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ABSTRACT

Conformal prediction, as an emerging uncertainty quantification technique, typ-
ically functions as post-hoc processing for the outputs of trained classifiers. To
optimize the classifier for maximum predictive efficiency, Conformal Training
rectifies the training objective with a regularization that minimizes the average
prediction set size at a specific error rate. However, the regularization term in-
evitably deteriorates the classification accuracy and leads to suboptimal efficiency
of conformal predictors. To address this issue, we introduce Conformal Adapter
(C-Adapter), an adapter-based tuning method to enhance the efficiency of con-
formal predictors without sacrificing accuracy. In particular, we implement the
adapter as a class of intra order-preserving functions and tune it with our proposed
loss that maximizes the discriminability of non-conformity scores between cor-
rectly and randomly matched data-label pairs. Using C-Adapter, the model tends
to produce extremely high non-conformity scores for incorrect labels, thereby en-
hancing the efficiency of prediction sets across different coverage rates. Extensive
experiments demonstrate that C-Adapter can effectively adapt various classifiers
for efficient prediction sets, as well as enhance the conformal training method.

1 INTRODUCTION

Quantifying the uncertainty of predictions is critical for artificial intelligence systems, particularly
in high-stakes environments (e.g., financial decision-making and medical diagnostics). Conformal
prediction, a statistic framework for uncertainty estimation, converts an algorithm’s predictions into
prediction sets containing the true class with a user-specified coverage rate (Balasubramanian et al.,
2014; Shafer & Vovk, 2008). Critically, the validity of sets is satisfied in a distribution-free sense:
they possess explicit, non-asymptotic guarantees even without distributional assumptions or model
assumptions. To obtain informative outputs, it is of great importance to improve the efficiency of
conformal predictors, aiming for the prediction sets with minimal ambiguity (Sadinle et al., 2019).

Conformal prediction typically functions as post-hoc processing for the output of trained classifiers,
which might already be either unnecessarily conservative or overconfident (Bellotti, 2021; Stutz
et al., 2021). To optimize the predictive efficiency, Conformal Training (Stutz et al., 2021) rectifies
the training objective with a regularization that minimizes the average prediction set size at a specific
error rate (e.g., 0.01). However, the regularization term inevitably deteriorates the classifier accuracy
by increasing the difficulty of converging to an optimal solution (Stutz et al., 2021), which in turn
leads to the suboptimal efficiency of the conformal predictor. This challenge is especially significant
when dealing with many classes, making it difficult to apply to large-scale datasets such as ImageNet
(Deng et al., 2009). This motivates our methodology, which enables the efficient adaptation of
trained classifiers for conformal prediction without sacrificing classification accuracy.

In this work, we propose Conformal Adapter (dubbed C-Adapter), an adapter-based tuning method
to enhance the efficiency of conformal predictors. In particular, we tune an adapter layer appended
to trained classifiers for conformal prediction using the training data. Our key idea is to adapt
trained classifiers for conformal prediction while preserving the ranking of labels in the output log-
its, thereby maintaining the top-k accuracy of the classifiers. To achieve this, we implement the
adapter as a class of intra order-preserving functions (Rahimi et al., 2020). For the optimization
of this adapter, we propose a loss function that enhances the discriminability of non-conformity
scores between correctly and randomly matched data-label pairs. In effect, the loss encourages the
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non-conformity scores of correctly matched data-label pairs to be lower than those of incorrectly
matched ones, resulting in more efficient predictions across different coverage rates. Equipped with
C-Adapter, the predictor maintains top-k accuracy and generates highly efficient prediction sets. For
better clarity, we include a diagram in Appendix C to visually illustrate the application of C-Adapter.

To validate our method, we conduct extensive evaluations on three benchmarks of image classifica-
tion, including CIFAR-100 (Krizhevsky et al., 2009), ImageNet (Deng et al., 2009), and ImageNet-
V2 (Recht et al., 2019). The results demonstrate that C-Adapter can significantly enhance the ef-
ficiency of conformal predictors. For example, C-Adapter reduces the average size for APS from
9.21 to 2.86 on ImageNet (Deng et al., 2009) with DenseNet121 (Huang et al., 2017) at α = 0.1.
This approach also generalizes effectively to different score functions, consistently improving their
efficiency. Moreover, C-Adapter can enhance the efficiency of prediction sets while simultaneously
improving their conditional coverage. Notably, our method is easy to implement in practice, as it
does not require heavy tuning of hyperparameters and incurs low computational costs.

We summarize our contributions as follows:

• We propose C-Adapter, a simple and effective method to enhance the efficiency of confor-
mal predictors without sacrificing classifier accuracy. This approach serves as a distinctive
complement to existing score-based and training-based conformal prediction algorithms.

• We theoretically demonstrate that enhancing the discriminability of non-conformity scores
between correctly and randomly matched data-label pairs is equivalent to improving the
overall efficiency of conformal predictors. To this end, we propose a loss function specifi-
cally designed to achieve this goal and apply it to optimize our conformal adapter.

• We empirically show that C-Adapter effectively adapts various classifiers for efficient pre-
diction sets across different non-conformity score functions. Moreover, we validate that
C-Adapter outperforms Conformal Training and can further enhance its performance.

2 BACKGROUND

Setup In this work, we consider the multi-class classification task with K classes. Let (X,Y ) ∼
PXY denote a random data pair sampled from the joint distribution PXY , where X ⊂ Rd is the
input space and Y := {1, · · · ,K} is the label space. Given a training set, we learn a classifier
f : X → RK with parameter θ. Given an instance x, we predict the probability of class k by:

π̂k(x;θ) = ψ(fk(x;θ)) =
efk(x;θ)∑K
i=1 e

fi(x;θ)
, (1)

where ψ denotes the softmax function and fk(x;θ) is the k-th element of the logits f(x;θ). Deep
classifiers usually suffer from the miscalibration issue: the estimated probabilities might be either
conservative or overconfident, leading to inaccurate assessments of uncertainty (Guo et al., 2017).

Conformal Prediction In uncertainty quantification, conformal prediction (Vovk et al., 2005)
seeks to construct prediction sets C(X) ⊆ Y such that P{Y ∈ C(X)} ≥ 1 − α for a pre-specified
error rate α ∈ (0, 1). To satisfy the desired coverage rate 1− α, we take an independent conformal
calibration dataset Dcal := {(xi, yi)}ni=1, and then determine the threshold τα such that the pre-
diction sets are large enough to achieve the desired coverage level of 1 − α on this calibration set.
Specifically, we calculate the non-conformity score si := S(xi, yi; π̂) for each sample (xi, yi) in
the calibration set where S is a pre-specified score function to measure non-conformity of each input
sample. We then determine the threshold τα as the 1− α quantile of the set {si}ni=1, as follows:

τα = inf

{
s :
|{i ∈ {1, · · · , n} : si ≤ s}|

n
≥ ⌈(n+ 1)(1− α)⌉

n

}
.

During testing, we calculate the non-conformity score S(xn+1, y; π̂) for a given instance xn+1 and
each label y ∈ Y . Then, the prediction set C(xn+1; τα, π̂) with 1− α coverage is constructed by:

C(xn+1; τα, π̂) := {y ∈ Y : S(xn+1, y; π̂) ≤ τα} . (2)

In other words, the final prediction sets achieve marginal coverage by containing all labels with
non-conformity scores below the threshold (Vovk, 2012; Angelopoulos et al., 2020). In addition
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(b) ImageNet

Figure 1: The accuracy and efficiency of ConfTr with various λ, using THR, APS and RAPS at
α = 0.1. The experiments are conducted with ResNet18 on (a) CIFAR-100 and (b) ImageNet. ⋆
represents the baseline without ConfTr. The findings indicate that the increment of λ decreases the
classification accuracy, ultimately leading to suboptimal efficiency in conformal prediction.

to the coverage, we typically expect to optimize the size of prediction sets, which is referred to as
efficiency. Nevertheless, the length of the resulting prediction sets can vary dramatically depending
on the design of S(x, y; π̂). In this work, we consider three popular score functions for classification,
including THR (Sadinle et al., 2019), APS (Romano et al., 2020), and RAPS (Angelopoulos et al.,
2020). We provide a detailed introduction to these score functions in Appendix B.1.

Conformal Training Conformal prediction typically works as post-hoc processing for the outputs
of trained classifiers. To optimize the classifier for maximum predictive efficiency, Conformal Train-
ing (ConfTr) (Stutz et al., 2021) rectifies the training objective with a regularization that minimizes
the average prediction set size at a specific error rate α. The loss function is formulated as:

LConfTr(f(x;θ), y, τ
soft
α ) = Lcls(f(x;θ), y) + λLsize(f(x;θ), τ

soft
α ), (3)

Here, Lcls represents the classification loss, while Lsize refers to the size loss, which approximates
the size of the prediction set at a coverage rate of 1 − α. Here, τ soft

α denotes the soft threshold and
λ controls the strength of the regularization term. We provide a detailed introduction to ConfTr in
Appendix B.2. Notably, while ConfTr with a tuned hyperparameter λ may improve the efficiency
of conformal predictors, the regularization term Lsize inevitably deteriorates the accuracy of the
classifier by increasing the difficulty of converging to an optimal solution (Stutz et al., 2021).

To provide a straightforward view, we demonstrate the effect of the regularization term Lsize on the
accuracy and efficiency of conformal predictors in Figure 1. We conduct experiments of ConfTr
with various λ, using ResNet18 on CIFAR100 and ImagNet. The results demonstrate that using this
regularization continuously degrades the classification accuracy of the classifier as λ increases. For
efficiency, ConfTr raises the average size of APS and RAPS after achieving the optimal performance
on CIFAR-100. On ImageNet, ConfTr offers only marginal benefits for the efficiency of conformal
predictors. The negative effect of ConfTr is especially noticeable on THR: the average size of THR
is consistently increased over various λ. The decrease in classification accuracy inevitably results in
larger prediction sets, which in turn limits the efficiency on average. We present a detailed descrip-
tion of the experimental setup and the effect of the regularization term Lsize on top-k classification
accuracy in Appendix H.1. We proceed by introducing our method, targeting this issue.

3 METHOD

In our previous analysis, we demonstrate that ConfTr deteriorates the classification accuracy, thereby
hindering the efficiency of conformal predictors. To address this issue, our key idea is to adapt the
trained classifiers for conformal prediction while preserving the ranking of labels in the output logits,
thereby keeping the top-k accuracy of the original classifier unchanged.

