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ABSTRACT

We investigate the implications of removing bias in ReLU networks regarding
their expressivity and learning dynamics. We first show that two-layer bias-free
ReLU networks have limited expressivity: the only odd function two-layer bias-
free ReLU networks can express is a linear one. We then show that, under sym-
metry conditions on the data, these networks have the same learning dynamics
as linear networks. This enables us to give analytical time-course solutions to
certain two-layer bias-free (leaky) ReLU networks, for the first time outside the
lazy learning regime. While deep bias-free ReLU networks are more expressive
than their two-layer counterparts, they still share a number of similarities with
deep linear networks. These similarities enable us to leverage insights from linear
networks to understand certain ReLU newtorks. Overall, our results show that
some properties previously established for bias-free ReLU networks arise due to
equivalence to linear networks.

1 INTRODUCTION

Theorists make simplifications to real-world models because simplified models are mathematically
more tractable, yet discoveries made in them may hold in general. For instance, linear models have
illuminated benign overfitting (Bartlett et al., 2020) and double descent (Advani et al., 2020) in
practical neural networks. In this paradigm, understanding the consequences of a simplification is
critical, since it informs us which discoveries in simple models extend to complex ones. Here we
inspect a specific simplification that is common in theoretical work on ReLU networks (Zhang et al.,
2019; Du et al., 2019; Arora et al., 2019; Lyu & Li, 2020; Vardi & Shamir, 2021): the removal of
the bias terms. The removal of bias not only appears in theoretical work but also has practical ap-
plications. Some real-world models adopt bias removal to introduce scale invariance, which can be
a beneficial property for image denoising (Mohan et al., 2020; Zhang et al., 2022), image classi-
fication (Zarka et al., 2021), and diffusion models (Kadkhodaie et al., 2024). This paper seeks to
illuminate the implications of bias removal in ReLU networks, and so provide insight for theorists
on when bias removal is desirable.

We investigate how removing bias affects the expressivity and the learning dynamics of ReLU net-
works and identify scenarios where bias-free ReLU networks are effectively linear networks. For
expressivity, we show that two-layer bias-free (leaky) ReLU networks cannot express odd functions
except linear functions. This was proven for input uniformly distributed on a sphere (Basri et al.,
2019, Theorem 2 and 4), but we prove it for arbitrary input with a simpler approach. We then con-
sider deep bias-free (leaky) ReLU networks and show a depth separation result, i.e., deep bias-free
ReLU networks can express homogeneous nonlinear odd functions while two-layer ones cannot. For
learning dynamics, we show that two-layer bias-free (leaky) ReLU networks have the same learning
dynamics as a linear network when trained on symmetric datasets with square loss or logistic loss.
Our symmetry Condition 3 on the dataset incorporates the datasets studied in several prior works
(Sarussi et al., 2021; Lyu et al., 2021; Zhang et al., 2024). We also present two cases where two-layer
bias-free ReLU networks evolve like multiple independent linear networks. Finally, we empirically
find that when the target function is linear, deep bias-free ReLU networks form low-rank weights
similar to those in deep linear networks.

By revealing regimes where bias-free ReLU networks behave like linear networks, we offer a deeper
understanding of these networks while clarifying the importance of stepping beyond such regimes
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to study nonlinear behaviors more generally. This understanding draws from linear networks, which
enjoy much richer theoretical results than ReLU networks (Baldi & Hornik, 1989; Fukumizu, 1998;
Saxe et al., 2014; 2019; Arora et al., 2018; Ji & Telgarsky, 2019; Lampinen & Ganguli, 2019; Gidel
et al., 2019; Tarmoun et al., 2021; Braun et al., 2022; Ziyin et al., 2022; Zhang et al., 2024). For
example, we are able to give closed-form time-course solutions to certain two-layer ReLU networks
outside the lazy learning regime in Corollary 8. Our findings suggest that the bias terms in a ReLU
network play an important role in learning nonlinear tasks. Our contributions are the following:

• Section 3 proves the limited expressivity of bias-free (leaky) ReLU networks, and shows a
depth separation result between two-layer and deep bias-free ReLU networks;

• Section 4.1 proves that, under symmetry Condition 3 on the dataset, two-layer bias-free
(leaky) ReLU networks trained with square loss or logistic loss evolve the same as linear
networks, and gives analytical time-course solutions for ReLU networks in this regime.

• Section 4.2 shows that bias-free ReLU networks behave similarly to multiple independent
linear networks on orthogonal and XOR datasets;

• Section 5 shows the similarities between deep bias-free ReLU networks and deep linear
networks, and finds specific rank-one and rank-two structure in the weights.

1.1 RELATED WORK

Basri et al. (2019) proved, using harmonic analysis, that two-layer bias-free ReLU networks can
neither learn nor express odd nonlinear functions when input is uniformly distributed on a sphere
(Basri et al., 2019, Theorem 2 and 4). We show a more general result with a simpler proof. Our
Theorem 1 handles arbitrary input, includes both ReLU and leaky ReLU networks, and the proof
only involves rewriting the (leaky) ReLU activation function as the sum of a linear function and an
absolute value function.

Lyu et al. (2021) proved two-layer bias-free leaky ReLU networks trained with logistic loss converge
to a linear, max-margin classifier on linearly separable tasks with a data augmentation procedure.
Our Theorem 7 shows that the learning dynamics of leaky ReLU networks in their setup is equivalent
to that of a linear network. In light of this equivalence, their result is guaranteed given that linear
networks trained with logistic loss converge to the max-margin classifier on linearly separable tasks
(Soudry et al., 2018). In addition, we relax the assumption on the task from being linearly separable
to being odd, and thus identify a practical challenge: the data augmentation procedure of Lyu et al.
(2021) can cause the ReLU network to fail to learn a linearly non-separable task — a task the
network might have succeeded to learn without data augmentation.

Zhang et al. (2024) found that two-layer bias-free ReLU networks have similar loss and weight
norm curves as linear networks when trained on datasets with zero mean Gaussian input and a
linear target. They reported that training the ReLU networks is about twice as slow as their linear
counterpart. Our Theorem 7 explains their observation: we prove that the dynamics of two-layer
bias-free ReLU networks is exactly twice as slow as their linear counterpart for a general class of
datasets, including theirs.

A few other works have alluded to the connections between two-layer ReLU and linear networks.
Sarussi et al. (2021) discovered that two-layer bias-free leaky ReLU networks converge to a decision
boundary that is very close to linear when the teacher model is linear. Their theoretical results as-
sume that the second layer is fixed while we train all layers of the network. Saxe et al. (2022) studied
gated deep linear networks and found they closely approximate a two-layer bias-free ReLU network
trained on an XOR task. But they did not generalize the connection between gated linear networks
and ReLU networks beyond the XOR case. Boursier & Flammarion (2024) gave an example dataset
with three scalar input data points, in which two-layer bias-free (leaky) ReLU networks converge to
the linear, ordinary least square estimator. Holzmüller & Steinwart (2022) studied two-layer leaky
ReLU networks with bias and found that they perform linear regression on certain data distributions
because the bias fails to move far away from their initialization at zero. However, they have only
dealt with one-dimensional input.

We additionally review in Appendix A two topics that are technically related to our analysis: the
implicit bias and low-rank weights in ReLU networks.
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2 PRELIMINARIES

Notation: We use bold symbols to denote vectors and matrices. Double-pipe brackets ∥ · ∥ denote
the L2 norm of a vector or the Frobenius norm of a matrix. Angle brackets ⟨·⟩ denote the average
over the dataset. The circled dot ⊙ denotes the element-wise product.

2.1 TWO-LAYER BIAS-FREE (LEAKY) RELU AND LINEAR NETWORKS

A two-layer bias-free (Leaky) ReLU network with H hidden neurons is defined as

f(x;W ) = W2σ(W1x) =

H∑
h=1

w2hσ(w1hx), where σ(z) = max(z, αz), α ∈ [0, 1]. (1)

Here x ∈ RD is the input, W1 ∈ RH×D is the first-layer weight, W2 ∈ R1×H is the second-layer
weight, and W denotes all weights collectively. This is a ReLU network when α = 0 and a leaky
ReLU network when α ∈ (0, 1). When α = 1, the network is a linear network, and can be written
as f(x) = W2W1x. We also denote the linear network as f lin

(
x;W lin

)
= W lin

2 W lin
1 x when we

need to distinguish it from ReLU networks.

We consider the rich regime (Woodworth et al., 2020) in which the network is initialized with
small random weights. The network is trained with gradient descent on a dataset {xµ, yµ}Pµ=1

consisting of P samples. We study square loss L =
〈
(y − f(x))2

〉
/2 and logistic loss LLG =〈

ln
(
1 + eyf(x)

)〉
. We focus on square loss in the main text and provide derivations with logistic

loss in the appendix. The learning rate is η and the inverse of the learning rate is the time constant
τ = 1/η. In the limit of small learning rate, the gradient descent dynamics are well approximated
by the gradient flow differential equations

τẆ1 =
〈
σ′(W1x)⊙W⊤

2 (y −W2σ(W1x))x
⊤〉 , (2a)

τẆ2 =
〈
(y −W2σ(W1x))σ(W1x)

⊤〉 , (2b)

where σ′ is the derivative of σ, ⊙ is the element-wise product, and the angle brackets ⟨·⟩ denote
taking the average over the dataset.

