
FUNU: Boosting machine unlearning efficiency by filtering
unnecessary unlearning

Anonymous authors

Abstract
Machine unlearning is an emerging field that selectively removes
specific data samples from a trained model. This capability is crucial
for addressing privacy concerns, complying with data protection
regulations, and correcting errors or biases introduced by certain
data. Unlike traditional machine learning, where models are typi-
cally static once trained, machine unlearning facilitates dynamic
updates that enable the model to “forget” information without
requiring complete retraining from scratch. There are various ma-
chine unlearning methods, some of which are more time-efficient
when data removal requests are fewer.

To decrease the execution time of such machine unlearning
methods, we aim to reduce the size of data removal requests based
on the fundamental assumption that the removal of certain data
would not result in a distinguishable retrained model. We first
propose the concept of unnecessary unlearning, which indicates
that the model would not alter noticeably after removing some
data points. Subsequently, we review existing solutions that can
be used to solve our problem. We highlight their limitations in
adaptability to different unlearning scenarios and their reliance
on manually selected parameters. We consequently put forward
FUNU, a method to identify data points that lead to unnecessary
unlearning. FUNU circumvents the limitations of existing solutions.
The idea is to discover data points within the removal requests
that have similar neighbors in the remaining dataset. We utilize a
reference model to set parameters for finding neighbors, inspired
from the area of model memorization. We provide a theoretical
analysis of the privacy guarantee offered by FUNU and conduct
extensive experiments to validate its efficacy.

CCS Concepts
• Security and privacy;

Keywords
Machine unlearning, Data selection, Data prototype

ACM Reference Format:
Anonymous authors. 2018. FUNU: Boosting machine unlearning efficiency
by filtering unnecessary unlearning. In Proceedings of Make sure to en-
ter the correct conference title from your rights confirmation emai (Confer-
ence acronym ’XX). ACM, New York, NY, USA, 12 pages. https://doi.org/
XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/18/06
https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
To enforce privacy regulations that protect individuals’ right to
be forgotten [3, 12], machine unlearning [6] has been proposed to
remove specific data samples from a trained model. It can also be
used to remove harmful data from the model, thereby mitigating
potential risks [7, 39].

While most methods aim to approximately unlearn a model with-
out retraining it from scratch, some of them would take longer time
to unlearn as the size of data removal requests grows[2, 11, 23,
35, 42]. For instance, SISA (Sharded, Isolated, Sliced, and Aggre-
gated) [2] is one of these methods. It partitions the entire dataset
into slices and trains sub-models on these slices.When data removal
requests are received, only the sub-models of the affected slices
are retrained, thereby avoiding a complete retraining. However, as
the number of removal requests increases, more slices are affected,
potentially leading to longer unlearning time.

However, we argue that many removal requests are unnecessary,
as there is redundant information among similar samples. In other
words, if a sample has similar neighbors in the remaining dataset,
unlearning it would not produce a model distinguishable from the
model before unlearning. Figure 1 illustrates an example.

Example 1.1. Consider a recommender system trained on user
data. Suppose there are ten users with similar purchase records as
Amy, whereas for Bob, no other user has similar purchase records.
As such, removing Amy’s data would become unnecessary because it
would have a smaller impact on the model than removing Bob’s data,
and other users with similar records to Amy would contribute to the
model as if Amy’s data still existed.

……Unlearn

……Unlearn

Amy

Bob

similar

similar×

Figure 1: Example of unnecessary unlearning

In this work, we aim to detect those samples in data removal
requests that would result in unnecessary unlearning. Existing
works [9, 16, 40] on data prototype discovery, as reviewed in Sec-
tion 2.2.1, can be applied to our problem. However, these approaches
are not designed for machine unlearning settings and have two
primary limitations. First, they lack the adaptability to different
types of unlearning scenarios, such as random removal and class
removal. Second, their performance heavily depends on the in-
ternal parameters, and manual tuning is required to select these
parameters.

To overcome these limitations, we further propose FUNU (Filtering
UNnecess-ary Unlearning), which addresses these limitations in

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anonymous authors

two aspects. First, FUNU adopts a distance measure between the
remaining dataset and the removal requests to find samples that
result in unnecessary unlearning, so it can adapt to different un-
learning scenarios. Second, FUNU trains a reference model in one
epoch and uses it for parameter tuning, especially the similarity
thresholds, without manual intervention. To guarantee that FUNU
satisfies the definition of approximate machine unlearning, we also
analyze the theoretical bound of the output distance between the
model generated by FUNU and a retrained model. Experimental
results demonstrate that FUNU can enhance the efficiency of those
machine unlearning methods whose cost is proportional to the size
of data removal requests while meeting the same commitment of
the right to be forgotten.

Besides, for other machine unlearning methods whose cost does
not proportionally increase [17, 19, 21, 36], FUNU can also benefit
them. For example, many such methods are constrained by a dele-
tion capability [36] that limits the total number of removal requests
they can accommodate under a privacy guarantee. Since FUNU re-
duces the number of removal requests, the validity of such methods
is extended. In addition, FUNU also aligns with the robustness of
the model, as the training process is intended to produce a model
that performs stably when the dataset is slightly perturbed [43]. To
conclude, our main contributions are as follows.

• We are the first to point out the unnecessary unlearning phe-
nomenon and propose to enhance the efficiency of machine
unlearning methods by exploiting it.

• We put forward FUNU to filter samples that lead to unnec-
essary unlearning. FUNU avoids the limitations of existing
solutions. It adapts to different unlearning scenarios and
does not require prior knowledge to choose parameters.

• We conduct a theoretical analysis to guarantee that themodel
generated by FUNU is close to the retrainedmodel. Moreover,
we perform extensive experiments to demonstrate that it
can indeed improve the efficiency of machine unlearning
methods.

The organization of this paper is as follows. Section 2 introduces
preliminaries, including problem setting and limitations in exist-
ing solutions. Section 3 proposes our method FUNU as well as its
privacy guarantee. Section 4 presents empirical evidence to vali-
date FUNU. Section 5 introduces related work briefly and Section 6
finally concludes this paper.

2 Problem setting and existing solutions
In this section, we formulate the concept “unnecessary unlearning”,
and then introduce the problem we aim to address in this paper. We
also present a few baseline solutions adapted from existing works
and show their limitations.

2.1 Problem setting
In the context of machine unlearning, let 𝐴 denote the training pro-
cess, so𝐴(𝐷) trains a model on dataset 𝐷 . we start with an original
model 𝑀𝑜 trained on the complete dataset 𝐷𝑜 , i.e., 𝑀𝑜 = 𝐴(𝐷𝑜 ).
Subsequently, data removal requests 𝐷𝑢 , also referred to as the
unlearning dataset, are received. The model trained on remaining
dataset 𝐷𝑟 = 𝐷𝑜\𝐷𝑢 is denoted as𝑀𝑟 = 𝐴(𝐷𝑟 ).

To describe the similarity between models, we use readout func-
tions [17–19]. Readout functions 𝑓 (𝑀) indicate the information
that can be extracted given a model𝑀 . Common readout functions
includemodel output, accuracy on themodel prediction, etc.𝐷𝑖𝑠𝑡 (·)
is the distance measurement to quantify the distance between the
outputs of readout functions for different models. It can be mea-
sured using metrics such as KL-divergence, norm, etc. With these
components, the definition of unnecessary unlearning is as follows.

Definition 2.1 (Unnecessary Unlearning). Given the remaining
dataset 𝐷𝑟 , the data removal requests 𝐷𝑢 , and the training process
𝐴, the unlearning process over 𝐷𝑢 is 𝜖-unnecessary unlearning if

𝐷𝑖𝑠𝑡 (𝑓 (𝐴(𝐷𝑟 )), 𝑓 (𝐴(𝐷𝑟 ∪ 𝐷𝑢 ))) ≤ 𝜖

In the above definition, 𝐷𝑖𝑠𝑡 (𝑓 (𝐴(𝐷𝑟 )), 𝑓 (𝐴(𝐷𝑟 ∪ 𝐷𝑢 ))) aligns
with the definition of previous unlearning works [17–19]. However,
these works employ different choices for 𝐷𝑖𝑠𝑡 (·) and the readout
functions. The underlying idea of this definition is that, an unlearn-
ing process which would not produce a model distinguishable (as
measured by 𝜖) from the original one, is considered unnecessary
unlearning.

Now we formulate the problem in this paper as follows. Given a
remaining dataset 𝐷𝑟 , an unlearning dataset 𝐷𝑢 , and the training
process𝐴, how canwefind a subset𝐷+

𝑢 ∈ 𝐷𝑢 , so that unlearning
over 𝐷+

𝑢 would still guarantee 𝜖-unnecessary unlearning?
After filtering 𝐷+

𝑢 from 𝐷𝑢 , the unlearning process would con-
tinue to be performed on the remaining removal requests 𝐷−

𝑢 =

𝐷𝑢\𝐷+
𝑢 . Since |𝐷−

𝑢 | is smaller than |𝐷𝑢 |, unlearning 𝐷−
𝑢 would con-

sume less time and resources.

2.2 Solutions by data prototype discovery
A highly relevant problem to unnecessary unlearning is data pro-
totype discovery, which finds typical samples that best represent
the whole dataset [8]. The discovered prototypes can be regarded
as the summary of the dataset to enhance training efficiency or to
explain model behavior [45]. Table 1 summarizes existing works in
data prototype discovery. They can be categorized into five types.

(1) For methods in [37], [10] and the adv indicator proposed
in [8], Membership Inference Attack (MIA) or adversarial
attack is required to decide the typicality of data points. How-
ever, MIA and adversarial attacks need to train additional
models, which could incur costs comparable to retraining
a model, contradicting the objective of machine unlearning
and unnecessary unlearning.