Conformal Adapter To this end, we propose a novel adapter-based tuning method – Conformal
Adapter (dubbed C-Adapter), which appends an adapter layer to trained classifiers for conformal
prediction. Formally, we use g : RK → RK to denote the conformal adapter that takes the model
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Figure 2: Flow of C-Adapter. The design follows the definition of intra order-preserving functions
(Rahimi et al., 2020, Theorem 1), ensuring that the refined logits maintain the ranking of the inputs.

outputs f(x;θ) as input. Then, the final prediction of the model equipped with C-Adapter is:

π̃(x;θ,w) = ψ(g(f(x;θ);w)),

where w denotes the parameters of C-Adapter. While ConfTr alters the parameters of trained clas-
sifiers θ through retraining or fine-tuning, we only update a few trainable parameters w added for
conformal prediction. In addition to enhancing training efficiency, the adapter-based tuning method
requires access only to the model outputs. This makes it compatible with black-box models (e.g.,
online APIs) and other modern neural networks (e.g., Radford et al. (2021, CLIP)).

Importantly, the adapter requires to be learned within a hypothesis space that can provably guarantee
preserving the accuracy of the original network f . To achieve that, we implement the adapter as a
class of intra order-preserving functions (Rahimi et al., 2020), a family of functions that is both
necessary and sufficient to keep the top-k accuracy of the original network unchanged. Formally,
a function h : RK → RK is intra order-preserving, if, for all i, j ∈ [K] and any vector x ∈ RK ,
xi > xj (or xi = xj) if and only if hi(x) > hj(x) (or hi(x) = hj(x)). For convenience, we use
f to indicate the model output f(x;θ). We denote R : RK → UK as the sorting function, where
UK ⊂ {0, 1}K×K represents the set of K ×K permutation matrices. We have r = R(f)f as the
sorted f , satisfying r1 > · · · > rK . We use U to denote theK×K upper-triangular matrix of ones.

To ensure that C-Adapter belongs to the class of intra order-preserving functions, we define it by

g(f ;w) = R(f)−1UΨ(f),

where the i-th term of Ψ(f) is formulated as:

Ψi(f) =

{√
(ri − ri+1)σ(φi(f)) for i < K,

φK(f) for i = K.

Here, φ(f) = w · f + w′, and σ represents the sigmoid function. We denote φi(f) as the i-th
component of φ(f). We outline the workflow in Figure 2. Since Ψ(f) is continuous in f , it is
straightforward to verify that this structure satisfies the requirements of the intra order-preserving
family (Rahimi et al., 2020, Theorem 1). The core idea is to decouple the label ranking and the logit
values in the tuning. It begins by preserving a duplicate of the label ranking, and then transmit the
logits to the linear layer for processing. Finally, we recover the label ranking in the output. We pro-
vide a more detailed description of this function family in Appendix D. This structure decouples the
logit order from the adaptation for conformal prediction, allowing C-Adapter to focus on optimizing
efficiency. We demonstrate the superiority of this adaptation strategy over others in Figures 5 and 6.

Training objective ConfTr optimizes the efficiency of conformal predictors at a predetermined
error rate (e.g., α = 0.01), which may result in suboptimal performance when predicting with a
different coverage rate. To address this issue, we consider a general criterion for efficiency:

Ex∼PX

[∫ 1

0

|C(x; τα, π̃w)| dα
]
, (4)

which measures the definite integral of efficiency over α ∈ (0, 1). For notation shorthand, we use
π̃w to indicate that the underlying classifier f is equipped with C-Adapter, parameterized by w.
This objective is analogous to the AUC in classification (Cortes & Mohri, 2003), as AUC reflects
the classifier’s performance across all possible thresholds, while classification error considers only
a single fixed one. However, the objective in Equation (4) cannot be directly computed from a given
dataset. To address this issue, we translate it into an equivalent form that can be explicitly calculated.
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Figure 3: Score distributions of correctly and incorrectly matched data-label pairs: (a) without
C-Adapter, (b) with C-Adapter. We calculate the APS scores on ImageNet using CLIP (Radford
et al., 2021). The three gray lines indicate the set sizes with τα at α = 0.15, 0.1, and 0.05, respec-
tively. Using C-Adapter, the APS scores of incorrect labels tend to be much higher (approaching the
maximum 1.0) than those of correct labels. The highly distinguishable scores between correct and
incorrect labels translate to more efficient conformal prediction sets at various coverage rates.

From Equation (2), we can infer that we construct the conformal prediction set for X̂ ∼ PX at
α by comparing the non-conformity score S(X̂, y; π̃w) with τα for each y ∈ Y . Therefore, it
is straightforward to verify that the expected set size at the error rate α over the data distribution
PX is determined by the probability of the event {τα ≥ S(X̂, Ŷ ; π̃w)}, where X̂ ∼ PX and
Ŷ ∼ Uniform(Y). When extending to any α ∈ (0, 1), the threshold τα can be the non-conformity
score of any observation (X,Y ) ∼ PXY . This prompts us to consider the following probability:

P
(
S(X,Y ; π̃w) ≥ S(X̂, Ŷ ; π̃w)

)
,where (X,Y ) ∼ PXY , X̂ ∼ PX , Ŷ ∼ Uniform(Y). (5)

In particular, this probability quantifies the likelihood that the non-conformity score of a randomly
matched data-label pair (X̂, Ŷ ) is not greater than that of a correctly matched pair (X,Y ) . This
probability approaches zero when the scores of correctly and incorrectly matched data-label pairs
are well distinguishable, and approaches 1/2 when they are not effectively distinguished. In the fol-
lowing, we present a formal analysis demonstrating that minimizing the probability in Equation (5)
is equivalent to optimizing the overall efficiency defined in Equation (4).
Proposition 1. Let π̂ and π̂′ be pre-trained classifiers with parameters θ and θ′, respectively, and
let S be a specific non-conformity score function. We denote PSθ

and PSθ′ as the distributions of
S(X,Y ; π̂) and S(X,Y ; π̂′), where (X,Y ) ∼ PXY . Let FSθ

, and FSθ′ be the CDF corresponding
to PSθ

and PSθ′ . Given that X̂ ∼ PX and Ŷ follows a uniform distribution over Y , we have

P
(
S(X,Y ; π̂) ≥ S(X̂, Ŷ ; π̂)

)
> P

(
S(X,Y ; π̂′) ≥ S(X̂, Ŷ ; π̂′)

)
holds if and only if

EX∼PX

[∫ 1

0

|C
(
X;F−1

Sθ
(1− α), π̂

)
|dα

]
> EX∼PX

[∫ 1

0

|C
(
X;F−1

Sθ′
(1− α), π̂′

)
|dα

]
.

The proof of Proposition 1 is provided in Appendix E. Here, the inverse CDF calculates the (1−α)-
th quantile of the score distributions, which determines the threshold τα. Then, to optimize overall
efficiency in Equation (4), we turn to minimize the following objective, rewritten from Equation (5):

L(w) = E
[
1{S(X,Y ;π̃w)>S(X̂,Ŷ ;π̃w}

]
, (6)

where (X,Y ) ∼ PXY , X̂ ∼ PX , and Ŷ ∼ Uniform(Y). Given the non-differentiability of the indi-
cator function, it is common practice to utilize surrogate functions as differentiable approximations
(Yan et al., 2003; Yuan et al., 2021). In this work, we apply the sigmoid function with a parameter
T as the surrogate, defined as σT (x) = 1/ (1 + exp (−x/T )). For the score function utilized dur-
ing training, we employ either THR or APS. The differentiable APS is implemented as outlined in
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ConfTr (Stutz et al., 2021). Ultimately, the convex relaxation of Equation (6) is given by

L̃(w) = E
[
σT

(
S(X,Y ; π̃w)− S(X̂, Ŷ ; π̃w)

)]
. (7)

By optimizing this objective, the scores of correctly and incorrectly matched data-label pairs be-
come more distinguishable: correctly matched pairs are encouraged to have relatively smaller non-
conformity scores compared to incorrectly matched pairs. We visualize this effect in Figure 3. With
C-Adapter, the APS scores of incorrect labels become significantly higher than those of correct la-
bels, leading to more efficient prediction sets across varying coverage rates. Moreover, our proposed
objective achieves superior average performance compared to the size loss of ConfTr (see Table 2).

Batched optimization In the t-th iteration, we construct an auxiliary batch B̂t by creatingK data-
label pairs for each instance in Bt. Each pair (x̂, ŷ) in B̂t consists of an instance from Bt and one of
the K possible labels ŷ ∈ Y . Subsequently, we update the parameters w of C-Adapter by

w(t) ← w(t−1) − ηt · ∇w

 1

|Bt| · |B̂t|

∑
(x,y)∈Bt

∑
(x̂,ŷ)∈B̂t

σT (S (x, y; π̃w)− S (x̂, ŷ; π̃w))

 . (8)

The optimization incurs low computational costs, as we only update the parameters of the linear lay-
ers in C-Adapter. In practical applications, we tune the parameters of C-Adapter using the training
set for the trained classifier f . Our method can also be implemented with a hold-out set, which is
explicitly validated in Figure 8. Noticeably, our method offers several compelling advantages:

• Flexible: C-Adapter can enhance the efficiency of conformal predictors across different
non-conformity score functions, not limited to the one employed during its tuning (see
Table 1 and Table 5). By default, we tune C-Adapter using THR.

• Easy to use: C-Adapter requires minimal hyperparameter tuning and performs well with
any sufficiently small T (see Figure 7). Moreover, our method shows high computational
efficiency and a rapid convergence rate (refer to the convergence analysis in Appendix F).

• Model-agnostic: C-Adapter requires access only to the model outputs and integrates effort-
lessly with any classifier. Our method can effectively adapt trained classifiers for efficient
prediction sets, regardless of the network architecture or pre-training strategy.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset We evaluate our approach using three benchmarks of image classification: CIFAR-100
(Krizhevsky et al., 2009), ImageNet (Deng et al., 2009), and ImageNet-V2 (Recht et al., 2019).
For CIFAR-100 and ImageNet-V2, we randomly split the test sets into calibration and test subsets,
each containing 5,000 samples. For ImageNet, we partition the 50,000-sample test dataset into a
calibration subset of 30,000 samples and a test subset of 20,000 samples.

