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Abstract
Recently, image-based 3D semantic occupancy
prediction has become a hot topic in 3D scene un-
derstanding for autonomous driving. Compared
with the bounding box form of 3D object detec-
tion, the ability to describe the fine-grained con-
tours of any obstacles in the scene is the key in-
sight of voxel occupancy representation, which
facilitates subsequent tasks of autonomous driv-
ing. In this work, we propose CSV-Occ to ad-
dress the following two challenges: (1) Exist-
ing methods fuse temporal information based on
the attention mechanism, but are limited by high
complexity. We extend the state space model
to support multi-input sequence interaction and
conduct temporal modeling in a cascaded archi-
tecture, thereby reducing the computational com-
plexity from quadratic to linear. (2) Existing
methods are limited by semantic ambiguity, re-
sulting in the centers of foreground objects often
being predicted as empty voxels. We enable the
model to explicitly vote for the instance center
to which the voxels belong and spontaneously
learn to utilize the other voxel features of the
same instance to update the semantics of the in-
ternal vacancies of the objects from coarse to
fine. Experiments on the Occ3D-nuScenes dataset
show that our method achieves state-of-the-art in
camera-based 3D semantic occupancy prediction
and also performs well on lidar point cloud seman-
tic segmentation on the nuScenes dataset. Code
will be available at https://github.com/
ZeaZoM/CSV-Occ.
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Figure 1. Examples of Internal Occupancy Vacancy (IOV). The
yellow grids are the occupancy predictions of the model for “bus”,
purple for “truck”, cyan for “construction vehicle”, red for “pedes-
trian”, orange for “barrier”, light yellow for “traffic cone”, and
green for “vegetation”. In these four examples, IOV occurred for
“bus”, “truck”, and “construction vehicle”.

1. Introduction
Image-based 3D semantic occupancy prediction (Mescheder
et al., 2019; Peng et al., 2020) represents the structuring of
3D scenes into grids and determining whether the grids are
occupied and the specific semantic categories of the occu-
pied grids only from visual images. In the environmental
understanding of autonomous driving, it provides more ge-
ometric details than 3D object detection and complements
LiDAR-based perception.

Temporal information is extremely crucial for the visual
system to understand the surrounding environment. For
example, detecting the multi-angle geometry of highly oc-
cluded objects or inferring the relative distance of objects is
very difficult for 2D images without depth information. And
temporal cues can make up for the inherent deficiencies of
static 2D images in these aspects. Taking the inspiration of
Vision Transformers (ViTs) (Dosovitskiy et al., 2021; Liu
et al., 2021; Touvron et al., 2021; Zhang et al., 2023a) as
the starting point, some existing studies, such as (Koh et al.,
2023; Tong et al., 2023; Lu et al., 2023; Liu et al., 2024a),
will align historical BEV features (Li et al., 2022; Liu et al.,
2023a) based on the attention mechanism (Vaswani, 2017)
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to effectively represent the current environment. Although
this brings strong learning ability, with the increase in the
number of tokens, its quadratic complexity will introduce
a large amount of computational overhead in downstream
tasks involving large spatial resolutions. To address this
challenge, inspired by VMamba (Liu et al., 2024b), Vision
Mamba (Zhu et al., 2024), and Cross Attention mechanisms
(Gheini et al., 2021; Lin et al., 2022) in computer vision,
we propose the Cross State Space Module, a feature fusion
method that extends the State Space Model (SSM) (Gu &
Dao, 2023; Mehta et al., 2023; Wang et al., 2023a) to sup-
port the interaction of multiple input sequences, thereby
reducing the computational complexity from quadratic to
linear.

In addition, after observing the data, as shown in Fig. 1, we
found that the centers of foreground objects (such as car,
bus, and truck, etc.) are often predicted as empty voxels,
especially for large objects. We call this problem “Internal
Occupancy Vacancy (IOV)”. Different from the common
back occlusion problem, as shown in Fig. 2, when we in-
crease the number of input frames, although the model suc-
cessfully predicts the occupancy of the occluded surface of
the target through the increase of the viewing angle, it still
cannot solve the IOV. The center feature (Yin et al., 2021;
Chen et al., 2023; Bai et al., 2022) is the best representation
of the entire instance for 3D object detection (Lang et al.,
2019; Shi et al., 2020; Wang et al., 2022; Li et al., 2022;
Yang et al., 2020). However, 3D semantic occupancy pre-
diction is different from object detection. Existing advanced
3D semantic occupancy prediction methods (Wang et al.,
2023b; Li et al., 2023b; Huang et al., 2023; Li et al., 2023c;
Pan et al., 2024; Wang et al., 2024; Liu et al., 2024a; Lu
et al., 2023; An et al., 2024; Shi et al., 2024; Jang et al.,
2024; Ye et al., 2024) perform voxel-wise classification on
the 3D spatial volume feature map, while ignoring the fact
that foreground voxels actually have instance aggregativity
(multiple voxels belonging to the same instance have po-
tential complementary features). To address this issue, we
propose the Voting-based Enhancement Mechanism, which
spontaneously learns to utilize the other voxel features of
the same instance to update the semantics of the internal
vacancies of the object from coarse to fine, thereby reducing
the IOV.

Our contributions are summarized as follows:

• In CSV-Occ, we propose the Cross State Space Module
(Cross SSM). It extends the SSM to a feature fusion
method that supports multi-sequence input and uses a
cascading approach to achieve the interaction of histor-
ical temporal volume features, which can enhance the
model’s ability to integrate temporal information.

• We also propose the Voting-based Enhancement Mech-
anism. This enables the model to adaptively infer the

1 frame 2 frames 4 frames 8 frames

Figure 2. The influence of multi-frame prediction on the IOV
problem. The blue grids are the horizontal sections of the model’s
occupancy predictions for two “cars”, and the gray grids are “man-
made”. When the number of frames increases from 4 to 8, the IOV
may still become more serious.

instance to which the voxel belongs and enhance the
associative ability of the internal semantics of the ob-
ject, enabling it to output more accurate 3D semantic
occupancy representations.

• Experiments on the Occ3D-nuScenes dataset show that
our method achieves the state-of-the-art performance
of camera-based 3D semantic occupancy prediction.
After further projecting the 3D semantic occupancy
results to the lidar point cloud semantic segmentation,
it also performs well on the nuScenes dataset.