(2) For methods in [13], [14], priv, ret and agr[8], they select
prototypes by testing on models trained without the selected
data, which inherently includes a retraining process in their
methodology. As such, these methods also conflict with the
objective of machine unlearning.

(3) For methods in [29], [31], and [45], they attempt to modify
model architecture or alter the training process, which is
impractical in machine unlearning where the model has
already completed training.

(4) Method in [26] involves searching prototypes by an NP prob-
lem, which would lead to high computation costs.



FUNU: Boosting machine unlearning efficiency by filtering unnecessary unlearning Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Table 1: Existing data prototype discovery methods and their
limitations in efficiency

Methods Main idea Limitations

[37]
[10]
adv[8]

Perform MIA or
adversarial attack
to see the
typicality of a
given sample

Require MIA or
adversarial
attack

[13], [14],
ret,priv,
agr[8]

Compare model
stability trained
with or without
a certain sample

Require retraining
or training

[29],[31],
[45]

Track training
process or add
additional network

Need to modify the
model architecture
or training process

[26] Use a metric to
select typical samples

Need to solve an
NP problem

Existing
solutions
[8, 16, 34]

see Section 2.2.1 -

(5) clustering[5, 8], confidence[8] and curvature[16, 34]
are more efficient data prototype discovery solutions that
can be adapted to our problem as detailed below.

2.2.1 Adaptation to unnecessary unlearning problem. To adapt to
our problem, these solutions share a common three-step process.
Since they only differ in the first step, we will elaborate on this step
in greater detail.

Step 1. Calculate a score 𝑠 (𝑥) for each sample 𝑥 . The score re-
flects whether a sample has many similar neighbors in the entire
dataset, consistent with the indications of other data prototype dis-
covery methods mentioned previously. In our design, samples with
more similar neighbors tend to score lower. The ways to calculate
scores for different methods are as follows.

• Clustering. Inspired by [5, 8], we employ a combination of di-
mensionality reduction and clustering techniques. We apply
t-SNE[38] on the pixel space (for dataset MNIST in our ex-
periment) and ResNet-generated feature space (for datasets
CIFAR-10 and CIFAR-100) to project the datasets into two di-
mensions and cluster with HDBSCAN. 𝑠 (𝑥) for each sample
𝑥 is its according outlier score [4] in the clustering process.

• Confidence[8]. Model confidence is the output of the final
fully connected layer, indicating the probability of the sample
belonging to each class. We use softmax to normalize the
model output. To adjust the direction of the score, we assign
1 − 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑐 (𝑥)) as the confidence score of 𝑥 , where 𝑐 (𝑥)
is sample 𝑥 ’s belonging class and 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑖) is the model
output after softmax on class 𝑖 .

• Curvature[16, 34]. The curvature of the network loss around
a data point indicates the model’s memorization of it. Less
rare samples tend to have low curvature. In the original pa-
per [16], the authors averaged curvatures over many epochs
to calculate the final score. However, curvature calculation
is timing-consuming (in our experiment, it takes more than

one hundred seconds to calculate curvature for one epoch).
To maintain competitiveness with other methods, we cal-
culate the curvature only at the second epoch as our 𝑠 (𝑥).
We choose curvature at this epoch because at this stage, the
model does not learn too much about the dataset and thus
the curvature could reflect how the model reacts to a sample
more accurately. Otherwise, if themodel were well-trained, it
would fit most samples, resulting in uniformly low curvature
and it is hard to see the difference.

Step 2. Rank the scores 𝑠 (𝑥) in ascending order. A lower score
indicates the sample has more similar neighbors or is more typical
within the entire dataset.

Step 3. Select 𝐷+
𝑢 = {𝑥 |𝑠 (𝑥) ≤ 𝜃 𝑎𝑛𝑑 𝑥 ∈ 𝐷𝑢 }. As the parameter

𝜃 requires manual selection, it could lead to extensive testing for
different parameter choices. In Section 4.2, we select parameters
based on the data distribution and show that the results are sensitive
to the choice of parameters.

2.3 Limitations of existing solutions
Even though the above solutions are reasonably efficient as base-
lines, they have the following limitations.

Limitation 1. These methods fail to adapt to different types
of unlearning scenarios. For example, they can not automatically
adjust in random removal and class removal scenarios. The former
is to randomly remove samples regardless of their associated classes,
and the latter is to remove all samples of a particular class. Both
scenarios are common in practical unlearning applications.

In the class removal scenario, as the removed samples belong to
the same class, intuitively the proportion of 𝐷+

𝑢 should be smaller
than in random removal, because neighbors of samples in the same
class are likely remain in this class and are thus also subject to
unlearning. Existing works fail to identify this difference and thus
would leave out samples supposed to be unlearned. Figure 2 illus-
trates this. Existing works select 𝐷+

𝑢 by evaluating the contribution
of each sample in the entire dataset. Specifically, they tend to pick
samples that have many similar neighbors in the whole dataset to
be 𝐷+

𝑢 . In this case, as the relationship between the given sample
and the entire dataset is fixed, whether a sample would be classified
into 𝐷+

𝑢 is also fixed. Therefore, the proportion of 𝐷+
𝑢 remains fixed

under different unlearning scenarios.

𝐷𝑢
+ 𝐷𝑢

− 𝐷𝑢
−

Samples with many neighbors in the entire dataset

comparison

Existing solutions Ours

Class 1

Class 2

Class 3

Class 4

Class 5

Class 1

Class 2

Class 3

Class 4

Class 5

Unlearn class 5: 

𝐷𝑢
+

Figure 2: Existing solutions and our method in class removal
scenario. As for existing solutions, they tend to select sam-
ples with many neighbors in the entire dataset as 𝐷+

𝑢 . As the
proportion of such samples is fixed throughout the dataset,
thus the proportion of 𝐷+

𝑢 would be consistent with that and
be high. However, in our design, as we compare the removal
requests with the remaining dataset, thus the proportion of
𝐷+
𝑢 would be low.



Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anonymous authors

We believe the root cause is the difference of motivations. Ex-
isting works evaluate the absolute contribution of each sample in
the entire dataset, and attempt to filter those that contribute less
than the remaining removal samples so that the model trained on
the latter would resemble the original model𝑀𝑜 . In our problem,
however, we hope to find and filter those samples that cause a
model to resemble the retrained model𝑀𝑟 , so we should focus on
the relative contribution to the remaining dataset.

Limitation 2. These methods require manual parameter selec-
tion. Our experiments in Section 4.2.4 show that they are sensitive
to parameters. For instance, a 0.01 decrease in the parameter will
reduce the proportion of remaining removal requests by approxi-
mately 20% when applying the method “curvature”. which makes it
challenging to derive or tune the parameter in practice.

3 FUNU: an unnecessary unlearning filtering
method

FUNU aims to select a subset of unlearning dataset 𝐷𝑢 to form
𝐷+
𝑢 such that the samples in 𝐷+

𝑢 have similar neighbors in 𝐷𝑟 . The
contribution of these samples would be replaced by neighbors in
𝐷𝑟 , rendering them less significant to the retrained model. Conse-
quently, unlearning operations can bypass these samples.

In detail, FUNU has three steps, as illustrated in Figure 3. First,
calculate the distance matrix based on features generated by the
original trained model 𝑀𝑜 (Section 3.1). Second, use a reference
model𝑀𝑟𝑒 𝑓 to establish the similarity condition (Section 3.2). If a
sample 𝑥 and a dataset 𝐷 satisfy this condition, then the sample 𝑥
would be considered to have sufficient similar neighbors in𝐷 . Third,
we compare samples in 𝐷𝑢 with 𝐷𝑟 using the similarity condition
established in the previous step and select 𝐷+

𝑢 (Section 3.3).

𝐷𝑜 𝐷𝑐
𝑟𝑒𝑓

𝑆𝑖𝑚𝜃,𝛼(·)

𝐷𝑢

𝐷𝑢
+

𝑀𝑟𝑒𝑓

Step 1

Step 2

Step 3

𝑀𝑜 𝑀𝑑

Figure 3: The procedure of FUNU

3.1 Calculate distance matrix
The distance matrix, denoted as 𝑀𝑑 , is a matrix whose dimension
equals the size of the original dataset, i.e., 𝑀𝑑 ∈ R𝑁×𝑁 , where
𝑁 = |𝐷𝑜 |. Each cell of 𝑀𝑑 represents a distance between two
samples, such that𝑀𝑑

𝑖,𝑗
= 𝑠𝑎𝑚𝑝𝑙𝑒_𝑑𝑖𝑠𝑡 (𝑥𝑖 , 𝑥 𝑗 ), where 𝑥𝑖 , 𝑥 𝑗 ∈ 𝐷𝑜 .

We now introduce the function above 𝑠𝑎𝑚𝑝𝑙𝑒_𝑑𝑖𝑠𝑡 in detail. We
first use the original model 𝑀𝑜 to generate the feature represen-
tation of a given sample 𝑥 . Specifically, we use the model output
before the last Fully Connected (FC) layer as the feature representa-
tion of the given sample, denoted as𝑀𝑓 (𝑥). Next, for each sample
pair in 𝐷𝑜 , we calculate their cosine distance. Combining these two
steps, we have 𝑠𝑎𝑚𝑝𝑙𝑒_𝑑𝑖𝑠𝑡 (𝑥𝑖 , 𝑥 𝑗 ) = 𝑐𝑜𝑠 (𝑀𝑓 (𝑥𝑖 ), 𝑀𝑓 (𝑥 𝑗 )), which
constructs the distance matrix. It is important to note that the
larger the cosine distance, the more similar the two samples are.
The distance matrix is further utilized in the third step.