For linear networks, σ(z) = z, the gradient flow dynamics can be written as

τẆ lin
1 = W lin

2

⊤ (
β⊤ −W lin

2 W lin
1 Σ

)
, (3a)

τẆ lin
2 =

(
β⊤ −W lin

2 W lin
1 Σ

)
W lin

1

⊤
, (3b)

where Σ denotes the input data covariance and β denotes the input-output correlation,

Σ =
〈
xx⊤〉 , β = ⟨yx⟩. (4)

2.2 DEEP NETWORKS

A deep neural network of depth L is f(x) = hL where hL is recursively defined as

hl = Wlσ(hl−1), 2 ≤ l ≤ L,

h1 = W1x.
(5)

Here h1, · · · ,hL−1 are vectors and hL is the scalar output. The gradient flow dynamics trained with
square loss is

τẆl =

〈
∂hL

∂hl
(y − hL)σ(hl−1)

⊤
〉
. (6)

For deep linear networks, the gradient flow dynamics can be written as

τẆ lin
l =

(
L∏

i=l+1

W lin
i

)⊤(
β⊤ −

L∏
i=1

W lin
i Σ

)(
l−1∏
i=1

W lin
i

)⊤

, (7)

where
∏

i Wi represents the ordered product of matrices with the largest index on the left and
smallest on the right.
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(a) Fan dataset.
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(b) Circle dataset.

Figure 1: The expressivity of two-layer and deep ReLU networks with and without bias. The net-
works are trained with logistic loss until the loss stops decreasing. The empty circles are data points
with +1 labels; short lines are data points with −1 labels. The network output is plotted in color. (a)
The fan dataset is odd, homogeneous, and satisfies Condition 3. Two-layer bias-free ReLU networks
cannot express it. (b) The circle dataset is not homogeneous. Two-layer and deep bias-free ReLU
networks cannot express it. Experimental details are provided in Appendix H.

3 NETWORK EXPRESSIVITY

We first examine the expressivity of bias-free ReLU networks. It is well known that standard ReLU
networks are universal approximators (Hornik et al., 1989; Pinkus, 1999) while bias-free ReLU
networks are not since they can only express positively homogeneous functions, i.e., g(ax) =
ag(x)∀a > 0. Moreover, Section 3.1 shows that two-layer bias-free ReLU networks cannot express
any odd function except linear functions. Section 3.2 shows that deep bias-free ReLU networks are
more expressive than two-layer ones, but are still limited to positively homogeneous functions.

3.1 TWO-LAYER BIAS-FREE (LEAKY) RELU NETWORKS

Theorem 1. Two-layer bias-free (leaky) ReLU networks can only express a linear function plus a
positively homogeneous even function.

Proof. An arbitrary two-layer (leaky) ReLU network can be written as
H∑

h=1

w2hσ(w1hx) =

H∑
h=1

w2h

[
1 + α

2
w1hx+

1− α

2
|w1hx|

]
, (8)

= +

which is a linear function plus a positively homogeneous even function.

Corollary 2. The only odd function that bias-free two-layer (leaky) ReLU networks can express is
the linear function.

Due to this restricted expressivity, two-layer bias-free ReLU networks fail to classify the fan dataset,
as shown in Figure 1a.

3.2 DEEP BIAS-FREE (LEAKY) RELU NETWORKS

Similarly to two-layer bias-free ReLU networks, deep bias-free ReLU networks can express only
positively homogeneous functions. Thus, as shown in Figure 1b, both two-layer and deep bias-
free ReLU networks fail to classify the circle dataset. However, in contrast to two-layer bias-free
ReLU networks, deep bias-free ReLU networks can express some odd nonlinear functions. For
instance, for two-dimensional input x = [x1, x2]

⊤, the function below is odd, nonlinear, and can be
implemented by a three-layer bias-free ReLU network,

g(x) = σ(σ(x1)− σ(x2))− σ(σ(−x1)− σ(−x2)), where σ(z) = max(z, 0). (9)
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Figure 2: Two-layer bias-free (leaky) ReLU networks can evolve like a linear network. (a) Loss
curves with different leaky ReLU parameter α (note α = 1 is a linear network). The simulations
match the theoretical solutions in Equation (13). The loss converges to global minimum, which is
not zero due to the restricted expressivity of two-layer bias-free ReLU networks. (b) The simulated
loss curves are plotted against a rescaled time axis; they collapse to one curve, demonstrating the
networks are implementing the same linear function as in Equation (11). The error, defined as∥∥∥√α+1

2 W
(

2
α+1 t

)
−W lin(t)

∥∥∥ /∥∥W lin(t)
∥∥, is less than 0.3%, demonstrating that the weights

in the (leaky) ReLU network are close to the weights in the linear network as in Equation (12).
The errors are not exactly zero because the initialization is small but nonzero in the simulations.
Experimental details are provided in Appendix H.

Thus, we have a depth separation result for bias-free ReLU networks: there exist odd nonlinear
functions, such as g(x) defined in Equation (9) and visualized in Figure 9, that two-layer bias-free
ReLU networks cannot express but deep bias-free ReLU networks can.

4 LEARNING DYNAMICS IN TWO-LAYER BIAS-FREE RELU NETWORKS

4.1 SYMMETRIC DATASETS

Section 3.1 has proven that two-layer bias-free ReLU networks cannot express odd functions except
linear functions. We now show that under the Condition 3 on the dataset, two-layer bias-free ReLU
networks not only find a linear solution but also have the same learning dynamics as a two-layer
linear network.
Condition 3. The dataset satisfies the following two symmetry conditions:

1. The empirical input data distribution is even: p(x) = p(−x);

2. The target model is odd: y(x) = −y(−x).
Remark 4. For infinite data, the first part of Condition 3 includes common distributions such as
any Gaussian distribution with zero mean. For finite data, the first part of Condition 3 means that
if x is present in the dataset, −x is also present. Condition 3 includes the dataset studied in Lyu
et al. (2021). They considered linearly separable binary classification tasks with a data augmentation
procedure in which (−x,−y) is added to the dataset if (x, y) is in the dataset. We have the same
assumption on the input data distribution but relax the assumption on the target model from being
linearly separable to being odd.
Assumption 5. At initialization, there exist an unit vector r such that W1 = W⊤

2 r⊤ and the
second-layer weight W2 has equal L2 norms for its positive and negative elements.
Remark 6. Under Condition 3, the dynamics of two-layer bias-free (leaky) ReLU networks and
linear networks initialized with small weights can both be approximated by a linear differential
equation in the early phase of learning. Thus, the weights of the ReLU network and the weights of
the linear network form the same rank-one structure and the left singular vector of W1 is aligned
with W2, as proven in Theorem 15. At the end of the early phase, the weights are rank-one and
aligned with bounded errors. To simplify the analysis, Assumption 5 assumes the weights are exactly
rank-one and aligned, which is justified by the initialization approaching 0. We also assume, for
simplicity, that the second-layer weights have equal L2 norm for their positive and negative elements,
which is justified by the width approaching infinity. Simulations in Figure 2b show that errors are
small in the finite case as well. Related work (Lyu et al., 2021) studied the learning dynamics under
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weaker initialization assumptions (small random weights) and proved that the errors deviating from
the exact rank-one structure in Assumption 5 are bounded.

Under Assumption 5 and Condition 3, the learning dynamics of two-layer bias-free (leaky) ReLU
networks reduces to (see Appendix C.2)

τẆ1 =
α+ 1

2
W⊤

2 β⊤ −
(
α+ 1

2

)2

W2
⊤W2W1Σ, (10a)

τẆ2 =
α+ 1

2
β⊤W⊤

1 −
(
α+ 1

2

)2

W2W1ΣW1
⊤. (10b)

Except for the constant coefficients, these equations are the same as the ones for the linear network
given in Equation (3). Thus, apart from the fact that learning is (α + 1)/2 times slower and the
weights are

√
2/(α+ 1) times larger, the ReLU network has the same learning dynamics as its

linear counterpart. We formally state this equivalence below.
Theorem 7. A two-layer (leaky) ReLU network and a linear network are trained with square or
logistic loss starting from weights which differ by a scale factor, W (0) =

√
2/(α+ 1)W lin(0).

Under Condition 3 on the dataset and Assumption 5 on the initial weights, we have that ∀ t ≥ 0,
Assumption 5 remains valid and:

1. The (leaky) ReLU network implements the same linear function as the linear network with
scaled time

f(x;W (t)) = f lin

(
x;W lin

(
α+ 1

2
t

))
; (11)

2. The weights in the (leaky) ReLU network are the same as scaled weights in the linear
network

W (t) =

√
2

α+ 1
W lin

(
α+ 1

2
t

)
. (12)

As a sanity check, setting α = 1 yields a linear network, where W is identical to W lin. As an
example, setting α = 0 yields a ReLU network, where learning slows down by half, explaining a
previous empirical observation (Zhang et al., 2024). We validate Theorem 7 and the plausibility of
Assumption 5 with numerical simulations in Figure 2. Additionally, we provide theoretical proof
that Theorem 7 holds with L2 regularization and empirical evidence that some of Theorem 7 hold
with large initialization and a moderately large learning rate in Appendices C.4 to C.6.

If the input covariance is white, we can further write down the exact time-course solution in closed
form for two-layer bias-free (leaky) ReLU networks by adopting the solutions from linear networks
(Braun et al., 2022, Theorem 3.1). This gives us the following corollary.
Corollary 8. For learning with square loss, if the input covariance is white, Σ = I , the solution to
Equation (11) is f(x;W ) = w(t)⊤x with

w(t) =

(
1 +

q1
q2

e−2st̃

)[
β̄

(
1− q1

q2
e−2st̃

)
+

2

q2

(
I − β̄β̄⊤) re−st̃

]
[
4

q22

(
w−2

init +
(
1−

(
r⊤β̄

)2)
t̃
)
e−2st̃ +

1

s

(
1 +

q21
q22

e−2st̃

)(
1− e−2st̃

)]−1

, (13)

where t̃ is a shorthand for rescaled time t̃ = α+1
2τ t and the constant quantities are s = ∥β∥, β̄ =

β/s, q1 = 1− r⊤β̄, q2 = 1 + r⊤β̄, winit = ∥W1(0)∥.

The solution given in Equation (13) matches simulations, as shown in Figure 2a.