2. Related Work
2.1. Temporal Modeling in 3D Perception

Camera-based 3D perception has attracted much attention in
the field of autonomous driving due to its cost-effectiveness
and rich visual attributes. Utilizing temporal information to
compensate for the lack of depth information in single-frame
2D planar images can significantly improve the performance
of camera-based 3D perception. Recently, 3D perception
methods based on multi-frame images have unified this issue
into the problem of voxel feature map transformation from
historical frames to the current frame. One type of method
(Park et al., 2022; Li et al., 2023a; Ma et al., 2024; Wang
et al., 2024; Zhou et al., 2024; Liu et al., 2023b) inherits the
inspiration from BEVDet4D (Huang & Huang, 2022), inde-
pendently extracts and constructs the BEV feature map of
each frame, and predicts the relative motion of the target be-
tween adjacent frames, thereby aligning the target-by-target
features of the historical frame to the current frame position,
and then concatenating with the BEV feature map of the cur-
rent frame. Another type of method (Koh et al., 2023; Tong
et al., 2023; Lu et al., 2023; Liu et al., 2024a) avoids ex-
plicitly predicting the relative displacement between frames.
They follow the TSA paradigm proposed by BEVFormer
(Li et al., 2022), predefine a learnable BEV query in the cur-
rent frame, and extract information from the historical BEV
feature map through the deformable attention mechanism
(Zhu et al., 2020). Although this method can effectively
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Figure 3. The overall architecture of the proposed method. First, we extract multi-scale features of multi-camera images using the
image backbone. Next, we employ time-based view transformation to integrate information from multiple cameras and frames, and use
the voxel backbone to upsample and concatenate 3D volume features in a multi-scale manner. Finally, the voting-based enhancement
mechanism is applied to refine the coarse semantic occupancy prediction.

fuse historical information into the current frame, with the
increase in the number of tokens, its quadratic complexity
will introduce a large amount of computational overhead
in downstream tasks involving large spatial resolutions. To
address this limitation, we extend SSM to multi-sequence
input for temporal information encoding, thereby achieving
linear computational complexity.

2.2. 3D Semantic Occupancy Prediction

Recently, camera-based 3D semantic occupancy predic-
tion has received considerable attention. This prediction
aims to reconstruct the 3D scene structure from images
and predict the occupancy and semantic attributes of all
voxels. MonoScene (Cao & De Charette, 2022) adopts a
camera-based method and 3D UNet (Ronneberger et al.,
2015; Çiçek et al., 2016) architecture; TPVFormer (Huang
et al., 2023) uses three perspective views to represent the
3D scene for predicting 3D occupancy; OccFormer (Zhang
et al., 2023b) decomposes 3D processing into local and
global transformer paths; SurroundOcc (Wei et al., 2023)
achieves fine-grained results through multi-scale supervi-
sion; FB-OCC (Li et al., 2023c) uses forward-backward
projection to aggregate multi-image information; PanoOcc
(Wang et al., 2024) unifies 3D semantic occupancy predic-
tion and 3D panoramic segmentation tasks; SparseOcc (Liu
et al., 2024a) employs mask-guided sparse sampling to pre-
dict semantic occupancy from 3D sparse representations;
OctreeOcc (Lu et al., 2023) utilizes variable granularity oc-
tree representations to adapt to object shapes and semantic
regions of different sizes and complexities. To promote
occupancy representation learning, we propose a new frame-
work named CSV-Occ, which utilizes the temporal state
space model and voting mechanism to optimize multi-frame
fusion and update the internal features of objects.

3. Method
3.1. Problem Definition

The camera-based 3D semantic occupancy prediction task
is designed to predict the dense semantic voxel volume
surrounding the ego-vehicle through the analysis of multi-
view images. Specifically, we leverage the multi-view image
set of the current frame, denoted as Img = {I1, I2, . . . , In},
as the model input, where n represents the index of the
camera image viewpoint. The camera-based 3D semantic
occupancy prediction task is formulated as follows:

Ô = F (Img) = F ({I1, I2, . . . , In}) (1)

Where F represents the model integrating multi-view cam-
era image information for 3D semantic occupancy predic-
tion. The model then generates the semantic voxel volume
Ô ∈ {pe, p1, . . . , pC}H×W×L as the output. In this context,
the parameter p ranges from 0 to 1, presenting the proba-
bility of voxel grid occupancy. The variable C denotes the
total count of semantic classes within the scene, with pe
indicating the probability that the grid contains an empty
occupied voxel. Additionally, H , W , and L represent the
height, width, and length of the voxel volume, respectively.

3.2. Overall Architecture

Fig. 3 illustrates the overall architecture of our method.
Given a set of surround-camera images, we first use an
image feature extractor (such as ResNet-101 (Dai et al.,
2017)) to extract multi-scale surround-camera features F =
{{f j

i }Ni=1}smj=s1 at m scales from N cameras individually.
In the Time-based View Transformation (TVT) module, for
the surround-camera features at each level, we utilize voxel
queries to learn volume features and use the cascaded Cross
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State Space Module (Cross SSM) to fuse the volume fea-
tures of historical frames into the current frame to enrich
the feature information. Then, the Voxel Feature Extractor
is used to upsample and concatenate the multi-scale volume
features to form high-resolution volume features. Next, the
occupancy classification head predicts the coarse semantic
occupancy based on the high-resolution volume features.
In the Voting-based Enhancement Mechanism (VEM), the
model explicitly predicts the relative displacement of each
foreground voxel to the instance center it belongs to through
Relative Central Regression (RCR), and then updates the
high-resolution voxel features through the Parallel Interac-
tion Strategy (PIS). Finally, the occupancy classification
head predicts the refined semantic occupancy.

3.3. Time-based View Transformation

We project the reference voxels to the camera views and use
deformable attention (Zhu et al., 2020) to query pixels and
aggregate information (More details are in Sec. A of the
Appendix).

To effectively obtain better multi-frame voxel features, we
design a cascading structure after the deformable attention
mechanism to gradually fuse the information in the multi-
frame voxel features, as shown in Fig. 3. Based on the obser-
vation that directly adding or concatenating voxel features
from different frames leads to performance degradation (as
shown in the ablation experiments in Table 3), we decom-
pose this interaction from the current frame voxel feature to
the fused voxel feature VT ∈ Rh×w×l×dvoxel into k cascading
steps. Between the input current frame voxel feature and the
fused cascaded voxel feature, we refer to the intermediate
voxel feature containing information from different frames
as V ′

T,i ∈ Rh×w×l×dvoxel . Step by step, the model gradually
fuses the information of historical frames to effectively and
efficiently learn the final occupancy descriptor VT .

