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Abstract

Vision-language models, which integrate computer vision and natural language
processing capabilities, have demonstrated significant advancements in tasks such
as image captioning and visual question and answering. However, similar to
traditional models, they are susceptible to small perturbations, posing a challenge
to their robustness, particularly in deployment scenarios. Evaluating the robustness
of these models requires perturbations in both the vision and language modalities
to learn their inter-modal dependencies. In this work, we train a generic surrogate
model that can take both image and text as input and generate joint representation
which is further used to generate adversarial perturbations for both the text and
image modalities. This coordinated attack strategy is evaluated on the visual
question and answering and visual reasoning datasets using various state-of-the-art
vision-language models. Our results indicate that the proposed strategy outperforms
other multi-modal attacks and single-modality attacks from the recent literature.
Our results demonstrate their effectiveness in compromising the robustness of
several state-of-the-art pre-trained multi-modal models such as instruct-BLIP, ViLT
and others.

1 Introduction

Evaluating the robustness of computer vision models and architectures has existed for a long time now.
The success of vision-language models in bridging the gap between visual and textual representations
has enabled a wide range of applications, from image captioning, visual question and answering,
multi-modal information retrieval and generation tasks Dai et al. (2024); Liu et al. (2024); Kim
et al. (2021). As these models are becoming more ubiquitous in real-world deployments, their
vulnerability to adversarial attacks poses a significant liability concern. These attacks can deceive
models into misinterpreting or misclassifying visual and textual inputs, leading to erroneous outputs
and potentially harmful consequences. Understanding and mitigating these threats is crucial to
ensuring the reliability and security of vision-language models as they become more integrated into
critical applications.
Adversarial examples, carefully crafted by adding imperceptible perturbations to input data, can
cause these models to make incorrect and potentially dangerous predictions. While adversarial
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attacks have been extensively studied in computer vision and natural language processing domains,
the unique challenges posed by the multimodal nature of the vision-language model necessitate
more detailed investigation. These models must contend with adversarial perturbations that can
manifest in both the visual and textual components simultaneously, potentially exploiting intricate
cross-modal interactions and challenging the model’s ability to reason coherently across modalities.
Furthermore, most of the studies in the computer vision domain and natural language processing
(NLP) are designed only for classification tasks, Vision and Language models mainly involve different
types of downstream tasks such as visual question and answering, and cross-modality retrieval.
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Figure 1: Sample outcome with the proposed method on VQA dataset model with ViLT as victim
model

In this work, we propose a novel coordinated attack strategy that introduces perturbations to both the
vision and language modules, aiming to cause the model to alter its outcomes. Our approach involves
several key steps:
First, we train a multi-modal encoder (Multi-modal surrogate in figure 2 left) to align the embeddings
generated from a combination of an image and the corresponding question with those generated by
an answer encoder (text encoder in figure 2 left). Specifically, the multi-modal encoder processes an
image and a corresponding question, generating a joint representation. This joint representation is
encouraged to closely match an answer representation produced by a transformer-based text encoder.
The trained multi-modal encoder then serves as a surrogate for our attack method. During the attack
phase, both the surrogate and the text encoder generate feature representations. The goal is to craft
adversarial perturbations that push these representations apart in the embedding space, achieved
through a gradient-based update for both image and text modalities. This process is formulated as an
optimization problem. Figure 1 shows a sample output from our proposed method. Our approach
differs from existing methods in several significant ways:

While most literature on multi-modal attacks deals with classification problems where output logits
are readily accessible, our method targets complex downstream tasks such as visual question and
answering (VQA) rather than simple classifications. Additionally, majority of surrogate-based
approaches use feedback from victim models to generate adversarial perturbations. our method
employs a generic surrogate model that generates adversarial samples that are not victim model
dependent and can effectively mislead several state-of-the-art victim models. Finally, most multi-
modal adversarial attack approaches in the literature use word-swapping techniques Li et al. (2020)
for text attacks, which result in uncoordinated changes between text and image modalities. In contrast,
our method ensures that perturbations in both modalities are coordinated, enhancing the effectiveness
of the attack. The contribution of our approach can be summarized as;

1. We propose a coordinated attack strategy that has been designed for both vision and language
components to highlight the unique vulnerabilities in the multi-modal context.

2. The proposed method acts as a surrogate model that can craft generic adversarial samples
that can be used against several victim models without model specific feedback.

3. Results on visual question and answering task and visual reasoning task demonstrate the
superiority of the proposed method when compared to our competitors.