3.2 Establish similarity condition
The similarity condition 𝑆𝑖𝑚(𝑥, 𝐷) determines whether a sample
𝑥 has a sufficient number of similarity neighbors in dataset 𝐷 ,
such that the contribution of 𝑥 to a model trained on 𝐷 could be
considered negligible.

We formulate the similarity condition as follows. 𝑆𝑖𝑚𝜃,𝛼 (𝑥, 𝐷) =
𝑇𝑟𝑢𝑒 if there are more than 𝛼 samples 𝑦1, ..., 𝑦𝛼∗ (𝛼∗ ≥ 𝛼,𝑦𝑖 ∈ 𝐷)
that satisfies 𝑠𝑎𝑚𝑝𝑙𝑒_𝑑𝑖𝑠𝑡 (𝑥,𝑦𝑖 ) ≥ 𝜃 . If there are enough samples
in 𝐷 considered similar to 𝑥 , 𝑆𝑖𝑚𝜃,𝛼 (𝑥, 𝐷) will return true.

The key problem in establishing the similarity condition is to
determine the parameters, 𝛼 and 𝜃 . Instead of manually choosing
parameters, we use a reference model to find similar samples first
and derive the statistics of those samples as the parameters.

Our reference model𝑀𝑟𝑒 𝑓 is acquired as follows. We initialize a
model with the same structure as the original model and train it on
𝐷𝑜 for one epoch. The resulting model is designated as𝑀𝑟𝑒 𝑓 .The
choice of𝑀𝑟𝑒 𝑓 is motivated by two key considerations.

First, regarding the efficacy of𝑀𝑟𝑒 𝑓 in addressing our problem,
We would like to use it to identify similar samples. Since𝑀𝑟𝑒 𝑓 iter-
ates over the whole dataset for one epoch, it has seen each data sam-
ple only once. In this case, we infer the samples correctly predicted
by 𝑀𝑟𝑒 𝑓 have sufficient similar neighbors in the entire dataset,
enabling the model to make correct predictions. This inference is
consistent with the findings in model memorization area [1, 40],
which suggest that models tend to learn patterns at the early train-
ing stage.𝑀𝑟𝑒 𝑓 is a model at an early stage of training (one epoch).
The data samples being predicted correctly could be recognized as
contributing to pattern learning, and thus share common character-
istics. Second, considering efficiency, our𝑀𝑟𝑒 𝑓 is straightforward
to implement. It does not require additional datasets for training
and only trains for one epoch, thereby conserving computational
resources and time.

Samples correctly predicted by 𝐷𝑜 within each class are con-
sidered similar. We denote 𝐷𝑟𝑒 𝑓

𝑐 as the samples in class 𝑐 that are
correctly predicted by 𝑀𝑟𝑒 𝑓 . Then we use the statistics of 𝐷𝑟𝑒 𝑓

𝑖
across different classes to be parameters for 𝑆𝑖𝑚𝜃,𝛼 . Specifically,

𝜃𝑐 = 𝑎𝑣𝑔(𝑠𝑎𝑚𝑝𝑙𝑒_𝑑𝑖𝑠𝑡 (𝑥𝑖 , 𝑥 𝑗 )), 𝑥𝑖 , 𝑥 𝑗 ∈ 𝐷𝑟𝑒 𝑓
𝑐 (1)

𝜃 = 𝑎𝑣𝑔(𝜃𝑐 ), 𝑐 ∈ 𝐶 (2)

where 𝑎𝑣𝑔(·) is the average operation and 𝐶 is the set of classes.
As for the parameter 𝛼 , we first count 𝛼𝑐 within each class 𝑐 , which
is the count of the sample pairs whose 𝑠𝑎𝑚𝑝𝑙𝑒_𝑑𝑖𝑠𝑡 is above the
given 𝜃 . Then we average 𝛼𝑐 across different classes to have the
final 𝛼 . This process is formalized below where | · | indicates the
size of a given set:

𝛼𝑐 = |{(𝑥𝑖 , 𝑥 𝑗 ) |𝑠𝑎𝑚𝑝𝑙𝑒_𝑑𝑖𝑠𝑡 (𝑥𝑖 , 𝑥 𝑗 ) ≥ 𝜃 }|, 𝑥𝑖 , 𝑦𝑖 ∈ 𝐷𝑟𝑒 𝑓
𝑐 (3)

𝛼 = 𝑎𝑣𝑔(𝛼𝑐 ), 𝑐 ∈ 𝐶 (4)

3.3 Filter removal requests
We utilize the distance matrix 𝑀𝑑 and the parameterized similar
condition 𝑆𝑖𝑚𝜃,𝛼 (𝑥, 𝐷) to filter samples in 𝐷𝑢 that have more than
𝛼 similar neighbors in 𝐷𝑐 (𝑥 )

𝑟 , where 𝐷𝑐 (𝑥 )
𝑟 is the samples in 𝐷𝑟 the

belong to the same class 𝑐 (𝑥) as sample 𝑥 . This process is formalized
as follows: 𝐷+

𝑢 = {𝑥 |𝑥 ∈ 𝐷𝑢 𝑎𝑛𝑑 𝑆𝑖𝑚𝜃,𝛼 (𝑥, 𝐷
𝑐 (𝑥 )
𝑟 ) = 𝑇𝑟𝑢𝑒}.



FUNU: Boosting machine unlearning efficiency by filtering unnecessary unlearning Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Specifically, we select a sub-matrix of 𝑀𝑑 , which contains dis-
tances between samples in 𝐷𝑢 and 𝐷𝑟 , i.e., the sub-matrix is shaped
|𝐷𝑢 | × |𝐷𝑟 |. Then we perform filtering on this sub-matrix using the
formalization we mentioned beforehand, comparing the distance
of sample pairs with the similarity condition. Selected 𝐷+

𝑢 will be
removed from 𝐷𝑢 and the remaining samples, denoted as 𝐷−

𝑢 , are
those that require unlearning.

It is noteworthy that this step has to be executed whenever data
removal requests are received, as the remaining dataset 𝐷𝑟 changes
each time. As demonstrated in our experiment (Section 4.2.2), this
incurs additional time costs compared to existing solutions, but it
is necessary so that our method can adapt to various unlearning
scenarios.

3.4 Privacy guarantee
We claim that the 𝐷+

𝑢 selected by FUNU satisfies 𝜖-unnecessary
unlearning in Section 2.1. To specify the definition of unnecessary
unlearning, we choose KL-divergence as the distance measurement.
As illustrated in Section 2.1, the difference between𝑀𝑢 and𝑀𝑟 is
that𝑀𝑢 is trained on 𝐷+

𝑢 while𝑀𝑟 is not. Consequently, we use the
model outputs on 𝐷+

𝑢 as the readout function to better illustrate the
differences between the two models.

It is important to note that we compare similarities between
samples using the features that are generated just before the last
FC layer, Thus the relationship between features and outputs can
be regarded as linear.

Besides, in previous machine unlearning studies that aim to
bound the distance between the retrained model and unlearned
model, it is a common assumption that model outputs on samples
are independent of each other [21, 36, 41], i.e., if the training dataset
of a model contains a certain sample, then the changes of other
samples (removal or addition) would not affect the model output on
that sample. Following this convention, we assume that the features
produced by𝑀𝑜 are identical to𝑀𝑟 and𝑀𝑢 as the training dataset
of𝑀𝑜 covers that of𝑀𝑟 and𝑀𝑢 .

In addition, Given that both 𝑀𝑢 and 𝑀𝑟 are trained on 𝐷𝑟 , we
assume that ∥𝑙𝑜𝑔(𝑀𝑟 (𝑥)) − 𝑙𝑜𝑔(𝑀𝑢 (𝑥))∥ ≤ 𝛿 on 𝐷𝑟 . This implies
that the logarithms of the outputs of𝑀𝑢 and𝑀𝑟 on samples in 𝐷𝑟

are bounded by a small value 𝛿 . Since we have hypothesized the
same features for 𝑀𝑟 and 𝑀𝑢 before the FC layer, the logarithm
of the model output equals the logarithm of the final FC layer
output. 𝛿 can be regarded as an estimation of the possible output
difference between two models trained on the same dataset. Ideally,
the expectation of 𝛿 is zero.

Based on these prerequisites, we have the following theorem.

Theorem 3.1. Suppose that for model𝑀𝑟 and𝑀𝑢 , the logarithms
of final FC layer output, denoted as 𝑙𝑜𝑔(𝑀𝑟 ) and 𝑙𝑜𝑔(𝑀𝑢 ), are 𝜆1-
Lipschitz and 𝜆2-Lipschitz, and that ∥𝑙𝑜𝑔(𝑀𝑟 (𝑥))−𝑙𝑜𝑔(𝑀𝑢 (𝑥))∥ ≤ 𝛿
on 𝐷𝑟 , then

𝐾𝐿𝐷+
𝑢
(𝑝𝑢 ∥𝑝𝑟 ) ≤ 𝜖, 𝜖 = 𝑛[(𝜆1 + 𝜆2) (

√
2 − 2𝜃 ) + 𝛿]

where 𝑝𝑢 is the output distribution of𝑀𝑢 , and 𝑝𝑟 is that of𝑀𝑟 . 𝑛 is
the size of 𝐷+

𝑢 .

The proof of the theorem is in appendix A.