3.3.1. CROSS STATE SPACE MODULE

Inspired by Mamba (Gu & Dao, 2023), we achieve the fu-
sion and interaction of inter-frame 3D voxel features through
SSM (Gu & Dao, 2023; Mehta et al., 2023; Wang et al.,
2023a). To achieve this goal, we need to expand the vanilla
Mamba into multiple inputs.

The original Attention formula (Dosovitskiy et al., 2021;
Vaswani, 2017) can be approximated as a SSM through
simplification, addition of new terms, and transformation
(derivations are in Sec. B of the Appendix). This makes
it possible for SSM to achieve the interaction of different
input sequences. And we found in the derivation that the
role of the C variable in the state space model is similar to
the query tensor in Attention (in Cross Attention (Lin et al.,
2022; Gheini et al., 2021), query tensor can be obtained by
mapping another input feature sequence tensor). Therefore,

Cross SSM: Cross State Space Module
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Figure 4. Illustration of cross state space module. We take the
3D feature maps of the current frame and the past frames simul-
taneously as the input. Where ⊙ represents the element-wise
multiplication of tensors.

we believe that the C variable in the state space model can
also be obtained by mapping another input feature sequence
tensor similarly.

Thus, as shown in Fig. 4, we take the 3D voxel features of
the current frame T and the 3D voxel features of the histor-
ical frame T − i simultaneously as the input of the Cross
SSM. VT−i is taken as x ∈ RS×dvoxel , B ∈ RS×dstate is ob-
tained by the MLP mapping of x, ∆ ∈ RS×dvoxel is obtained
by the MLP mapping of B. C ∈ RS×dstate is obtained by the
MLP mapping of V ′

T . Both A ∈ Rdstate×dvoxel and D ∈ Rdvoxel

are learnable tensors. Among them, dstate represents the
SSM state dimension. Where S represents the length of the
input sequence. Specifically, we expand VT−i and V ′

T into
sequences of the same size RS×dvoxel through patch partition
respectively, and then use them as the input of the state
space model. Finally, the output of the state space model is
reconstructed as VT ∈ Rh×w×l×dvoxel through patch merger.
In the patch partition, we use simple pooling downsam-
pling and tensor flattening without introducing any complex
processes, and the patch merger is implemented by simple
reshape and interpolation upsampling.

3.4. Voting-based Enhancement Mechanism

Based on the observation that the IOV problem is prevalent
in semantic occupancy prediction (as shown in Fig. 1 and
Fig. 2), we developed the RCR and PIS mechanisms, which
can learn to spontaneously utilize the coarse semantic oc-
cupancy predictions and high-resolution volume features to
fill the vacant semantic features inside the objects.

3.4.1. RELATIVE CENTRAL REGRESSION

The foreground class objects often have the IOV problem
(there are a total of 10 types of foreground objects such as
cars, trucks, bicycles, etc. in the nuScenes dataset). In the
nuScenes dataset, we only focus on the refinement of the
internal voxels of these 10 types of objects and do not need
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Figure 5. Illustration of relative central regression. We use the
BEV plane for a simple 2D illustration, while it is actually a 3D
process. Different colors of the blocks represent different cate-
gories of voxels. Gray indicates other non-foreground categories,
blank indicates non-occupied areas, and the dashed arrows indicate
the relative direction and distance of the central voxels voted by
the voting voxels.

to refine the entire occupancy space, otherwise, it will bring
a huge amount of computational redundancy. As shown
in Fig. 5, we first filter out the voxel coordinates occupied
by the above 10 types of objects through coarse semantic
occupancy predictions, and use them as the class mask to
filter the high-resolution volume features, that is, only the
voxel features VT,fgd ∈ RNfgd×dvoxel of the above 10 types of
objects are retained:

VT,fgd = Mask
(
VT , Ôcoarse

)
(2)

Where Ôcoarse ∈ {pe, p1, . . . , pC}H×W×L represents the
coarse semantic occupancy prediction. For these features,
we predict the offsets δ̂cen ∈ RNfgd×3 of these voxels from
the central voxels of their respective objects (including the
voxel distances ∆xi, ∆yi, ∆zi in the H , W , and L direc-
tions) through the MLP:

δ̂cen = MLP (VT,fgd) (3)

Thus, we obtain the voting relationship (that is, the voxel-
relative central voxel pair) of each voxel to the central voxel
of its respective object.

3.4.2. PARALLEL INTERACTION STRATEGY

The voxel-relative central voxel pairs can be one-to-one
or many-to-one (that is, it is possible that multiple voxels
vote to the same center voxel of the belonging object), as
shown on the left side of Fig. 6. For each voted central voxel
feature f i

cen, there are Gi voting voxels features {f i,j
vot }Gi

j=1

that have a voting relationship with it, where i represents
the index of the voxel-relative central voxel group. We hope
that they can update their own features through sufficient
interaction.

As shown on the right side of Fig. 6, taking i = 1 as an
example, first, f1

cen is used as the key and value, and f1,j
vot

is used as the query to perform cross attention calculation
respectively and is added with the residual of f1,j

vot to obtain
the updated feature ḟ1,j

vot :

ḟ1,j
vot = CrossAttn

(
f1,j

vot , f
1
cen

)
+ f1,j

vot , for j = 1, . . . , G1

(4)

For each ḟ1,j
vot ∈ R1×Dvoxel , we perform global pooling to

obtain a feature descriptor ∈ R1, and then sort these feature
descriptors. Use this order as the sequence of each ḟ1,j

vot to

obtain ˜̇f1,j
vot :

{˜̇
f1,j

vot

}G1

j=1

= Sort
({

ḟ1,j
vot

}G1

j=1
,GP

({
ḟ1,j

vot

}G1

j=1

))
(5)

Where, GP represents the global pooling function. After

determining the order of ˜̇f1,j
vot , use it as the key and value,

and f1
cen as the query, and perform cross attention calculation

in sequence to obtain the updated feature ḟ1
cen:

ḟ1
cen = CrossAttn

(
f1

cen,
˜̇
f1,j

vot

)
, for j = 1, . . . , G1 (6)

3.5. Supervision Signal

Occupancy Classification. We adopt a simple two-layer
MLP for voxel-wise multi-classification (including occu-
pancy status and semantic category) of high-resolution voxel
features without other complex designs. Then, the occu-
pancy prediction Ôgeo ∈ {pe}H×W×L and the semantic
prediction Ôsem ∈ {p1, p2, . . . , pC}H×W×L are output.