Since the time evolution of two-layer bias-free (leaky) ReLU networks is the same as that of linear
networks (modulo scale factors), their converged weights will also be the same. For learning with
square loss, linear networks converge to the ordinary least squares solution (Saxe et al., 2014).
For linearly separable binary classification with logistic loss, linear networks converge to the max-
margin (hard margin SVM) solution (Soudry et al., 2018). Thus two-layer bias-free (leaky) ReLU
networks also converge to these solutions when they behave like linear networks; see Appendix C.3.
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Figure 3: Two-layer bias-free ReLU networks can evolve like several linear networks. (a) An or-
thogonal input dataset used in (Boursier et al., 2022, Figure 3). The + and − signs represent data
points with +1 and −1 labels respectively. Their different colors are used only to distinguish the loss
curves. The black arrows are the first-layer weights at convergence. (b) The loss curve of the ReLU
network overlaps with two linear networks trained on each of the two data points respectively. (c)
An XOR-like dataset. (d) The loss curve of the ReLU network overlaps with four linear networks
trained on each of the four data points separately. Details: We use summed (instead of averaged)
square loss for this figure. The initial losses are vertically aligned to help illustrate the overlap. More
details are in Appendix H.

Corollary 9. Under the same conditions as Theorem 7, the two-layer bias-free (leaky) ReLU net-
work converges to a linear solution f(x;W (∞)) = w∗⊤x. For square loss, w∗ is the ordinary
least squares solution, Σ−1β, which is the global minimum. For linearly separable binary classifi-
cation with logistic loss, w∗ is the max-margin solution.

4.2 ORTHOGONAL AND XOR DATASETS

In Section 4.1 we considered symmetric datasets where a two-layer bias-free ReLU network evolves
like one linear network. We now present two datasets where a two-layer bias-free ReLU network
evolves like multiple independent linear networks.

The first dataset has orthogonal inputs, which is a common setting studied by prior literature (Bour-
sier et al., 2022; Telgarsky, 2023; Frei et al., 2023b;c; Kou et al., 2023). In particular, we use the
same dataset as Boursier et al. (2022, Figure 3), which consists of two orthogonal data points, as
shown in Figure 3a. We train a two-layer bias-free ReLU network on this dataset to reproduce the
loss curve in (Boursier et al., 2022, Figure 3). We then train two two-layer linear networks on each
data point separately. We find that the timing and the amount of the loss drop overlap with the loss
curves of the two linear networks as shown in Figure 3b. To understand this overlap, we plot the
first-layer weights of the ReLU network in black arrows in Figure 3a and find that the weights align
with either one of the two data points. Since the two directions are orthogonal, the learning dynam-
ics of the two groups of neurons decouple, as derived in Appendix D. Each group of neurons evolves
like a linear network trained on that single data point. Hence, weights in the ReLU network evolve
like a linear network trained on either one of the two data points separately. The same applies to
learning with logistic loss, as shown in Figure 7, which was not covered in Boursier et al. (2022).

We observe similar behavior in the XOR-like task shown in Figure 3c, which is neither linearly
separable nor odd. XOR-like datasets are also a common setting in prior literature (Saxe et al.,
2022; Frei et al., 2023a; Meng et al., 2024; Xu et al., 2024; Glasgow, 2024). As shown in Figure 3d,
we find that the loss curves of a two-layer bias-free ReLU network trained on the XOR task overlap
with four linear networks trained on each data point separately. In this case, the dynamics of multiple
linear networks well approximate that of a ReLU network, even though the ReLU network learns a
nonlinear function.

In Figures 3b and 3d, the loss curves go through multiple decreases, each corresponding to learn-
ing a data point. Similar behaviors were examined by Boursier et al. (2022); Xu et al. (2024) and
characterized as saddle-to-saddle dynamics. The connections we find between ReLU and linear
networks may help understand these behaviors in ReLU networks because saddle-to-saddle dynam-
ics has been well studied for linear networks (Saxe et al., 2014; 2019; Jacot et al., 2021; Pesme &
Flammarion, 2023).
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W1

< 0

0

> 0W2

W3

(a) Weights in a 3-layer linear network as Eq. (14).

W1

< 0

0

> 0W2

W3

(b) Weights in a 3-layer ReLU network as Eq. (15).

Figure 4: Low-rank weights in deep linear and ReLU bias-free networks. A three-layer linear
network and a three-layer ReLU network are trained on the same dataset starting from the same
small random weights. The dataset has a linear target function and an even empirical input data
distribution. We plot the weights when the loss has approached zero. W1, W3, and positive elements
in W2 have approximately the same structure in the linear and ReLU networks. Elements of W2

that are negative in the linear network are approximately zero in the ReLU network. The neurons
are permuted for better visualization. Experimental details are provided in Appendix H.

5 LEARNING DYNAMICS IN DEEP BIAS-FREE RELU NETWORKS

In Section 4 we showed that two-layer bias-free ReLU networks behave like linear networks under
symmetry Condition 3 and small initialization. This does not extend to deep bias-free networks.
When trained on a dataset satisfying Condition 3, deep bias-free ReLU networks can learn nonlinear
solutions if the target function is nonlinear, as shown in Figure 1a (upper right). Nonetheless, we
find deep bias-free ReLU networks can form low-rank weights that are similar to those in deep linear
networks. We give an example where the empirical input distribution is even and the target function
is linear.

In a deep linear network, weights form an approximately rank-one structure and adjacent layers are
approximately aligned when trained from small initialization (Ji & Telgarsky, 2019; Advani et al.,
2020; Atanasov et al., 2022; Marion & Chizat, 2024). The rank-one weight matrices can be written
approximately as outer-products of two vectors

W lin
1 = ur1r

⊤ = u

[
r+1
r−1

]
r⊤, (14a)

W lin
l = urlr

⊤
l−1 = u

[
r+l r

+
l−1

⊤
r+l r

−
l−1

⊤

r−l r
+
l−1

⊤
r−l r

−
l−1

⊤

]
, l = 2, · · · , L− 1, (14b)

W lin
L = ur⊤L−1 = u

[
r+L−1

⊤
r−L−1

⊤
]
, (14c)

where u represents the norm of each layer, and r, r1, r2, · · · , rL are unit norm column vectors. The
vectors r+l , r

−
l denote the positive and negative elements in rl. The equal norm u of all layers is a

consequence of small initialization (Du et al., 2018). Note that the weights can be written in blocks,
as Equation (14), only after permuting the positive and negative elements. We use this permuted
notation for the sake of exposition; no additional assumptions are required.

In a deep ReLU network, we empirically find that when the weights are trained from small initializa-
tion and the target function is linear, the weights form a particular rank-one and rank-two structure.
The weights of a deep bias-free network can be written approximately as

W1 = ur1r
⊤ = u

[
r+1
r−1

]
r⊤, (15a)

Wl = u

[√
2r+l r

+
l−1

⊤
0

0
√
2r−l r

−
l−1

⊤

]
, l = 2, · · · , L− 1, (15b)

WL = ur⊤L−1 = u
[
r+L−1

⊤
r−L−1

⊤
]
. (15c)

For the first and last layers, the weights in the deep ReLU network have the same rank-one structure
as their linear counterpart. For the intermediate layers, weights in the deep ReLU network are rank-
two. Specifically, positive weights in the ReLU network correspond to positive weights in the linear
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network and zero weights in the ReLU network correspond to negative weights in the linear network.
We visualize the low-rank weights of a three-layer linear network and a three-layer bias-free ReLU
network in Figure 4.

If we assume ∥r+l ∥ = ∥r−l ∥, (l = 1, 2, · · · , L−1), which is true when the network width approaches
infinity, the deep bias-free ReLU network with weights defined in Equation (15) implements a linear
function

f(x;W ) = WLWL−1 · · ·W2σ(W1x) =
1

2
WL · · ·W2W1x. (16)

In the first equality, we drop the activation functions except the one between the first and second lay-
ers. This is because the output of a ReLU activation function, σ(W1x), is non-negative, and so are
the second layer weights, W2, as shown in Figure 4b. Therefore, their product, W2σ(W1x), is also
non-negative. We thus have σ(W2σ(W1x)) = W2σ(W1x). The same applies to all subsequent
layers. The second equality is obtained by substituting the weights defined in Equation (15) into the
expression.

When the empirical input distribution is even and the target function is linear, the learning dynamics
of the deep bias-free ReLU network with weights as Equation (15) reduces to (see Appendix E)

τẆl =

(
L∏

l′=l+1

Wl′

)⊤(
1

2
β⊤ − 1

4

L∏
l′=1

Wl′Σ

)(
L∏

l′=l−1

Wl′

)⊤

. (17)

Except for constant coefficients, these equations are the same as that of the deep linear network given
in Equation (7). We show, in Appendix E, that weights which have formed a low-rank structure as
defined in Equation (15) maintain the structure over training.

We conjecture that the weights of an intermediate layer align with the inputs to that layer in deep
linear networks and certain deep ReLU networks. For example, the second-layer weight in a deep
linear network is W lin

2 = ur2r
⊤
1 as given in Equation (14). Every row of W lin

2 aligns with r⊤1 ,
which is parallel to any input to the second layer, W lin

1 x = ur1r
⊤x. The second-layer weight

in the deep ReLU network is given in Equation (15). Some rows of W2 align with
[
r+1

⊤
0
]
,

which is parallel to some inputs (r⊤x > 0) to the second layer, σ(W1x) = u

[
r+1
0

]
r⊤x. Other

rows of W2 align with
[
0 r−1

⊤
]
, which is parallel with inputs (r⊤x < 0) to the second layer,

σ(W1x) = u

[
0
r−1

]
r⊤x. This alignment phenomenon has been proven for deep linear networks (Ji

& Telgarsky, 2019; Marion & Chizat, 2024). Here we empirically find similar phenomena in certain
deep ReLU networks. Analytical proof of alignment in deep ReLU networks is an intriguing future
direction.