Table 2: Datasets and models

Datasets Length Dimensions Models

MNIST[28] 60,000 28×28 2-layer-CNN
CIFAR-10[27] 50,000 32×32×3 ResNet-18[22]
CIFAR-100[27] 50,000 32×32×3 ResNet-18

4 Experiment
We conduct two sets of experiments. The first experiment is to
evaluate our method FUNU with other existing solutions from the
aspects of efficiency, adaptivity, and model privacy. The second is
to apply FUNU to an unlearning method SISA [2], demonstrating
that FUNU can improve efficiency while preserving model similar-
ity. Our implementation is available at https://anonymous.4open.
science/r/unnecessary_unlearning-BEE3.

4.1 General experiment setting
We followingly introduce datasets, models, andmetrics used through-
out the experiments. The particular settings for the two experiments
are specified in their respective sections.

Datasets and models.We train models on the datasets as listed
in Table 2. We use three datasets: MNIST, CIFAR-10, and CIFAR-100.
We employ a 2-layer convolutional neural network (2-layer-CNN)
for MNIST and a ResNet-18 model for CIFAR-10 as well as CIFAR-
100. We sample 90% of the complete dataset separately for training
our own model and the shadow model in MIA. When training
the ResNet-18 model, we optimize the pre-trained model using
Stochastic Gradient Descent with a learning rate of 1e-2 for CIFAR-
10 and 2e-4 for CIFAR-100, for ten epochs.

Metrics.We use metrics from three aspects: (1) Time cost. We
record the time required to execute different algorithms to illustrate
their efficiency. (2) Reduction in the data removal requests. This
metric assesses the extent to which the methods can reduce data
removal requests. It is quantified by the proportion of remaining
removal requests in the original requests, denoted as 𝑃− =

|𝐷−
𝑢 |

|𝐷𝑢 | . A
larger 𝑃− indicates that fewer removal requests have been reduced.
(3) Model privacy. Model privacy is measured by the similarity be-
tween the model𝑀𝑢 trained on𝐷+

𝑢 ∪𝐷𝑟 and the retrained model𝑀𝑟

trained on𝐷𝑟 . If the two models are similar, then we could conclude
that𝑀𝑢 maintains a level of privacy protection comparable to𝑀𝑟 .
We thereby compare their performance across several metrics [44],
as detailed below, to illustrate their similarity.

• Model accuracy (acc.). We compare the accuracy of𝑀𝑢 and
𝑀𝑟 on the removal𝐷𝑢 , remaining dataset𝐷𝑟 , and test dataset
𝐷𝑡 . This comprehensive comparison provides a detailed de-
scription of the models’ performance.

• Accuracy and F1 of MIA [30] on the original data removal
requests 𝐷𝑢 . MIA aims to determine whether a specific data
point was part of the training dataset used to build amachine-
learning model. By analyzing the model’s outputs, the at-
tacker can infer the presence or absence of particular sam-
ples. We aim for𝑀𝑢 to achieve similar performance to𝑀𝑟 ,
ensuring that both models react similarly to MIA.

All experiments are performed on NVIDIA GeForce RTX 3090
with CUDA Version 12.2 and implemented with Python 3.8.19.

https://anonymous.4open.science/r/unnecessary_unlearning-BEE3
https://anonymous.4open.science/r/unnecessary_unlearning-BEE3


Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anonymous authors

4.2 Evaluation on FUNU
In this section, we compare FUNU with existing solutions from
the perspectives of time cost, adaptivity to different unlearning
scenarios, and model privacy.

4.2.1 Experiment setting. We provide detailed information regard-
ing the experimental setup as follows.

Parameter.The existing solutions necessitate themanual setting
of the parameter 𝜃 which serves as a threshold when selecting
𝐷+
𝑢 . In our experiments, with the calculated score 𝑠 (𝑥) for each

sample 𝑥 using the existing solutions, we select three values for 𝜃
based on score distribution:𝑚𝑎𝑥 (𝑎𝑣𝑔(𝑠)−𝑠𝑡𝑑 (𝑠), 1𝑒−3), 𝑎𝑣𝑔(𝑠), and
𝑎𝑣𝑔(𝑠)+𝑠𝑡𝑑 (𝑠), where 𝑎𝑣𝑔(𝑠) and 𝑠𝑡𝑑 (𝑠) represent the average value
and standard deviation of score 𝑠 (𝑥) for all samples, respectively.
We choose𝑚𝑎𝑥 (𝑎𝑣𝑔(𝑠) − 𝑠𝑡𝑑 (𝑠), 1𝑒 − 3) here because in some cases
𝑎𝑣𝑔(𝑠) − 𝑠𝑡𝑑 (𝑠) ≤ 0, thereby we bound the value with 1e-3.

Unlearning scenarios. We consider two unlearning scenarios.
The first is random removal, where we randomly select 30, 50, and
100 samples from the original dataset 𝐷𝑜 as the removal requests
𝐷𝑢 . The second is class removal, where we randomly choose one
class and remove half of its samples as 𝐷𝑢 .

Baseline.To demonstratemodel privacy, we compare ourmethod
with another method, namely Certified Removal (CR) [21], to il-
lustrate how close the models generated with our method as well
as existing solutions are to the retrained model. It is important to
note that CR is not a method for reducing removal requests. Rather,
it is a typical unlearning method that directly updates the model
parameter and unlearns the given removal requests [44]. Due to
memory constraints when running CR for the ResNet-18 model,
we apply the method described in [32] to reduce the model layers
to be updated.

M N I S T C I F A R 1 0
C I F A R 1 0 0

M N I S T C I F A R 1 0
C I F A R 1 0 0

M N I S T C I F A R 1 0
C I F A R 1 0 0

M N I S T C I F A R 1 0
C I F A R 1 0 0

F U N U c l u s t e r i n g c o n f i d e n c e c u r v a t u r e

1 E - 3
1 E - 2
1 E - 1
1 E + 0
1 E + 1
1 E + 2
1 E + 3

Tim
ing

 (s
)

 O f f l i n e  t i m i n g
 O n l i n e  t i m i n g

Figure 4: Timing of FUNU and existing solutions

4.2.2 Time cost. We calculate the average execution time of these
methods under varying numbers of data removal requests in the
random removal scenario and present the results in Figure 4.

We divide FUNU and the existing solutions into two stages: the
offline and the online stages. For all methods, the offline stage is
the first two steps, while the online stage is the third step.

In Figure 4, the offline execution time of FUNU is less than that
of the existing solutions, whereas the online execution time exceeds
the existing solutions. This discrepancy is expected, as during the
online stage, the FUNU compares samples in 𝐷𝑢 and 𝐷𝑟 , which
involves the operation of separating the distance matrix and filter
value with similar conditions, while existing solutions simply select
samples whose scores are smaller than the given parameters.

Nevertheless, the total execution time of FUNU remains less
than that of two of the existing solutions, clustering and curvature.

Besides, the absolute online timing of FUNU is around four seconds,
which is still acceptable.

4.2.3 Adaptivity to unlearning scenarios. We calculate 𝑃− under
both random removal and class removal scenarios. For existing solu-
tions, we first calculate their average 𝑃− across different parameter
choices. Subsequently, we calculate the average 𝑃− for FUNU and
the existing solutions over varying numbers of removal requests.
The results are presented in Figure 5.

F U N U c l u s t e r i n g c o n f i d e n c e c u r v a t u r e F U N U c l u s t e r i n g c o n f i d e n c e c u r v a t u r e F U N U c l u s t e r i n g c o n f i d e n c e c u r v a t u r e
M N I S T C I F A R - 1 0 C I F A R - 1 0 0

0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

P-

 F U N U  c l u s t e r i n g  c o n f i d e n c e  c u r v a t u r e
*  S o l i d  c o l o u r  i s  f o r  r a n d o m  r e m o v a l ,  a n d  s l a s h  p a t t e r n  i s  f o r  c l a s s  r e m o v a l

Figure 5: 𝑃− of different methods

In Figure 5, in random removal, the average 𝑃− of FUNU is
0.4422, while that of clustering is 0.6586, of confidence, 0.7865, and
of curvature, 0.5772. The results indicate that our method, FUNU, is
more effective in reducing deletion requests for the random removal
scenario compared to existing solutions.

Besides, our method demonstrates adaptability to the class re-
moval scenario, addressing the first limitation mentioned in Section
2.3. When the removal requests are of the same class, 𝑃− of FUNU
increases, indicating that FUNU finds more samples are needed
to unlearn as they have fewer similar neighbors in the remaining
dataset. In contrast, the existing solutions exhibit no obvious varia-
tion between the two different unlearning settings, which is due
to their neglect of the relationship between 𝐷𝑢 and 𝐷𝑟 , as we have
illustrated in Section 2.3.

4.2.4 Model privacy. We use performance similarity between𝑀𝑢

and 𝑀𝑟 to illustrate model privacy. Table 3 lists the performance
difference. To show the similarity between FUNU (denoted as “ours”
in table) and retrained model𝑀𝑟 (denoted as “ret.” in table), we use
another machine unlearning method, CR [21], as a baseline. Except
for the underlined values, our method is closer to the retrained
model compared to the baseline. The mean accuracy difference
between FUNU and𝑀𝑟 over the three datasets is 0.0134, whereas
for CR, it is 0.0535. Similarly, the mean difference between FUNU’s
corresponding F1 of MIA and𝑀𝑟 is 0.0407, while for CR, it is 0.1114.
These results indicate that the model generated by FUNU is more
similar to𝑀𝑟 , thereby demonstrating superior model privacy.

The performance of models generated using existing solutions is
shown in Table 4, along with the chosen parameter 𝜃 . For existing
solutions, their performance and 𝑃− are sensitive to parameters.
Taking curvature as an example, it corresponds to an average rate
of change between 𝑃− and the parameter of 20.3589, i.e., a 0.01
decrease in 𝜃 will reduce 𝑃− by approximately 20%. The average
rate of change for confidence is 5.0143, and for clustering, it is
1.7352. This parameter sensitivity can lead to significant instability
and inconvenience when applying existing solutions.



