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ABSTRACT

Accurate Subseasonal-to-Seasonal (S2S) forecasting is vital for decision-making
in agriculture, energy production, and emergency management. However, it re-
mains a challenging and underexplored problem due to the chaotic nature of the
weather system. Recent data-driven studies have shown promising results, but
their performance is limited by the inadequate incorporation of climate states and a
model tendency to degrade, progressively losing fine-scale details and yielding over-
smoothed forecasts. To overcome these limitations, we propose TianQuan-S2S, a
global S2S forecasting model that integrates initial weather states with climato-
logical means via incorporating climatology into patch embedding and enhancing
variability capture through an uncertainty-augmented Transformer. Extensive ex-
periments on the Earth Reanalysis 5 (ERAS) reanalysis dataset demonstrate that our
model yields a significant improvement in both deterministic and ensemble fore-
casting over the climatology mean, traditional numerical methods, and data-driven
models. Ablation studies empirically show the effectiveness of our model designs.
Remarkably, our model outperforms skillful numerical ECMWF-S2S and advanced
data-driven Fuxi-S2S in key meteorological variables. The code implementation
can be found in https://github.com/zhangminglang42/TianQuan.

1 INTRODUCTION

Subseasonal-to-Seasonal forecasting (beyond 15 days) is crucial for various applications, including
agriculture, energy production, and emergency management, where it plays a vital role in planning and
decision-making processes (Pegion et al., 2019). Accurate subseasonal forecasts reduce agricultural
losses, balance energy supply, and improve disaster preparedness. Over the past 40 years, Numerical
Weather Prediction (NWP) models have significantly advanced weather forecasting skills for the short
to medium term (up to 15 days), contributing notably to Sustainable Development Goals (SDGs)
(Bauer et al., 2015). Nevertheless, since the parameterization within NWP models introduces errors
due to function approximations (Beljaars et al., 2018), the accumulated errors are significant on the
S2S time scale. In addition, they require substantial computational resources and time (Saha et al.,
2014). Even with supercomputers operating on hundreds of nodes, simulating a single variable can
take hours (Bauer et al., 2020). Recently, data-driven models (Bi et al., 2023; Lam et al., 2023;
Chen et al., 2023b; Price et al., 2024) present a promising future due to their comparable accuracy in
medium-range forecasting and much faster inference speeds. Once trained, these models can predict
future weather conditions in seconds (Pathak et al., 2022).

However, data-driven subseasonal forecasting remains challenging and less explored (Chen et al.,
2024; Liu et al., 2025a). The extended time horizon renders the initial weather conditions and
key variables inadequate for making accurate predictions due to the chaotic nature of the weather
system (Mariotti et al., 2018). Deterministic machine learning models are typically trained on data
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from recent historical data, which provides limited support for subseasonal forecasting (He et al.,
2019). As the forecast horizon extends, the initial state becomes less informative, resulting in blurred
and unrealistic predictions. This limitation hampers the effectiveness of machine learning models on
subseasonal time scales, despite their importance for climate-related applications (Lam et al., 2023).

Specifically, two critical issues have not Forecasting Model Collapse
been well explored in S2S forecasting: (1) '™’

Insufficient climate modeling. Climatol- .. | &
ogy, the persistent, slow-varying climate X
modes that influence atmospheric condi-
tions on the S2S time scale. While both it
and initial conditions are crucial for S2S
forecasting, existing approaches have pre-
dominantly focused on the former, neglect-
ing its importance. (2) Model collapse.
The use of discrete numerical grids in mod-

eling inherently smooths out small-scale  Figure 1: Model collapse in Subseasonal-to-Seasonal
weather features due to spatial and tempo-  (S2S) Forecasts. As the lead time increases, the forecast
ral averaging at grid points. With extended  results for the same target time gradually exhibit the loss
lead times, the forecasting system progres- of data contours across the three regions, which can be

sively deteriorates, failing to preserve re- considered a form of model collapse.
liable structures and ultimately producing

unrealistic predictions. As shown in Figure 1, with the increase in lead time, the prediction of the
same target days becomes smoother and finally loses predictability.

240 1

To address these issues, we propose TianQuan-S2S, where TianQuan (meaning Weather Hub in
Chinese) reflects its role as a central system for subseasonal prediction. The framework consists
of two key components to improve single-step forecasts. First, a patch embedding layer integrates
both the initial weather states and climatological mean features to compensate for the limited
predictive information, enhancing forecast skill beyond 15 days. Second, inspired by the traditional
perturbed forecasting, which incorporates noise to enhance model performance, we extend the Vision
Transformer with uncertainty blocks that inject Gaussian noise into feature representations, preventing
over-smoothing and better capturing realistic variability at longer lead times. Extensive experiments
are conducted on the high-quality Earth Reanalysis 5 (ERAS5) dataset, showing that the proposed
methods outperform skillful numerical S2S systems and data-driven models. In summary, our main
contributions are as follows.