Models For our evaluations, we utilize four well-established deep image classifiers: ResNet101
(RN101) (He et al., 2016), two variants of DenseNet (DN121 and DN161) (Huang et al., 2017),
and ResNeXt50 (RNX50) (Xie et al., 2017). Additionally, we employ the Vision-Language Model
CLIP (Radford et al., 2021), which is based on a Vision Transformer architecture (ViT-B/16) (Doso-
vitskiy et al., 2020). For ImageNet, we leverage pre-trained deep image classifiers from TorchVision
(Paszke et al., 2019), whereas for CIFAR-100, we train the classifiers from scratch using the entire
training set. For CLIP, we rely on its inherent zero-shot capabilities to perform classification tasks.

Training details C-Adapter is tuned for 240 iterations using Adam (Kingma & Ba, 2014), with
a batch size of 256 and a learning rate of 0.1. The parameter T is set to 0.0001 by default. We
partition the calibration set into a validation subset and a calibration subset in an 20:80 ratio, with the
validation set used for early stopping. When a validation set is not necessary, the entire calibration
set is employed for calibration, ensuring all methods have access to the same dataset. To ensure the
reliability of our results, each experiment is repeated 10 times, and the average result is reported. All
experiments are conducted on an NVIDIA GeForce RTX 4090 using PyTorch (Paszke et al., 2019).
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Table 1: Performance of C-Adapter on common benchmarks. ↓ indicates that a smaller value is
better. Results in bold indicate superior performance. C-Adapter is tuned using THR.

w/o C-Adapter \ w/ C-Adapter

Score Model
ImageNet CIFAR-100

α = 0.05 α = 0.1 α = 0.05 α = 0.1

Coverage Size (↓) Coverage Size (↓) Cover Size (↓) Coverage Size (↓)

THR

RN101 0.95 \ 0.95 4.03 \ 3.82 0.90 \ 0.90 1.91 \ 1.89 0.95 \ 0.95 3.64 \ 3.17 0.90 \ 0.90 1.87 \ 1.76
DN121 0.95 \ 0.95 5.66 \ 5.35 0.90 \ 0.90 2.42 \ 2.34 0.95 \ 0.95 3.27 \ 3.00 0.90 \ 0.90 1.72 \ 1.70
DN161 0.95 \ 0.95 4.03 \ 3.69 0.90 \ 0.90 1.89 \ 1.82 0.95 \ 0.95 2.91 \ 2.75 0.90 \ 0.90 1.72 \ 1.69
RNX50 0.95 \ 0.95 4.26 \ 3.87 0.90 \ 0.90 1.87 \ 1.85 0.95 \ 0.95 3.41 \ 3.09 0.90 \ 0.90 1.78 \ 1.76
CLIP 0.95 \ 0.95 6.88 \ 6.71 0.90 \ 0.90 3.33 \ 3.25 0.95 \ 0.95 9.71 \ 8.25 0.90 \ 0.90 4.78 \ 4.36

Average 0.95 \ 0.95 4.97 \ 4.69 0.90 \ 0.90 2.29 \ 2.23 0.95 \ 0.95 4.59 \ 4.05 0.90 \ 0.90 2.37 \ 2.25

APS

RN101 0.95 \ 0.95 14.73 \ 3.98 0.90 \ 0.90 7.23 \ 2.30 0.95 \ 0.95 7.60 \ 3.19 0.90 \ 0.90 3.95 \ 1.86
DN121 0.95 \ 0.95 20.00 \ 5.73 0.90 \ 0.90 9.21 \ 2.86 0.95 \ 0.95 10.20 \ 3.08 0.90 \ 0.90 5.39 \ 1.85
DN161 0.95 \ 0.95 16.43 \ 4.23 0.90 \ 0.90 6.82 \ 2.33 0.95 \ 0.95 9.90 \ 2.86 0.90 \ 0.90 5.42 \ 1.80
RNX50 0.95 \ 0.95 21.54 \ 4.26 0.90 \ 0.90 8.92 \ 2.32 0.95 \ 0.95 9.95 \ 3.26 0.90 \ 0.90 5.14 \ 1.91
CLIP 0.95 \ 0.95 26.35 \ 7.98 0.90 \ 0.90 13.24 \ 3.94 0.95 \ 0.95 16.13 \ 13.50 0.90 \ 0.90 10.18 \ 8.70

Average 0.95 \ 0.95 19.81 \ 5.24 0.90 \ 0.90 9.08 \ 2.75 0.95 \ 0.95 10.76 \ 5.18 0.90 \ 0.90 6.01 \ 3.22

RAPS

RN101 0.95 \ 0.95 7.13 \ 3.75 0.90 \ 0.90 4.60 \ 2.25 0.95 \ 0.95 5.16 \ 4.43 0.90 \ 0.90 3.25 \ 1.81
DN121 0.95 \ 0.95 10.28 \ 6.53 0.90 \ 0.90 6.57 \ 2.80 0.95 \ 0.95 7.19 \ 3.74 0.90 \ 0.90 4.50 \ 1.80
DN161 0.95 \ 0.95 7.31 \ 4.10 0.90 \ 0.90 4.63 \ 2.27 0.95 \ 0.95 7.10 \ 3.15 0.90 \ 0.90 4.59 \ 1.79
RNX50 0.95 \ 0.95 7.87 \ 4.11 0.90 \ 0.90 5.20 \ 2.26 0.95 \ 0.95 7.20 \ 3.94 0.90 \ 0.90 4.47 \ 1.89
CLIP 0.95 \ 0.95 15.14 \ 7.82 0.90 \ 0.90 9.25 \ 3.49 0.95 \ 0.95 14.52 \ 11.19 0.90 \ 0.90 9.41 \ 7.62

Average 0.95 \ 0.95 9.55 \ 5.26 0.90 \ 0.90 6.05 \ 2.61 0.95 \ 0.95 8.24 \ 5.45 0.90 \ 0.90 5.24 \ 2.98
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Figure 4: Comparison of C-Adapter and ConfTr, using (a) THR, (b) APS, and (c) RAPS at
α = 0.1 on CIFAR-100. “ConfTr + Ours” refers to applying C-Adapter to models that have been
fine-tuned using ConfTr. The results demonstrate that C-Adapter outperforms ConfTr.

Evaluation metrics The primary metrics for evaluating prediction sets are: (1) efficiency (Size)
and (2) marginal coverage rate (Coverage). Moreover, we assess conditional coverage using (1)
class-conditional coverage gap (CovGap) (Ding et al., 2024) and (2) size-stratified coverage viola-
tion (SSCV) (Angelopoulos et al., 2020). We detail these metrics in Appendix G.

4.2 RESULTS

C-Adapter improves the efficiency of conformal predictors. In Table 1, we present the perfor-
mance of THR, APS, and RAPS with C-Adapter on ImageNet and CIFAR-100. A salient observa-
tion is that our method drastically improves the efficiency of conformal predictors with the desired
coverage rate. For example, C-Adapter reduces the size of APS from 16.43 to 4.23 on ImageNet us-
ing DN161 with α = 0.05. Notably, the improvements remain substantial when there is a mismatch
between the score functions used during adapter tuning (THR) and those employed in conformal pre-
diction (APS and RAPS). When C-Adapter is tuned with APS, similar enhancements are observed
with both THR and RAPS, as detailed in Appendix I. This highlights the flexibility of our method.
Overall, empirical results show that C-Adapter can enhance the efficiency of conformal predictors
across various score functions, regardless of model architectures and pre-training strategies.

C-Adapter outperforms ConfTr. ConfTr (Stutz et al., 2021) can be employed as a fine-tuning
method to adapt classifiers for conformal prediction. Initially, the classifier is trained with cross-
entropy loss, and then only the fully connected layer is tuned using the objective in Equation (3). We
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Table 2: Comparison of C-Adapter with different loss functions, on ImageNet with DN121.
Baseline represents the scenario without C-Adapter. Since each entry achieves the desired coverage,
only Size is presented. Our loss achieves superior average performance compared to the size loss.

THR APS

α 0.06 0.05 0.04 0.03 0.02 0.01 Average 0.06 0.05 0.04 0.03 0.02 0.01 Average

Baseline 4.35 5.66 7.26 10.46 15.91 33.84 12.91 15.94 20.00 24.42 32.62 48.13 91.49 38.77
size loss 4.26 5.33 7.04 9.93 17.44 43.16 14.53 4.48 5.71 7.39 10.82 18.82 42.63 14.98
Ours 4.27 5.35 6.94 9.75 15.01 30.31 11.94 4.44 5.73 7.37 10.70 17.30 36.24 13.63
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Figure 5: Comparison of different adaptation strategies, using (a) THR, (b) APS, and (c) RAPS
at α = 0.1. The experiment is conducted on CIFAR-100. Retraining refers to training the classifier
from scratch with our proposed loss function, while Fine-tuning indicates tuning only the fully
connected layer with our loss. C-Adapter outperforms the other two adaptation strategies.

compare this approach with ours on CIFAR-100. For ConfTr, we set the learning rate to 0.001 with a
batch size of 256. A higher learning rate significantly decreases classification accuracy, leading to a
dramatic decline in efficiency. The parameters T and λ are tuned from the sets {0.01, 0.1, 0.5, 1} and
{0.005, 0.01, 0.05, 0.1, 0.2}, respectively. During training, we utilize THRLP (Stutz et al., 2021) for
ConfTr, setting α to 0.01. For evaluation, we employ THR, APS, and RAPS with α = 0.1.

Our results in Figure 4 illustrate the superior performance of our approach. For APS and RAPS,
both C-Adapter and ConfTr improve the efficiency of conformal predictors, with C-Adapter demon-
strating superior performance. Furthermore, C-Adapter enhances the efficiency of THR, whereas
ConfTr does not. Additionally, we apply C-Adapter to models that have already been fine-tuned
using ConfTr. The results indicate that our approach can further improve the performance of Con-
fTr. Notably, Baseline+C-Adapter outperforms ConfTr+C-Adapter, suggesting that the accuracy
decline associated with ConfTr limits the efficiency of conformal predictors. Overall, empirical
results demonstrate that C-Adapter not only surpasses ConfTr but can also enhance its performance.
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Figure 6: Accuracy of various adapta-
tion strategies, on CIFAR-100. Both Re-
training and Fine-tuning result in 3-5%
lower accuracy compared to the baseline.