Loss Function. The total loss L consists of two parts:

L = LOcc + LRCR (7)

The occupancy classification head is supervised by LOcc.
Specifically, LOcc consists of the focal loss (Lfocal) (Ross
& Dollár, 2017), the Lovasz loss (Llov) (Berman et al.,
2018), and the scene-class affinity loss (Laff ) (Cao &
De Charette, 2022). Among them, Laff calculates the
losses Laff (Ôsem, Osem) and Laff (Ôgeo, Ogeo) for the
semantic labels (including voxel semantic categories) and
the geometric labels (including only the voxel occupancy
status), respectively. LOcc is calculated as follows:

LOcc = λfocalLfocal + λlovLlov + λaffLaff

Laff = Laff (Ôsem, Osem) + Laff (Ôgeo, Ogeo)
(8)
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Figure 6. Illustration of parallel interaction strategy. The voxel-relative central voxel pairs conduct feature interaction through cross-
attention calculation, thereby updating all foreground voxel features.

RCR is supervised by LRCR. Specifically, we utilize the
bounding box labels, project them onto the volumetric coor-
dinate system, obtain the voxels to which the center of each
object instance belongs, and calculate the distance deviation
of all voxels within the bounding box of each instance to the
central voxel to obtain δcen. We predict a three-dimensional
vector for each voxel belonging to the foreground classes to
regress the relative center offset and use the MSE loss for
supervision:

LRCR = λRCRMSE
(
δ̂cen, δcen

)
(9)

4. Experiments
4.1. Implementation Details

Network. For CSV-Occ-B, the input image resolution is
1600× 896. We employ ResNet101-DCN (Dai et al., 2017)
as the image backbone. The Feature Pyramid Network
(FPN) (Lin et al., 2017) extracts multi-scale features with
downsampling strides of 8, 16, 32, and 64. The time-based
view transformation module fuses 4 frames with a frame
interval of 2. The voxel feature extractor adopts 3 layers of
3D deconvolution to upsample the BEV size by 2× and the
height by 4×. The occupancy classification head consists of
two layers of 128-dimensional MLP and softmax activation,
generating an occupancy space resolution of 200×200×16.
For CSV-Occ-S, the input image size is reduced to 800×448,
and we employ ResNet50 (He et al., 2016) as the image
backbone, with the remaining network details the same as
CSV-Occ-B.

Training. For CSV-Occ-B and CSV-Occ-S, we train the
models on 4 NVIDIA A40 48G GPUs with a batch size set
to 4. During training, we utilize the AdamW (Loshchilov,
2017) optimizer with an initial learning rate of 2 × 10−4,
weight decay of 0.05, and apply a cosine annealing strategy.

We train our models for all experiments over 24 epochs. We
apply common data augmentation strategies, including color
transformations, flips, rotations, and scaling in both image
and 3D space.

4.2. Main Results

3D Semantic Occupancy Prediction. In Table 1, we
present a comparative experiment with other state-of-the-
art 3D semantic occupancy prediction methods on Occ3D-
nuScenes (Tian et al., 2024) validation set. Due to the
default image backbone of FB-OCC (Li et al., 2023c) being
R50 (ResNet50) (He et al., 2016) and the resolution of the
input images differing from that of other methods, we modi-
fied the image backbone and resolution in the FB-OCC (Li
et al., 2023c) open-source code to ensure a fair evaluation.
Compared to previous methods, our approach demonstrates
superior performance in terms of mIoU, particularly ex-
celling in medium and small foreground classes (such as
barrier, pedestrian, bicycle, and car). This highlights that
using a voting-based enhancement mechanism for handling
foreground classes aligns better with scene characteristics
and enhances the ability for semantic filling within objects.
Additionally, our method performs exceptionally well in
medium and large scene structure classes (such as driveable
surface and sidewalk), emphasizing that utilizing a cross
state space module for the fusion and interaction of inter-
frame 3D voxel features is more in line with the temporal
variations of the scene, thereby enhancing the ability to
leverage temporal information.

LiDAR Semantic Segmentation. To better assess the effec-
tiveness of our method, we project the 3D semantic occu-
pancy prediction results onto the point cloud and conduct
comparative experiments on the LiDAR semantic segmen-
tation task. As shown in Table 2, we compare our results
with those of other 3D semantic occupancy prediction meth-
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Table 1. 3D semantic occupancy prediction performance on Occ3D-nuScenes dataset. In all methods, only a single-modal camera
image is used as input during testing, without any additional augmentations or model ensembles incorporated. “4f” and “8f” refer to the
model’s input containing data from 4 frames or 8 frames, respectively, incorporating temporal information. The symbol “*” marks that
these models use the visible mask during training.
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MONOSCENE (CAO & DE CHARETTE, 2022) R101 CVPR’22 6.06 1.75 7.23 4.26 4.93 9.38 5.67 3.98 3.01 5.90 4.45 7.17 14.91 6.32 7.92 7.43 1.01 7.65
BEVDET (HUANG ET AL., 2021) R101 ARXIV’21 11.73 2.09 15.29 0.00 4.18 12.97 1.35 0.00 0.43 0.13 6.59 6.66 52.72 19.04 26.45 21.78 14.51 15.26
OCCFORMER (ZHANG ET AL., 2023B) R101 ICCV’23 21.93 5.94 30.29 12.32 34.40 39.17 14.44 16.45 17.22 9.27 13.90 26.36 50.99 30.96 34.66 22.73 6.76 6.97
TPVFORMER (HUANG ET AL., 2023) R101 CVPR’23 28.34 6.67 39.20 14.24 41.54 46.98 19.21 22.64 17.87 14.54 30.20 35.51 56.18 33.65 35.69 31.61 19.97 16.12
CTF-OCC (TIAN ET AL., 2024) R101 NIPS’23 28.53 8.09 39.33 20.56 38.29 42.24 16.93 24.52 22.72 21.05 22.98 31.11 53.33 33.84 37.98 33.23 20.79 18.00

