1903.03096, 2019.

Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. In ICLR, 2019.

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks for one
shot learning. In NeurIPS, 2016.

Song Wang, Kaize Ding, Chuxu Zhang, Chen Chen, and Jundong Li. Task-adaptive few-shot node
classification. In KDD, 2022.

Yaqing Wang, Abulikemu Abuduweili, Quanming Yao, and Dejing Dou. Property-aware relation
networks for few-shot molecular property prediction. In NeurIPS, 2021.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplify-
ing graph convolutional networks. In ICML, 2019.

Zhang Xinyi and Lihui Chen. Capsule graph neural network. In ICLR, 2018.

Wenhan Xiong, Mo Yu, Shiyu Chang, Xiaoxiao Guo, and William Yang Wang. One-shot relational
learning for knowledge graphs. In EMNLP, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In ICLR, 2019.

Huaxiu Yao, Chuxu Zhang, Ying Wei, Meng Jiang, Suhang Wang, Junzhou Huang, Nitesh Chawla,
and Zhenhui Li. Graph few-shot learning via knowledge transfer. In AAAI, 2020.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec.
Graph convolutional neural networks for web-scale recommender systems. In KDD, 2018.

Jiaxuan You, Rex Ying, Xiang Ren, William L. Hamilton, and Jure Leskovec. Graphrnn: Generating
realistic graphs with deep auto-regressive models. In ICML, 2018.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen. Graph
contrastive learning with augmentations. In NeurIPS, 2020.

Chuxu Zhang, Huaxiu Yao, Chao Huang, Meng Jiang, Zhenhui Li, and Nitesh V Chawla. Few-shot
knowledge graph completion. In AAAI, 2020.

Fan Zhou, Chengtai Cao, Kunpeng Zhang, Goce Trajcevski, Ting Zhong, and Ji Geng. Meta-gnn: On
few-shot node classification in graph meta-learning. In CIKM, 2019.

Yanqiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Graph Contrastive Learning
with Adaptive Augmentation. In WWW, 2021.

Marinka Zitnik and Jure Leskovec. Predicting multicellular function through multi-layer tissue
networks. Bioinformatics, 2017.

12

Under review as a conference paper at ICLR 2023

A DATASET DETAILS

For few-shot node classification, we use five different datasets: ogbn-arxiv (Hu et al., 2020a), Tissue-
PPI (Hamilton et al., 2017), Fold-PPI (Zitnik & Leskovec, 2017), Cora (Sen et al., 2008), and
Citeseer (Sen et al., 2008) to perform extensive empirical evaluations of different models. These
datasets vary from citation network to biochemical graph. The statistics of datasets are reported in
Table 5.

Table 5: Statistics of datasets used in the node classification task.

Dataset # Graph # Node # Edge # Feat. # Label

ogbn-arxiv 1 169,343 1,166,243 128 40
Tissue-PPI 24 51,194 1,350,412 50 10
Fold-PPI 144 274,606 3,666,563 512 29

Cora 1 2,708 10,556 1,433 7
Citeseer 1 3,327 9,228 3,703 6

For few-shot graph classification, we use four different datasets (Chauhan et al., 2020): Reddit-12K,
ENZYMES, Letter-High, and TRIANGLES, to perform extensive empirical evaluations of different
models. These datasets vary from small average graph size (e.g., Letter-High) to large graph size
(e.g., Reddit-12K). The statistics of datasets are reported in Table 6.

Table 6: Statistics of datasets used in the graph classification task.

Dataset Class # Graph #

Train Test Training Validation Test

Letter-High 11 4 1,330 320 600
Triangles 7 3 1,126 271 603

Reddit-12K 7 4 566 141 404
Enzymes 4 2 320 80 200

B BASELINE METHOD DETAILS

B.1 NODE CLASSIFICATION

Graph embedding models:

node2vec (Grover & Leskovec, 2016): We use node2vec to generate node embeddings, then employ a
FC layer as a predictor to classify nodes. We use the code at this link.1

DeepWalk (Perozzi et al., 2014): Similar to node2vec, we use DeepWalk to generate node embeddings,
then employ an FC layer as a predictor to classify nodes. We use the code at this link.2

GNN-based models:

Meta-GNN (Zhou et al., 2019): It combines MAML and simple graph convolution (SGC) to learn
node embeddings. We use the code at this link.3

FS-GIN (Xu et al., 2019): This method uses GIN to learn node embeddings and only uses few-shot
nodes to propagate loss and enable training. We use the code for GIN backbone at this link.4

FS-SGC (Wu et al., 2019): This model is similar to FS-GIN while changing GIN to SGC as GNN
backbone. We use the code of SGC at this link.5

No-Finetune (Huang & Zitnik, 2020): This method trains a GCN on the support set and uses the
trained backbone to classify samples in the meta-testing set. We use the code of GCN at this link.6

1https://shorturl.at/sEINW
2https://github.com/phanein/deepwalk
3https://github.com/ChengtaiCao/Meta-GNN
4https://github.com/weihua916/powerful-gnns
5https://github.com/Tiiiger/SGC
6https://shorturl.at/lwFPR