Ablation study on the adaptation strategy To fur-
ther demonstrate the significance of this adapter-based
tuning method, this ablation compares our approach
with two alternative strategies: (1) Retraining, which in-
volves training the classifier from scratch with our pro-
posed loss function, and (2) Fine-tuning, where the clas-
sifier is initially trained with cross-entropy loss and sub-
sequently fine-tuned only on the fully connected layer
with our loss. The second strategy is analogous to Con-
fTr, but it employs a different loss function. In our ap-
proach, we first train the classifier using cross-entropy
loss and then adapt it for conformal prediction with C-
Adapter. This ablation employs a consistent loss func-
tion to ensure a fair comparison among different adap-
tation strategies. We provide the detailed experimental
setup for the competing methods in Appendix H.2.

As demonstrated in Figure 6, both Retraining and Fine-tuning result in 3-5% lower accuracy com-
pared to the baseline. Our results in Figure 5 empirically demonstrate that this decline in accuracy
limits overall efficiency: while all three adaptation strategies can enhance the efficiency of APS and
RAPS, our method significantly outperforms the others. The negative impact of decreased accu-
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Table 3: Experimental results on conditional coverage. This experiment is conducted on Ima-
geNet. ↓ indicates that smaller values are preferable. Since each entry achieves the desired coverage,
Coverage is omitted. C-Adapter consistently reduces Size, SSCV, and CovGap in most cases.

Size ↓ / SSCV ↓ / CovGap ↓

RN101 DN121 DN161 RNX50 CLIP Average

α
=

0.
05

APS 14.73 / 3.07 / 4.30 20.00 / 2.48 / 4.39 16.43 / 3.16 / 4.49 21.54 / 5.09 / 4.50 26.35 / 3.25 / 4.94 19.81 / 3.41 / 4.52
+Ours 11.00 / 2.05 / 4.27 13.39 / 1.79 / 4.37 10.87 / 2.69 / 4.38 12.98 / 2.93 / 4.38 17.21 / 2.23 / 4.90 13.09 / 2.34 / 4.46
RAPS 7.13 / 2.35 / 4.37 10.28 / 2.95 / 4.50 7.31 / 3.17 / 4.36 7.87 / 3.83 / 4.60 15.14 / 1.78 / 5.07 9.55 / 2.82 / 4.58
+Ours 6.98 / 1.99 / 4.27 8.87 / 1.88 / 4.61 6.48 / 2.34 / 4.31 6.79 / 2.67 / 4.52 12.55 / 1.71 / 4.97 8.41 / 2.12 / 4.54

α
=

0.
1

APS 7.23 / 5.97 / 6.03 9.21 / 5.76 / 5.69 6.82 / 5.76 / 5.70 8.92 / 7.26 / 6.09 13.24 / 6.87 / 7.47 9.08 / 6.32 / 6.20
+Ours 5.75 / 5.85 / 5.93 6.56 / 1.89 / 5.75 5.21 / 1.91 / 5.77 6.48 / 4.36 / 6.05 9.38 / 3.51 / 7.44 6.68 / 3.78 / 6.19
RAPS 4.60 / 4.56 / 6.15 6.57 / 2.98 / 5.71 4.63 / 3.93 / 6.12 5.20 / 2.87 / 6.16 9.25 / 3.44 / 7.51 6.05 / 3.56 / 6.33
+Ours 4.45 / 4.12 / 6.02 5.89 / 2.87 / 5.78 4.31 / 3.73 / 6.18 4.75 / 2.67 / 6.13 7.82 / 2.40 / 7.51 5.44 / 3.16 / 6.32
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Figure 7: Effect of T on the efficiency of prediction sets with (a) THR, (b) APS, and (c) RAPS.

racy is particularly evident in THR, where only our method achieves an improvement in efficiency.
Overall, this ablation study further highlights the superiority of our adaptation strategy.

Ablation study on the loss function The size loss from ConfTr can also be utilized to tune our
conformal adapter. We conduct an ablation study on ImageNet using DN121, comparing C-Adapter
with size loss against our proposed loss function. For the size loss, we maintain a consistent experi-
mental setup and tune the parameter T within the range {0.0001, 0.001, 0.01, 0.1}, while setting the
error rate α to 0.01 during training. For evaluation, we use THR and APS at various coverage rates.

Our results in Table 2 indicate that C-Adapter effectively integrates with size loss, enhancing the
efficiency of conformal predictors regardless of the employed score function. However, our pro-
posed loss function achieves superior average performance. Notably, size loss performs poorly at
small error rates α; it exhibits inferior performance compared to the baseline when utilizing THR
at α = 0.01 and α = 0.02, while our method consistently outperforms the baseline. Overall, this
analysis highlights the flexibility of C-Adapter and the efficacy of our proposed loss function.

C-Adapter can reduce conditional coverage violations. As shown in Table 1, C-Adapter can
enhance the efficiency of THR, APS, and RAPS. However, unlike THR, which seeks optimal effi-
ciency with limited conditional coverage, APS is designed to improve the conditional coverage of
prediction sets. RAPS also aims to enhance conditional coverage while simultaneously boosting ef-
ficiency. In this study, we further demonstrate that C-Adapter can enhance the conditional coverage
of APS and RAPS. All experimental setups remain consistent, except that training concludes at the
iteration corresponding to the optimal SSCV instead of Size on the validation set.

As detailed in Table 3, C-Adapter consistently reduces Size, SSCV, and CovGap in most cases
under this setting. Notably, the reduction in Size is less substantial compared to the results in Table
1. Thus, users can adopt an early stopping strategy that best aligns with their specific needs for
efficiency and conditional coverage. Overall, this experiment validates that C-Adapter can enhance
the conditional coverage of APS and RAPS while simultaneously improving their efficiency.

How does the parameter T affect the performance of C-Adapter? In Figure 7, we ablate how
the parameter T introduced by the surrogate function affects the efficiency of conformal predic-
tors, using THR, APS, and RAPS. We set the error rate α to 0.05. As demonstrated in this figure,
C-Adapter with a sufficiently small T (below 0.01) stably enhances the efficiency of conformal pre-
dictors. This is because the sigmoid function in Equation (7) approximates the indicator function
when T is small. For simplicity, we set T = 10−4 throughout the experiments.
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Table 4: The robustness of C-Adapter to distribution shift. C-Adapter is tuned using ImageNet
and tested on ImageNet-V2. Since each entry achieves the desired coverage, only Size is presented.

w/o C-Adapter \ w/ C-Adapter

Model THR APS RAPS

α =0.1 α =0.2 α =0.1 α =0.2 α =0.1 α =0.2

RN101 6.03 \ 5.43 2.11 \ 2.01 19.65 \ 5.59 7.17 \ 2.57 10.90 \ 7.01 5.67 \ 2.29
DN121 8.01 \ 7.70 2.60 \ 2.52 24.73 \ 8.14 9.13 \ 3.21 14.31 \ 10.38 7.20 \ 3.01
DN161 5.41 \ 4.72 2.06 \ 1.91 19.32 \ 5.21 6.31 \ 2.52 10.27 \ 5.98 5.18 \ 2.18
RNX50 6.80 \ 5.78 2.07 \ 2.05 26.27 \ 6.11 8.58 \ 2.63 11.43 \ 7.83 6.14 \ 2.38
CLIP 5.66 \ 5.59 2.31 \ 2.29 20.73 \ 14.88 8.21 \ 6.60 10.60 \ 8.67 6.35 \ 6.10

Average 6.38 \ 5.84 2.23 \ 2.16 22.14 \ 7.99 7.88 \ 3.51 11.50 \ 7.97 6.11 \ 3.19

C-Adapter shows robustness to distribution shifts. We investigate the robustness of C-Adapter
to distribution shifts. Specifically, we tune C-Adapter using the training set of ImageNet and split
ImageNet-V2 into two equal-sized calibration and test sets. Notably, the shifts happen between the
training set and calibration/test sets. Thus, coverage will not be affected, as the calibration and test
sets remain exchangeable. We examine the performance of C-Adapter on APS, THR, and RAPS
at α = 0.1 and α = 0.2. As demonstrated in Table 4, C-Adapter consistently reduces Size across
various base classifiers on ImageNet-V2, regardless of the score function or the predefined error rate
α. For example, when evaluated on DN161 with α = 0.1, C-Adapter reduces the Size of APS from
19.32 to 5.21. The results highlight the robustness of C-Adapter to distribution shifts. We further
investigate the robustness of C-Adapter under different kinds of data shifts in Appendix I.
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Si
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Figure 8: Comparison of tuning C-
Adapter using a hold-out set vs. the origi-
nal training set on ImageNet with DN121.

Does C-Adapter perform better with a hold-out
set for training? In the original setup, we train C-
Adapter using the training set for the classifier f . In
this ablation, we investigate whether C-Adapter ben-
efits from using a hold-out set for training. Specifi-
cally, we randomly divide the ImageNet test set into
10,000 samples for training, 20,000 for calibration and
validation, and 20,000 for testing. C-Adapter is tuned
for 2 epochs using the 10,000-sample training set with
Adam, a batch size of 256, and a learning rate of 0.1,
while the parameter T is set to 0.0001. For evaluation,
we utilize THR and APS with an error rate of 0.05.

Our results in Figure 8 indicate that C-Adapter demon-
strates improved performance when utilizing a hold-out
set for training, irrespective of the score function employed. However, this improvement is not sta-
tistically significant. We conclude that using the original training set is sufficient for adapting the
classifier to achieve more efficient prediction sets, which also enables more efficient data utilization.

5 CONCLUSION

In this paper, we introduce C-Adapter, an adapter-based tuning method to enhance the efficiency of
conformal predictors. Our key idea is to adapt the trained classifiers for conformal prediction while
preserving the ranking of labels in the output logits, thereby maintaining the top-k accuracy of the
classifiers. To achieve this, we implement the adapter as a class of intra order-preserving functions.
For the optimization of C-Adapter, we propose a loss function that enhances the discriminability
of non-conformity scores between correctly and randomly matched data-label pairs. Extensive ex-
periments demonstrate that C-Adapter effectively adapts various classifiers for efficient prediction
sets and enhances the conformal training method. Our method is user-friendly, as it does not require
heavy tuning of hyperparameters and computationally efficient. We hope the insights from this work
will inspire future research to explore more effective adaptation strategies for conformal prediction.