6 DISCUSSION

Implication of Bias Removal. We studied the implications of removing bias in ReLU networks in
terms of the expressivity and learning dynamics. Theorem 1 shows that two-layer bias-free (leaky)
ReLU networks cannot express any odd functions except for linear functions. Theorem 7 shows that
for datasets with an even input distribution and an odd target function, two-layer bias-free (leaky)
ReLU networks have the same time evolution as a linear network (modulo scale factors) under ini-
tialization Assumption 5. We also presented examples in which the bias-free ReLU network evolves
like multiple independent linear networks, in Section 4.2. In these cases, comparing a bias-free
ReLU network with its linear counterpart provides an intuitive understanding of the behavior of
ReLU networks. On the flip side, the simplicity of bias-free ReLU networks suggests that ReLU
networks with bias may exhibit more complicated behaviors, which are not fully addressed by stud-
ies on bias-free networks, and remain open questions.

One common argument in studies of bias-free ReLU networks is that we can stack the input x with
an additional one, i.e., [x, 1]. Then results derived for bias-free networks could extend to networks
with bias and the removal of bias might thus have a minor implication. This argument is valid for
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Figure 5: Two-layer bias-free linear/ReLU network trained on a dataset that slightly violates the
symmetry Condition 3. The + and − signs represent data points with +1 and − labels respectively.
The right middle data point is slight asymmetric with coordinates (1,∆y). (a) Loss curves of the
ReLU network with different ∆y and the linear network with ∆y = 0.1. (b) The duration of the
plateau, during which the ReLU network implements a nearly linear solution, scales approximately
with 1/∆y. (c,d) The ReLU network output during and at the end of training. This ReLU network
is trained on the dataset with ∆y = 0.1. Experimental details are provided in Appendix H.

some studies (Allen-Zhu et al., 2019; Zou et al., 2020), but not all. For example, Soudry et al. (2018)
found that two-layer bias-free ReLU networks trained with logistic loss converge to the max-margin
classifier on linearly separable datasets. As clarified by Soudry et al. (2018), this technical result
holds when the inputs are stacked with an additional one. However, the max-margin solution for
the dataset with stacked inputs is not the max-margin solution for the original dataset. Thus, the
convergence to max-margin solution result does not directly extend to ReLU networks with bias.

Perturbed Symmetric Dataset. We have shown an exact equivalence between two-layer bias-
free (leaky) ReLU networks and linear networks under symmetry Condition 3 on the dataset in
Theorem 7. In practice, no datasets satisfies Condition 3 precisely. However, two-layer bias-free
ReLU networks may still struggle to fit a dataset that approximately satisfies Condition 3. We present
a simple example with six data points in Figure 5. The ReLU network loss curve closely follows the
linear network loss curve in the early phase, when it first learns a nearly linear solution, as shown in
Figures 5a and 5c. After a plateau, the ReLU network diverges from the linear network dynamics and
converges to a nonlinear solution. The more symmetric the dataset, the longer the plateau a two-layer
bias-free ReLU network undergoes before learning a nonlinear solution. As shown in Figure 5b, the
inverse of the plateau duration scales approximately linearly with the deviation of the asymmetric
data point, ∆y. The scaling becomes less accurate for larger ∆y because the corresponding dataset
more severely violates symmetric Condition 3, where the ReLU network no longer behaves like a
linear network. When the dataset is exactly symmetric, the ReLU network never learns a nonlinear
solution. Furthermore, as shown in Figure 5d, the decision boundaries at convergence are close to
the data points, and thus probably not robust.
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A ADDITIONAL RELATED WORK

Implicit / Simplicity Bias. Many works have studied the implicit bias or simplicity bias of two-
layer bias-free ReLU networks under various assumptions on the dataset. Brutzkus et al. (2018);
Wang et al. (2019); Lyu et al. (2021); Sarussi et al. (2021); Wang & Ma (2023) considered linearly
separable binary classification tasks. Phuong & Lampert (2021); Wang & Pilanci (2022); Min et al.
(2024) studied orthogonally separable classification (i.e., where for every pair of labeled examples
(xi, yi), (xj , yj) we have x⊤

i xj > 0 if yi = yj and x⊤
i xj ≤ 0 if otherwise). Boursier et al.

(2022); Frei et al. (2023b;c); Kou et al. (2023) studied binary classification with exactly or nearly
orthogonal input (i.e., where x⊤

i xj = 0 if i ̸= j). Orthogonal input is a sufficient condition for linear
separability for binary classification tasks. Frei et al. (2023a); Meng et al. (2024); Xu et al. (2024)
studied XOR-like datasets. Vardi et al. (2022); Frei et al. (2023d) studied datasets with adversarial
noise. We add to this line of research by studying a case with extreme simplicity bias, i.e., behaving
like linear networks.

Low-Rank Weights. Maennel et al. (2018) is the seminal work on the low-rank weights in two-
layer ReLU networks trained from small initialization. They described the phenomenon as “quan-
tizing”, where the first layer weight vectors align with a small number of directions in the early
phase of training. Luo et al. (2021) identified when two-layer bias-free ReLU networks form low-
rank weights in terms of the initialization and the network width. Timor et al. (2023) provided cases
where gradient flow on two-layer and deep ReLU networks provably minimize or not minimize the
ranks of weight matrices. Frei et al. (2023c); Kou et al. (2023) computed the numerical rank of the
converged weights of two-layer bias-free ReLU networks for nearly orthogonal datasets, and found
that weights in leaky ReLU networks have rank at most two and weights in ReLU networks have
a numerical rank upper bounded by a constant. Chistikov et al. (2023) showed two-layer bias-free
ReLU networks are implicitly biased to learn the network of minimal rank under the assumption
that training points are correlated with the teacher neuron. Min et al. (2024); Boursier & Flam-
marion (2024) studied the early phase learning dynamics to understand how the low-rank weights
form. Petrini et al. (2022; 2023) conducted experiments on practical datasets to show that two-layer
bias-free ReLU networks learn sparse features, which can be detrimental and lead to overfitting. Le
& Jegelka (2022) generalize the low-rank phenomenon in linear and ReLU networks to arbitrary
non-homogeneous networks whose last few layers contain linear fully-connected and linear ResNet
blocks.

B USEFUL LEMMAS

Grönwall’s Inequality (Gronwall, 1919) is a common tool to obtain error bounds when considering
approximate differential equations.

Lemma 10 (Grönwall’s Inequality). Let I denote an interval of the real line of the form [a,∞) or
[a, b] or [a, b) with a < b. Let α, β and u be real-valued functions defined on I . Assume that β and u
are continuous and that the negative part of α is integrable on every closed and bounded subinterval
of I . If β is non-negative and u satisfies the integral inequality

u(t) ≤ α(t) +

∫ t

a

β(s)u(s)ds, ∀t ∈ I,

then

u(t) ≤ α(t) +

∫ t

a

α(s)β(s)e
∫ t
s
β(r)drds, t ∈ I. (18)

The key implication of Condition 3 we exploit is that the input covariance matrix and the input-
output correlation averaged over any half space is equal to those averaged over the entire space.

Lemma 11. Let set S+ be an arbitrary half space divided by a hyperplane with normal vector r,
namely S+ = {x ∈ RD|r⊤x > 0}. Under the first condition in Condition 3, we have ∀r

〈
xx⊤〉

S+ ≡
∫
S+ xx⊤p(x)dx∫

S+ p(x)dx
= Σ. (19)
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Under Condition 3, we have ∀r

⟨xy(x)⟩S+ ≡
∫
S+ xy(x)p(x)dx∫

S+ p(x)dx
= β (20)

Recall that Σ and β are averages over the entire space as defined in Equation (4).

Proof. Define S− = {x ∈ RD|r⊤x < 0}. Because Condition 3 states that p(x) is even, we have∫
S+

p(x)dx =

∫
S−

p(x)dx =
1

2
.

Because xx⊤p(x) is an even function about x, the integral of xx⊤p(x) over S+ or S− is the same∫
S+

xx⊤p(x)dx =

∫
S−

xx⊤p(x)dx.

Thus the average of xx⊤ over S+ is equal to the average in the entire space,

Σ =

∫
S+

xx⊤p(x)dx+

∫
S−

xx⊤p(x)dx = 2

∫
S+

xx⊤p(x)dx =
〈
xx⊤〉

S+ .

The same holds for xy(x).

Lemma 12. Under Condition 3, the first terms in the differential Equation (2) reduce to〈
σ′(W1x)⊙W⊤

2 yx⊤〉 = α+ 1

2
W⊤

2 β⊤, (21a)〈
yσ(W1x)

⊤〉 = α+ 1

2
β⊤W⊤

1 . (21b)

Proof. Let us consider the h-th row of the matrix
〈
σ′(W1x)⊙W⊤

2 yx⊤〉, which is〈
σ′(w1hx)w2hyx

⊤〉 = 1

2

〈
αw2hyx

⊤〉
w1hx<0

+
1

2

〈
w2hyx

⊤〉
w1hx>0

=
α+ 1

2
w2hβ

⊤,

where the first equality is the law of total expectation and the second equality uses Equation (20).
Because the same holds for all rows, Equation (21a) is true.

Let us consider the h-th element of the row vector
〈
yσ(W1x)

⊤〉, which is

⟨yσ(w1hx)⟩ =
1

2
⟨αyw1hx⟩w1hx<0 +

1

2
⟨yw1hx⟩w1hx>0 =

α+ 1

2
w1hβ,

where the first equality is the law of total expectation and the second equality uses Equation (20).
Because the same holds for all elements, Equation (21b) is true.

Lemma 13. The second terms in the differential Equation (2) can be bounded by the norm of the
weights and the trace of the input covariance matrix.

1.
∥∥〈σ(W1x)σ(W1x)

⊤〉∥∥ ≤ ∥W1∥2 TrΣ.