* We highlight the importance of incorporating climate information in data-driven S2S forecasting
and the model collapse issue in long lead time.

* We proposed TianQuan-S2S, consisting of a patch embedding that incorporates climatological
information and an uncertainty-augmented Transformer that captures weather variability, enhancing
S2S forecasting and mitigating over-smoothing.

» Extensive experiments on the ERAS dataset show that TianQuan-S2S outperforms traditional and
data-driven methods, including ECMWE-S2S and Fuxi-S2S, in both deterministic and ensemble
forecasting. Ablation studies show that the proposed two simple designs, climatology and noise
incorporation, significantly enhance the model performance.

2 PRELIMINARIES

Perturbed forecasting In weather forecasting, perturbed forecasting is used to generate ensemble
predictions by adding small perturbations to the initial atmospheric state (Zhou et al., 2022). Because
the atmosphere is a chaotic system, even minor uncertainties in the initial conditions can lead to large
differences in forecast outcomes (Nakashita & Enomoto, 2025). Perturbed forecasting generates
multiple forecasts from slightly modified initial states to capture possible atmospheric evolutions.
In addition to perturbing initial conditions, ensemble systems also introduce perturbations within
the model itself. For example, ECMWF and NCEP apply stochastic parameterization schemes such
as the Stochastically Perturbed Parametrizations (SPP), which randomly modify model tendencies
like convection or turbulence (Tsiringakis et al., 2024). Moreover, data-driven methods such as
SwinVRNN use learned distribution perturbations to generate diverse ensemble members, improving
forecast reliability by explicitly modeling uncertainty (Hu et al., 2023).



Published as a conference paper at ICLR 2026

Transformer

Initial State X A“e';tr;:::ased z x @ Embedding Addition
y :»"m\ % Uncertainty (© Hadamard product
A 2 | (D
L RNy 8. —

e BE eS|
SR 2 D 2
Q v = )

. —| ||=ﬂ ||=E ||=. O= = =

Climatology X.;,, HxWxK 1 11 2o
- . 3 g

Py N mEom &
2 EEEE W 5

o Ooomn (We | 5| OO
— UOEO=0 :

Figure 2: The diagram of TianQuan-S2S framework. The input variables include initial state X and
climatology X ;.. After attention-based fusion, the features are enhanced and fused, then patchified
and fed into the uncertainty-augmented model, where Gaussian noise is injected at each layer. Finally,

predictions X for days 15 to 45 are generated.

Climatology Climatology is the scientific study of long-term weather patterns and atmospheric
processes, typically based on decades of observational and model data. Unlike short-term forecasting,
climatology emphasizes statistical averages, variability, and extremes to understand the baseline
state of the climate system (White et al., 2023). It plays a central role in assessing long-term
climate change, as shifts in temperature, precipitation, and circulation patterns are evaluated against
climatological norms. As a reference framework, climatology provides essential context for detecting
anomalies, attributing trends to natural variability or anthropogenic forcing, and guiding adaptation
and mitigation strategies in response to global climate change (Forster et al., 2024). In this work, the
climatology is computed based on the 38-year daily climatology from 1979 to 2016 (366 days).

Problem Definition We study the prediction of K weather parameters at the latitude-longitude
grid G € RIXWX2 where H and W are the height and width of the grid that depend on the
resolution of latitude and longitude, and G}, . = (Ap, Py) € © = [—90°,90°] x [—180°, 180°].
Let the state of global weather at time ¢ be represented by a 3-dimensional tensor X, € RH*WxK
where K = V4 x C 4 Vg, with V4 denoting the number of upper-air variables, Vs the number of
surface variables, and C' the number of pressure levels. Similarly, the climatology is represented by
X iim € REXWXE Thys, our goal is to train a neural network to forecast weather variables with
lead times between 15 and 45 days, as shown in the following:

Xt15:t45 - f@(G7XClim7Xt_4:to)) (1)

where © denotes the parameters of neural networks. X t15:t45 15 the predicted value from day 15 to
day 45. In this work, we employ the 5-day historical data X; ,., as the input, which we empirically
found beneficial for model performance.

3 PROPOSED MODEL

Figure 2 illustrates the TianQuan-S2S framework, which consists of (1) a patch embedding that fuses
the input and climatology embeddings; (2) a vision transformer that is perturbed by random noises.
We illustrate their details as follows.