Limitation Although our adaptation strategy demonstrates promise, we focus solely on using it to
optimize the efficiency of conformal predictors. Developing targeted loss functions to adapt deep
classifiers for other aspects of conformal prediction (e.g., conditional coverage or robustness) is not
explored in this work and offers an interesting direction for future research.
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A RELATED WORK

Conformal prediction has found diverse applications across various domains, including classifica-
tion (Sadinle et al., 2019), regression (Romano et al., 2019), and more specialized areas such as
large language models (Su et al., 2024; Cherian et al., 2024), graph neural networks (Zargarbashi
et al., 2023), image generative models (Horwitz & Hoshen, 2022), hyperspectral imaging (Liu et al.,
2024), robotic control (Wang et al., 2023), and autonomous systems (Lindemann et al., 2024). In
this work, we focus on the split conformal prediction framework (Vovk et al., 2005; Angelopoulos
& Bates, 2021), where the training and calibration sets are disjoint. Despite significant progress in
developing score functions, such as THR (Sadinle et al., 2019), APS (Romano et al., 2020), RAPS
(Angelopoulos et al., 2020), SAPS (Huang et al., 2024a), and RANK (Luo & Zhou, 2024), con-
formal prediction is typically applied as a post-hoc process for trained classifiers. This separate
processing can lead to suboptimal efficiency of conformal predictors.

Adapting deep classifiers for conformal prediction To address the aforementioned issue, several
works propose training (fine-tuning) time regularizations to improve the performance of conformal
predictors (Stutz et al., 2021; Einbinder et al., 2022; Correia et al., 2024; Huang et al., 2024b). The
uncertainty-aware conformal loss function (Einbinder et al., 2022) optimizes the performance of
conformal predictors by encouraging the non-conformity scores to follow a uniform distribution,
specifically focusing on optimizing APS. To optimize the classifier for maximum predictive effi-
ciency, ConfTr (Stutz et al., 2021) modifies the training objective by introducing a regularization
term that minimizes the average set size at a specific error rate. However, this term can negatively
impact accuracy by making it challenging to converge to an optimal solution, thereby limiting the
overall efficiency of the conformal predictor. Similar works (Huang et al., 2024b; Correia et al.,
2024) adopt the ConfTr framework to enhance the efficiency of conformal predictors, yet they still
encounter the limitations of ConfTr. Motivated by this, we propose C-Adapter, which enables the
efficient adaptation of trained classifiers for conformal prediction without sacrificing accuracy.

Adapters in other tasks Adapters are extensively studied in parameter-efficient fine-tuning
(Houlsby et al., 2019; Rebuffi et al., 2017), which aims to reduce the storage and computational
costs associated with adapting pre-trained models to downstream tasks. They typically consist of
small, trainable layers within the pre-existing model, while keeping the original parameters frozen.
For example, LoRA (Hu et al., 2021) has gained significant attention as a standard method for
adapting large language models. Adapters have proven effective across various domains (Stick-
land & Murray, 2019; Sung et al., 2022; Zhang et al., 2023). While our method shares the same
concept of adapters, it is conceptually distinct from prior approaches. Specifically, C-Adapter tar-
gets discriminative models by adding an adapter layer to the output layer of the original model,
whereas prior adapters consist of trainable mid-layers within the pre-trained model. A key feature
of C-Adapter is its ability to preserve the original label ranking, a design specifically tailored for
conformal prediction. This distinguishing characteristic sets C-Adapter apart from other adapters.

B VITAL TECHNIQUES IN CONFORMAL PREDICTION

B.1 KEY SCORE FUNCTIONS

Score functions play a crucial role in conformal prediction. With a fixed underlying classifier, the
usefulness of the prediction sets is entirely dependent on the chosen score function. Thresholding
(THR) (Sadinle et al., 2019) is a commonly used one, which is formulated as:

STHR(x, y; π̂) = 1− π̂y(x).
THR tends to generate efficient prediction sets. However, this score function frequently undercovers
hard examples while overcovering trivial ones, resulting in high conditional coverage violations.

To mitigate this issue, a popular alternative is the series of adaptive prediction sets. Adaptive Predic-
tion Sets (APS) (Romano et al., 2020), the pioneering work in this series, was specifically designed
to reduce conditional coverage violations in classification tasks. It is formulated as follows:

SAPS(x, y, u; π̂) =
∑
yi∈Y

π̂yi
(x) · 1{π̂yi

(x)>π̂y(x)} + u · π̂y(x),
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where u is an independent random variable following a uniform distribution on [0, 1]. The prediction
set is constructed by adding classes in descending order of probabilities, starting from the most likely
to the least, until the cumulative probability exceeds 1− α.

However, APS always results in large prediction sets since tail classes with low probabilities are
easily included. To alleviate this limitation, Regularized Adaptive Prediction Sets (RAPS) (An-
gelopoulos et al., 2020) penalizes classes based on their rank information with a predefined thresh-
old, thereby promoting the formation of efficient prediction sets. RAPS is formulated as follows:

SRAPS(x, y, u; π̂) = SAPS(x, y, u; π̂) + λ · (o(y, π̂(x))− kreg)+,

where o(y, π̂(x)) is the label ranking of y, λ and kreg are hyperparameters, and (z)+ denotes the
positive part of z. This regularization encourages more efficient prediction sets. In this work, we
evaluate the performance of C-Adapter on THR, APS, and RAPS. For RAPS, we consistently set
kreg to 1 and λ to 0.001 across all experiments.

B.2 CONFORMAL TRAINING

The core concept of ConfTr (Stutz et al., 2021) is to render the entire conformal prediction pipeline
differentiable, thereby enabling direct optimization of the average prediction set size during classifier
training. This process involves simulating both the calibration and prediction phases in each mini-
batch. Specifically, mini-batch B is divided into a calibration subset Bcal and a test subset Btest. The
subset Bcal is used to compute the soft threshold τ soft, while Btest is used to obtain the soft prediction
sets Csoft(x; τ

soft, π̂) for loss calculations. The detailed operations are as follows:

Soft threshold: During the calibration step, a non-differentiable quantile operation is required to
determine the threshold τ . To make this operation differentiable, smooth sorting techniques (Blondel
et al., 2020; Cuturi et al., 2019; Williamson, 2020) are employed, as follows:

τ soft
α = Qsoft({S(x, y; π̂)}(x,y)∈Bcal , 1− α), (9)

where Qsoft denotes the differentiable quantile operator, derived using smooth sorting techniques.

Soft conformal prediction set: The calculation of conformal prediction sets involves a non-
differentiable hard-thresholding operation, as shown in Equation (2). To address this limitation,
ConfTr employs the sigmoid function as a differentiable surrogate for the thresholding:

Csoft(x; τ
soft
α , π̂) =

{
σ

(
τ soft
α − S(x, y; π̂)

T

)
|y ∈ Y

}
, (10)

where σ denotes the sigmoid function and T is a hyperparameter. The k-th term in this set represents
a soft assignment of class k, indicating the probability of class k being included in the prediction
set. By taking the limit as T → 0, this operator becomes

lim
T→0

σ

(
τ soft
α − S(x, y; π̂)

T

)
=

{
1, S(x, y; π̂) ≤ τ soft

α ,

0, S(x, y; π̂) > τ soft
α .

For loss calculation, after τ soft is computed using Bcal as specified in Equation (9), Equation (10)
is applied to each instance in Btest to compute the soft prediction sets. The size of each prediction
set is approximated by summing the values in the set Csoft(x), which is optimized during training.
Additionally, a standard classification loss, such as cross-entropy loss, is incorporated to enhance
classification accuracy. The total loss function is then formulated as follows:

LConfTr(f(x;θ), y, τ
soft
α ) = Lcls(f(x;θ), y) + λLsize(f(x;θ), τ

soft
α ),

where Lcls represents the classification loss, and Lsize refers to the size loss, which approximates the
size of the prediction set at a specific error rate (e.g., 0.01). Here, λ controls the strength of Lsize.

C APPLICATION OF C-ADAPTER

The application of C-Adapter is illustrated in Figure 9. C-Adapter refines the raw logits of trained
classifiers for conformal prediction while preserving their intra-order, resulting in more efficient
conformal prediction sets without compromising the marginal coverage rate.
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Figure 9: Application of C-Adapter. C-Adapter adapts trained classifiers for conformal prediction
while preserving the ranking of labels in the output logits. Compared to using the raw logits, this
refinement improves the efficiency of prediction sets while maintaining the marginal coverage rate.

D INTRA ORDER-PRESERVING FUNCTIONS

Definition 1. A function h : RK → RK is considered intra order-preserving if, for any vector
x ∈ RK , the relative ordering of the elements in x is preserved in h(x). Formally, hi(x) > hj(x)
(or hi(x) = hj(x)) holds if and only if xi > xj (or xi = xj).

An intra order-preserving function maintains all ties and inequalities among the input elements. A
typical example is the softmax operator presented in Equation (1). The following theorem outlines
the necessary and sufficient conditions for constructing continuous intra order-preserving functions.

Theorem 1 (Rahimi et al. (2020)). Let UK ⊂ {0, 1}K×K denote the set of K × K permutation
matrices, and let R : RK → UK represent the sorting function. For any vector x ∈ RK , the vector
r = R(x)x satisfies r1 ≥ · · · ≥ rK . A continuous function h : RK → RK is intra order-preserving
if and only if it can be written as h(x) = R(x)−1Ut(x), where U is an upper-triangular matrix of
ones, and t : RK → RK is a continuous function that satisfies the following condition: ti(x) > 0
(or ti(x) = 0) if ri > ri+1 (or ri = ri+1), for all i < K. The value of tK(x) is arbitrary.

This theorem provides a pathway for learning within this function family using backpropagation. To
maintain the top-k accuracy of the original network, we implement our conformal adapter as a class
of intra order-preserving functions, defined as follows:

g(f ;w) = R(f)−1UΨ(f),

where the i-th term of Ψ(f) is formulated as:

Ψi(f) =

{√
(ri − ri+1)σ(φi(f)) for i < K,

φK(f) for i = K.
(11)

Here, φ(f) = w · f +w′, and σ denotes the sigmoid function. We denote φi(f) as the i-th term of
φ(f). Since Ψ(f) is continuous in f , it is straightforward to verify that this structure satisfies the
requirements outlined in Theorem 1. This structure decouples the logit order from the adaptation
for conformal prediction, enabling C-Adapter to focus on optimizing efficiency.