2.
∥∥〈σ′(W1x)⊙W⊤

2 W2σ(W1x)x
⊤〉∥∥ ≤ ∥W2∥2∥W1∥TrΣ.

Proof. For the first inequality,∥∥〈σ(W1x)σ(W1x)
⊤〉∥∥ ≤

〈
∥σ(W1x)∥2

〉
≤
〈
∥W1x∥2

〉
≤
〈
∥W1∥2∥x∥2

〉
= ∥W1∥2 TrΣ.

For the second inequality,∥∥〈σ′(W1x)⊙W⊤
2 W2σ(W1x)x

⊤〉∥∥ ≤
∥∥〈W⊤

2 W2σ(W1x)x
⊤〉∥∥

≤ ∥W2∥2 ⟨∥W1x∥∥x∥⟩
≤ ∥W2∥2

〈
∥W1∥∥x∥2

〉
= ∥W2∥2∥W1∥TrΣ.
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C TWO-LAYER NETWORKS ON SYMMETRIC DATASETS

C.1 LEARNING DYNAMICS: EARLY PHASE

In the early phase of learning, the network output is small compared to the target output because the
initialization is small. Lemma 14 specifies how small the norm of the weights is.

Lemma 14. Denote the larger L2 norm of the weights in a two-layer network as u(t) =
max{∥W1(t)∥, ∥W2(t)∥}. The initial weights are small, that is winit ≡ u(0) ≪ 1. For two-
layer linear, ReLU, or leaky ReLU networks trained with square loss from small initialization, u(t)
is bounded by

u(t) ≤ u(0)e(s+TrΣ)t/τ , (22)

for time t < τ
s+TrΣ ln 1

winit
.

Proof. For two-layer linear, ReLU, or leaky ReLU networks, the learning dynamics are given in
general in Equation (2). Using the equality in Lemma 12 and the inequality in Lemma 13, we can
bound the dynamics of u2 as

τ
d

dt
u2 = τ

d

dt
∥W2∥2 = (α+ 1)β⊤W⊤

1 W⊤
2 − 2W2

〈
σ(W1x)σ(W1x)

⊤〉W⊤
2

≤
∣∣(α+ 1)β⊤W⊤

1 W⊤
2

∣∣+ ∣∣2W2

〈
σ(W1x)σ(W1x)

⊤〉W⊤
2

∣∣
≤ 2∥β∥∥W1∥∥W2∥+ 2∥W2∥2∥W1∥2 TrΣ
≤ 2su2 + 2u4 TrΣ.

where s = ∥β∥. For u < 1, we have

τ
d

dt
u2 ≤ 2su2 + 2u4 TrΣ < 2 (s+TrΣ)u2.

Via Lemma 10 Grönwall’s Inequality, we obtain

u2 ≤ w2
inite

2(s+TrΣ)t/τ ⇒ u(t) ≤ winite
(s+TrΣ)t/τ .

This holds for

t <
τ

s+TrΣ
ln

1

winit
.

Since the weights are small in the early phase, we can approximate the early phase dynamics with
only the first terms in Equation (2), that is

τẆ1 ≈
〈
σ′(W1x)⊙W⊤

2 yx⊤〉 = α+ 1

2
W⊤

2 β⊤, (23)

τẆ2 ≈
〈
yσ(W1x)

⊤〉 = α+ 1

2
β⊤W⊤

1 , (24)

where the equalities hold under Condition 3 as proven by Lemma 12. We solve the approximate
early phase dynamics and prove that the errors introduced by the approximation are bounded in
Theorem 15.

Theorem 15. For time t < τ
s+TrΣ ln 1

winit
, the solution to Equation (2) starting from small initial-

ization is exponential growth along one direction with small errors

W1(t) = e
α+1
2τ str1β̄

⊤ +O(winit), W2(t) = e
α+1
2τ str⊤1 +O(winit). (25)

where s = ∥β∥, β̄ = β/s, and r1 is determined by random initialization r1 =(
W1(0)β̄ +W2

⊤(0)
)
/2.
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Proof. We first consider the approximate learning dynamics:

τ
˙̃

W1 =
α+ 1

2
W̃⊤

2 β⊤, τ
˙̃

W2 =
α+ 1

2
β⊤W̃⊤

1 . (26)

This is a linear dynamical system with an analytical solution available. We re-write it as:

τ
d

dt
W̃ =

α+ 1

2
MW̃ , where M =

[
0 β
β⊤ 0

]
, W̃ =

[
W̃⊤

1

W̃2

]
. (27)

Since matrix M only has two nonzero eigenvalues ±s, the solution to Equation (27) is

W̃ (t) =
1

2
e

α+1
2τ st

[
β̄
1

] (
β̄⊤W⊤

1 (0) +W2(0)
)

+
1

2
e−

α+1
2τ st

[
β̄
−1

] (
β̄⊤W⊤

1 (0)−W2(0)
)
+

[(
I − β̄β̄⊤)W⊤

1 (0)
0

]
.

(28)

Note that only the first term in Equation (28) is growing.

We then consider the exact learning dynamics given by Equation (2) and prove its solution is close
to W̃ (t). The dynamics of the difference between the exact and approximate dynamics are

τ
d

dt

(
W̃1 −W1

)
=

α+ 1

2

(
W̃2 −W2

)⊤
β⊤ +

〈
σ′(W1x)⊙W⊤

2 W2σ(W1x)x
⊤〉 (29a)

τ
d

dt

(
W̃2 −W2

)
=

α+ 1

2
β⊤
(
W̃1 −W1

)⊤
+W2

〈
σ(W1x)σ(W1x)

⊤〉 . (29b)

We re-write Equation (29) as

τ
d

dt
δW =

α+ 1

2
MδW + ϵ, (30)

The norm of the two components of ϵ can be bounded via Lemma 13∥∥〈σ′(W1x)⊙W⊤
2 W2σ(W1x)x

⊤〉∥∥ ≤ u3 TrΣ,

∥W2

〈
σ(W1x)σ(W1x)

⊤〉 ∥ ≤ u3 TrΣ.

We can then substitute in Equation (22) and obtain

∥ϵ∥ ≤
√
2u3 TrΣ <

√
2u3

0e
3(s+TrΣ)t/τ TrΣ.

We now bound the norm of W − W̃∥∥∥W − W̃
∥∥∥ =

∥∥∥∥∫ t

0

α+ 1

2
M
(
W − W̃

)
+ ϵdt

∥∥∥∥
≤
∫ t

0

∥M∥
∥∥∥W − W̃

∥∥∥+ ∥ϵ∥dt

≤
∫ t

0

(√
2s
∥∥∥W − W̃

∥∥∥+√
2u3

0e
3(s+TrΣ)t/τ TrΣ

)
dt

≤
√
2u3

0 TrΣ

3(s+TrΣ)

(
e3(s+TrΣ)t/τ − 1

)
+

√
2s

∫ t

0

∥∥∥W − W̃
∥∥∥ dt.

Via Lemma 10 Grönwall’s Inequality, we obtain∥∥∥W − W̃
∥∥∥ ≤

√
2TrΣu3

0

3(s+TrΣ)

[
e3(s+TrΣ)t/τ − 1 +

∫ t

0

(
e3(s+TrΣ)t′/τ − 1

)√
2se

√
2st′dt′

]

=

√
2TrΣu3

0

3(s+TrΣ)

e3(s+TrΣ)t/τ +

√
2s
(
e[3(s+TrΣ)+

√
2s]t/τ − 1

)
3(s+TrΣ) +

√
2s

− e
√
2st

 .
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When t < τ
s+TrΣ ln 1

u0
, we have

∥∥∥W − W̃
∥∥∥ < C1u

2
0 for some constant C1.

We are now ready to bound the difference between the exact solution and an exponential function
along one direction

W − e
α+1
2τ st

[
β̄
1

]
r⊤1

=
(
W − W̃

)
+

(
W̃ − e−

α+1
2τ st

[
β̄
1

]
r⊤1

)
=
(
W − W̃

)
+

1

2
e−

α+1
2τ st

[
β̄
−1

] (
β̄⊤W⊤

1 (0)−W2(0)
)
+

[(
I − β̄β̄⊤)W⊤

1 (0)
0

]
.

The first term arises from our approximation of dropping the cubic terms in the dynamics. Its norm
is bounded by C1w

2
init. The second term arises from initialization, which is O(winit). Via triangle

inequality, the norm of the total error is of order O(winit).∥∥∥∥W − e
α+1
2τ st

[
β̄
1

]
r⊤1

∥∥∥∥ < C1w
2
init + C2winit < Cwinit.

Theorem 15 implies two messages. Firstly, the (leaky) ReLU network has the same time-course
solution as its linear counterpart except a scale factor determined by α, which is consistent with
Theorem 7. Secondly, the (leaky) ReLU and linear networks form rank-one weights with small
errors in the early phase. We exploit the rank-one weights to reduce the learning dynamics to Equa-
tion (10).

C.2 LEARNING DYNAMICS: LATE PHASE

Proof of Theorem 7 (square loss). Theorem 7 relies on Condition 3 and Assumption 5 and arrives
at three statements: implementing the same function as in Equation (11), having the same weights
as in Equation (12), and retaining rank-one weights as Assumption 5. We prove them one by one.

Part 1: We first prove that the (leaky) ReLU network and the linear network implement the same
linear function except scaling when their weights satisfy Assumption 5. Denote W2 = [W+

2 ,W−
2 ]

where W+
2 are the positive elements in W2 and W−

2 are the negative elements in W2. For a (leaky)
ReLU network with rank-one weights satisfying Assumption 5, we have

f(x;W ) = W2σ(W1x) = W2σ
(
W⊤

2 r⊤x
)
.

Notate the positive and negative half-space as

S+ =
{
x ∈ RD

∣∣r⊤x ≥ 0
}
, S− =

{
x ∈ RD

∣∣r⊤x < 0
}
. (31)

For x ∈ S+, we have

f(x;W ) = r⊤xW2σ(W
⊤
2 ) = r⊤x

[
W+

2 W−
2

] [ W+
2

⊤

αW−
2

⊤

]
= r⊤x

(
∥W+

2 ∥2 + α∥W−
2 ∥2

)
.