FUNU: Boosting machine unlearning efficiency by filtering unnecessary unlearning Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Table 3: Model performance under random removal

Dat-
aset

Met-
hod

Acc.
of MIA

F1
of MIA

Acc.
on 𝐷𝑟

Acc.
on 𝐷𝑢

Acc.
on 𝐷𝑡

ret. 0.5124 0.4284 0.9567 0.9722 0.9602
ours 0.5374 0.4732 0.9570 0.9703 0.9602MNIS

T CR 0.5194 0.6133 0.9564 0.9967 0.9587
ret. 0.5796 0.6720 0.9591 0.7959 0.8068
ours 0.6019 0.6983 0.9606 0.7985 0.8055CIFA

R-10 CR 0.6012 0.6351 0.9534 0.9556 0.8045
ret. 0.6750 0.7048 0.7840 0.4430 0.4708
ours 0.6072 0.6539 0.7863 0.5537 0.4712CIFA

R-100 CR 0.5250 0.5922 0.7832 0.7267 0.4744

Due to page limitation, we have included the model performance
for the class removal scenario in Appendix B. This additional data
does not affect the conclusions above.

4.3 Case study: SISA
We apply FUNU to SISA to demonstrate its capability to reduce
unlearning time while preserving model privacy. SISA [2] is a repre-
sentative machine unlearning method. It initially splits the datasets
into different shards and then divides the data in each shard into
slices. Next, it trains a sub-model on each shard and sequentially
adds training data from each slice. Finally, it aggregates the results
from all sub-models to obtain the final model output.

In this configuration, when data removal requests are received,
SISA first identifies the influenced shards and slices, i.e., the shards
and slices containing the removal requests. It then retrains sub-
models previously trained on these influenced shards and slices
instead of retraining all sub-models, thereby reducing the time of
unlearning.

4.3.1 Experiment setting. For the implementation of SISA, we set
the number of shards to be five and the number of slices in each
shard to be ten. In this case, we would have five sub-models and
fifty data slices in total.

When applying FUNU to SISA, we first use the model which has
the same structure as the sub-model and train it on the complete
dataset for one epoch to get the reference model, as described in
Section 3.2. For the unlearning scenario, We randomly choose 10,
30, and 50 samples as the removal requests 𝐷𝑢 .

4.3.2 Experiment results. We analyze the experiment results from
the perspectives of time cost and model privacy. In Figure 6 and
Table 5, we refer to the methods “retrain” as unlearning the exact
data removal requests, and “ours” indicates first filtering removal
requests with FUNU.

Time cost. The comparison of time cost between using FUNU
or not in SISA is shown in Figure 6. With FUNU, the average timing
of applying SISA is reduced by 24%.

The number of influenced slices in SISA, denoted as 𝑁𝐼𝑆 , is
shown in Table 5. The fewer slices are influenced, the less timing is
for unlearning. With FUNU, the data removal requests are pruned,
thereby reducing the number of influenced slices. The average
decrease of 𝑁𝐼𝑆 when applying FUNU is 31%, which aligns with
the average decreased time cost.

1 0 3 0 5 0 1 0 3 0 5 0 1 0 3 0 5 0
M N I S T C I F A R 1 0 C I F A R 1 0 0

0

2 0 0

4 0 0

Tim
ing

 (s
)

 r e t r a i n
 o u r s

| D u |
D a t a s e t

Figure 6: Timing of applying FUNU to SISA

Model privacy. Table 5 presents accuracy of both models on
𝐷𝑡 , 𝐷𝑢 , and 𝐷𝑟 . On 𝐷𝑡 and 𝐷𝑟 , the difference between accuracy for
the retrained model and our model is less than 2%. On 𝐷𝑢 , there is
at most one sample where the two models predict differently. As
the performance is similar in numerical, we thereby conclude that
our method could lead to a model similar to the retrained model,
consequently preserving model privacy.

5 Related work
Related research fields to this work are machine unlearning and
data prototype discovery.

Machine unlearning. Machine unlearning explores how to ob-
tain a model that closely resembles the retrained model. Since it has
been proposed in [6], numerous studies have emerged in this area.
As highlighted in the survey [44], mainstream research focuses
on unlearning methods and verification mechanisms. Unlearning
methods are categorized into two primary types: data reorgani-
zation [2, 6, 11, 15, 20] and model manipulation [17, 19, 21, 36].
The time cost of methods in the former category is more closely
related to the size of removal requests. These methods typically
manipulate the dataset based on the removal requests, and when
there are fewer samples to unlearn, less manipulation is required.

Data prototype discovery. Data prototype discovery aims to
identify prototypes that best represent the entire dataset. These
prototypes can be used to reduce the training dataset size, thereby
accelerating model training [24, 25], or to select potentially mis-
labeled data [33]. As discussed in Section 2.3, such methods have
limitations in terms of efficiency, practicality, and adaptability to
different types of removal requests, which prevent them from fully
addressing our problem.

6 Discussion and conclusion
For this work, we have further discussion from the following two
perspectives, including the potential impact of our method and the
findings complementary to our research.

Can FUNU benefit model-shifting unlearning methods?
Model-shifting methods [17, 19, 21, 36] constitute a group of un-
learning techniques that directly update model parameters and
introduce noise to achieve unlearning. For these methods, the effi-
ciency of these methods is generally not significantly affected by
the number of removal requests. However, these methods would
have to consider deletion capacity, which is the maximum number
of samples a model can unlearn while maintaining the privacy guar-
antee [36]. FUNU can be beneficial when the number of requests
exceeds the deletion capacity. In such cases, FUNU could reduce the



Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anonymous authors

Table 4: Model performance of existing solutions under random removal

Dataset Method Parameter 𝑃− F1 of MIA Accuracy
of MIA

Accuracy
on 𝐷𝑟

Accuracy
on 𝐷𝑢

Accuracy
on 𝐷𝑡

MNIST

clustering
0.2540 0.9100 0.5328 0.4358 0.9570 0.9656 0.9602
0.1000 0.7433 0.5078 0.4404 0.9569 0.9722 0.9604
0.0010 0.3022 0.5294 0.4487 0.9572 0.9689 0.9604

confidence
0.1950 0.9411 0.5361 0.4312 0.9564 0.9900 0.9607
0.0620 0.8578 0.5189 0.3666 0.9566 0.9689 0.9602
0.0010 0.2378 0.5378 0.3401 0.9566 0.9867 0.9598

curvature
0.5400 0.9656 0.5033 0.4562 0.9568 0.9656 0.9606
0.4990 0.7722 0.4822 0.3493 0.9569 0.9833 0.9597
0.4580 0.0767 0.5183 0.3598 0.9567 0.9756 0.9602

CIFAR10

clustering
0.2990 0.8167 0.5900 0.6748 0.9542 0.8144 0.8021
0.1230 0.6722 0.6000 0.6914 0.9481 0.7978 0.7954
0.0010 0.4078 0.5439 0.6173 0.9598 0.8578 0.8069

confidence
0.0750 0.9100 0.5722 0.5950 0.9504 0.7978 0.8067
0.0140 0.8200 0.5539 0.6285 0.9636 0.8733 0.8096
0.0010 0.5256 0.5206 0.6091 0.9534 0.8956 0.7988

curvature
0.6660 0.9556 0.5911 0.6802 0.9617 0.8044 0.8095
0.6520 0.7344 0.5917 0.6871 0.9579 0.8167 0.8090
0.6380 0.0133 0.5356 0.6652 0.9526 0.9157 0.7996

CIFAR100

clustering
0.2890 0.8756 0.6383 0.6740 0.7834 0.5033 0.4755
0.1180 0.7367 0.5956 0.6455 0.7840 0.5589 0.4709
0.0010 0.4633 0.5767 0.6471 0.7893 0.6222 0.5796

confidence 0.0160 1.0000 0.6789 0.7103 0.7826 0.4467 0.4705
0.0010 0.9067 0.6061 0.6389 0.7874 0.4944 0.4728

curvature
0.4060 0.9600 0.6932 0.7122 0.7833 0.4600 0.4710
0.3780 0.6689 0.6250 0.6768 0.7872 0.5533 0.4733
0.3510 0.0478 0.4883 0.6039 0.7873 0.8067 0.4737

*CIFAR-100 only has two parameters when applying the confidence method because in this case
𝑚𝑎𝑥 (𝑎𝑣𝑔(𝑠) − 𝑠𝑡𝑑 (𝑠), 1𝑒 − 3) = 𝑎𝑣𝑔(𝑠).

Table 5: Comparison between w/wo applying FUNU to SISA

Dataset |𝐷𝑢 | Methods 𝑁𝐼𝑆
Acc.
on 𝐷𝑡

Acc.
on 𝐷𝑢

Acc.
on 𝐷𝑟

MNIST

10 retrain 21 0.9557 0.8000 0.9482
ours 9 0.9523 0.8000 0.9434

30 retrain 38 0.9595 0.9333 0.9530
ours 17 0.9543 0.9333 0.9462

50 retrain 40 0.9588 0.9600 0.9529
ours 25 0.9569 0.9400 0.9496

CIFAR10

10 retrain 17 0.5062 0.6000 0.5759
ours 13 0.5034 0.6000 0.5740

30 retrain 33 0.5114 0.4333 0.5833
ours 24 0.5099 0.4667 0.5799

50 retrain 47 0.509 0.4000 0.5869
ours 30 0.5101 0.5000 0.5840

CIFAR100

10 retrain 17 0.1075 0.1000 0.1575
ours 14 0.1061 0.1000 0.1604

30 retrain 33 0.1168 0.1000 0.1721
ours 33 0.1164 0.1000 0.1724

50 retrain 47 0.1154 0.1400 0.1753
ours 36 0.1148 0.1200 0.1724

size of the requests, thereby ensuring that the unlearning process
remains protected by the privacy guarantee.