3.1 PATCH EMBEDDING

Convolutions Previously, some researchers (Zhang & Patel, 2018; Wang et al., 2021; Kumar &
Tiwari, 2023) have utilized edge priors to enhance details. Building on this work, we introduce a multi-
layer convolutional layer to extract climate information Fiz,, € RT*WXK from the climatology
X iim- In this convolution, pixel pair differences are calculated, and prior information is explicitly
encoded into the CNN, enhancing the model’s representation by learning valuable trend information.

For the initial input fields, we propose a novel convolutional design that enhances weather prediction
by jointly modeling spatial and channel-wise relationships. Spatial Convolution captures regional
variations in initial fields, while Channel Convolution models the relationships among variables,
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such as temperature, pressure, and wind. Together, these two mechanisms generate feature maps
F, € RIXWXK and F, € REXWXK defined as follows:

F; = fconv([ylgApayPs’MPDv F. = fconv(YIgAP)v 2

where f..n,(+) represents a neural network of convolutional layer, and [-] denotes channel-wise con-
catenation. Y5 4 p, Y5 4 p, and Y3, » represent features processed by partial average pooling across
the channel or spatial dimension and global max pooling across the spatial dimension, respectively.
Then we compute through element-wise addition to obtain the enhanced climate data as follows:

Fx = F, + F, € R7T*WXE, 3)

Note that the fusion feature information F'x can guide attention across channels, producing clearer
and more refined results.

Attention-based fusion Research has shown that feature fusion can enhance these climate informa-
tion features, aiding long-term predictions (Chen et al., 2024; Li et al., 2024). Inspired by the above,
we proposed an attention-based fusion module to guide the fusion process of the features Fy;,,, and
Fx. This module fuses two input features by first computing spatial weights that determine their
relative importance. We first flatten spatial dimensions with N = H x W and fuse each variable

feature with A(*) = reshape(F )((U) +FY ) € RN where C denotes the number of pressure

Linr
levels (13 for upper-air variables and 1 for surface variables). Define:

QY =AWy, KW =AWy, VO =AUW, Wy e RV (@)

Compute the spatial weights as W, = unreshape(a(%) V@) € [0,1)7*W*C Finally, a

convolutional layer maps the fused representation to the output F' € RH*Wx K
F= fconv(Fclim . Watt + FX . (1 - Watt) + Fclim + FX); (5)

where 1 denotes a matrix with all elements equal to 1. In summary, the attention-based fusion
adaptively integrates complementary features, ensuring more effective fusion for long-term prediction.

Patchify and Fourier Embedding We divide the upper-air data of shape C' x V4 x H x W into L
patches {F(V}£ | where F() € RVaxP*P and [ = £ 5 W denotes the number of patches. These

P
patches are then flattened and stacked into a tensor F)y € REXEXVaxPxP which is embedded into
latent space to generate an upper embedding E4 € RE*L*D_ Similarly, surface variables, influenced
by terrain and the land-sea mask, are represented with C' = 1 as Eg € REXP,

To retain spatial (latitude and longitude) and temporal information, these variables are mapped into
D-dimensional tensors using Fourier encoding, which embeds periodic positional signals to preserve
variations across space and time, implemented as follows:

2mx 2mx . 27nx 2mx . 21z 2rx

FourEnc(z) = [sin()\—l), cos()\—l), e ,51n(>\—i), cos( y ),...,sin( ), cos(

)l (©6)

Ap/2 Ap/2

represents the wavelength of the Fourier basis function, ensuring

Amin

where \; = A\in, - (Lmax) -1
that the encoding captures various frequency components of the input variable. For time, since climate
follows a yearly cycle, the wavelength range for encoding is set with A\, = 1 and Apax = 365. For
position, the wavelength range is set with A,;, = 0.1 and A\, = 360, representing the spatial scale
of longitude. After being processed by a linear layer, the temporal and spatial information (W,

Wiime € R(ETDXD) are integrated into initial embedding E € R(CTDXLXD a5 follows:
E= [E5'7 EA] + W;os + Wtjme (7)
where [-] denotes C channel-wise concatenation and * denotes that broadcasting is applied during the

computation. Subsequently, this embedding E is fed into the Transformer for further processing.

3.2 TRANSFORMER

Transformer with noise generation The Vision Transformer (ViT) architecture has proven effec-
tive for various prediction tasks, including climate modeling (Nguyen et al., 2023). By processing
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input data with stacked attention blocks, the transformer captures both local and global dependencies.
In the context of weather forecasting, each block learns hierarchical representations.