BEVFORMER (4F) (LI ET AL., 2022)* R101 ECCV’22 39.24 10.13 47.91 24.9 47.57 54.52 20.23 28.85 28.02 25.73 33.03 38.56 81.98 40.65 50.93 53.02 43.86 37.15
BEVDET (8F) (HUANG & HUANG, 2022)* SWIN-B ARXIV’22 42.02 12.15 49.63 25.10 52.02 54.46 27.87 27.99 28.94 27.23 36.43 42.22 82.31 43.29 54.62 57.90 48.61 43.55
PANOOCC (4F) (WANG ET AL., 2024)* R101 CVPR’24 42.13 11.67 50.48 29.64 49.44 55.52 23.29 33.26 30.55 30.99 34.43 42.57 83.31 44.23 54.40 56.04 45.94 40.40
FB-OCC (8F) (LI ET AL., 2023C)* R50 ICCV’23 40.67 10.48 47.54 29.62 45.76 50.15 28.45 28.56 28.09 29.51 34.32 37.44 80.69 46.51 54.36 57.14 44.95 39.02
FB-OCC (8F) (LI ET AL., 2023C)* R101 ICCV’23 42.24 10.98 49.06 31.09 47.33 51.72 30.02 30.08 29.66 31.16 35.89 39.05 82.18 48.08 55.96 58.71 46.52 40.59
OCTREEOCC (4F) (LU ET AL., 2023)* R101 NIPS’24 44.02 11.96 51.70 29.93 53.52 56.77 30.83 33.17 30.65 29.99 37.76 43.87 83.17 44.52 55.45 58.86 49.52 46.33

CSV-OCC-S (4F)* R50 OURS 42.37 11.75 50.65 27.29 50.98 55.12 29.94 30.98 29.70 30.58 35.69 42.64 82.51 44.58 54.96 56.92 45.97 40.08
CSV-OCC-B (4F)* R101 OURS 44.93 12.98 53.12 32.76 54.13 58.24 31.01 35.07 33.14 33.49 37.05 44.17 84.02 47.11 56.17 59.16 48.69 43.57

Table 2. LiDAR semantic segmentation results on nuScenes validation set. “4f” refer to the model’s input containing data from 4
frames, incorporating temporal information. In Modality, “L” and “C” represent LiDAR input and camera input respectively.
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RANGENET++ (MILIOTO ET AL., 2019) - L IROS’19 65.5 66.0 21.3 77.2 80.9 30.2 66.8 69.6 52.1 54.2 72.3 94.1 66.6 63.5 70.1 83.1 79.8
POLARNET (ZHANG ET AL., 2020) - L CVPR’20 71.0 74.7 28.2 85.3 90.9 35.1 77.5 71.3 58.8 57.4 76.1 96.5 71.1 74.7 74.0 87.3 85.7
SALSANEXT (CORTINHAL ET AL., 2020) - L ISVC’20 72.2 74.8 34.1 85.9 88.4 42.2 72.4 72.2 63.1 61.3 76.5 96.0 70.8 71.2 71.5 86.7 84.4
CYLINDER3D++ (ZHU ET AL., 2021) - L CVPR’21 76.1 76.4 40.3 91.2 93.8 51.3 78.0 78.9 64.9 62.1 84.4 96.8 71.6 76.4 75.4 90.5 87.4
RPVNET (XU ET AL., 2021) - L ICCV’21 77.6 78.2 43.4 92.7 93.2 49.0 85.7 80.5 66.0 66.9 84.0 96.9 73.5 75.9 76.0 90.6 88.9

BEVFORMER (LI ET AL., 2022) R101 C ECCV’22 56.2 54.0 22.8 76.7 74.0 45.8 53.1 44.5 24.7 54.7 65.5 88.5 58.1 50.5 52.8 71.0 63.0
TPVFORMER (HUANG ET AL., 2023) R101 C CVPR’23 68.9 70.0 40.9 93.7 85.6 49.8 68.4 59.7 38.2 65.3 83.0 93.3 64.4 64.3 64.5 81.6 79.3
PANOOCC (4F) (WANG ET AL., 2024) R50 C CVPR’24 68.1 70.7 37.9 92.3 85.0 50.7 64.3 59.4 35.3 63.8 81.6 94.2 66.4 64.8 68.0 79.1 75.6
PANOOCC (4F) (WANG ET AL., 2024) R101 C CVPR’24 71.6 74.3 43.7 95.4 87.0 56.1 64.6 66.2 41.4 71.5 85.9 95.1 70.1 67.0 68.1 80.9 77.4

CSV-OCC-S (4F) R50 C OURS 70.3 71.9 41.7 92.1 86.8 51.2 62.5 63.0 41.1 69.1 85.7 95.5 67.4 69.4 66.5 85.8 75.3
CSV-OCC-B (4F) R101 C OURS 73.4 74.4 44.1 95.6 89.5 53.9 65.8 67.5 45.2 72.6 88.5 97.2 71.9 72.4 69.8 87.3 78.9

ods and LiDAR semantic segmentation methods based on
point cloud inputs on the nuScenes validation set. Our
method achieves the best mIoU performance among the
image-based 3D semantic occupancy prediction methods,
demonstrating excellent results for specific semantic classes
(such as pedestrian, bicycle, and car). This success can be
attributed to the feature correction and interaction capabil-
ities of the voting-based enhancement mechanism and the
cross-state space module. In comparison with the LiDAR
semantic segmentation methods based on point cloud inputs,
we have approached the performance of current state-of-the-
art lidar-based methods using purely image input.

4.3. Ablation Study

We perform ablation experiments to evaluate the design
choices of CSV-Occ on Occ3D-nuScenes (Tian et al., 2024)
validation set. By default, we utilize the CSV-Occ-B config-
uration.

Different Multi-frame Feature Aggregation Methods.
Table 3 compares the performance of different multi-frame
voxel feature aggregation methods used in the TVT module.
#b is the default setting. By observing #A, #B, #C, and #D,
we find that adjusting the state dimension in the Cross SSM

affects the mIoU, with the best performance achieved when
the state dimension is set to 4. By comparing #B, #E, #F,
and #G, it is discovered that Cross SSM outperforms the
utilization of temporal self-attention (Li et al., 2022), MLP
mixer (Tolstikhin et al., 2021), or direct concatenation. This
indicates that Cross SSM is more capable of concentrating
on the differences and similarities between frames, making
it more suitable for the integration and interaction of inter-
frame voxel features.

Time-based View Transformation and Voting-based En-
hancement Mechanism. Table 4 verifies that TVT and
VEM can have positive effects on the model. Compared
with the single-frame model, the multi-frame training and
inference model using TVT performs better in the 3D seman-
tic occupancy prediction and LiDAR semantic segmentation
tasks. VEM further enhances the interaction between object
surface and internal feature learning, and also improves the
performance of both tasks. The effect of VEM is shown in
Fig. 7, and it can eliminate or greatly alleviate IOV.

The Weights of the Loss Function. Table 5 shows the com-
parison of various combinations of different loss function
weights. Comparing λRCR in #A and #C, #B and #D, it
can be found that LRCR can bring significient gains to the
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Figure 7. Visualizations of the occupancy predictions IOV with and without VEM.

Table 3. Ablation study for different multi-frame voxel feature aggregation methods. TSA stands for the temporal self-attention
structure.