Failure in verification vs. necessity to unlearn? Recent work
[46] has highlighted the fragility of current machine unlearning
verification methods in some unlearning techniques. Specifically, it
has shown that even with some data points not being removed, the
model can remain indistinguishable from one that has undergone
proper unlearning. This work can be seen as complementary to
ours. Some removal requests would not significantly influence the
retrained model, making it acceptable not to remove them. Our
work primarily focuses on identifying such data points.

In conclusion, we first define unnecessary unlearning, review
existing solutions, and then propose the FUNU method, which
enhances the efficiency of machine unlearning methods while pre-
serving model privacy. FUNU aim to filter out samples in data
removal requests that would probably not lead to a model distin-
guishable from the retrained model. Theoretically, we prove its
privacy guarantee. Empirically, we demonstrated that FUNU out-
performs existing solutions in the balance of time cost, adaptability
to different unlearning scenarios, and model privacy. We hope that
our research can contribute to the machine unlearning field and
better protect individuals’ right to be forgotten in the big data era.



FUNU: Boosting machine unlearning efficiency by filtering unnecessary unlearning Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

References
[1] Chirag Agarwal, Daniel D’souza, and Sara Hooker. 2022. Estimating example

difficulty using variance of gradients. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 10368–10378.

[2] Lucas Bourtoule, Varun Chandrasekaran, Christopher A Choquette-Choo, Hen-
grui Jia, Adelin Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. 2021.
Machine unlearning. In 2021 IEEE Symposium on Security and Privacy (SP). IEEE,
141–159.

[3] PRESTON BUKATY. 2019. The California Consumer Privacy Act (CCPA): An
implementation guide. IT Governance Publishing. http://www.jstor.org/stable/j.
ctvjghvnn

[4] Ricardo JGB Campello, Davoud Moulavi, Arthur Zimek, and Jörg Sander. 2015.
Hierarchical density estimates for data clustering, visualization, and outlier de-
tection. ACM Transactions on Knowledge Discovery from Data (TKDD) 10, 1 (2015),
1–51.

[5] Ricardo J. G. B. Campello, Davoud Moulavi, Arthur Zimek, and Jörg Sander. 2015.
Hierarchical Density Estimates for Data Clustering, Visualization, and Outlier
Detection. ACM Transactions on Knowledge Discovery from Data (TKDD) 10
(2015), 1 – 51. https://api.semanticscholar.org/CorpusID:2887636

[6] Yinzhi Cao and Junfeng Yang. 2015. Towardsmaking systems forget withmachine
unlearning. In 2015 IEEE symposium on security and privacy. IEEE, 463–480.

[7] Yinzhi Cao, Alexander Fangxiao Yu, Andrew Aday, Eric Stahl, Jon Merwine, and
Junfeng Yang. 2018. Efficient repair of polluted machine learning systems via
causal unlearning. In Proceedings of the 2018 on Asia conference on computer and
communications security. 735–747.

[8] Nicholas Carlini, Ulfar Erlingsson, and Nicolas Papernot. 2019. Distribution
density, tails, and outliers in machine learning: Metrics and applications. arXiv
preprint arXiv:1910.13427 (2019).

[9] Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian
Tramer, and Chiyuan Zhang. [n. d.]. Quantifying Memorization Across Neural
Language Models. In The Eleventh International Conference on Learning Represen-
tations.

[10] Nicholas Carlini, Matthew Jagielski, Nicolas Papernot, A. Terzis, Florian Tramèr,
and Chiyuan Zhang. 2022. The Privacy Onion Effect: Memorization is Rela-
tive. ArXiv abs/2206.10469 (2022). https://api.semanticscholar.org/CorpusID:
249890361

[11] Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert,
and Yang Zhang. 2022. Graph unlearning. In Proceedings of the 2022 ACM SIGSAC
conference on computer and communications security. 499–513.

[12] European Parliament and Council of the European Union. [n. d.]. Regulation (EU)
2016/679 of the European Parliament and of the Council. https://data.europa.eu/
eli/reg/2016/679/oj

[13] Vitaly Feldman. 2020. Does learning require memorization? a short tale about a
long tail. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory
of Computing. 954–959.

[14] Vitaly Feldman and Chiyuan Zhang. 2020. What neural networks memorize
and why: Discovering the long tail via influence estimation. Advances in Neural
Information Processing Systems 33 (2020), 2881–2891.

[15] Daniel L. Felps, Amelia D. Schwickerath, Joyce D.Williams, Trung N. Vuong, Alan
Briggs, M. Hunt, Evan Sakmar, David D. Saranchak, and Tyler Shumaker. 2020.
Class Clown: Data Redaction in Machine Unlearning at Enterprise Scale. ArXiv
abs/2012.04699 (2020). https://api.semanticscholar.org/CorpusID:228063877

[16] Isha Garg, Deepak Ravikumar, and Kaushik Roy. [n. d.]. Memorization Through
the Lens of Curvature of Loss Function Around Samples. In Forty-first Interna-
tional Conference on Machine Learning.

[17] Aditya Golatkar, Alessandro Achille, Avinash Ravichandran, Marzia Polito, and
Stefano Soatto. 2021. Mixed-privacy forgetting in deep networks. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition. 792–801.

[18] Aditya Golatkar, Alessandro Achille, and Stefano Soatto. 2020. Eternal sunshine
of the spotless net: Selective forgetting in deep networks. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 9304–9312.

[19] Aditya Golatkar, Alessandro Achille, and Stefano Soatto. 2020. Forgetting outside
the box: Scrubbing deep networks of information accessible from input-output
observations. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XXIX 16. Springer, 383–398.

[20] Laura Graves, Vineel Nagisetty, and Vijay Ganesh. 2020. Amnesiac Ma-
chine Learning. In AAAI Conference on Artificial Intelligence. https://api.
semanticscholar.org/CorpusID:224817947

[21] Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens Van Der Maaten. 2020.
Certified data removal from machine learning models. In Proceedings of the 37th
International Conference on Machine Learning. 3832–3842.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[23] Yingzhe He, Guozhu Meng, Kai Chen, Jinwen He, and Xingbo Hu. 2021. Deep-
obliviate: a powerful charm for erasing data residual memory in deep neural
networks. arXiv preprint arXiv:2105.06209 (2021).

[24] Tyler B Johnson and Carlos Guestrin. 2018. Training Deep Models
Faster with Robust, Approximate Importance Sampling. In Advances in Neu-
ral Information Processing Systems, S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.), Vol. 31. Curran As-
sociates, Inc. https://proceedings.neurips.cc/paper_files/paper/2018/file/
967990de5b3eac7b87d49a13c6834978-Paper.pdf

[25] Angelos Katharopoulos and François Fleuret. 2018. Not All Samples Are Created
Equal: Deep Learning with Importance Sampling. In International Conference on
Machine Learning. https://api.semanticscholar.org/CorpusID:3663876

[26] Been Kim, Rajiv Khanna, and Oluwasanmi O Koyejo. 2016. Examples are not
enough, learn to criticize! criticism for interpretability. Advances in neural
information processing systems 29 (2016).

[27] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

[28] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324.

[29] Oscar Li, Hao Liu, Chaofan Chen, and Cynthia Rudin. 2018. Deep learning
for case-based reasoning through prototypes: A neural network that explains
its predictions. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 32.

[30] Yugeng Liu, Rui Wen, Xinlei He, Ahmed Salem, Zhikun Zhang, Michael Backes,
Emiliano De Cristofaro, Mario Fritz, and Yang Zhang. 2022. ML-Doctor: Holistic
Risk Assessment of Inference Attacks Against Machine Learning Models. In
USENIX Security Symposium (USENIX Security). USENIX, 4525–4542.

[31] Pratyush Maini, Saurabh Garg, Zachary Lipton, and J Zico Kolter. 2022. Charac-
terizing datapoints via second-split forgetting. Advances in Neural Information
Processing Systems 35 (2022), 30044–30057.

[32] Ronak Mehta, Sourav Pal, Vikas Singh, and Sathya N. Ravi. 2022. Deep Un-
learning via Randomized Conditionally Independent Hessians. In 2022 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR). 10412–10421.
https://doi.org/10.1109/CVPR52688.2022.01017

[33] Geoff Pleiss, Tianyi Zhang, Ethan Elenberg, and Kilian Q Weinberger. 2020.
Identifying Mislabeled Data using the Area Under the Margin Ranking. In
Advances in Neural Information Processing Systems, H. Larochelle, M. Ran-
zato, R. Hadsell, M.F. Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates,
Inc., 17044–17056. https://proceedings.neurips.cc/paper_files/paper/2020/file/
c6102b3727b2a7d8b1bb6981147081ef-Paper.pdf

[34] Deepak Ravikumar, Efstathia Soufleri, Abolfazl Hashemi, and Kaushik Roy. 2024.
Unveiling Privacy, Memorization, and Input Curvature Links. In Forty-first In-
ternational Conference on Machine Learning. https://openreview.net/forum?id=
4dxR7awO5n

[35] Sebastian Schelter, Stefan Grafberger, and Ted Dunning. 2021. Hedgecut: Main-
taining randomised trees for low-latency machine unlearning. In Proceedings of
the 2021 International Conference on Management of Data. 1545–1557.

[36] Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh.
2021. Remember what you want to forget: Algorithms for machine unlearning.
Advances in Neural Information Processing Systems 34 (2021), 18075–18086.