To better demonstrate how this transformation refines input logits for conformal prediction without
compromising their ranking, we analyze the algorithm step by step as follows:

1. For an input logit vector f , we sort it in descending order. The resulting sorted vector is
denoted as r, where r1 > r2 > · · · > rK .

2. We calculate Ψ(f) using Equation (11). It can be observed that, except for ΨK(f), if
ri > ri+1, this will always result in Ψi(f) > 0; and if ri = ri+1, it will always result in
Ψi(f) = 0. Essentially, Ψ(f) captures the absolute difference between each element
in the transformed logits and the next smaller element.

3. After calculating Ψ(f), we obtain a sorted vector UΨ(f) by performing a reverse cumu-
lative sum operation, where U is an upper-triangular matrix of ones. This sorted vector is
denoted as v = UΨ(f). We observe that vi > vi+1 (or vi = vi+1) holds if and only if
ri > ri+1 (or ri = ri+1). Notably, v is the sorted version of the refined logits.
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4. The reverse sorting operator R(f)−1 is applied to rearrange v, aligning it with the order of
f . This ensures that the resulting vector preserves all ties and inequalities among the input
elements. The expressivity of this transformation is guaranteed by the adaptive layer φ.

Notably, to improve convergence and facilitate easier optimization of the structures, we can apply a
residual function:

g(f ;w) = R(f)−1UΨ(f) + f .

Additionally, rescaling the input f to the range (0, 1) (e.g., by using the softmax function) can also
benefit optimization.

E PROOF FOR PROPOSITION 1

Proof. Considering (X,Y ) ∼ PXY , X̂ ∼ PX , Ŷ ∼ Uniform(Y), and letting µ(π̂) :=

P
(
S(X,Y ; π̂) ≥ S(X̂, Ŷ ; π̂)

)
, we have

µ(π̂) = E(X,Y )∼PXY ,X̂∼PX ,Ŷ∼Uniform(Y)

[
1{S(X,Y ;π̂)≥S(X̂,Ŷ ;π̂)}

]
= EX̂∼PX ,Ŷ∼Uniform(Y)

[
E(X,Y )∼PXY

[
1{S(X,Y ;π̂)≥S(X̂,Ŷ ;π̂)}

]]
=

1

K

∑
Ŷ ∈Y

EX̂∼PX

[
E(X,Y )∼PXY

[
1{S(X,Y ;π̂)≥S(X̂,Ŷ ;π̂)}

]]

=
1

K
EX̂∼PX

E(X,Y )∼PXY

∑
Ŷ ∈Y

1{S(X,Y ;π̂)≥S(X̂,Ŷ ;π̂)}


=

1

K
EX̂∼PX

Esθ∼PSθ

∑
Ŷ ∈Y

1{sθ≥S(X̂,Ŷ ;π̂)}

 .
Assuming that the CDF of Pθ, denoted as FSθ

, is monotonically increasing, we have

EX̂∼PX

Esθ∼PSθ

∑
Ŷ ∈Y

1{sθ≥S(X̂,Ŷ ;π̂)}


= EX̂∼PX

∫ ∑
Ŷ ∈Y

1{t≥S(X̂,Ŷ ;π̂)}dFSθ
(t)


(let t = F−1

Sθ
(1− α)) = EX̂∼PX

∫ 0

1

∑
Ŷ ∈Y

1{F−1
Sθ

(1−α)≥S(X̂,Ŷ ;π̂)} d(1− α)


= EX̂∼PX

∫ 1

0

∑
Ŷ ∈Y

1{F−1
Sθ

(1−α)≥S(X̂,Ŷ ;π̂)}dα


= EX̂∼PX

[∫ 1

0

|C
(
X̂;F−1

Sθ
(1− α), π̂

)
|dα

]
.

Thus, µ(π̂) > µ(π̂′) if and only if

EX∼PX

[∫ 1

0

|C
(
X;F−1

Sθ
(1− α), π̂

)
|dα

]
> EX∼PX

[∫ 1

0

|C
(
X;F−1

Sθ
(1− α), π̂′) |dα] .
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Figure 10: Convergence analysis of C-Adapter on ImageNet using DN121.

F CONVERGENCE ANALYSIS

Our method is computationally efficient as it updates only a limited number of parameters and can
converge rapidly. To demonstrate this, we conduct an experiment on ImageNet using DN121, vi-
sualizing the changes in loss and efficiency over iterations. We tune C-Adapter with Adam, using
a learning rate of 0.1, a batch size of 256, and a weight decay of 0.0001. We apply THR during
adapter tuning. We also use THR for evaluation and set the error rate to 0.5. As shown in Figure 10,
our method converges rapidly within 200 iterations, with the efficiency of the conformal predictor
improving quickly and approaching nearly optimal performance in just 50 iterations. This conver-
gence analysis highlights the computational efficiency of our proposed approach.

G EVALUATION METRICS

Size refers to the average number of labels in the prediction sets, while Coverage indicates the
percentage of test samples where the prediction sets contain the ground-truth labels:

Size =
1

|Dtest|
∑

(x,y)∈Dtest

|C(x)|,

Coverage =
1

|Dtest|
∑

(x,y)∈Dtest

1{y∈C(x)}.

CovGap (Ding et al., 2024) and SSCV (Angelopoulos et al., 2020) are defined as follows:

CovGap = 100× 1

|Y|
∑
y∈Y
|ĉy − (1− α)|,

SSCV = 100× sup
j

∣∣∣∣(1− α)− |{i : yi ∈ C (xi) , i ∈ Jj}|
|Jj |

∣∣∣∣ .
For CovGap, ĉy denotes the coverage rate for class y and quantifies the deviation of class-conditional
coverage from the desired level of 1 − α. For SSCV, J represents the partitioned sets, with the
prediction sets categorized by their sizes. This metric evaluates the maximum deviation of the
observed coverage rate from 1 − α across different set size categories. In our experiment, the
partitioning of set sizes for SSCV is defined as {0-1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11-100, 101-1000}.

H DETAILED EXPERIMENTAL SETUP

H.1 DETAILED SETUP FOR FIGURE 1

For CIFAR100, ResNet18 is trained using the full training set of 50,000 samples. The test set of
10,000 samples is divided into a calibration subset of 5,000 samples and a test subset of 5,000
samples. The calibration subset is further split into a validation set and a calibration set in an 20:80
ratio for parameter tuning. The network is trained for 200 epochs using SGD with a momentum of
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Figure 11: The accuracy of ConfTr with various λ, using ResNet18 on (a) CIFAR-100 and (b)
ImageNet. ⋆ denotes the baseline without ConfTr. The results indicate that increasing λ consis-
tently decreases the top-2, top-3, and top-5 classification accuracies.

0.9, a weight decay of 0.0005, and a batch size of 256. The initial learning rate is set to 0.1 and is
reduced by a factor of 5 at 60, 120, and 160 epochs. The hyperparameters T and λ of ConfTr are
tuned from the ranges {0.01, 0.1, 0.5, 1} and {0.005, 0.01, 0.05, 0.1, 0.2}, respectively.

For ImageNet, instead of training from scratch, we fine-tune only the fully connected layer of a pre-
trained ResNet18 using the training set. The test set is divided into a calibration subset of 30,000
samples and a test subset of 20,000 samples, with the calibration subset further split into a validation
set and a calibration set in a 20:80 ratio for parameter tuning. The fully connected layer is tuned for
240 iterations using Adam with a batch size of 256 and a learning rate of 0.001. A larger learning rate
significantly decreases classification accuracy, thereby reducing efficiency. The hyperparameters T
and λ for ConfTr are selected from the ranges {0.01, 0.1, 0.5, 1} and {0.001, 0.005, 0.01, 0.05, 0.1},
respectively; a larger λ also leads to a substantial decline in accuracy.

For evaluation, we use THR, APS, and RAPS, with the error rate α set to 0.1. During model training,
we utilize the THRLP score function (Stutz et al., 2021), setting the error rate α to 0.01. We also
present the top-2, top-3, and top-5 accuracy of ConfTr on CIFAR100 and ImageNet in Figure 11.

H.2 DETAILED SETUP FOR FIGURE 5

Retraining: Classifiers are trained using the complete training set of 50,000 samples, with the ob-
jective defined in Equation (7). The network is trained for 200 epochs using SGD with a momentum
of 0.9, a weight decay of 0.0005, and a batch size of 256. The initial learning rate is set to 0.1 and
reduced by a factor of 5 at epochs 60, 120, and 160. The parameter T is tuned within the range
{0.001, 0.01, 0.1, 1} using the validation set. We utilize THR for classifier training.

Fine-tuning: Classifiers are trained using the same training set of 50,000 samples with cross-entropy
loss. The network is trained for 200 epochs using SGD, with a momentum of 0.9, a weight decay
of 0.0005, and a batch size of 256. The initial learning rate is set to 0.1, reduced by a factor of 5
at epochs 60, 120, and 160. During fine-tuning, only the fully connected layer of the pre-trained
classifier is updated, training for 240 iterations with Adam, a batch size of 256, and a learning rate
of 0.001. Notably, a larger learning rate results in a significant decrease in classification accuracy.
The parameter T is tuned from the range {0.001, 0.01, 0.1, 1} using the validation set.