2 Related Works

Adversarial attacks were first introduced in computer vision, which demonstrates the vulnerability
of neural networks. Unlike black-box attacks, where the attacker has no access to the model’s
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Figure 2: Overview of the workflow. The left figure represents the alignment step to align a custom
architecture comprising of an image and question module with the answer module. An additional
LLM component is used in the alignment step to convert a single-worded ground-truth to a sentence
based on the question. The dotted line represents the flow of gradients. The figure in the right
represents the attack approach. The embeddings generated by the multi-modal surrogate and the text
encoder are compared using cosine similarity and are used to generate perturbations for both the text
and the image modality. The figure represents one iteration of the attack and the training process.
The surrogate once aligned is used across all victim models which proves the generalizability of the
proposed method.

internal parameters, white-box attacks assume full knowledge of the model, allowing for more precise
and effective perturbations. One of the pioneering works in this area is by Szegedy et al. (2013),
who demonstrated the vulnerability of neural networks to adversarial examples in the context of
image classification. This concept was later extended to text models by Papernot et al. (2016), who
introduced a technique for generating adversarial sequences by leveraging the gradients of the model.

2.1 Attacks for text models

Subsequent works have built upon these foundations, exploring various methods for crafting adversar-
ial text to mislead text based models Xu et al. (2020); Wang et al. (2021, 2019); Zhang et al. (2020,?).
Adversarial attack on text are broadly divided into two approaches, where one deals with sentence
level and the other at word level. The primary difference between the sentence-level attacks and the
word-level attacks is in the granularity and the nature of the modification made to the input text. The
sentence level attack involve modifying entire sentences or adding new sentences to the text Wang
et al. (2020); Lin et al. (2021); Huang and Chang (2021); Han et al. (2020)

2.1.1 Word-level attacks

Word level adversarial attack focus on modifying individual word within a sentence. This attack
deals with smaller and granular changes. Some of the most impactful works in this area include
Bert-attack Li et al. (2020). Jin et al. in the work Jin et al. (2020) propose a textfooler which uses a
powerful pretrained BERT to generate adversarial adversarial attack. Some of the popular attacks
in the word level He et al. (2021) Yang et al. in their work Yang et al. (2022) proposes adversarial
attack that is capable of adversarially transforming inputs to make victim models produce wrong
outputs. Similarly, there have been deveral other derivatives of the listed attacks such as Garg and
Ramakrishnan (2020); Sun et al. (2020); Xu et al. (2021); Li et al. (2020); Ye et al. (2022); Chang
et al. (2023).
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2.2 Attacks for vision models

Adversarial attacks on vision models have been studied for over a decade. Some of the significant
reviews on adversarial attack for vision models are Akhtar et al. (2021); Xu et al. (2020); Khamaiseh
et al. (2022); Chakraborty et al. (2021). Among adversarial attacks, square attack has created
significant impact in the adversarial attack literature Andriushchenko et al. (2020). Similarly, Moosavi-
Dezfooli et al. (2016) proposes an efficient approach to fool deep networks using gradient information.
The authors use a natural saddle point formulation to capture the notion of security against adversarial
attacks in a principled manner

2.3 Multi-modal Adversarial attacks

With recent developments in the multi-modal foundational models, they have similar vulnerabilities
as the text models or computer vision models. Zhou et al. Zhou et al. (2024) in their work introduce a
multimodal attack to align clean and adversarial text embeddings with clean and adversarial visual
features. They evaluate their method on image classification tasks to prove their superiority. Zhang et
al. Zhang et al. (2022) in their work co-attack add perturbations on multi-modality settings. The work
uses CLIP-based architecture which are aligned to generate adversarial perturbations for the image
and text modality. The authors evaluate their work on image text retrieval and visual entailment
tasks to demonstrate the effectiveness of their work. Zhao et al. Zhao et al. (2024) in their work
craft adversarial examples to fool VLMs for image captioning tasks by alternating between text-to-
image and image-to-text models with having a specific target text to drive the perturbation towards
a specific direction. VLAttack proposes an attack strategy which involves querying a black-box
model exhaustively to learn the mutual connections between the perturbed image and text to cause
misclassification in their work Yin et al. (2023).

3 Problem Formulation

In this work, we aim to generate adversarial perturbations for an image and a text question to
make their combined representation and the corresponding answer representation move apart in the
embedding space. These adversarial samples to cause different responses from a variety of victim
models compared to the original inputs. Let xq, xi, xa be a sample from dataset D.