. () g (n)
EGm) — hn(E(l’")) = softmax(iQ 75 )V(l’")

where Q(l,n) — E(l,'rL)WT?’ K(l’") _ E(l’”)WT{(, V(l,n) — E(l’")Wf, and WB/K/V c RDx*xD
are learned projection matrices, and n represents the n-th layer of transformer. By stacking these
transformed representations, we obtain the reconstructed embedding E(™ = {E(¢™)} L

®)

In general, adding stochastic perturbations helps prevent the forecast from collapsing onto a single
deterministic trajectory and better captures the growth of uncertainty at extended lead times. In partic-
ular, instead of perturbing only the initial conditions, which lose impact as lead time increases (Buizza
et al., 2005), we inject learnable Gaussian perturbations at each Transformer layer during the forward
pass, stabilizing forecasts and mitigating over-smoothing at extended ranges.

Specifically, an uncertainty block introduces Gaussian noise at each transformer block to produce the
next prediction E("t1) as described by the following formula:

EC+) — EM 4 p, (E<">) + gn (E(")) - N(0,1) )

Here, n € {1,..., N} denotes network layer index, and h,, (.) represents parameters at layer n-th of
transformer. In addition, g, (.) is a learnable parameter function introduced by the uncertainty block.

Unpatchify To convert the prediction embedding E € R(CTDXLXD pack into the prediction
variables, we separate the embedding for surfce embedding Eg € RPEXD gnd upper-air embedding
E, € ROXLXD These embeddings are decoded into P x P patches via a linear layer to reconstruct
the gridded data. By combining and stacking, we obtain the final output predictions, Xgand X4,
for the target time range from day 15 to day 45.

3.3 LEARNING OBJECTIVES

TianQuan-S2S is trained to forecast the predictions thg,:t .5 at lead time from day 15 to day 45. The
objective function used is the latitude-weighted mean squared error (Rasp et al., 2020). The loss is
calculated between the prediction X, .+,, and the ground truth X, . ..,. as follows:

1 VA X o SN2
£ g 2 2 2 O (Xiid, - X0t (10)
in which L(7) = —cosat(e)) __ s the Jatitude weighting factor, and lat(¢) represents the latitude

1 H -/

bea Zi’:l cos(lat(i’))
of the i*" row in the grid. The coefficient size varies because grid cells near the equator cover more
area than those near the poles, thus receiving higher weights.

4 EXPERIMENTS

Datasets We conducted experiments using the ERAS dataset (Hersbach et al., 2020), covering 40
years (1979-2018) with global hourly data across multiple pressure levels and the surface. To improve
the accuracy of long-term predictions, we preprocess the hourly ERAS data by averaging it daily
at six-hour intervals. Bilinear interpolation is used to downsample the data to 5.625° (32 x 64 grid
points) and 1.40625° (128 x 256 grid points), while selecting the 13 most critical pressure levels. For
more details on data processing, refer to Appendix F.4. We obtained the dataset variables as shown
in Table 10 in Appendix F. We divided the daily averaged ERAS dataset into training (1979-2015),
validation (2016), and testing (2017-2018) sets based on years.

Metrics Following existing works (Bi et al., 2023; Rasp et al., 2024), we primarily quantify the
performance improvement of the model using latitude-weighted RMSE and Anomaly Correlation
Coefficient (ACC), and then assess its long-term forecasting capability through Continuous Ranked
Probability Score (CRPS), Spread Mean Error (SME), and Relative Quantile Error (RQE). All of
these metrics can be found in the Appendix G.
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Figure 3: TianQuan-S2S outperforms FuXi-S2S, ClimaX and ECMWEF-S2S in deterministic
forecasts on 1.40625°(a) and 5.625°(b) daily ERAS datasets. The comparison involves four
variables in terms of latitude-weighted RMSE (lower is better) and ACC (higher is better). The time
range for the metric calculations is from 2017 to 2018.

Baselines We compare our proposed model with the following baseline models:

* ECMWF-S2S (Vitart et al., 2017) is a WWRP/THOR PEX-WCRP joint research project estab-
lished to improve forecast skill and understanding on the sub-seasonal to seasonal time scale.

* ClimaX (Nguyen et al., 2023) is a deep learning foundational model for weather and climate
science, capable of training on ERAS5 datasets with varying variables and spatio-temporal coverage.
The model itself makes deterministic forecasts, and ensemble forecasts can also be obtained by
adding disturbances to the initial field, as mentioned above.