I ADDITIONAL EXPERIMENTAL RESULTS

Results when tuning C-Adapter using APS We report the detailed results of Coverage and Size
when C-Adapter is tuned using APS. Empirical results in Table 5 demonstrate that C-Adapter con-
sistently enhances the efficiency of conformal predictors, regardless of the model architectures and
pre-training strategies, highlighting the flexibility of our approach.
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Table 5: Performance of C-Adapter on common benchmarks. ↓ indicates that a smaller value is
better. Results in bold indicate superior performance. C-Adapter is tuned using APS.

w/o C-Adapter \ w/ C-Adapter

Score Model
ImageNet CIFAR-100

α = 0.05 α = 0.1 α = 0.05 α = 0.1

Coverage Size (↓) Coverage Size (↓) Coverage Size (↓) Coverage Size (↓)

THR

RN101 0.95 \ 0.95 4.03 \ 3.66 0.90 \ 0.90 1.91 \ 1.86 0.95 \ 0.95 3.64\ 3.11 0.90 \ 0.90 1.87 \ 1.80
DN121 0.95 \ 0.95 5.66 \ 5.39 0.90 \ 0.90 2.42 \ 2.40 0.95 \ 0.95 3.27 \ 3.03 0.90 \ 0.90 1.72 \ 1.69
DN161 0.95 \ 0.95 4.03 \ 3.88 0.90 \ 0.90 1.89 \ 1.86 0.95 \ 0.95 2.91 \ 2.71 0.90 \ 0.90 1.72 \ 1.71
RNX50 0.95 \ 0.95 4.26 \ 3.93 0.90 \ 0.90 1.87 \ 1.84 0.95 \ 0.95 3.41 \ 3.16 0.90 \ 0.90 1.78 \ 1.77
CLIP 0.95 \ 0.95 6.88 \ 6.90 0.90 \ 0.90 3.33 \ 3.28 0.95 \ 0.95 9.71\ 9.67 0.90 \ 0.90 4.78 \ 4.69

Average 0.95 \ 0.95 4.97 \ 4.75 0.90 \ 0.90 2.29 \ 2.25 0.95 \ 0.95 4.59 \ 4.34 0.90 \ 0.90 2.37 \ 2.33

APS

RN101 0.95 \ 0.95 14.73 \ 3.82 0.90 \ 0.90 7.23 \ 2.07 0.95 \ 0.95 7.60 \ 3.16 0.90 \ 0.90 3.95 \ 1.80
DN121 0.95 \ 0.95 20.00 \ 5.64 0.90 \ 0.90 9.21 \ 2.74 0.95 \ 0.95 10.20 \ 4.12 0.90 \ 0.90 4.44 \ 2.35
DN161 0.95 \ 0.95 16.43 \ 4.13 0.90 \ 0.90 6.82 \ 2.05 0.95 \ 0.95 9.90 \ 3.14 0.90 \ 0.90 5.42 \ 1.87
RNX50 0.95 \ 0.95 21.54 \ 4.10 0.90 \ 0.90 8.92 \ 2.07 0.95 \ 0.95 9.95 \ 3.19 0.90 \ 0.90 5.14 \ 1.90
CLIP 0.95 \ 0.95 26.35 \ 7.42 0.90 \ 0.90 13.24 \ 3.43 0.95 \ 0.95 16.13 \ 12.94 0.90 \ 0.90 10.18 \ 8.10

Average 0.95 \ 0.95 19.81 \ 5.04 0.90 \ 0.90 9.08 \ 2.47 0.95 \ 0.95 10.76 \ 5.31 0.90 \ 0.90 6.01 \ 3.20

RAPS

RN101 0.95 \ 0.95 7.13 \ 4.43 0.90 \ 0.90 4.60 \ 2.01 0.95 \ 0.95 5.16 \ 4.71 0.90 \ 0.90 3.25 \ 1.81
DN121 0.95 \ 0.95 10.28 \ 7.38 0.90 \ 0.90 6.57 \ 2.66 0.95 \ 0.95 7.19\ 4.00 0.90 \ 0.90 4.50 \ 1.83
DN161 0.95 \ 0.95 7.31 \ 5.01 0.90 \ 0.90 4.63 \ 2.00 0.95 \ 0.95 7.10 \ 3.22 0.90 \ 0.90 4.59 \ 1.81
RNX50 0.95 \ 0.95 7.88 \ 5.05 0.90 \ 0.90 5.20 \ 2.01 0.95 \ 0.95 7.20 \ 3.64 0.90 \ 0.90 4.47 \ 1.79
CLIP 0.95 \ 0.95 15.14 \ 8.74 0.90 \ 0.90 9.25 \ 3.41 0.95 \ 0.95 14.52 \ 13.61 0.90 \ 0.90 9.41 \ 8.92

Average 0.95 \ 0.95 9.55 \ 6.12 0.90 \ 0.90 6.05 \ 2.42 0.95 \ 0.95 8.24 \ 5.84 0.90 \ 0.90 5.24 \ 3.23

Table 6: Robustness of C-Adapter under different data shifts. C-Adapter is tuned using Ima-
geNet and tested on ImageNet-R and ImageNet-A. The base classifier adopted in this experiment is
RN101. Since each entry achieves the desired coverage, only Size is presented.

w/o C-Adapter \ w/ C-Adapter

Dataset THR APS RAPS

α = 0.4 α = 0.5 α = 0.4 α = 0.5 α = 0.4 α = 0.5

ImageNet-R 6.13 \ 5.56 2.23 \ 2.11 11.32 \ 7.16 6.16 \ 2.61 6.24 \ 5.95 3.32 \ 2.78
ImageNet-A 26.99 \ 20.09 18.21 \ 13.13 36.62 \ 23.01 25.98 \ 17.56 20.26 \ 20.08 13.72 \ 13.40

Average 16.56 \ 13.25 10.22 \ 7.62 23.97 \ 15.09 16.07 \ 10.09 13.25 \ 13.02 8.52 \ 8.09

C-Adapter is robust to various distribution shifts. We further investigate the robustness
of C-Adapter on ImageNet-R(rendition) (Hendrycks et al., 2021a) and ImageNet-A(adversarial)
(Hendrycks et al., 2021b). ImageNet-A and ImageNet-R are extended versions of the ImageNet
dataset designed to evaluate model robustness, with ImageNet-A focusing on adversarial examples
that are modified to mislead models, and ImageNet-R consisting of images transformed by various
artistic styles and visual changes to test models’ adaptability to different visual distributions.

Specifically, we fine-tune C-Adapter using the ImageNet training set, then split both ImageNet-R
and ImageNet-A into equal-sized calibration and test sets for conformal prediction. In this exper-
iment, we use pre-trained RN101. Given the relatively low performance of the pre-trained RN101
on ImageNet-R and ImageNet-A (for example, it achieves only 39% classification accuracy on
ImageNet-R), we set the error rate α to 0.4 and 0.5, respectively. Notably, coverage remains unaf-
fected by this setting, as the calibration and test sets are still exchangeable. We evaluate the perfor-
mance of C-Adapter using the APS, THR, and RAPS. As shown in Table 6, C-Adapter consistently
reduces size across various base classifiers on both ImageNet-R and ImageNet-A, regardless of the
score function used in conformal prediction or the predefined error rate α. The experimental results
further highlight the robustness of C-Adapter under different kinds of data shift.

Results on text classification using LLMs To provide a comprehensive understanding of the
broad capabilities of our method, we evaluate its performance on a text classification task. Addi-
tionally, we demonstrate the versatility of C-Adapter by performing this task using Large Language
Models (LLMs). Before delving into the experiment, we introduce a commonly used framework for
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Table 7: Performance of C-Adapter on text classification. ↓ indicates that a smaller value is better.
C-Adapter is tuned using THR. The experiment is carried on dbpedia 14 using LLama3-8B.

w/o C-Adapter \ w/ C-Adapter

Score α = 0.05 α = 0.1

Coverage Size (↓) Coverage Size (↓)

THR 0.94 \ 0.95 2.80 \ 2.61 0.89 \ 0.89 2.17 \ 2.04
APS 0.95 \ 0.94 3.14 \ 2.75 0.90 \ 0.91 2.33 \ 2.08

RAPS 0.95 \ 0.95 3.23 \ 3.11 0.90 \ 0.90 2.48 \ 2.32

Average – 3.06 \ 2.82 – 2.33 \ 2.15

applying LLMs to text classification. For each input, we construct a prompt in the following format:

\n Company, Educational Institution, Artist, Athlete, Office
Holder, Mode of Transportation, Building, Natural Place,
Village, Animal, Plant, Album, Film, or Written Work? \n Input
: </text> \n Output: </text>

In this prompt, each input instance x is paired with a label y ∈ Y , where Y represents the set
of possible categories (e.g., ”Company”, ”Artist”, etc.). The input x and label y are then inserted
into the appropriate position in the prompt. After obtaining the model’s output, we construct the
input-output pair z, tokenize it, and calculate its perplexity as follows:

Perplexity(z) = exp

(
− 1

N

N∑
i=1

log p(zi|z<i)

)
,

where p(zi|z<i) denotes the predicted probability of token zi given the preceding tokens, and N
is the total number of tokens in the input-output pair z. Perplexity quantifies the uncertainty of
the language model in predicting the next token in the sequence. The label corresponding to the
input-output pair z with the lowest perplexity is selected as the predicted label for the input x.

We perform conformal prediction in this classification setting, specifically on the dbpedia 14
dataset, a 14-class classification task (Lehmann et al., 2015). For the LLM, we use LLama3-8B
(Touvron et al., 2023). In this experiment, we apply conformal prediction based on perplexity.
For an input x, we compute the perplexity vector for each label y ∈ Y . Since a lower perplexity
indicates a more likely label, the reciprocal of the normalized perplexity is used as the raw logits to
perform conformal prediction. We use the test set of dbpedia 14 with 7,480 samples to perform
the experiment, where 2,000 of them are used for tuning, and the remaining data is equally and
randomly divided into calibration and test sets. Notably, we rely on the zero-shot ability of LLama3-
8B to perform classification. The classification accuracy on this set is 66%. The experimental
results are presented in Table 7. Compared to using the raw perplexity as input logits, C-Adapter
significantly improves the efficiency of conformal prediction across different conditions.

Comparison of different surrogate functions for the indicator function In this section, we
compare the performance of C-Adapter using different surrogate functions for the indicator function
within its loss function, with all experimental settings kept constant. Specifically, we investigate
three widely used surrogate functions, as follows:

• Hinge: h(x) = max(x+ c, 0), where c is a parameter.
• Square: s(x) = (x+ c)2, where c is a parameter.
• Sigmoid: σ(x) = 1

1+exp(−x/T ) , where T is a parameter.

For parameter tuning, we fix the parameter T of the Sigmoid function at 0.0001, while the param-
eters of the Hinge and Square functions are tuned using grid search with a step size of 0.2 over the
interval [0, 1]. The error rate α is set to 0.05, and the results are presented in Table 8. As observed,
the Sigmoid function outperforms the others regardless of the applied score function.
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Table 8: Comparison of loss functions with different surrogate functions, on ImageNet with
DN121. Baseline represents the scenario without C-Adapter. Since all methods achieve the desired
coverage, only Size is reported. The Sigmoid function outperforms the other surrogate functions.