For x ∈ S−, we have

f(x;W ) = −r⊤xW2σ(−W⊤
2 ) = r⊤x

[
W+

2 W−
2

] [αW+
2

⊤

W−
2

⊤

]
= r⊤x

(
α∥W+

2 ∥2 + ∥W−
2 ∥2

)
.

Under Assumption 5, we have ∥W+
2 ∥ = ∥W−

2 ∥. Hence, the (leaky) ReLU network implements

∀r, f(x;W ) = W2σ(W1x) =
α+ 1

2
r⊤x∥W2∥2. (32)

Under Assumption 5, the linear network implements

f lin(x;W ) = W2W1x = W2W
⊤
2 r⊤x = r⊤x∥W2∥2. (33)
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Comparing Equations (32) and (33), we find that when the weights satisfy Assumption 5, the (leaky)
ReLU network implements the same function as the linear network except a scale factor

W2σ(W1x) =
α+ 1

2
W2W1x. (34)

Part 2: We then look into the learning dynamics to prove that the weights in the (leaky) ReLU and
the linear network are the same except scaling. Substituting Equation (34) into the dynamics, we get

τẆ1 =
α+ 1

2
W⊤

2 β⊤ −
〈
σ′(W1x)⊙W⊤

2 W2σ(W1x)x
⊤〉

=
α+ 1

2
W⊤

2 β⊤ − α+ 1

2

〈
σ′(W1x)⊙W⊤

2 W2W1xx
⊤〉 , (35a)

τẆ2 =
α+ 1

2
β⊤W⊤

1 −W2

〈
σ(W1x)σ(W1x)

⊤〉
=

α+ 1

2
β⊤W⊤

1 − α+ 1

2
W2W1

〈
xσ(W1x)

⊤〉 . (35b)

We compute the second terms in the dynamics under Condition 3 and Assumption 5〈
σ′(W1x)⊙W⊤

2 W2W1xx
⊤〉 = 1

2

〈
σ′(W1x)⊙W⊤

2 W2W1xx
⊤〉

S+ +
1

2

〈
σ′(W1x)⊙W⊤

2 W2W1xx
⊤〉

S−

=
1

2

[
1
α1

]
⊙W⊤

2 W2W1

〈
xx⊤〉

S+ +
1

2

[
α1
1

]
⊙W⊤

2 W2W1

〈
xx⊤〉

S−

=
1

2

[
W+

2

⊤

αW−
2

⊤

]
W2W1Σ+

1

2

[
αW+

2

⊤

W−
2

⊤

]
W2W1Σ

=
α+ 1

2
W⊤

2 W2W1Σ, (36)

and 〈
xσ(W1x)

⊤〉 = 1

2

〈
xσ(W1x)

⊤〉
S+ +

1

2

〈
xσ(W1x)

⊤〉
S−

=
1

2

〈
xx⊤〉

S+ r
[
W+

2 αW−
2

]
+

1

2

〈
xx⊤〉

S− r
[
αW+

2 W−
2

]
=

α+ 1

2
ΣrW2

=
α+ 1

2
ΣW⊤

1 . (37)

Substituting Equations (36) and (37) into Equation (35), we reduce the dynamics to

τẆ1 =
α+ 1

2
W⊤

2 β⊤ −
(
α+ 1

2

)2

W2
⊤W2W1Σ,

τẆ2 =
α+ 1

2
β⊤W⊤

1 −
(
α+ 1

2

)2

W2W1ΣW1
⊤.

This is the same expression as Equation (10) in the main text. If we scale the weights

W 1 =

√
α+ 1

2
W1, W 2 =

√
α+ 1

2
W2, (38)

the scaled (leaky) ReLU network dynamics W (t) is the same as that of a linear network given in
Equation (3) except for a different time constant

2τ

α+ 1
Ẇ 1 = W

⊤
2

(
β⊤ −W 2W 1Σ

)
,

2τ

α+ 1
Ẇ 2 =

(
β⊤ −W 2W 1Σ

)
W

⊤
1 .
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Because Theorem 7 defines the initial condition W (0) =
√

α+1
2 W (0) = W lin(0), the weights in

the linear network and the scaled weights in the (leaky) ReLU network start from the same initial-
ization, obey the same dynamics, and consequently stay the same ∀ t ≥ 0

W (t) = W lin

(
α+ 1

2
t

)
⇔ W (t) =

√
2

α+ 1
W lin

(
α+ 1

2
t

)
.

This proves Equation (12). Substituting Equation (12) into Equation (34) proves Equation (11)

f(x;W (t)) =
α+ 1

2
W (t)W (t)x = W lin

2

(
α+ 1

2
t

)
W lin

1

(
α+ 1

2
t

)
x

≡ f lin

(
x;W lin

(
α+ 1

2
t

))
.

Part 3: We show that Assumption 5 made at time t = 0 remains valid for t > 0, meaning that
weights which start with rank-one structure remain rank-one. With Assumption 5 at time t = 0, the
dynamics of the (leaky) ReLU network is described by Equation (10). This dynamics is the same as
scaled dynamics in a linear network and thus satisfies the balancing property of linear networks (Ji
& Telgarsky, 2019; Du et al., 2018)

d

dt

(
W1W

⊤
1 −W⊤

2 W2

)
= 0. (39)

Under Assumption 5 at time t = 0, this quantity is zero at time t = 0 and will stay zero

∀ t ≥ 0 : W1(t)W1(t)
⊤ −W2(t)

⊤W2(t) = W1(0)W1(0)
⊤ −W2(0)

⊤W2(0) = 0.

Because rank(W1W
⊤
1 ) = rank(W1), the balancing property enforces that W1 and W2 have equal

rank. Since W2 is a vector, W1 must also have rank one. We can write a rank-one matrix as the
outer-product of two vectors W1 = vr⊤. We can assume ∥r∥ = 1 for convenience and get

W1W
⊤
1 = vr⊤rv⊤ = vv⊤ = W⊤

2 W2 ⇒ v = ±W⊤
2 .

Because Assumption 5 specifies W1 = W⊤
2 r⊤, then v = W⊤

2 . To summarize, Assumption 5
at time t = 0 reduces the learning dynamics of the ReLU network to be similar to that of a linear
network. The reduced dynamics satisfies the balancing property which enforces that the weights
remain rank-one, thus satisfying Assumption 5 for all t ≥ 0.

Proof of Theorem 7 (logistic loss). We prove Theorem 7 for logistic loss LLG = ⟨ln(1 + e−yŷ)⟩.
Part 1: Same as the square loss case because proving Equation (34) does not involve the loss func-
tion.

Part 2: The gradient flow dynamics of a two-layer linear network trained with logistic loss are

τẆ lin
1 = W lin

2

⊤
W lin

2 W lin
1

〈
xx⊤

eyW
lin
2 W lin

1 x + 1

〉
, (40a)

τẆ lin
2 = W lin

2 W lin
1

〈
xx⊤

eyW
lin
2 W lin

1 x + 1

〉
W lin

1

⊤
. (40b)

The gradient flow dynamics of a two-layer (leaky) ReLU network trained with logistic loss are

τẆ1 =

〈
σ′(W1x)⊙W⊤

2 W2σ(W1x)x
⊤

eyW2σ(W1x) + 1

〉
(41a)

τẆ2 = W2

〈
σ(W1x)σ(W1x)

⊤

eyW2σ(W1x) + 1

〉
(41b)

Substituting Equation (34) into Equation (41), we get

τẆ1 =
α+ 1

2

〈
σ′(W1x)⊙W⊤

2 W2W1xx
⊤

e
α+1
2 yW2W1x + 1

〉
(42a)

τẆ2 =
α+ 1

2
W2W1

〈
xσ(W1x)

⊤

e
α+1
2 yW2W1x + 1

〉
(42b)

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Under Condition 3 and Assumption 5, Equation (42) can be simplified〈
σ′(W1x)⊙W⊤

2 W2W1xx
⊤

e
α+1
2 yW2W1x + 1

〉
=
1

2

〈
σ′(W1x)⊙W⊤

2 W2W1xx
⊤

e
α+1
2 yW2W1x + 1

〉
S+

+
1

2

〈
σ′(W1x)⊙W⊤

2 W2W1xx
⊤

e
α+1
2 yW2W1x + 1

〉
S−

=
1

2

[
αW+

2

⊤

W−
2

⊤

]
W2W1

〈
xx⊤

e
α+1
2 yW2W1x + 1

〉
S+

+
1

2

[
W+

2

⊤

αW−
2

⊤

]
W2W1

〈
xx⊤

e
α+1
2 yW2W1x + 1

〉
S−

=
α+ 1

2
W2

⊤W2W1

〈
xx⊤

e
α+1
2 yW2W1x + 1

〉
,

and 〈
xσ(W1x)

⊤

e
α+1
2 yW2W1x + 1

〉
=
1

2

〈
xσ(W1x)

⊤

e
α+1
2 yW2W1x + 1

〉
S+

+
1

2

〈
xσ(W1x)

⊤

e
α+1
2 yW2W1x + 1

〉
S−

=
1

2

〈
xx⊤

e
α+1
2 yW2W1x + 1

〉
S+

r
[
αW+

2 W−
2

]
+

1

2

〈
xx⊤

e
α+1
2 yW2W1x + 1

〉
S−

r
[
W+

2 αW−
2

]
=
α+ 1

2

〈
xx⊤

e
α+1
2 yW2W1x + 1

〉
W1

⊤.

Thus, the reduced dynamics of the two-layer (leaky) ReLU network are

τẆ1 =

(
α+ 1

2

)2

W2
⊤W2W1

〈
xx⊤

e
α+1
2 yW2W1x + 1

〉
,

τẆ2 =

(
α+ 1

2

)2

W2W1

〈
xx⊤

e
α+1
2 yW2W1x + 1

〉
W1

⊤.