(xq, xi, xa) ∼ D

Eiq(xi, xq) = riq Encodes an image im and a question iq into a joint representation riq . Ea(xa) = ra
encodes an answer xa into a representation ra. Generate perturbations δxi for the image and δxq

for the question such that the similarity between riq and ra decreases, pushing riq and ra farther
apart in the embedding space. The perturbed image and question should have different responses
from a victim model compared to the original inputs. We formulate the problem as an optimization
task where we minimize the similarity between the perturbed joint representation and the answer
representation while also causing different outputs from a victim model V .

Let V (xi, xq) be the response of the victim model to the original image and question and V (xi +
∆xi, xq +∆xq) be the response of the victim model to the perturbed image and question.We want
V (xi +∆xi, xq +∆xq) ̸= V (xi, xq).

So, the overall problem can be formulated as,

min
∆xi,∆xq

similarity(Eiq(xi +∆xi, xq +∆xq), Ea(xa))

subject to V (xi +∆xi, xq +∆xq) ̸= V (xi, xq)

4 Proposed Method

In the proposed method, we first explain the architecture of the surrogate model used and how the
surrogate model was aligned for the purpose of the adversarial example generation. Next, we explain
the attack strategies for the individual modalities, and how they are combined to generate adversarial
perturbation. The overall flow of the proposed method is represented in the figure 2.
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4.1 Surrogate Model to generate perturbations

4.1.1 Surrogate architecture

Current approaches in vision-language models heavily rely on image feature extraction processes
that involve regional supervision such as object detection which is computationally more expensive
and has limitations in applications. Hence at the core of the surrogate model lies a transformer-based
architecture to capture the interaction between the text and the image to generate a joint representation.
The surrogate architecture handles two modalities in a single unified manner consisting of stacked
blocks that include a multithreaded self-attention layer and MLP layer.

The input text xq ∈ RL×|V | is embedded to x̃q ∈ RL×H with a word embedding matrix T ∈ R|V |×H

and a position embedding matrix T pos ∈ R(L+1)×H . Here, L represents the input sequence length, V
represents the vocabulary size, and H represents the embedding dimension size.

The input image xi ∈ RC×Ht×W with C being the channel, Ht and W being the height and
width is sliced into patches and flattened to v ∈ RN×(P 2·C) where (P, P ) is the patch resolution
and N = Ht ×W/P 2 with N signifying total number of patches. Followed by linear projection
V ∈ R(P 2·C)×H and position embedding Vpos ∈ R(N+1)×H , v is embedded into ṽ ∈ RN×H .

The text and image embeddings are summed with their corresponding modal-type embedding vectors
tvtx, vvtx ∈ RH , then are concatenated into a combined sequence z0. The contextualized vector is
iteratively updated through D-depth transformer layers up until the final contextualized sequence. A
pooled representation of the whole multimodal input, and is obtained by applying linear projection.
Figure 3 represents the surrogate architecture. In the positional embedding, the first element represents
the modal-type embedding. For text, the second position represents the token position embedding,
and for image, the second position represents the patch position. ∗ represents the extra learnable
embedding.

Transformer Encoder

0 0 * 0 1 0 2

Word Embeddings

0 3 0 4 1 0 * 1 1 1 2

Linear projection

1 N

where is the banana

Pooler PoolerFC

Figure 3: Surrogate Architecure inspired from Dosovitskiy et al. (2020)

4.1.2 Surrogate Alignment

The goal is to align the surrogate architecture that takes in an image and text and generates a joint
representation. To align the representations riq and ra, we adopt a contrastive loss to encourage
the representations to be closer. Specifically, we aim to minimize the cosine similarity between the
positive pair (riq, ra) while maximizing the cosine similarity between the negative pairs (riq, r′a) and
(r′iq, ra), where r′a and r′iq are negative samples from the batch. The contrastive loss is defined as:

L = − log

(
ps(riq, ra)

ps(riq, ra) +
∑

i ps(riq, r
′
ai) +

∑
j ps(r

′
iqj , ra)

)
(1)

where ps represents exp(cos(x, y))

Where cos(x, y) is the cosine similarity between vectors x and y. By minimizing this loss, we
encourage the multimodal and text representations of the correct (xi, xq, xa) (image, question,
answer) triplets to be pulled closer together in the embedding space. We fine-tuned the surrogate
architecture on two training sets, MSCOCO and Flicker30k dataset.
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4.2 Coordinated Attack

In this section, we will discuss the attack strategy for the individual modules. Algorithm 1 represents
the overall flow of generating the adversarial samples. Once the adversarial samples are generated,
they are evaluated on victim models to see the change in the output. We use the same gradients from a
defined objective to generate adversarial perturbations for both the image module and the text module
making attack more unified.