Baseline Hinge Square Sigmoid

THR 5.66 5.51 5.47 5.41
APS 20.00 5.91 5.88 5.73
RAPS 10.28 7.49 7.35 6.53

Average 11.98 6.30 6.23 5.89

J ANALYSIS OF CONDITIONAL COVERAGE

In this section, we analyze why C-Adapter can improve the conditional coverage metrics, i.e., Cov-
Gap and SSCV. For a trained classifier, large values of SSCV and CovGap typically stem from sig-
nificant performance variations across sub-groups of data, which cause disparities in non-conformity
scores between groups. When a single threshold τ is applied to generate prediction sets for these
sub-groups, the resulting conditional coverage gaps can become substantial. In this section, we
show that, from a gradient perspective, our loss function mitigates these discrepancies by reducing
the variation in non-conformity scores across samples. This reduction leads to more uniform per-
formance across different sub-groups, ultimately improving conditional coverage metrics. For any
sample (x, y) from batch B, the corresponding loss is calculate by

L(x, y) = 1

|B̂|

∑
(x̂,ŷ)∈B̂

σ

(
S(x, y; π̃w)− S(x̂, ŷ; π̃w)

T

)
.

Let ∆(x̂, ŷ) denote the difference between the scores for (x, y) and (x̂, ŷ) as:

∆(x̂, ŷ) = S(x, y; π̃w)− S(x̂, ŷ; π̃w).

Additionally, let S = S(x, y; π̃w) represent the score for (x, y). Then, we have

∂L(x, y)
∂S

=
1

ˆ|B|
1

T

∑
(x̂,ŷ)∈B̂

σ

(
∆(x̂, ŷ)

T

)(
1− σ

(
∆(x̂, ŷ)

T

))
.

We observe that the magnitude of ∂L(x,y)
∂S is determined by ∆(x̂, ŷ). Specifically, the gradient’s

magnitude decreases as ∆(x̂, ŷ) moves further from zero. Since T is typically small, the value
decreases rapidly. We now analyze the gradient’s magnitude in two different cases:

• If S is low and well separated from the scores of randomly matched samples S(x̂, ŷ; π̃w),
then ∆(x̂, ŷ) will typically be negative, and its absolute value will be large in most cases.
As a result, the magnitude of the corresponding gradient will be extremely low.

• If S is high and cannot be easily distinguished from the scores of randomly matched sam-
ples S(x̂, ŷ; π̃w), then ∆(x̂, ŷ) will approach zero for many (x̂, ŷ) ∈ B̂, resulting in a large
gradient magnitude. This encourages the reduction of such high scores.

This characteristic rebalances the learning process by placing greater emphasis on samples with high
non-conformity scores (hard-to-distinguish score), and thus reducing the variation in non-conformity
scores across samples. Consequently, the model achieves more consistent performance across dif-
ferent data subgroups, ultimately enhancing conditional coverage metrics.

K THEORETICAL ANALYSIS OF THE IMPACT OF CLASSIFICATION
ACCURACY ON THE EFFICIENCY OF CONFORMAL PREDICTORS

In Figures 1 and 11, we have empirically shown that ConfTr reduces the top-k accuracy of classi-
fiers. In this section, we formally analyze how top-k accuracy affects the efficiency of conformal
predictors. The following propositions demonstrate that the lower and upper bounds of the expected
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size of the prediction set at level 1−α are related to the top-k accuracy of the classifier. For notation
shorthand, given the classifier π̂, we define o(y) ≡ o(y, π̂(x;θ)) to denote the index of label y in
the sorted softmax probabilities for x ∼ PX .
Proposition 2 (Lower bound). Let π̂ be a classifier with top-J classification accuracy accJ , and let
the error rate be α. Then, the expected size of the conformal prediction set is bounded below by:

E [|C(X)|] ≥
{
(J + 1)(1− α)− J · accJ , if accJ ≤ 1− α,
1− α, if accJ > 1− α.

The proof is provided in Appendix K.1. According to Proposition 2, the lower bound of the
expected set size is negatively related to the top-k accuracy. Therefore, the cost of accuracy
introduced by ConfTr will increase the lower bound of the expected size, leading to suboptimal per-
formance in efficiency. This highlights the importance of preserving top-k accuracy in the efficiency
optimization for conformal prediction.

Proposition 3 (Upper bound). Let π̂ be a classifier with top-J classification accuracy accJ , and let
the error rate be α. Then, the expected size of the conformal prediction set is bounded above by:

E [|C(X)|] ≤K − 1− (K − J)accJ + E

∑
Ŷ ∈Y

t(X,Y, Ŷ )

 ,
where (X,Y ) ∼ PXY , t(X,Y, Ŷ ) = 1{{S(X, Ŷ ) ≤ τα} ∩ {o(Y ) < o(Ŷ )} ∩ {Y ∈ C(X)}}.

The proof is provided in Appendix K.2. According to Proposition 3, the average set size at error
rate α is upper bounded by two terms. The first term is negatively related to the top-k accuracy. The
second term in this bound represents the expected number of labels Ŷ that satisfy the condition:

{S(X, Ŷ ) ≤ τα} ∩ {o(Y ) < o(Ŷ )} ∩ {Y ∈ C(X)},
over (X,Y ) ∼ PXY . This expectation primarily reflects the number of incorrect labels that have
non-conformity scores lower than τα and are ranked higher than the true label Y . Intuitively, a drop
in model performance reduces the discriminative ability, making it harder to distinguish between
correct and incorrect labels. As a result, correct and incorrect labels may have similar scores, which
can lead to an increase in the value of the second term. These analyses highlight the negative impact
of decreased model performance on the efficiency of conformal predictors.

K.1 PROOF OF PROPOSITION 2

Proof. To obtain the lower bound of the expected set size, we assume an oracle score function and
an ideal model such that, for the case accJ ≤ 1− α:

|C∗(X)| =


0, if Y /∈ C(X) ,

1, if o(Y ) ≤ J and Y ∈ C(X),

J + 1, if o(Y ) > J and Y ∈ C(X),

where (X,Y ) ∼ PXY .

Given the top-J accuracy accJ , to satisfy the desired coverage rate of 1 − α, the expected value of
minimal set size is:

E[C∗(X)] = accJ · 1 + (1− α− accJ)(J + 1) + (1− α) · 0
= (J + 1)(1− α)− J · accJ .

Thus, we have the lower bound in the case accJ ≤ 1− α:

E[C(X)] ≥ (J + 1)(1− α)− J · accJ .

Similarly, for the case accJ > 1− α, we have:

|C∗(X)| =
{
0, if Y /∈ C(X) ,

1, if o(Y ) ≤ J and Y ∈ C(X),
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where (X,Y ) ∼ PXY .

In this case, the minimal size of expected prediction sets under the top-J accuracy accJ is:

E[C∗(X)] = (1− α)(1) + α · 0 = 1− α.

Therefore, we have the lower bound in the case accJ > 1− α:

E[C(X)] ≥ 1− α.

Now we have the lower bound of the expected set size:

E [|C(X)|] ≥
{
(J + 1)(1− α)− J · accJ , if accJ ≤ 1− α,
1− α, if accJ > 1− α.

K.2 PROOF OF PROPOSITION 3

Proof. For notation shorthand, we denote E(X,Y )∼PXY [|C(X)|] as E [|C(X)|]. We can decompose
E [|C(X)|] based on whether C(X) contains the true label Y as

E [|C(X)|] = E [|C(X)| |Y ∈ C(X)]︸ ︷︷ ︸
(a)

·P {Y ∈ C(X)}+ E [|C(X)| |Y /∈ C(X)]︸ ︷︷ ︸
(b)

·P {Y /∈ C(X)} .

We analyze the two parts individually, as follows:

Part (a): For prediction sets containing the ground truth, we have:

E [|C(X)| |Y ∈ C(X)] = E

∑
Ŷ ∈Y

1{S(X, Ŷ ) ≤ τα} | Y ∈ C(X)


= E

∑
Ŷ ∈Y

1{o(Y ) ≥ o(Ŷ )} · 1{S(X, Ŷ ) ≤ τα}+
∑
Ŷ ∈Y

1{o(Y ) < o(Ŷ )} · 1{S(X, Ŷ ) ≤ τα}|Y ∈ C(X)


(1)
= E

o(Y ) +
∑
Ŷ ∈Y

1{o(Y ) < o(Ŷ )} · 1{S(X, Ŷ ) ≤ τα}|Y ∈ C(X)


= E [o(Y )|Y ∈ C(X)] +

∑
Ŷ ∈Y

P
{
S(X, Ŷ ) ≤ τα, o(Y ) < o(Ŷ ) | Y ∈ C(X)

}
where (1) holds because under the condition Y ∈ C(X), we have 1{S(X, Ŷ ) ≤ τ} = 1 for all label
y ∈ Y satisfying o(Ŷ )) ≤ o(Y ).
Part (b): It is obvious to obtain that, for prediction sets that do not contain the ground truth, the size
is bounded by the label order of the ground truth minus one, as follows:

E [|C(X)| | Y /∈ C(X)] ≤ E [o(Y ) | Y /∈ C(X)]− 1.

Combining the results from Part (a) and Part (b) gives

E [|C(X)|] ≤E [o(Y )|Y /∈ C(X)] · P {Y /∈ C(X)}+ E [o(Y )|Y ∈ C(X)] · P {Y ∈ C(X)}+∑
Ŷ ∈Y

P
{
S(X, Ŷ ) ≤ τα, o(Y ) < o(Ŷ ), Y ∈ C(X)

}
− 1

=E[o(Y )] + E

∑
Ŷ ∈Y

1{(S(X, Ŷ ) ≤ τα) ∩ (o(Y ) < o(Ŷ )) ∩ (Y ∈ C(X))}

− 1.
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And for a pre-specified Top-J accuracy, accJ , we have

E[o(Y )] =

K∑
k=1

kP(o(Y ) = k)

=

J∑
k=1

kP(o(Y ) = k) +

K∑
k=J+1

kP(o(Y ) = k)

≤JaccJ +K(1− accJ)
=K − (K − J)accJ .
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