* FuXi-S2S (Chen et al., 2024) is a state-of-the-art global subseasonal ensemble forecasting model
that leverages machine learning to improve prediction accuracy, providing forecasts up to 42 days,
with 40 days used here for comparison. In the comparison of deterministic forecasts, we use the
FuXi-S2S (00 member) without perturbations as a contrast.

» Climatology utilizes the long-term average of historical data for each time step as the reference
prediction, providing a simple yet effective benchmark for comparison. In this work, we refer to
the Climatology Baseline standard comparison process in WeatherBench2 (Rasp et al., 2024).

We run our approach once to generate a single time value for deterministic forecasting. In addition, as
an Al-based method, our model can perform large-member ensemble forecasts with small computa-
tional costs. For ClimaX, we implemented ensemble forecasting by introducing random perturbations
to the initial weather states. In the case of TianQuan-S2S, we incorporated learnable noise at each
block level to generate multiple forecasts. Specifically, we created 50 random perturbations, which
were then added to the original unperturbed state. This approach results in a 51-member ensemble,
and the ensemble mean forecast is computed by averaging the individual forecast outputs.

Implementation Details We used the AdamW optimizer (Kingma, 2014; Loshchilov & Hutter,
2017) with parameters A\; = 0.9 and Ay = 0.99. A weight decay of 1e > was applied to all parameters
except the positional embeddings. The learning rate was set to 5¢ >, with a linear warmup schedule



Published as a conference paper at ICLR 2026

Table 1: Comparison of ensemble forecast performance across variables and models.

CRPS (J) SME () RQE ()
15 20 25 30 35 40 |15 20 25 30 35 40 |15 20 25 30 35 40

g ClimaX 2.278 2.343 2.378 2.409 2.475 2.481|2.190 2.271 2.314 2.352 2.433 2.453|2.187 2.312 2.384 2.437 2.562 2.592
g FuXi-S2S 2.238 2.293 2.328 2.359 2.426 2.437|2.140 2.223 2.264 2.302 2.383 2.414|2.136 2.263 2.338 2.382 2.513 2.544
Ours  2.256 2.276 2.304 2.297 2.318 2.341 2.048 2.141 2.316 2.235 2.328 2.338|2.158 2.244 2.348 2.331 2.417 2.469

ClimaX 2.831 2.827 2.842 2.833 2.847 2.866(2.364 2.354 2.389 2.379 2.404 2.414|2.748 2.815 2.842 2.883 2.952 2.967
FuXi-S2S 2.824 2.818 2.844 2.832 2.848 2.867|2.301 2.355 2.362 2.343 2.395 2.405|2.729 2.716 2.783 2.769 2.771 2.808
Ours  2.805 2.812 2.836 2.819 2.836 2.852 2.334 2.326 2.358 2.335 2.401 2.396|2.711 2.725 2.743 2.784 2.753 2.787

ClimaX 1.801 2.004 1.954 1.907 1.861 1.831 ‘1.050 1.063 1.094 1.175 1.088 1.158|1.747 1.781 1.805 1.814 1.848 1.869

Model

10| T850

E FuXi-S2S 1.798 1.902 1.963 1.856 1.852 1.835|1.038 1.053 1.065 1.152 1.075 1.099|1.736 1.763 1.813 1.791 1.803 1.851
'§ Ours  1.799 1.901 1.894 1.852 1.834 1.826 1.020 1.034 1.075 1.128 1.052 1.081|1.729 1.754 1.825 1.779 1.804 1.834

o ClimaX 650 653 655 655 658 663|655 659 673 682 679 688 | 653 684 703 736 777 719
7 FuXi-S2S 645 648 655 653 654 661 | 634 649 659 663 670 669 | 634 665 693 705 718 723
Ours 644 647 652 650 653 658 640 648 663 654 656 660 | 620 658 684 716 705 714

Table 2: RMSE comparison of ensemble mean results. Our method generally achieves better
performance, outperforming the climatology baseline across multiple variable metrics.

Model 15 20 25 30 35 40 45 | Model 15 20 25 30 35 40 45

g FuXi-S2S 2450 2.454 2.484 2.520 2.542 2563 - |S FuXi-S2S 3.407 3.574 3.668 3.678 3.771 3.752 -
g Ours 2.424 2457 2459 2.502 2.471 2.532 2.601|E Ours 3.345 3.502 3.595 3.711 3.753 3.723 3.742
Climatology 2.610 2.610 2.610 2.610 2.610 2.610 2.610 § Climatology 2.430 2.430 2.430 2.430 2.430 2.430 2.430