# FUSION MODULE
STATE

DIMENSION
MIOU
(OCC.)↑

MIOU
(SEG.)↑

TRAINABLE
PARAMS (M)↓

A

CROSS SSM (OURS)

2 44.77 73.05 68.3
B 4 44.93 73.42 68.5
C 8 44.89 73.41 68.9
D 16 43.58 72.70 69.6

E TSA (LI ET AL., 2022) - 43.17 72.62 69.3
F MLP-MIXER (TOLSTIKHIN ET AL., 2021) - 43.22 72.67 77.5
G CONCAT. AND CONV. - 42.31 72.53 68.8

Table 4. Effects of time-based view transformation and voting-
based enhancement mechanism. When TVT is not used, we
replace it with SCA and TSA of BEVFormer (Li et al., 2022).

# TVT VEM MIOU
(OCC.)↑

MIOU
(SEG.)↑

A - - 40.37 69.81
B ✓ - 43.71 72.77
C - ✓ 42.08 71.33
D ✓ ✓ 44.93 73.42

performance, which also means that explicitly supervising
the voxel offsets can enable the model to more clearly learn
the physical meaning of the center voting. We also con-
ducted experiments on various combinations of different
loss function weights and found that the performance is the
best when λRCR = 1, λfocal = 2, λlov = 2, and λaff = 1.5.

4.4. Temporal Computation Complexity

The following efficiency experiments were all measured
with the batch size set to 1.

Fig. 8 shows the impact of changes in BEV size on infer-
ence speed and memory. We explored how initialized voxel
query size impacts model efficiency. Keeping its height at

Table 5. Ablation for the weights of the loss function.

# λRCR λfocal λlov λaff
MIOU
(OCC.)↑

MIOU
(SEG.)↑

A - 2.0 - - 40.61 69.79
B 2.0 2.0 1.5 43.98 72.80

C

1.0

2.0 - - 42.83 71.91
D 2.0 2.0 1.5 44.93 73.42
E 5.5 2.0 1.5 44.78 73.30
F 2.0 2.0 4.0 44.04 72.95

4, we adjusted the BEV side length from 25 to 200 (max
200 × 200, not exceeding occupancy ground truth). The left
figure shows samples inferred per second; the right shows
inference memory consumption. As voxel query size grows,
especially past 100, TSA and MLP mixer’s inference speed
and memory consumption worsen. Cross SSM’s efficiency
decline is more stable due to its linear computational com-
plexity. A larger query size means a longer flattened token
sequence, and Cross SSM needs only one scan for multi
frame fusion.

Fig. 9 shows how the number of inference frames affects
model efficiency. The initialized voxel query size is set at
100 × 100 × 4. Cross SSM outperforms in both inference
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Figure 8. The impact of changes in BEV size on inference speed and memory.
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Figure 9. The impact of changes in the number of inference frames on inference speed and memory.

speed and memory consumption. Still, as the number of
inference frames rises, Cross SSM’s efficiency change trend
is like that of TSA and MLP mixer. In CSV-Occ, the num-
ber of inference frames equals the number of multi-frame
fusion module calls, and the feature sequence length per call
depends only on the voxel query size. So, more inference
frames don’t give Cross SSM a trend advantage.

5. Conclusion
In this paper, we propose CSV-Occ, a novel camera-based
3D semantic occupancy prediction method. CSV-Occ inte-
grates temporal information through an extended state space
model and enhances feature representation in a coarse-to-
fine manner by explicitly predicting the instance to which
voxels belong, which achieves a comprehensive understand-
ing of the scene. Extensive experimental results on the
nuScenes dataset and Occ3D-nuScenes confirm the effec-
tiveness of CSV-Occ and its potential in advancing 3D se-
mantic occupancy prediction. In our view, 3D semantic
occupancy representation is a promising new paradigm for

future 3D scene perception.
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A. Details of Time-based View Transformation
Specifically, as shown in Fig. 3, we initialize a learnable 3D voxel query tensor Q ∈ Rh×w×l×dvoxel as the basis for 3D
spatial information aggregation. According to the given intrinsic and extrinsic parameters of the N cameras, we attempt to
project the center coordinate of each voxel in the 3D voxel query onto the two-dimensional coordinate system of the N
camera images (if there is view overlap in the surround-camera images, then some 3D voxels may be projected onto multiple
views simultaneously) to obtain voxel-pixel pairs. Then, we sample the features around these projected 2D coordinates and
achieve the aggregation of 2D features to 3D voxels through the deformable attention (Zhu et al., 2020) mechanism:

F p =
1

| Vhit |
∑
i∈Vhit

DefAttn (Qp,P (qp, i) , Xi) (10)

Where F p and Qp denote the p-th element of the output feature and the 3D volume query, respectively. qp is the corresponding
3D coordinate of Qp, P is the 3D-to-2D projection function including intrinsic and extrinsic parameters, Xi is the feature
map of the i-th camera. Vhit represents the set of hit view indices projected by qp. DefAttn represents deformable attention
computation (Zhu et al., 2020).

B. Derivations of Cross State Space Module
The length and feature dimension of the input sequence are represented by S and d respectively. The original Attention
formula is as follows:

Attention(Q̄, K̄, V ) = softmax(
Q̄K̄⊤
√
d

)V (11)

Where Q̄ ∈ RS×d, K̄ ∈ RS×d, and V = {v1, . . . , vS} ∈ RS×d are obtained by mapping the same input feature sequence
tensor through three independent MLP mappings (in Cross Attention, Q̄ can be obtained by mapping another input feature
sequence tensor). For the convenience of subsequent derivation, we abandon the tensor value scaling and softmax, and we
can obtain a new calculation:

Ȳ = Q̄K̄⊤V (12)

Where Ȳ ∈ RS×d represents the output of the new calculation. Particularly, the j-th slice of Ȳ along the feature channel
dimension d, denoted as Ȳ [j] ∈ RS×1, can be written as:

Ȳ [j] = Q̄K̄⊤V [j] (13)

We introduce the intermediate variable tensors W = {w1, . . . , wS} ∈ RS×d×d and E ∈ RS×S , where the role of E is
similar to the Attention mask, and E is a full 1 matrix to ensure the equality still holds. Meanwhile, let Q = Q̄

W [j] =

{q1, . . . , qS} and K = K̄ ⊙W [j] = {k1, . . . , kS}, and we can obtain:

Ȳ [j] =

[(
Q⊙W[j]

)( K

W[j]

)⊤

⊙ E

]
V [j] (14)