4.2.1 Image perturbations

Our system employs a Surrogate encoder that has been aligned to generate adversarial perturbations,
to reduce the similarity between the embeddings from the surrogate model and the answer model.
This section elucidates the methodology to craft adversarial samples for the image input, thereby
fooling a victim model V .

Given a question xq , an image xi, and an answer xa, the encoders generate embeddings Eiq(xq, xi)
and Ea(xa), respectively. The similarity between these embeddings is measured using cosine
similarity. The objective of the adversarial attack is to reduce this similarity between the embeddings
by adding adversarial perturbations thereby deceiving the model. Equation 2 represents the cosine
similarity between the two embeddings.

L(xq, xi, xa) =
Eiq(xq, xi) · Ea(xa)

∥Eiq(xq, xi)∥∥Ea(xa)∥
(2)

The attack strategy involves iteratively perturbing the image to minimize the cosine similarity between
Eiq(xq, xi) and Ea(xa) to generate x′

i.

where x′
i = xi + δ represents the perturbed image and δ is the adversarial perturbation applied to the

original image xi. We apply an iterative method used to optimize the adversarial perturbation δ such
that it minimizes the objective function L(x′

i, q, a). The process starts with an initial perturbation
δ0 = random_bounded_initialization.

For each iteration t = 0, 1, . . . , T −1, the perturbed image along with the question is used to compute
the loss using the cosine similarity. The gradient of the loss function L with respect to the perturbed
input of the previous step is calculated using backpropagation. The sign of this gradient is used to
iteratively update the perturbation, ensuring that each step moves in the direction that maximally
reduces the cosine similarity between the embeddings. The perturbation after each step is represented
as,

δt+1 = Πϵ

(
δt + α · sign

(
∇δ

(
− Eiq(q, xi + δt) · EA(a)

∥Eiq(q, xi + δt)∥∥EA(a)∥

)))
(3)

The perturbed image that has caused the lowest cosine similarity after T iterations is x′
i = xi + δT .

α represents the step size,

∇δL represents the gradient of the loss function with respect to the perturbation δ. - Πϵ is the
projection operator ensuring the perturbation remains within the ϵ-ball around the original image xi:

Πϵ(δ) = clip(δ,−ϵ, ϵ)
The projection operator Πϵ ensures that the perturbation δ satisfies the constraint ∥δ∥∞ ≤ ϵ, keeping
the perturbation imperceptible. For our experiments, we maintained the ϵ = 8/255.

4.2.2 Text Attack

To generate adversarial examples that minimize the cosine similarity between question and answer
embeddings and instead of searching for a single adversarial example, we aim to find a distribution
of adversarial questions PΘ(xq) parameterized by Θ, such that when sampling x̃q ∼ PΘ(xq), the
cosine similarity between the embeddings Eiq(x̃q, xi) and E(xa) of the adversarial question and
original answer is minimized.

To instantiate the adversarial distribution PΘ(xq), we leverage the Gumbel-Softmax technique
Jang et al. (2016) which provides a simple way to sample from a categorical distribution while
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Table 1: Comparison of the proposed method with State-of-the-art competitors for visual question
and answering task on VQA dataset. All results are displayed by Average Success Rate (%).

Pre-trained Model Image Only Text only Multi-modality
SSP FDA BSA BA RR CO-Attack VLAttack Ours

ViLT 50.36 29.27 65.20 17.24 8.69 35.13 78.05 94.3
BLIP 11.84 7.12 25.04 21.04 2.94 14.24 48.78 91.0
GIT - - - - - 51.16 78.82 80.43

Table 2: Comparison of the proposed method with competitors for visual reasoning dataset. All
results are displayed by Average success rate

Pre-trained Model Image Only Text only Multi-modality
SSP FDA BSA BA RR CO-Attack VLAttack Ours

ViLT 21.58 35.13 52.17 32.18 24.82 40.04 66.65 73.32
BLIP 6.88 10.22 27.16 33.8 16.92 8.70 52.66 58.45
GIT - - - - - 18.66 41.78 54.54

maintaining differentiability. Let π̃1, ..., π̃n be samples from P̃Θ, the Gumbel-Softmax distribution
with temperature τ parameterized by Θ ∈ Rn×V , which draws samples π by independently sampling
where V is the vocabulary size and n is the sequence length. Each π̃i ∈ RV is a vector representing
a categorical distribution over vocabulary tokens at position i. We define the adversarial question
x̃q = e(π̃1) ⊕ ... ⊕ e(π̃n), the sequence formed by looking up and concatenating the embeddings
e(·) of the sampled token distributions. The objective is to minimize the cosine similarity between
the joint question and image embedding Eiq(x̃q, xi) and the given answer embedding E(xa). The
cosine similarity which is the objective is same as equation 2 with both the image and the question
perturbed as x̃i and x̃q .