o FuXi-S2S 3.323 3.192 3.141 3.286 3.386 3317 - |o FuXi-S2S 795 787 773 807 814 775 -
£l Ours 3.255 3.187 3.193 3.109 3.321 3.298 3.402|% Ours 791 779 766 798 805 766 796
= Climatology 3.410 3.410 3.410 3.410 3.410 3.410 3.410 N Climatology 820 820 820 820 820 820 820

over 5000 steps (5 epochs), followed by a cosine annealing schedule over 95000 steps (95 epochs).
Our model training was implemented using PyTorch (Paszke et al., 2019). In the training process, we
train multiple models with different lead time settings, where the lead time ranges from 15 to 45 days
with an interval of 5 days. The output from each model, corresponding to a single step prediction, is
combined to form a 45-day subseasonal forecast target. The model was trained on eight GPUs with
80GB of memory, achieving 77.6 TFLOPS of computing power.

4.1 MAIN RESULTS

Compared with deterministic forecast We compare the ACC and RMSE of TianQuan-S2S for
lead times of 15-45 days with the baselines in 4 target variables: temperature in 850hPa (T850),
geopotential at 500hPa (Z500), 2m temperature (T2m) and 10 metre wind speed (Wind10) in Figure
3. Based on these results, we have the following findings:

* Regardless of whether the resolution is 1.40625° or 5.625°, TianQuan-S2S consistently outperforms
all baselines in all variables. Specifically, the average RMSE improves by 0.14 on T850 (K), 59
on Z500 (m?/s?), and 0.353 on Wind10 (m/s) compared to the best baseline, all representing
significant improvements.

* Compared with the transformer-based direct prediction model ClimaX, FuXi-S2S (00 member)
performs worse on T850, Z500, and Wind10 before 25 days due to iterative error accumulation
at each step. However, beyond 25 days, FuXi-S28S stabilizes and avoids the model collapse and
severe metric degradation observed in ClimaX. Unlike ClimaX, TianQuan-S2S adds attention-based
climatology fusion and learnable Gaussian noise in the Transformer blocks to anchor forecasts,
reduce drift, and stabilize long-lead predictions.

* We can find that wind forecasting is more challenging for all baselines. However, TianQuan-S2S
generally achieves higher accuracy across all lead times. For example, day 45 Wind ACC of
ClimaX is 0.172, and ACC of ECMWEF-S2S is 0.112, while ACC of TianQuan-S2S is 0.297. Under
such cases, TianQuan-S2S still performs the best, further verifying its effectiveness.

Compared with ensemble forecast To better investigate the long-term prediction performance of
TianQuan-S2S, we compare it with the ensemble forecast models in Table 1, where lighter colors are
our model results. We further compare the RMSE of the ensemble mean forecast with the Climatology
baseline in Table 2. From the results, we can find that:
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Figure 4: Visualization of forecast results on 1.40625° daily ERAS data. The 30-day forecast of
one upper-air variable (T850) and two surface variables (T2m and Wind10). For each case, the input
time is 00:00 UTC on 15 February 2018.
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Figure 5: Scatter chart of prediction and the ground truth. The input time is 00:00 UTC on 15
February 2017 with the lead time of 25 days.

* Our method remarkably outperforms FuXi-S2S and ClimaX in almost all cases, demonstrating an
improvement in the effectiveness of long-term predictions. In addition, the RMSE of our ensemble
mean forecast remains above the Climatology baseline at T2m, T850, and Z500. However, since
the average value has a greater impact on wind speed, FuXi-S2S and our approach are worse.

* We can observe that ClimaX achieves worse forecast results in ensemble forecast metrics. Also, as
a direct forecast model, our method achieves significant improvements in results, particularly in the
RQE of day 35 Z500 (m?/s?), which improves by 72. Such results show that models with noise
generative are more stable than direct data-driven models.

* We note that for Wind10 at S2S lead times, both FuXi-S2S and our model are worse than climatol-
ogy, mainly because ML-based ensemble means over-smooth this highly variable field and thus
increase RMSE. In contrast, the 61-day sliding-window climatology used in WeatherBench2 (Rasp
et al., 2024) yields a much smoother and more stable Wind10 baseline, especially at long leads.

Visualization To provide a global view of model predictions, we visualize the day 30 prediction
distribution in Figure 4. As shown in the figure, all models show a global trend of change, but the
results of ClimaX have a serious loss of details. FuXi-S2S shows high value changes on both T2m
and T850, but its distribution on Wind10 is significantly different from the ground truth. In contrast,
our model aligns more closely with the realistic observations provided by ERAS, easing the model
collapse problem. In addition, to analyze the correlation between predictions and the ground truth,
we draw day 25 scatter plot in Figure 5. It demonstrates that our method is closer to the true values,
and outperforms numerical model ECMWF-S2S and data-driven models, including FuXi-S2S and
ClimaX, across correlation (R?), mean average error (MAE), and Bias metrics. After comparing these
details, we further validated our framework of incorporating climatology state by attention-based
fusion. More visualizations, such as different variable predictions, can be found in the Appendix G.