If we scale the weights as Equation (38), the (leaky) ReLU network dynamics is the same as that of
a linear network given in Equation (40) except for a different time constant

2τ

α+ 1
Ẇ 1 = W 2

⊤
W 2W 1

〈
xx⊤

eyW 2W 1x + 1

〉
,

2τ

α+ 1
Ẇ 2 = W 2W 1

〈
xx⊤

eyW 2W 1x + 1

〉
W 1

⊤
.

Through the same reasoning as the square loss case, Equations (11) and (12) are proved.

Part 3: Same as the square loss case.

C.3 GLOBAL MINIMUM

Proof of Corollary 9. The converged solution w∗ is a direct consequence of the equivalence we
showed in Theorem 7 and prior results of linear networks (Saxe et al., 2014; Soudry et al., 2018).

We now show that for symmetric datasets satisfying Condition 3, the global minimum solution of a
two-layer bias-free (leaky) ReLU network trained with square loss is linear.

Based on Theorem 1, we can write a two-layer bias-free (leaky) ReLU network as a linear function
plus an even function f(x) = x⊤w∗ + fe(x) where fe(·) denotes an even function. For datasets
satisfying Condition 3, the square loss is

L =
1

2

〈(
y − x⊤w∗ − fe(x)

)2〉
p(x)

=
1

2

〈(
y − x⊤w∗)2 − 2(y −Ax)fe(x) + fe(x)

2
〉
p(x)

=
1

2

〈(
y − x⊤w∗)2〉

p(x)
+

1

2

〈
fe(x)

2
〉
p(x)

.
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The square loss attains its minimum when both
〈(

y − x⊤w∗)2〉
p(x)

and
〈
fe(x)

2
〉
p(x)

are mini-

mized. The former is minimized when w∗ = Σ−1β. The latter is minimized when fe(x) = 0.
Hence, for symmetric datasets satisfying Condition 3, the two-layer bias-free (leaky) ReLU net-
work achieves globally minimum square loss with the linear, ordinary least squares solution
f(x) = x⊤w∗ = x⊤Σ−1β.

C.4 EFFECT OF REGULARIZATION

Theorem 7 still holds when L2 regularization is applied. Specifically, Theorem 7 holds if L2 regu-
larization is added with hyperparameter λα = α+1

2 λ, i.e., the loss is Lreg = L+ α+1
2 λ∥W ∥22. With

similar calculations, we find that the regularized dynamics of the two-layer bias-free (leaky) ReLU
network is

τẆ1 =
α+ 1

2
W⊤

2 β⊤ −
(
α+ 1

2

)2

W2
⊤W2W1Σ− α+ 1

2
λW1, (43a)

τẆ2 =
α+ 1

2
β⊤W⊤

1 −
(
α+ 1

2

)2

W2W1ΣW1
⊤ − α+ 1

2
λW2. (43b)

If we scale the weights as Equation (38), the regularized (leaky) ReLU network dynamics is again
the same as that of a regularized linear network except for a different time constant

2τ

α+ 1
Ẇ 1 = W

⊤
2

(
β⊤ −W 2W 1Σ

)
− λW 1,

2τ

α+ 1
Ẇ 2 =

(
β⊤ −W 2W 1Σ

)
W

⊤
1 − λW 2.

We validate this with simulations in Figure 6a. As in the unregularized case, we find that the loss
curves with different leaky ReLU slopes collapse to one curve after rescaling time and the differences
between weight matrices are small.

C.5 EFFECT OF LEARNING RATE

We empirically find that with a moderately large learning rate, the behaviors of two-layer bias-free
(leaky) ReLU networks are consistent with Theorem 7. For simulations in Figure 6b, we use a
learning rate of 0.6, which is 150 times larger than the learning rate used in Figure 2, 0.004. Due to
the larger learning rate, the loss curves in Figure 6b is less smooth than those in Figures 2, 6a and 6c.
Nonetheless, the loss curves with different leaky ReLU slopes collapse to one curve after rescaling
time and the differences between weight matrices are small.

If the learning rate is further increased, oscillations in the loss curves occur, suggesting unstable
training. In such cases, the equivalence described in Theorem 7 no longer holds. However, the
learning rate is typically chosen to avoid such oscillations in training.

C.6 EFFECT OF INITIALIZATION

We empirically find that under large initialization, two-layer bias-free (leaky) ReLU networks still
have similar learning dynamics as its linear counterpart. As in the small initialization case, the loss
curves in Figure 6c with different leaky ReLU slopes collapse to one curve after rescaling time.
The differences between weight matrices are larger than those in the case of small initialization but
are still less than 3%. With large initialization and a moderately large learning rate, the behavior
remains consistent, as shown in Figure 6d.

This is related to the limited expressivity of bias-free ReLU networks. Within the expressivity
of two-layer bias-free ReLU networks, the linear solution is the global minimum for symmetric
datasets. The two-layer bias-free ReLU network learns the linear solution starting from either small
or large initialization.
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(a) Loss and error curves with L2 regularization with hyperparameter λα = 0.2(α+ 1).
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(b) Loss and error curves with a moderately large learning rate, 0.6.
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(c) Loss and error curves with large initialization, winit = 0.5.
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(d) Loss and error curves with large initialization, winit = 0.5, and a moderately large learning rate, 0.6.

Figure 6: Two-layer bias-free (leaky) ReLU networks evolve like a linear network even when some
of the assumptions in Theorem 7 are lifted. The setup is the same as Figure 2 except for the con-
dition(s) specified in each individual subcaption. In (b,c,d), the time rescaling is implemented by
inversely rescaling the learning rate. This avoids the inaccuracy induced by rounding the rescaled
time to an integer number of epoch, which becomes non-negligible in the case of a small total num-
ber of epochs. In (c,d), with large initialization, the errors between weight matrices are larger than
those in the case of small initialization but are still less than 3%.
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Figure 7: The same as Figure 3 but with logistic loss.

D TWO-LAYER NETWORKS LEARNING DYNAMICS ON ORTHOGONAL
DATASETS

Suppose the low-rank weights in the two-layer bias-free ReLU network trained on the orthogonal
dataset are

W1 =

[
W

(1)
1

W
(2)
1

]
=

[
r
(1)
1 x̄⊤

1

r
(2)
1 x̄⊤

2

]
, W2 =

[
W

(1)
2 W

(2)
2

]
=
[
r
(1)
1

⊤
r
(2)
1

⊤
,

]
(44)

where x̄1 = x1/∥x1∥, x̄2 = x2/∥x2∥, and W
(1)
1 ,W

(2)
1 are rank-one block matrices and align with

either one of the two data points.

Since the two data points are orthogonal x⊤
1 x2 = 0, we have for µ = 1, 2

f(xµ;W ) ≡ W2σ(W1xµ) =

2∑
ν=1

W
(ν)
2 σ

(
W

(ν)
1 xµ

)
= W

(µ)
2 σ

(
W

(µ)
1 xµ

)
= W

(µ)
2 W

(µ)
1 xµ

Learning dynamics with summed square loss for each block of weight matrices are

τẆ
(µ)
1 =

2∑
ν=1

σ′
(
W

(µ)
1 xν

)
⊙W

(µ)
2

⊤
(yν −W2σ(W1xν))x

⊤
ν

= σ′
(
W

(µ)
1 xµ

)
⊙W

(µ)
2

⊤
(yµ −W2σ(W1xµ))x

⊤
µ

= W
(µ)
2

⊤ (
yµ −W

(µ)
2 W

(µ)
1 xµ

)
x⊤
µ ,

τẆ
(µ)
2 =

2∑
ν=1

(yν −W2σ(W1xν))σ
(
W

(µ)
1 xν

)⊤
= (yµ −W2σ(W1xµ))σ

(
W

(µ)
1 xµ

)⊤
=
(
yµ −W

(µ)
2 W

(µ)
1 xµ

)
x⊤
µW

(µ)
1

⊤
.

Thus, the learning dynamics of the weights that align with xµ (µ = 1, 2) are

τẆ
(µ)
1 = W

(µ)
2

⊤ (
yx⊤

µ −W
(µ)
2 W

(µ)
1 xµx

⊤
µ

)
, (46a)

τẆ
(µ)
2 =

(
yx⊤

µ −W
(µ)
2 W

(µ)
1 xµx

⊤
µ

)
W

(µ)
1

⊤
. (46b)

This is the same dynamics as training a linear network (with less hidden neurons) on a single data
point (xµ, yµ) as given in Equation (3).
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E DEEP RELU NETWORK LEARNING DYNAMICS

According to Equation (15), all weight elements in the intermediate layers (WL−1, · · · ,W3,W2)
are non-negative numbers. According to the definition of the ReLU activation function, σ(W1x)
yields a vector with non-negative numbers. Thus W2σ(W1x) yields a vector with non-negative
numbers and we have σ(W2σ(W1x)) = W2σ(W1x). Similarly, all subsequent ReLU activation
functions can be ignored1. With weights satisfying Equation (15), a deep bias-free ReLU network
implements

f(x;W ) ≡ WLσ(· · ·σ(W2σ(W1x))) = WL · · ·W2σ(W1x).

We stick to the notation for the positive and negative half-space defined in Equation (31). For
x ∈ S+, we have

f(x;W ) = uWL · · ·W2

[
r+1
0

]
r⊤x = · · · = uL−1

(
√
2)L−2

WL

[
r+L−1
0

]
r⊤x =

(
u√
2

)L

r⊤x.

For x ∈ S−, we have

f(x;W ) = uWL · · ·W2

[
0
r−1

]
r⊤x = · · · = uL−1

(
√
2)L−2

WL

[
0

r−L−1

]
r⊤x =

(
u√
2

)L

r⊤x.

Hence, the deep bias-free ReLU network implements a linear function f(x;W ) =
(

u√
2

)L
r⊤x.