Additionally, to ensure the generated adversarial questions remain fluent and semantically preserving,
we incorporate two additional constraints. The first promotes fluency by minimizing the negative
log-likelihood NLLg(x̃q) of the adversarial text under an external language model g. The second
controls semantic divergence by minimizing ρg(xq, x̃q) based on the BERTScore Zhang et al. (2019)
which measures the semantic similarity between the original question xq and adversarial x̃q using
contextualized embeddings from g. The full objective is a weighted combination:

J (Θ) = L(Θ) + λlmNLLg(x̃q) + λsimρg(xq, x̃q)

Where λlm, λsim > 0 control the strengths of the language model and semantic similarity constraints
respectively. We optimize Θ using gradient descent on J (Θ) to find the parameters of the adversarial
question distribution PΘ(xq). At inference time, we can efficiently sample x̃q ∼ PΘ(xq) and
input it to the QA system. The sampled x̃q will have minimized cosine similarity to the given
answer embedding g(xa), while being fluent and preserving semantic similarity to the original
question xq as guided by the constraints. This distributional adversarial attack framework provides
a powerful and general approach compared to previous heuristic word replacement methods. By
leveraging gradient-based optimization on a continuous distribution over the input space, along with
differentiable constraints, it can navigate the landscape more effectively to find stronger and more
natural adversarial examples that are not hand crafted or hard set.

5 Experiments

5.1 Exerimental Setup

Experiments are conducted on two different datasets VQA dataset and visual reasoning dataset.
We sample 1000 samples randomly from the validation set of the above mentioned dataset. Each
selected sample is correctly classified by all the target models to be considered for the evaluation.
The generated adversarial samples were evaluated on 3 different models, ViLT, GIT, BLIP Kim et al.
(2021); Liu et al. (2023); Dai et al. (2024). The experiments were conducted on 3 pre-trained VL
models and the use of Attack Success Rate (ASR) to evaluate the performance. We evaluate on two
different datasets, VQA dataset Goyal et al. (2017) and the visual reasoning dataset Suhr et al. (2018).
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Algorithm 1 High-Level flow of adversarial perturbation generation for image and text modality
1: Input: Clean image xi, question xq, answer xa, victim model V , encoders Eiq and EA, per-

turbation bounds ϵi and , step size α, number of iterations T , language model g, BERTScore
function ρg , weight parameters λlm and λsim

2: Initialize perturbations δi = 0, Θ ∈ Rn×V with small random values
3: for t = 0 to T − 1 do
4: Sample adversarial question x̃q ∼ PΘ(xq) using Gumbel-Softmax
5: Compute joint embedding riq = Eiq(xi + δi, x̃q)
6: Compute answer embedding ra = EA(xa)
7: Compute cosine similarity loss:

Liq =
riq · ra
∥riq∥∥ra∥

8: if Li < best_similarity then
9: Update best perturbation for image: δ∗i = δi

10: Update best perturbation for text: Θ∗ = Θ
11: Update best similarity: best_similarity = Li

12: end if
13: Compute full objective for text module:

J (Θ) = Liq + λlm · NLLg(x̃q) + λsim · ρg(xq, x̃q)

14: Update Θ using gradient descent:

Θ← Θ− α · ∇ΘJ (Θ)

15: Compute gradient of the loss w.r.t. δi:

∇δiLiq = ∇δi

(
− riq · ra
∥riq∥∥ra∥

)
16: Update perturbation δi:

δi = Πϵi (δi + α · sign(∇δiLiq))

17: end for
18: Output: Adversarial image x′

i = xi + δi and adversarial question x̃q ∼ PΘ(xq)

For our baselines, we compare our performance with several uni-modal approaches and multi-modal
approaches from the recent literature SSP Naseer et al. (2020), FDA Ganeshan et al. (2019), BA Li
et al. (2020), RR Xu et al. (2021), Co-Attack Zhang et al. (2022), VLA-attack Yin et al. (2023).