4.2 ABLATION STUDY

Effectiveness of the Model Design To validate the effect of each model design on the overall
model performance, we compare four experimental models based on whether they use attention-based
fusion as well as noise injection, as summarized in Table 3. The main observations are:
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Table 3: Ablation studies where Clim. is short for climatology.

Model RMSE ({) ACC (1)
15 20 25 30 35 40 45 | 15 20 25 30 35 40 45
wlo noise and Clim. 888 891 909 921 936 991 1048 |0.574 0.568 0.552 0.535 0.524 0.487 0.441
g w/o noise 859 875 896 904 914 918 940 |0.591 0.584 0.563 0.557 0.542 0.537 0.521
g w/o Clim. 857 879 903 914 923 953 972 |0.594 0.575 0.559 0.543 0.534 0.513 0.503
Default 843 869 882 887 901 904 921 |0.603 0.589 0.571 0.569 0.561 0.558 0.535
wio noise and Clim. 3.072 3.145 3271 3.591 3.613 3.716 3.802|0.790 0.779 0.750 0.702 0.684 0.657 0.648
)= wlo noise 2926 2934 3.025 3.124 3.174 3214 3.221|0.810 0.807 0.798 0.782 0.776 0.764 0.756
a wlo Clim. 3.010 3.072 3.184 3.224 3352 3.471 3.567|0.804 0.794 0.775 0.754 0.735 0.718 0.708
Default 2641 2734 2.828 2.922 2.942 2.998 3.052|0.816 0.814 0.812 0.810 0.807 0.805 0.796

Table 4: Comparison of Fusion and Perturbation Methods in Ensemble Mean RMSE. Our proposed
method (Default) achieves the best performance compared to other fusion strategies, perturbation
methods, and varying the number of noise injection layers.

Methods 15 20 25 30 35 40 45

Concat 2.525 2.556 2.565 2.583 2.627 2.655 2.707
Gate 2.476 2.528 2.530 2.541 2.563 2.589 2.670

IC Perturb  2.446 2.506 2.527 2.538 2.556 2.624 2.674 IC Perturb 814 812 809 821 823 808 818
FLN 2497 2.556 2.560 2.583 2.601 2.616 2.617 | FLN 825 814 818 827 825 816 823

A Layer 1 Only 2.599 2.626 2.653 2.714 2.777 2.802 2.841 %LayerlOnly 817 811 806 818 823 807 821
Layer 1-2  2.530 2.562 2.606 2.623 2.693 2.699 2.712 Layer 1-2 810 809 798 816 818 792 811
Layer 1-4  2.535 2.548 2.593 2.603 2.593 2.652 2.729 Layer 1-4 814 808 802 810 816 785 817
Layer 1-6  2.511 2.578 2.602 2.567 2.623 2.657 2.707 Layer 1-6 807 797 772 811 812 779 815
Layer 1-7 2456 2.496 2.518 2.532 2.554 2.604 2.624 Layer 1-7 799 782 776 804 813 778 808

Default ~ 2.424 2.457 2.459 2.502 2471 2.532 2.601| Default 791 779 766 798 805 766 796

Methods 15 20 25 30 35 40 45

Concat 830 814 808 837 845 819 832
Gate 811 802 797 818 828 802 818

* Comparing the models with and without the Climatology, it is evident that incorporating climate
information significantly improves the metrics for forecasts beyond 25 days. For example, Z500
RMSE of the model on w/o noise and Clim. increased by 160, and its T2m RMSE increased by
0.73 from day 15 to day 45, while Z500 RMSE of the model on w/o noise only increased by 81,
and its T2m RMSE increased by 0.295. This shows that climate information can serve as auxiliary
information to make the model perform better in long-term predictions.

* Employing noise generation in transformer blocks improves model performance, and further gains
are achieved when combined with attention-based fusion. The results in the table show that the
model on w/o Clim. lowers the average RMSE of Z500/T2m by 26/0.19. In contrast, the reductions
of the model on Default increase to 54/0.57. Such results not only suggest the effectiveness of
our model designs but also validate the effectiveness of utilizing the transformer block with noise
generation to extract the spatial periodic signal from climatology.