13

Under review as a conference paper at ICLR 2023

Finetune (Triantafillou et al., 2019): This method trains GCN on the meta-training set, and the model
is fine-tuned on the meta-testing set. We use the code of GCN at this link.6

KNN (Triantafillou et al., 2019): This method trains a GNN on meta-training set. Then, it uses the
label of the K-closest examples in the support set for each query example. We use the related code at
this link.7

ProtoNet (Triantafillou et al., 2019): This method applies prototypical network on node embeddings
processed by a neural network, which is trained under the standard meta-learning setting. We use the
related code at this link.8

MAML (Finn et al., 2017): It is similar to ProtoNet but changes meta-learner from ProtoNet to
MAML. We use the code at this link.9

G-Meta (Huang & Zitnik, 2020): This is a strong baseline for few-shot node classification. It uses
GCN as GNN backbone to learn node embeddings based on local subgraphs. It further combines
prototypical loss and MAML for model training. We use the code at this link.9

TENT (Wang et al., 2022): This is also a state-of-the-art baseline for few-shot node classification. It
proposes task-adaptive node classification framework to make node-level, class-level, and task-level
adaptations. We utilize the code at this link.10

B.2 GRAPH CLASSIFICATION

Graph embedding models:

WL (Shervashidze et al., 2011): It uses KNN search on the output embeddings of WL. We use the
code of WL at this link.11

Graphlet (Shervashidze et al., 2009): It uses Graphlet Kernel to decompose a graph and generates
graph embeddings. We use the code of Graphlet at this link.12

AWE (Ivanov & Burnaev, 2018): It uses KNN search on the output embeddings of AWE. We use the
code of AWE at this link.12

Graph2Vec (Narayanan et al., 2017): This method applies KNN search on the output embeddings of
Graph2Vec. We use the code of Graph2Vec at this link.12

GNN-based models:

Diffpool (Lee et al., 2019): It uses Diffpool with supervised loss to generate graph embeddings. We
use the code of Diffpool at this link.13

CapsGNN (Xinyi & Chen, 2018): This method applies CapsGNN to generate graph embeddings with
supervised training. We use the code of CapsGNN backbone at this link.14

GIN (Xu et al., 2019): This model applies GIN to generate graph embeddings with supervised training.
We use the code of GIN backbone at this link.4

GIN-KNN (Xu et al., 2019): Similarly, this model implements GIN to generate graph embeddings
while it switches the MLP classifier to the KNN algorithm. We use the code of GIN backbone at this
link.4

GSM-GCN (Chauhan et al., 2020): This is a strong model (with GCN as backbone) for few-shot
graph classification. We follow the default settings in the original paper and use the code at this
link.15

7https://shorturl.at/etBO8
8https://shorturl.at/erQU9
9https://github.com/mims-harvard/G-Meta

10https://github.com/SongW-SW/TENT
11https://github.com/BorgwardtLab/P-WL
12https://github.com/paulmorio/geo2dr
13https://github.com/RexYing/diffpool
14https://github.com/benedekrozemberczki/CapsGNN
15https://github.com/chauhanjatin10/GraphsFewShot

14

Under review as a conference paper at ICLR 2023

GSM-GAT (Chauhan et al., 2020): This is a strong model (with GAT as backbone) for few-shot graph
classification. We follow the default settings in the original paper and use the code at this link.15

AS-MAML (Ma et al., 2020): It is a state-of-the-art model for few-shot graph classification. We follow
the default settings in the original paper and use the code at this link.16

C ADDITIONAL EXPERIMENT RESULTS

This section shows additional results on the other three datasets (i.e., Fold-PPI, Cora, and Citeseer) for
few-shot node classification and the other two datasets (i.e., Reddit-12K and Enzymes) for few-shot
graph classification.

C.1 FEW-SHOT NODE CLASSIFICATION RESULTS

Impact of Shot Number. Figure 6 shows our model’s performance under different shot numbers (1
to 5) compared with some selected baselines. It is easy to see that CGFL consistently outperforms
baseline methods across different shot numbers.

1 2 3 4 5
Shot number

25

40

55

70

Ac
cu

ra
cy

Fold-PPI

Ours
G-Meta
MAML
ProtoNet

1 2 3 4 5
Shot number

45

60

75

90

Ac
cu

ra
cy

Cora

Ours
G-Meta
MAML
ProtoNet

1 2 3 4 5
Shot number

45

55

65

75

80

Ac
cu

ra
cy

Citeseer

Ours
G-Meta
MAML
ProtoNet

Figure 6: Impact of shot number on node classification.

Impact of Training Label Rate. Figure 7 reports our model’s performance under different training
label rates compared with baseline models for 3-shot node classification. Obviously, our model
achieves better accuracy across different label rates.