Experimental details: For all experiments, our surrogate architecture is composed of weights from
ViT-B/32 pre-trained on ImageNet, hence the name ViLT-B/32. Hidden size H is 768, layer depth
D is 12, patch size P is 32, MLP size is 3072 and the number of attention heads is 12. For the
answer encoder Ea, we use a bert based architecture with 12 transformer blocks, and hidden size
as 768, 12 self-attention heads, and a feed-forward network size of 3072. During the attack we
use adam optimizer to compute gradients with respect to our corresponding inputs with a learning
rate set to 0.0005. Our training experiments were conducted on an Ubuntu machine with 8 Tesla
V100S-PCIE-32GB GPUs and an Intel Xeon Gold 6246R CPU @ 3.40GHz with 16 cores. Training
was distributed across multiple GPUs for surrogate alignment.

5.2 Details on victim models

ViLT has proven to have performed well in several downstream tasks. Given an input image
I ∈ RH×W×3 and a sentence T, ViLT yields M image tokens using a linear transformation on the
flattened image patches, where each token is a 1D vector and M = HW

P 2 for a given patch resolution
(P, P ). By attending visual and text tokens and a special token ⟨cls⟩ in a Transformer encoder with
twelve layers, the output feature from the ⟨cls⟩ token is fed into a task-specific classification head for
the final output.
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Instruct-BLIP is a vision-language instruction tuning framework that enables general-purpose model
to solve a wide variety of visual language tasks. Instruct-BLIP performs vision-language instruction
tuning for zero-shot evaluation. The work uses instruction-aware visual feature extraction that enables
flexible feature extraction according to given instructions by providing textual instruction to both the
frozen language model and the Q-former, allowing it to extract instruction-aware features from the
frozen image encoder.

GIT Wang et al. (2022) Generative Image-to-text Tranfromer unifies vision-language tasks such as
image/video captioning and question answering. The method simplifies the architecture as one image
encoder and one text decoder under a single language modeling task.

6 Results and Discussion

In this section, we compare the performance of our proposed method with competitors on the VQA
and visual reasoning datasets evaluated on average success rate across several recent pretrained
models. Table 1 shows our result on the visual question and answering task, where our method
consistently outperforms other attack strategies in the multi-modality category. For the ViLT model,
our proposed method achieves an ASR of 94.3 percent which is 21 percent more than the most recent
state-of-the-art VLAttack and 59 percent more than Co-attack which was released in the year 2022.
With the BLIP model, we reach a success rate of 91 percent, and for GIT with a success rate of 80.4
percent.

Table 2 presents similar trends for the visual reasoning dataset. For the ViLT model, we achieve an
ASR of 73.32 percent which is 10.01 percent higher than the VLAttack and 33 percent higher than
the Co-attack. With the BLIP we are 10.99 percent more than VLAttack and 49.75 percent more than
co-attack. The results indicate the superiority of our proposed method in handling multi-modality
attacks across both datasets. The performance trends highlight the effectiveness of leveraging both
visual and textual information for robust VQA and visual reasoning downstream tasks.

7 Broader Impact and limitations

The development of multi-modal foundational models has transformed many sectors such as health-
care, finance and many others. The unique ability of multi-modal models to accept more than one
modality give more opportunities for effective and easy interaction. This work probes these models
with small crafted perturbations which completely misleads models that have billions of parameters
and are trained on humongous data. By building such attack strategies helps to expose the model
vulnerabilities as well as generate more samples that can be efficiently utilized to fine-tune these
models to improve their robustness. One of the limitation with surrogate based attacks is that, they
often rely on synthetic perturbations that may not reflect the real-world perturbations, demanding
more evaluation in that direction.

8 Conclusion

In conclusion, this research presents a novel coordinated attack strategy tailored for vision-language
models, addressing the unique vulnerabilities posed by their multimodal nature. By aligning a
surrogate model’s responses with those of a text encoder, we establish a foundation for generating
adversarial examples across both visual and textual modalities. Our approach, distinct from existing
methods, leverages a generic surrogate model capable of crafting adversarial samples without specific
victim model feedback, thereby demonstrating its versatility and applicability across various state-
of-the-art vision-language models. Through experimentation on benchmark datasets and evaluation
against multiple victim models, our method showcases superior performance in compromising the
robustness of vision-language models compared to existing multi-modal and single-modality attack
techniques. Our results underscore the effectiveness of our coordinated approach in generating
adversarial perturbations that induce disparate model outputs while minimizing similarity between
joint representations and corresponding answers.
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