Notice that a deep linear network with such weights implement

WL · · ·W2W1x = uWL · · ·W2

[
r+1
r−1

]
r⊤x = · · · = uL−1

(
√
2)L−2

WLrL−1r
⊤x =

uL

(
√
2)L−2

r⊤x.

Equation (16) is thus proved.

We now prove that under Equation (15) on the weights at time t = 0, we have that ∀ t ≥ 0,
Equation (15) remains valid. We assume that σ′(0) = 0. We substitute the low-rank weights
defined in Equation (15) into the learning dynamics of deep bias-free ReLU networks and make
simplifications. For the first layer,

τẆ1 =
〈
σ′(W1x)⊙W⊤

2 · · ·W⊤
L (y − f(x))x⊤〉

=
uL−1

(
√
2)L−2

〈
σ′(W1x)⊙ r1

(
y −

(
u√
2

)L

r⊤x

)
x⊤

〉

=
uL−1

(
√
2)L

[
r+1
0

]〈(
y −

(
u√
2

)L

r⊤x

)
x⊤

〉
S+

+
uL−1

(
√
2)L

[
0
r−1

]〈(
y −

(
u√
2

)L

r⊤x

)
x⊤

〉
S−

=
uL−1

(
√
2)L

r1

(
β⊤ −

(
u√
2

)L

r⊤Σ

)
. (47)

1The activation functions can be ignored when calculating the network output but cannot be ignored when
calculating the gradients. This is because for a ReLU function σ(z) = max(z, 0) and a linear function ϕ(z) =
z, the function values are equal at zero σ(0) = ϕ(0) but the derivatives are not equal at zero σ′(0) ̸= ϕ′(0).
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For intermediate layers 1 < l < L,

τẆl =
〈
σ′(hl)⊙W⊤

l+1 · · ·W⊤
L (y − f(x))σ(hl−1)

⊤〉
=

(
u√
2

)L−1 [
1
0

]
⊙
[
r+l
r−l

]〈(
y −

(
u√
2

)L

r⊤x

)
x⊤

〉
S+

r
[
r+l−1

⊤
0
]

+

(
u√
2

)L−1 [
0
1

]
⊙
[
r+l
r−l

]〈(
y −

(
u√
2

)L

r⊤x

)
x⊤

〉
S−

r
[
0 r−l−1

⊤
]

=

(
u√
2

)L−1 [
r+l r

+
l−1

⊤
0

0 0

](
β⊤ −

(
u√
2

)L

r⊤Σ

)
r

+

(
u√
2

)L−1 [0 0

0 r−l r
−
l−1

⊤

](
β⊤ −

(
u√
2

)L

r⊤Σ

)
r

=
uL−1

(
√
2)L

[√
2r+l r

+
l−1

⊤
0

0
√
2r−l r

−
l−1

⊤

](
β⊤ −

(
u√
2

)L

r⊤Σ

)
r. (48)

For the last layer,

τẆL =
〈
(y − f(x))σ(hL−1)

⊤〉
=

uL−1

(
√
2)L

〈(
y −

(
u√
2

)L

r⊤x

)
x⊤

〉
S+

r
[
r+L−1

⊤
0
]

+
uL−1

(
√
2)L

〈(
y −

(
u√
2

)L

r⊤x

)
x⊤

〉
S−

r
[
0 r−L−1

⊤
]

=
uL−1

(
√
2)L

(
β⊤ −

(
u√
2

)L

r⊤Σ

)
rr⊤L−1. (49)

Equations (47) to (49) can be written more compactly as Equation (17) if we substitute the weights
back in. The dynamics of the deep ReLU network as in Equation (17) is the same as a deep linear
network as in Equation (7) except for constant coefficients.

We now prove that the low-rank weights remain low-rank once formed. We substitute the low-rank
weights defined in Equation (15) into the left-hand side of Equations (47) to (49) and get

τ
d

dt
ur1r

⊤ =
uL−1

(
√
2)L

r1

(
β⊤ −

(
u√
2

)L

r⊤Σ

)
,

τ
d

dt
u

[√
2r+l r

+
l−1

⊤
0

0
√
2r−l r

−
l−1

⊤

]
=

uL−1

(
√
2)L

[√
2r+l r

+
l−1

⊤
0

0
√
2r−l r

−
l−1

⊤

](
β⊤ −

(
u√
2

)L

r⊤Σ

)
r,

τ
d

dt
ur⊤L−1 =

uL−1

(
√
2)L

(
β⊤ −

(
u√
2

)L

r⊤Σ

)
rr⊤L−1.

We cancel out the nonzero common terms on both sides and reduce the dynamics to two differential
equations. The first one is about the norm of a layer u. The second one is about the rank-one
direction in the first layer ur.

τ
d

dt
u =

uL−1

(
√
2)L

(
β⊤ −

(
u√
2

)L

r⊤Σ

)
r,

τ
d

dt
ur⊤ =

uL−1

(
√
2)L

(
β⊤ −

(
u√
2

)L

r⊤Σ

)
.

After the weights have formed the low-rank structure specified in Equation (15), the norm of each
layer u and the rank-one direction of the first layer r evolve while r1, r2, · · · , rL−1 stay fixed.
Hence, under Equation (15) on the weights at time t = 0, we have that ∀ t ≥ 0, Equation (15)
remains valid.
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F DEPTH SEPARATION

We visualize g(x) defined in Equation (9) below. This function cannot be expressed by any two-
layer bias-free ReLU network because it is odd and nonlinear. Corollary 2 indicates that odd and
nonlinear functions cannot be expressed by two-layer bias-free ReLU networks. It can be expressed
by a three-layer bias-free ReLU network as written in Equation (9).

1 0 1
x1

1

0

1

x 2

1

0

1

Figure 8: Function g(x) defined in Equation (9) is plotted with color.

A clarification on Section 3.2 is that deep bias-free ReLU networks are not more expressive than
their two-layer counterparts if the input is scalar. For scalar input functions, the only positively ho-
mogeneous odd function is the linear function. Neither two-layer nor deep bias-free ReLU networks
can express nonlinear odd functions with scalar input.

Another relevant fact is that there is also depth separation between two-layer and deep ReLU net-
works with bias. One example is the pyramid function, σ(1 − ∥x∥1), which was studied in (Ongie
et al., 2020, Example 4) and (Nacson et al., 2023, Proposition 2)
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Figure 9: Two-layer bias-free ReLU network trained on a linearly separable binary classification
task with label flipping noise. Since the dataset satisfies symmetric Condition 3, the network follows
linear network dynamics and converges to a linear decision boundary, which is a presumably robust
solution here as it avoids overfitting the two noisy labels. (a) Loss curve. Logistic loss is used here.
(b) The dataset is plotted with empty circles and short lines, representing data points with +1 labels
and −1 labels respectively. The network output at the end of training is plotted in color.

H IMPLEMENTATION DETAILS

We provide code in the supplementary material. All experiments run on a NVIDIA GeForce RTX
2070 GPU and take less than an hour in total.

All networks are initialized with small random weights. Specifically, the initial weights in the l-th
layer are sampled i.i.d. from a normal distribution N (0, w2

init/Nl) where Nl is the number of weight
parameters in the l-th layer. The initialization scale winit is specified below.

Figure 1. The networks have width 100. The initialization scale winit = 10−2. The learning rate is
0.2. The two-layer networks are trained 10000 epochs. The three-layer networks are trained 80000
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epochs. The dataset is plotted in the figure. Empty black circles denote data points with +1 labels.
Short black lines denote data points with −1 labels. The size of the datasets is 120.

Figure 2. The networks have width 500. The initialization scale is winit = 10−8. The learning rate
is 0.004. The input is 20-dimensional, x ∈ R20. We sample 1000 i.i.d. vectors xn ∼ N (0, I) and
include both xn and −xn in the dataset, resulting in 2000 data points. The output is generated as
y = w⊤x + sin

(
4w⊤x

)
where elements of w are randomly sampled from a uniform distribution

U [−0.5, 0.5]. This dataset satisfy Condition 3 since the empirical input distribution is even and the
output is generated by an odd function.

Figures 3 and 7. We use the same hyperparameters as Boursier et al. (2022). The network width is
60. The initialization scale winit = 10−6. The learning rate is 0.001 for square loss and 0.004 for
logistic loss. The orthogonal input dataset contains two data points, i.e., [−0.5, 1], [2, 1]. The XOR
input dataset contains four data points, i.e., [0, 1], [2, 0], [0,−3], [−4, 0].

Figure 4. The networks have width 100. The initialization scale winit = 10−2. The learning rate is
0.1. The networks are trained 20000 epochs. The dataset is generated in the same way as Figure 2
except that the output is generated as y = w⊤x.

Figure 5. The network width is 100. The initialization scale winit = 10−3. The learning rate is
0.025. The dataset contains six data points: [1, 1], [−1,−1], [1,−1], [−1, 1], [−1, 0], [1,∆y].

31


	Introduction
	Related Work

	Preliminaries
	Two-Layer Bias-Free (Leaky) ReLU and Linear Networks
	Deep Networks

	Network Expressivity
	Two-Layer Bias-Free (Leaky) ReLU Networks
	Deep Bias-Free (Leaky) ReLU Networks

	Learning Dynamics in Two-Layer Bias-Free ReLU Networks
	Symmetric Datasets
	Orthogonal and XOR Datasets

	Learning Dynamics in Deep Bias-Free ReLU Networks
	Discussion
	Additional Related Work
	Useful Lemmas
	Two-Layer Networks on Symmetric Datasets
	Learning Dynamics: Early Phase
	Learning Dynamics: Late Phase
	Global Minimum
	Effect of Regularization
	Effect of Learning Rate
	Effect of Initialization

	Two-Layer Networks Learning Dynamics on Orthogonal Datasets
	Deep ReLU Network Learning Dynamics
	Depth Separation
	Additional Figure
	Implementation Details