10 20 30 40 50 100
Label rate

20

30

40

50

60

70

Ac
cu

ra
cy

Fold-PPI

Ours
G-Meta
MAML
ProtoNet

10 20 30 40 50 100
Label rate

35

45

55

65

75

85

Ac
cu

ra
cy

Cora

Ours
G-Meta
MAML
ProtoNet

10 20 30 40 50 100
Label rate

35

45

55

65

75

Ac
cu

ra
cy

Citeseer

Ours
G-Meta
MAML
ProtoNet

Figure 7: Impact of training label rate on node classification.

Impact of Data Augmentation. The impact of graph augmentation on node classification is shown in
Figure 8. According to this figure, we can find that the combination of three augmentation strategies
brings the best performance.

Discarded Information Comparison. The discarded graph information of different models are
shown in Table 7. Obviously, the amount of information discarded in CGFL is less than baseline
models.

16https://github.com/NingMa-AI/AS-MAML

15

Under review as a conference paper at ICLR 2023

Fold-PPI
59

61

63

65

67

Ac
cu

ra
cy

ND
ER

FM
ND+ER

ER+FM
ND+FM

ND+ER+FM

Cora
73

75

77

79

81

Ac
cu

ra
cy

Citeseer
69

70

71

72

73

Ac
cu

ra
cy

Figure 8: Impact of data augmentation on node classification.

Table 7: Discarded information for node classification.

Method Layer Discarded Information

Fold-PPI Cora Citeseer

GNN-1 618.52 361.70 134.20
Meta-GNN GNN-2 612.11 357.47 126.75

FC 591.13 327.49 116.55

GNN-1 585.31 356.57 129.04
G-Meta GNN-2 592.38 355.63 119.72

FC 553.25 318.87 100.10

GNN-1 509.10 340.72 111.90
CGFL-I GNN-2 511.10 326.35 105.01

FC 461.52 316.21 92.95

GNN-1 426.23 332.39 104.04
CGFL-T GNN-2 418.90 314.65 88.33

FC 384.23 306.98 78.25

C.2 FEW-SHOT GRAPH CLASSIFICATION RESULTS

Impact of Shot Number. Figure 9 shows CGFL’s performance under different shot numbers (5, 10,
15, 20) compared with some selected baselines. From this figure, our model consistently outperforms
baseline methods across different shot numbers.

5 10 15 20
Shot number

35

40

45

50

55

Ac
cu

ra
cy

Reddit-12K

Ours
GSM-GAT
GSM-GCN
AS-MAML

5 10 15 20
Shot number

50

55

60

65

Ac
cu

ra
cy

Enzymes

Ours
GSM-GAT
GSM-GCN
AS-MAML

Figure 9: Impact of shot number on graph classification.

Impact of Training Label Rate. Figure 10 shows our CGFL’s result under different training label
rates compared with baseline models for 5-shot graph classification. Obviously, CGFL achieves
better performance across different label rates.

16

Under review as a conference paper at ICLR 2023

10 20 30 40 50 100
Label rate

25

30

35

40

45

50

Ac
cu

ra
cy

Reddit-12K

Ours
GSM-GAT
GSM-GCN
AS-MAML

10 20 30 40 50 100
Label rate

40

45

50

55

60

65

Ac
cu

ra
cy

Enzymes

Ours
GSM-GAT
GSM-GCN
AS-MAML

Figure 10: Impact of training label rate on graph classification.

Impact of Data Augmentation. The impact of graph augmentation on graph classification is shown
in Figure 11. From this figure, we can see that the combination of three augmentation strategies leads
to the best result.

Discarded Information Comparison. The discarded graph information of different methods are
reported in Table 8. According to this table, the amount of information discarded in CGFL is less
than baseline models.

Table 8: Discarded information for graph classification.

Method Layer Discarded Information

Reddit-12K Enzymes

GNN-1 5455.46 2455.54
AS-MAML GNN-2 5024.15 2243.25

FC 4937.99 2125.91

GNN-1 5401.30 2273.80
GSM-GAT GNN-2 5183.87 2128.04

FC 4936.76 1958.18

GNN-1 5323.04 1864.98
CGFL-I GNN-2 5098.54 1788.97

FC 4802.03 1759.87

GNN-1 4823.91 1787.98
CGFL-T GNN-2 4546.23 1698.35

FC 4329.39 1585.33

Reddit-12K
38

40

42

44

46

Ac
cu

ra
cy

ND
ER

FM
ND+ER

ER+FM
ND+FM

ND+ER+FM

Enzymes
51

53

57

59

61

Ac
cu

ra
cy

Figure 11: Impact of data augmentation on graph classification.

17

	Introduction
	Related Work
	Preliminary
	Methodology
	Self-Distilled Graph Contrastive Learning
	Graph Few-Shot Learning
	Quantitative Measurement of GFL

	Experiments
	Experimental Setup
	Few-Shot Node Classification
	Few-Shot Graph Classification

	Conclusion
	Dataset Details
	Baseline Method Details
	Node Classification
	Graph Classification

	Additional Experiment Results
	Few-Shot Node Classification Results
	Few-Shot Graph Classification Results