[37] Pierre Stock andMoustapha Cisse. 2018. Convnets and imagenet beyond accuracy:
Understanding mistakes and uncovering biases. In Proceedings of the European
conference on computer vision (ECCV). 498–512.

[38] Laurens Van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of machine learning research 9, 11 (2008).

[39] Bolun Wang, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao
Zheng, and Ben Y Zhao. 2019. Neural cleanse: Identifying andmitigating backdoor
attacks in neural networks. In 2019 IEEE symposium on security and privacy (SP).
IEEE, 707–723.

[40] Jiaheng Wei, Yanjun Zhang, Leo Yu Zhang, Ming Ding, Chao Chen, Kok-Leong
Ong, Jun Zhang, and Yang Xiang. 2024. Memorization in deep learning: A survey.
arXiv preprint arXiv:2406.03880 (2024).

[41] Jiancan Wu, Yi Yang, Yuchun Qian, Yongduo Sui, Xiang Wang, and Xiangnan
He. 2023. Gif: A general graph unlearning strategy via influence function. In
Proceedings of the ACM Web Conference 2023. 651–661.

[42] Yinjun Wu, Edgar Dobriban, and Susan Davidson. 2020. Deltagrad: Rapid retrain-
ing of machine learning models. In International Conference on Machine Learning.
PMLR, 10355–10366.

[43] Huan Xu and Shie Mannor. 2010. Robustness and generalization. Machine Learn-
ing 86 (2010), 391 – 423. https://api.semanticscholar.org/CorpusID:254739858

[44] Heng Xu, Tianqing Zhu, Lefeng Zhang, Wanlei Zhou, and Philip S. Yu. 2023.
Machine Unlearning: A Survey. ACM Comput. Surv. 56, 1, Article 9 (aug 2023),
36 pages. https://doi.org/10.1145/3603620

[45] Chih-Kuan Yeh, Joon Kim, Ian En-Hsu Yen, and Pradeep K Ravikumar.
2018. Representer Point Selection for Explaining Deep Neural Networks.
In Advances in Neural Information Processing Systems, S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.), Vol. 31. Cur-
ran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2018/file/
8a7129b8f3edd95b7d969dfc2c8e9d9d-Paper.pdf

http://www.jstor.org/stable/j.ctvjghvnn
http://www.jstor.org/stable/j.ctvjghvnn
https://api.semanticscholar.org/CorpusID:2887636
https://api.semanticscholar.org/CorpusID:249890361
https://api.semanticscholar.org/CorpusID:249890361
https://data.europa.eu/eli/reg/2016/679/oj
https://data.europa.eu/eli/reg/2016/679/oj
https://api.semanticscholar.org/CorpusID:228063877
https://api.semanticscholar.org/CorpusID:224817947
https://api.semanticscholar.org/CorpusID:224817947
https://proceedings.neurips.cc/paper_files/paper/2018/file/967990de5b3eac7b87d49a13c6834978-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/967990de5b3eac7b87d49a13c6834978-Paper.pdf
https://api.semanticscholar.org/CorpusID:3663876
https://doi.org/10.1109/CVPR52688.2022.01017
https://proceedings.neurips.cc/paper_files/paper/2020/file/c6102b3727b2a7d8b1bb6981147081ef-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/c6102b3727b2a7d8b1bb6981147081ef-Paper.pdf
https://openreview.net/forum?id=4dxR7awO5n
https://openreview.net/forum?id=4dxR7awO5n
https://api.semanticscholar.org/CorpusID:254739858
https://doi.org/10.1145/3603620
https://proceedings.neurips.cc/paper_files/paper/2018/file/8a7129b8f3edd95b7d969dfc2c8e9d9d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/8a7129b8f3edd95b7d969dfc2c8e9d9d-Paper.pdf


Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anonymous authors

[46] Binchi Zhang, Zihan Chen, Cong Shen, and Jundong Li. 2024. Verification of
Machine Unlearning is Fragile. In Proceedings of the 41st International Confer-
ence on Machine Learning (Proceedings of Machine Learning Research, Vol. 235),
Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver,
Jonathan Scarlett, and Felix Berkenkamp (Eds.). PMLR, 58717–58738. https:
//proceedings.mlr.press/v235/zhang24h.html

A Proof for Theorem 1.1
Theorem A.1. Suppose that for model𝑀𝑟 and𝑀𝑢 , the logarithms

of final FC layer output, denoted as 𝑙𝑜𝑔(𝑀𝑟 ) and 𝑙𝑜𝑔(𝑀𝑢 ), are 𝜆1-
Lipschitz and 𝜆2-Lipschitz, and that ∥𝑙𝑜𝑔(𝑀𝑟 (𝑥))−𝑙𝑜𝑔(𝑀𝑢 (𝑥))∥ ≤ 𝛿
on 𝐷𝑟 , then

𝐾𝐿𝐷+
𝑢
(𝑝𝑢 ∥𝑝𝑟 ) ≤ 𝑛[(𝜆1 + 𝜆2) (

√
2 − 2𝜃 ) + 𝛿]

where 𝑝𝑢 is the output distribution of𝑀𝑢 on 𝐷+
𝑢 , and 𝑝𝑟 is that of𝑀𝑟 .

𝑛 is the size of 𝐷+
𝑢 .

Proof. According to the definition of KL-Divergence,

𝐾𝐿𝐷+
𝑢
(𝑝𝑢 ∥𝑝𝑟 ) = E𝐷+

𝑢
[𝑝𝑢𝑙𝑜𝑔(

𝑝𝑢

𝑝𝑟
)]

As for ∀𝑥 ∈ 𝐷+
𝑢 , there are more than 𝛼 samples in 𝐷𝑟 that are

similar to 𝑥 . We denote it as a mapping:𝑛𝑒𝑖 (𝑥𝑖 ) = 𝑥 𝑗 , where 𝑥𝑖 ∈ 𝐷+
𝑢

and 𝑥 𝑗 is one of the samples similar to it in 𝐷𝑟 . 𝑛𝑒𝑖 (·) is an injection
function. Here we calculate the bound when there is only one
sample in 𝐷𝑟 similar to 𝑥 . As 𝛼 ≥ 1, the bound we derived in the
end is for the worst case.

The output distribution of 𝑀𝑟 on 𝑛𝑒𝑖 (𝐷+
𝑢 ) is denoted as 𝑝𝑠𝑖𝑚𝑟 ,

then we have

𝐾𝐿𝐷+
𝑢
(𝑝𝑢 ∥𝑝𝑟 ) = E𝐷+

𝑢
[𝑝𝑢𝑙𝑜𝑔(

𝑝𝑢

𝑝𝑟
)] (5)

= E𝐷+
𝑢
[𝑝𝑢𝑙𝑜𝑔(

𝑝𝑢

𝑝𝑠𝑖𝑚𝑟

· 𝑝
𝑠𝑖𝑚
𝑟

𝑝𝑟
)] (6)

= E𝐷+
𝑢
[𝑝𝑢𝑙𝑜𝑔(

𝑝𝑢

𝑝𝑠𝑖𝑚𝑟

) + 𝑝𝑢𝑙𝑜𝑔(
𝑝𝑠𝑖𝑚𝑟

𝑝𝑟
)] (7)

= E𝐷+
𝑢
[𝑝𝑢𝑙𝑜𝑔(

𝑝𝑢

𝑝𝑠𝑖𝑚𝑟

)] + E𝐷+
𝑢
[𝑝𝑢𝑙𝑜𝑔(

𝑝𝑠𝑖𝑚𝑟

𝑝𝑟
)] (8)

We first bound the second term. For each pair 𝑥 and 𝑛𝑒𝑖 (𝑥),
where 𝑥 ∈ 𝐷+

𝑢 and 𝑛𝑒𝑖 (𝑥) ∈ 𝐷𝑟 ) , as 𝑐𝑜𝑠 (𝑥, 𝑛𝑒𝑖 (𝑥)) ≥ 𝜃 , thus
∥𝑥 −𝑛𝑒𝑖 (𝑥)∥ ≤

√
2 − 2𝜃 . Due to that 𝑙𝑜𝑔(𝑀𝑟 ) satisfies 𝜆1- Lipschitz,

∥𝑙𝑜𝑔(𝑀𝑟 (𝑥))−𝑙𝑜𝑔(𝑀𝑟 (𝑛𝑒𝑖 (𝑥)))∥ ≤ 𝜆1∥𝑥−𝑛𝑒𝑖 (𝑥)∥2. Model outputs
the prediction probability of sample 𝑥 , consequently ∥𝑀𝑢 (𝑥)∥ ≤ 1.
Combine these pieces together, we have

E𝐷+
𝑢
[𝑝𝑢𝑙𝑜𝑔(

𝑝𝑠𝑖𝑚𝑟

𝑝𝑟
)] = E𝐷+

𝑢
[𝑝𝑢 (𝑙𝑜𝑔(𝑝𝑠𝑖𝑚𝑟 ) − 𝑙𝑜𝑔(𝑝𝑟 ))] (9)

=
∑︁
𝑥∈𝐷+

𝑢

𝑀𝑢 (𝑥) (𝑙𝑜𝑔(𝑀𝑟 (𝑛𝑒𝑖 (𝑥))) − 𝑙𝑜𝑔(𝑀𝑟 (𝑥)))

(10)

≤
∑︁
𝑥∈𝐷+

𝑢

(𝑙𝑜𝑔(𝑀𝑟 (𝑛𝑒𝑖 (𝑥))) − 𝑙𝑜𝑔(𝑀𝑟 (𝑥)))

(11)
≤ 𝑛𝜆1∥𝑛𝑒𝑖 (𝑥) − 𝑥 ∥ (12)

≤ 𝑛𝜆1
√
2 − 2𝜃 (13)

(14)

where 𝑛 is the size of 𝐷+
𝑢 .