Where ⊙ represents the element-wise multiplication of tensors, and the division sign also represents the element-wise
division of tensors. Introduce the variable tensor H = {h1, . . . , hS} ∈ RS×d×d, construct a new term and add it to the
original term. To ensure the equality holds, multiply the new term by the all-zero tensor O ∈ RS×d:

Ȳ [j] =
[(

Q⊙W[j]
)
⊙O

]
h
[j]
1 +

[(
Q⊙W[j]

)( K

W[j]

)⊤

⊙ E

]
V [j] (15)
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Maintaining the same equality structure, replace O and E with E and M respectively while keeping the shape unchanged,
where the element values of the lower triangular part of M are 1 and the rest are 0, to obtain Y [j] ∈ RS×1, where
Y = {y1, . . . , yS}:

Y [j] =
[(

Q⊙W[j]
)
⊙ E

]
h
[j]
1 +

[(
Q⊙W[j]

)( K

W[j]

)⊤

⊙M

]
V [j] (16)

The t-th slice of Y [j] along the feature sequence dimension S, denoted as y[j]t ∈ R1×1:

y
[j]
t =

(
qt ⊙ w

[j]
t

)
h
[j]
1 +

t∑
i=1

(
qt ⊙ w

[j]
t

w
[j]
i

k⊤i

)
⊙ v

[j]
i (17)

Similarly, the t-th slice of Y along the feature sequence dimension S, denoted as yt ∈ R1×d, and extract qt:

yt = qt (wt ⊙ h1) + qt

t∑
i=1

wt

wi
⊙
(
k⊤i vi

)
= qt

[
wt ⊙ h1 + wt ⊙

t∑
i=1

k⊤i vi
wi

]
= qtht

ht = wt ⊙ h1 + wt ⊙
t∑

i=1

k⊤i vi
wi

(18)

We define wt =
∏t

l=1 e
A∆l , and substitute it for calculation, then transform ht into the recursive form:

ht =

t∏
l=1

eA∆l ⊙ h1 +

t∏
l=1

eA∆l ⊙
t∑

i=1

k⊤i vi∏i
l=1 e

A∆l

= eA(∆1+...+∆t) ⊙ h1 + eA(∆1+...+∆t) ⊙
t∑

i=1

k⊤i vi
eA(∆1+...+∆i)

= eA∆t ⊙ ht−1 + k⊤t vt

(19)

Substitute V = X ⊙ ∆, K = B, Q = C, where X = {x1, . . . , xS} ∈ RS×d is the input feature sequence tensor,
∆ ∈ RS×d, and add a skip connection to yt to obtain the following formula in the form of a state space model:

{
ht = eA∆t ⊙ ht−1 +B⊤

t (xt ⊙∆t)

yt = Ctht +D ⊙ xt

(20)

To sum up, we believe that the state space model can be regarded as a special subset of the Attention model, which makes it
possible for the state space model to achieve feature interaction of two different input sequence tensors. And observing the
above derivation, it is not difficult to find that Q̄ (in Cross Attention, Q̄ can be obtained by mapping another input feature
sequence tensor) is gradually replaced by C in the process, which means that we believe that the C variable in the state
space model can also be similarly obtained by mapping another input feature sequence tensor. Thus, we constructed Cross
SSM (Sec. 3.3.1 of the main text).

C. Datasets and Evaluation Metrics
The nuScenes Dataset (Caesar et al., 2020) comprises 1000 scene sequences, distributed as 700 in the training set, 150 in
the validation set, and 150 in the test set. Each scene sequence is recorded at a 20Hz frequency and lasts for 20 seconds.
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Each sample contains RGB images from 6 surround cameras and point cloud data from a LiDAR sensor with 32 beams. For
object detection task labels, key samples are annotated at a rate of 2Hz with ground truth labels for 10 foreground object
classes, including 3D bounding boxes and categories. In addition to the 10 foreground classes, semantic segmentation task
labels also encompass 6 background classes represented in per-point labels within the point cloud.

The Occ3D-nuScenes Dataset (Tian et al., 2024) is an extension of the nuScenes dataset that expands the semantic
occupancy prediction task label set. In the egocentric coordinate system, the semantic occupancy space ranges from
-40m to 40m on the X and Y axes, and from -1m to 5.4m on the Z axis. The voxel size of the occupancy label is
0.4m × 0.4m × 0.4m (resulting in a spatial resolution of 200 × 200 × 16 for occupancy labels). The semantic labels
include 17 categories, comprising 16 categories specifically designated for semantic segmentation tasks, as well as an “other”
category. Additionally, visible masks are supplied for both the LiDAR and camera modalities.

Evaluation Metrics. We use the mean Intersection over Union (mIoU) as the evaluation metric for assessing both LiDAR
semantic segmentation and 3D semantic occupancy prediction tasks:

mIoU =
1

C

C∑
i=1

TPi

TPi + FPi + FNi
, (21)

In this equation, TPi, FPi, and FNi represent the counts of true positives, false positives, and false negatives for class i,
respectively, with C denoting the total number of semantic classes.

D. Experimental results
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Figure 10. Qualitative comparison of 3D semantic occupancy prediction.

Visualization. Fig. 10 shows the qualitative results of our method and some other state-of-the-art methods on the Occ3D-
nuScenes dataset, demonstrating that our method can understand the overall structure of the scene more completely and
capture finer-grained geometric details.

Design of Time-based View Transformation. In the TVT module, we initialize a learnable voxel query to convert image
features into voxel space. Table 6 compares the impact of different voxel query sizes on the experimental results. #H is the
default setting for our method. In settings #C, #D, #E, and #F, we changed the height dimension while fixing the BEV size.
It was observed that the coding density of height information significantly affects the performance of semantic occupancy
prediction and segmentation tasks. Additionally, under a fixed number of voxels, we designed experiments where (1) #A
and #C have 5k voxels, (2) #B and #D have 10k voxels, (3) #E and #G have 20k voxels, and (4) #F and #H have 40k voxels.
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Table 6. Ablation study for different voxel query sizes. The improvement of BEV information density is very conducive to improving
the fineness of realizing 3D scene understanding.

# VOXEL QUERY SIZE VOXEL NUMBER
MIOU
(OCC.)↑

MIOU
(SEG.)↑BEV SIZE HEIGHT

A 25 × 25 8 5K 40.88 68.97
B 16 10K 42.38 71.91

C

50 × 50

2 5K 40.37 68.83
D 4 10K 42.51 71.93
E 8 20K 44.08 72.35
F 16 40K 44.91 73.06

G 100 × 100 2 20K 44.16 72.63
H 4 40K 44.93 73.42

Table 7. Ablation study for varying configurations for the number of aggregated frames and frame intervals. Key sample images
are sampled at 2Hz (with a frame interval of 0.5s) in the Occ3D-nuScenes dataset. The time span can be calculated by the number of
fused frames and the number of frame intervals.