As for the first term, we denote the output distribution of𝑀𝑢 on
𝑛𝑒𝑖 (𝐷+

𝑢 ) as 𝑝𝑠𝑖𝑚𝑢 , then we have

E𝐷+
𝑢
[𝑝𝑢𝑙𝑜𝑔(

𝑝𝑢

𝑝𝑠𝑖𝑚𝑟

)] (15)

= E𝐷+
𝑢
[𝑝𝑢𝑙𝑜𝑔(

𝑝𝑢

𝑝𝑠𝑖𝑚𝑢

· 𝑝
𝑠𝑖𝑚
𝑢

𝑝𝑠𝑖𝑚𝑟

)] (16)

= E𝐷+
𝑢
[𝑝𝑢𝑙𝑜𝑔(

𝑝𝑢

𝑝𝑠𝑖𝑚𝑢

)] + E𝐷+
𝑢
[𝑝𝑢 (𝑙𝑜𝑔(𝑝𝑠𝑖𝑚𝑢 ) − 𝑙𝑜𝑔(𝑝𝑠𝑖𝑚𝑟 ))] (17)

Following in the same method in estimating E𝐷+
𝑢
[𝑝𝑢𝑙𝑜𝑔( 𝑝

𝑠𝑖𝑚
𝑟

𝑝𝑟
)],

we have E𝐷+
𝑢
[𝑝𝑢𝑙𝑜𝑔( 𝑝𝑢

𝑝𝑠𝑖𝑚𝑢
)] ≤ 𝑛𝜆2

√
2 − 2𝜃 .

ForE𝐷+
𝑢
[𝑝𝑢 (𝑙𝑜𝑔(𝑝𝑠𝑖𝑚𝑢 )−𝑙𝑜𝑔(𝑝𝑠𝑖𝑚𝑟 ))], as ∥𝑙𝑜𝑔(𝑀𝑟 (𝑥))−𝑙𝑜𝑔(𝑀𝑢 (𝑥))∥ ≤

𝛿 , thereby

E𝐷+
𝑢
[𝑝𝑢 (𝑙𝑜𝑔(𝑝𝑠𝑖𝑚𝑢 ) − 𝑙𝑜𝑔(𝑝𝑠𝑖𝑚𝑟 ))] (18)

=
∑︁
𝑥∈𝐷+

𝑢

𝑀𝑢 (𝑥) (𝑙𝑜𝑔(𝑀𝑢 (𝑛𝑒𝑖 (𝑥))) − 𝑙𝑜𝑔(𝑀𝑟 (𝑛𝑒𝑖 (𝑥))) (19)

≤
∑︁
𝑥∈𝐷+

𝑢

(𝑙𝑜𝑔(𝑀𝑢 (𝑛𝑒𝑖 (𝑥))) − 𝑙𝑜𝑔(𝑀𝑟 (𝑛𝑒𝑖 (𝑥))) (20)

≤𝑛∥𝑙𝑜𝑔(𝑝𝑠𝑖𝑚𝑢 ) − 𝑙𝑜𝑔(𝑝𝑠𝑖𝑚𝑟 )∥ (21)
=𝑛𝛿 (22)

Consequently,

E𝐷+
𝑢
[𝑝𝑢𝑙𝑜𝑔(

𝑝𝑢

𝑝𝑠𝑖𝑚𝑟

)] ≤ 𝑛𝜆2
√
2 − 2𝜃 + 𝑛𝛿 (23)

With Eq. (14) and Eq. (23), we have

𝐾𝐿𝐷+
𝑢
(𝑝𝑢 ∥𝑝𝑟 ) ≤ 𝑛[(𝜆1 + 𝜆2) (

√
2 − 2𝜃 ) + 𝛿]

□

B Experiment supplymantary results
We present performance similarity between the model𝑀𝑢 produced
with our method FUNU and the retrained model 𝑀𝑟 under class
removal scenario in Table 6. To showcase the similarity, we also
use another machine unlearning method CR [21] as a baseline.

https://proceedings.mlr.press/v235/zhang24h.html
https://proceedings.mlr.press/v235/zhang24h.html


FUNU: Boosting machine unlearning efficiency by filtering unnecessary unlearning Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Except for the underlined values, in other metrics and datasets,
ourmethod is closer to the retrainedmodel compared to the baseline.
Themean accuracy difference between FUNU and𝑀𝑟 over the three
datasets was 0.0151, while the CR was 0.0708. The mean difference
between FUNU’s corresponding F1 of MIA and 𝑀𝑟 was 0.0686,
while the CR was 0.0847. Thus the model generated by FUNU is
more similar to𝑀𝑟 .

The performance of models generated using existing solutions
is shown in Table 7, along with the parameters used. For existing

solutions, their performance and 𝑃− are sensitive to thresholds.
For the method “curvature”, it corresponds to an average rate of
change between 𝑃− and a threshold of 19.4723, i.e., a 0.01 decrease
in the threshold will decrease P- by about 20%. While the average
rate of change for confidence is 4.3357 and for clustering is 1.5018.
This instability with thresholds is consistent with our conclusion
in Section 4.2.4.



Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anonymous authors

Table 6: Model performance under class removal

Dataset Method Acc.
of MIA F1 of MIA Acc.

on 𝐷𝑟

Acc.
on 𝐷𝑢

Acc.
on 𝐷𝑡

retrain 0.5904 0.5250 0.9561 0.9751 0.9605
ours 0.5596 0.3911 0.9559 0.9704 0.9602MNIST
CR 0.6594 0.6632 0.9506 0.8923 0.9508
retrain 0.6227 0.6542 0.9623 0.7013 0.8021
ours 0.5804 0.6783 0.9532 0.7526 0.7948CIFAR10
CR 0.4562 0.5803 0.9508 0.9942 0.8042
retrain 0.5767 0.5906 0.7817 0.5787 0.5143
ours 0.5568 0.6384 0.7813 0.5568 0.4736CIFAR100
CR 0.5376 0.6327 0.7832 0.7700 0.4744

Table 7: Model performance of existing solutions under class removal

Dataset Method Parameter 𝑃− F1 of MIA Accuracy
of MIA

Accuracy
on 𝐷𝑟

Accuracy
on 𝐷𝑢

Accuracy
on 𝐷𝑡

MNIST

clustering
0.2540 0.8370 0.5660 0.3834 0.9555 0.9764 0.9598
0.1000 0.6780 0.5847 0.5787 0.9559 0.9763 0.9599
0.0010 0.4030 0.5609 0.3579 0.9561 0.9782 0.9593

confidence
0.1950 0.9400 0.6216 0.5774 0.9558 0.9820 0.9601
0.0620 0.8950 0.5916 0.5315 0.9555 0.9809 0.9609
0.0010 0.5340 0.4024 0.5808 0.9563 0.9820 0.9600

curvature
0.5400 0.9470 0.5660 0.4932 0.9561 0.9969 0.9607
0.4990 0.7240 0.5682 0.4613 0.9555 0.9813 0.9602
0.4580 0.0010 0.6282 0.6079 0.9573 0.9820 0.9603

CIFAR10

clustering
0.2990 0.8367 0.5457 0.6411 0.9647 0.8038 0.8105
0.1230 0.6849 0.5559 0.6694 0.9344 0.8136 0.7851
0.0010 0.4008 0.4434 0.5561 0.9449 0.9263 0.7957

confidence
0.0750 0.9379 0.6144 0.6346 0.9652 0.8202 0.8095
0.0140 0.8509 0.5788 0.6829 0.9640 0.7501 0.8052
0.0010 0.5313 0.4896 0.6387 0.9658 0.8676 0.8076

curvature
0.6660 0.9179 0.5786 0.6967 0.9672 0.8114 0.8059
0.6520 0.5748 0.4581 0.5858 0.9665 0.9392 0.8087
0.6380 0.0293 0.5282 0.6645 0.9515 0.9081 0.7972

CIFAR100

clustering
0.2890 0.8496 0.4469 0.5438 0.7803 0.4159 0.4738
0.1180 0.6726 0.5044 0.6164 0.7863 0.6106 0.4791
0.0010 0.3451 0.5797 0.6374 0.7827 0.6681 0.4670

confidence 0.0160 0.9956 0.4624 0.5888 0.7901 0.3805 0.4646
0.0010 0.9159 0.4735 0.5897 0.7827 0.5177 0.4693

curvature
0.4060 0.9735 0.5664 0.6475 0.7837 0.4071 0.4728
0.3780 0.6858 0.5398 0.6376 0.7801 0.5354 0.4747
0.3510 0.0796 0.5774 0.6348 0.7758 0.7788 0.4699

*CIFAR-100 only have two parameters when applying the confidence method because in this case
𝑚𝑎𝑥 (𝑎𝑣𝑔(𝑠) − 𝑠𝑡𝑑 (𝑠), 1𝑒 − 3) = 𝑎𝑣𝑔(𝑠).


	Abstract
	1 Introduction
	2 Problem setting and existing solutions
	2.1 Problem setting
	2.2 Solutions by data prototype discovery
	2.3 Limitations of existing solutions

	3 FUNU: an unnecessary unlearning filtering method
	3.1 Calculate distance matrix
	3.2 Establish similarity condition
	3.3 Filter removal requests
	3.4 Privacy guarantee

	4 Experiment
	4.1 General experiment setting
	4.2 Evaluation on FUNU
	4.3 Case study: SISA

	5 Related work
	6 Discussion and conclusion
	References
	A Proof for Theorem 1.1
	B Experiment supplymantary results