# FRAMES
FRAME

INTERVALS
TIME
SPAN

MIOU
(OCC.)↑

MIOU
(SEG.)↑

A
4

1 1.5S 44.18 72.98
B 2 3.0S 44.93 73.42
C 4 6.0S 44.61 73.11

D

2

1 0.5S 43.59 72.42
E 2 1.0S 43.74 72.49
F 4 2.0S 43.97 72.56
G 6 3.0S 44.02 72.68

H 1 - - 42.08 71.33

The results indicate that only the former in experiment (1) outperforms the latter, suggesting that the improvement in mIoU
from enhancing the encoding density of height information is much smaller than that from increasing the encoding density
of BEV information. This finding highlights the importance of fine-grained encoding of BEV information for achieving
comprehensive scene understanding.

The Number of Frames and Frame Intervals. As mentioned above, one of the functions of the TVT module is to aggregate
multi-frame voxel features. Table 7 shows the impact of different settings for the number of aggregated frames and frame
intervals on model performance in the TVT module. #B is the default setting of our method. By comparing #A, #B, and
#C, we find that #B (which selects a frame interval of length 2 while keeping the number of aggregated frames at 4) can
enhance the performance of the TVT module. However, observations from #D, #E, #F, and #G yield different results, with
#G (which selects a frame interval of length 6 while keeping the number of aggregated frames at 2) exhibiting the highest
performance. From this, we observe that the time spans of #B and #G are closer, indicating that the time span’s impact on
model performance is more significant. Comparing time spans that are relatively close, (1) #B, #F, and #G have time spans
between 2s and 3s, while (2) #A and #E have time spans between 1s and 1.5s. We find that under similar time spans, an
increase in the number of aggregated frames often leads to a better mIoU, which underscores the importance of temporal
information density. At the same time, we also discover that extending the time span does not infinitely improve model
performance; in fact, when the time span is too long, the mIoU of dynamic objects tends to decrease. This is due to the
dynamic ambiguity that arises from the information and features of dynamic objects over extended time spans.

Design of Parallel Interaction Strategy. In Table 8, we conducted an ablation study on the effectiveness of the parallel
interaction strategy (PIS). #A is a simple per-voxel baseline that processes features directly through a series of MLPs. #B
introduces the parallel interaction strategy without feature descriptor sorting, which improves performance by 1.5 occupancy
mIoU and 0.56 segmentation mIoU. To enhance the fusion efficiency of highly correlated features, we implemented a feature
descriptor sorting mechanism in #C and #D, which further increased inference accuracy, ultimately achieving the highest
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Table 8. Ablation study for the parallel interaction strategy. The symbol ✓ represents the use of parallel interaction strategy.

# PIS SORTING
MIOU
(OCC.)↑

MIOU
(SEG.)↑

A - - 42.18 72.15
B ✓ - 43.68 72.71
C ✓ FORWARD 44.93 73.42
D ✓ REVERSE 44.86 73.37

44.93 occupancy mIoU and 73.42 segmentation mIoU with forward sorting (compared to 44.86 occupancy mIoU and 73.37
segmentation mIoU with reverse sorting).

E. Limitation
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Figure 11. Performance comparison of each category with and without VEM.

Lower Performance on Certain Background Classes. Through statistics, we’ve found that the low performance of our
method in certain background categories is primarily attributed to the VEM module. As depicted in Fig. 11, upon enabling
the voting mechanism, the performance of all foreground categories has increased. Conversely, a decline in performance is
observed in four background categories: driveable surface, other flat, manmade, and vegetation.

This occurs because VEM relies on the coarse semantic occupancy prediction to divide foreground category voxels. When
the coarse semantic occupancy prediction is inaccurate, VEM may predict relative centers for some background voxels as
well. The occupancy of background categories usually has a large volume and lacks distinct instance centers. This leads to
training confusion in VEM. During inference, it wrongly updates the features of background voxels, causing the occupancy
classification head to give incorrect category predictions. As a result, the number of background voxels decreases, which
directly impacts the prediction performance of background categories.

We also calculated the proportion of the number of foreground and background voxels predicted by the model with and
without VEM. As shown in Fig. 12, it can be seen that VEM can significantly increase the number of foreground voxels.
This partly indicates that VEM can improve the Internal Occupancy Vacancy (IOV) situation and successfully predict free
voxels as foreground voxels. However, we unexpectedly found that the number of background voxels decreased, which we
think is related to the training confusion caused by VEM.

Weak in Instance-Level Occupancy Prediction. CSV-Occ can generate instance-level results, but requires additional
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Figure 12. The proportion of the number of foreground and background voxels predicted by the model with and without VEM.

Table 9. Comparison of instance-level occupancy prediction.

METHOD MODALITY PUBLICATION PQ SQ RQ

PANOPTICTRACKNET (HURTADO ET AL., 2020) L ARXIV’20 51.4 80.2 63.3
EFFICIENTLPS (SIROHI ET AL., 2021) L I-TR’21 62.0 83.4 73.9
LIDARMULITINET (YE ET AL., 2023) L AAAI’23 81.8 89.7 90.8

PANOOCC (WANG ET AL., 2024) C CVPR’24 62.1 82.1 75.1
CSV-OCC-INSTANCE C OURS 48.3 79.6 60.5

post-processing. Our implementation involves three key steps: (1) Applying Relative Central Regression to the final semantic
occupancy output for voxel-level center prediction (2) Clustering potentially scattered center predictions (Due to the error in
the center voting predicted by the model, multiple discrete center points often appear) to form coherent instances (3) The
clustered central voxels then determine instance ID assignments through voting relationships. Since Occ3D-nuScenes lacks
instance-level occupancy ground truth, we project our results onto LiDAR points for panoptic segmentation evaluation as
reference metrics.

Table 9 shows a comparison of instance-level occupancy prediction for multiple methods. PanoOcc (Wang et al., 2024)
remains the first purely camera-based approach for point cloud panoptic segmentation, achieving LiDAR-comparable
performance through joint semantic occupancy prediction and 3D detection with bounding box supervision. However, our
CSV-Occ differs fundamentally by excluding 3D bounding box size supervision (crucial for explicit instance boundary
prediction).
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