Analysis of Fusion and Perturbation Methods We investigate our method’s superiority in three
areas: (1) Fusion strategies, comparing Concatenation (i.e., Concat, merging climatology on channels)
and a Learnable Gate (i.e., adaptive climatology selection per pixel); (2) Perturbation methods,
comparing Initial-Condition Perturbation (i.e., IC Perturb, perturbing only initial conditions) and
Fixed-Layers Noise (i.e., FLN, removing learnable functions); (3) Impact of noise injection layers,
where “’Layers 1-2” refers to injecting noise into the 1st and 2nd blocks. Results in Table 4 show that:

» Comparing the two variants of fusion strategies and ensemble forecast perturbations on T2m
and Z500 at all lead times, our method (Default) achieves the best performance, confirming that
attention is a more effective and interpretable way to exploit climatological priors, and indicating
that the proposed learnable noise injection is a superior alternative to Initial-Condition Perturbations
and better emulates the climate evolution process than Fixed-Layer Noise.

* Investigating the impact of uncertainty blocks, we further conduct an ablation study on per-layer
perturbation. As the number of perturbed layers increases, the overall performance consistently
improves: the ensemble-mean RMSE of T2m and Z500 is reduced by up to 0.223 and 28.85,
respectively, demonstrating that noise injection enhances forecast accuracy.

Impact of Noise Scale To further understand the impact of the standard deviation of Gaussian
noise, we compared different noise standard deviations o and obtained the results shown in Figure 6.
From the results, we can find that when ¢ is around 1, the perturbation model generates better results,
indicating that this noise scale strikes an optimal balance between regularization and model accuracy.

9
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Figure 6: RMSE comparison between different Gaussian noise scales at all lead times. A lighter
color indicates better results: overall, the effect is better when o = 1.

5 RELATIVE WORK

Data-driven weather forecasts Weather forecasting mainly involves gridded prediction tasks, akin
to image-to-image translation. Recent advancements (Zheng et al., 2025) have been made in short-
to medium-term weather and climate forecasting. Notable examples include FourCastNet (Pathak
et al., 2022), which was the first to attempt multi-variable forecasting in the short term with results
comparable to NWP models. Pangu-Weather (Bi et al., 2023) and GraphCast (Lam et al., 2022)
surpass traditional numerical methods in achieving multi-variable forecasting in the medium term.
Based on the framework of transformer, FuXi (Chen et al., 2023b) and FengWu (Chen et al., 2023a)
developed a model method adapted to the Earth system. NeuralGCM (Kochkov et al., 2024) is
designed based on the GCM architecture to capture spatial dependencies in weather prediction.
Exploring higher resolution forecasting, FengWu-GHR (Han et al., 2024) aims to improve predic-
tion accuracy. Aurora (Bodnar et al., 2025) and Prithvi-WxC (Schmude et al., 2024) both focus
on Weather forecasting based on foundation models. Aardvark Weather (Allen et al., 2025) and
FuXi Weather (Sun et al., 2025) both employ end-to-end deep learning models, directly processing
raw observational data and assimilating satellite information for weather forecasting. While these
advancements extend forecasting capabilities, the absence of effective climate information leads to a
significant decline in performance. This highlights the need for new approaches specifically designed
for subseasonal forecasting.

Subseasonal-to-Seasonal forecasts Subseasonal forecasting, which provides predictions 2 to 6
weeks ahead, fills the crucial gap between short-term weather forecasts (typically up to 15 days)
and long-term climate predictions that extend to seasonal and longer timescales. Although machine
learning models have achieved significant progress in medium-range and climate prediction, their
effectiveness in subseasonal forecasting has been less pronounced (Wang et al., 2024; He et al., 2021).
However, at sub-seasonal to seasonal time scales, the predictive results of machine learning methods
often lack the details of forecasting (Vitart et al., 2022; Nathaniel et al., 2024). This limitation
leads to iterative errors in long-term forecasts, ultimately rendering the results unusable (Lam et al.,
2023). Recent methods focus on building more effective subseasonal forecasting models to enhance
predictive skill (Chen et al., 2024; Liu et al., 2025a;b). To strengthen subseasonal forecasting
capability, we proposed a patch embedding that incorporates climatological information and an
uncertainty-augmented Transformer that captures weather variability. In particular, although both
Fuxi-S2S and TianQuan-S2S add perturbations in the model, Variational Autoencoder-based FuXi-
S2S adds perturbations only within the latent space, while TianQuan-S2S injects learnable Gaussian
noise directly into the feature representations at every layer of Transformer blocks, continuously
reinforces variability, and more effectively mitigates model collapse in long-lead forecasts. In
addition, Fuxi-S2S does not explicitly incorporate climate information.

6 CONCLUSION AND FUTURE WORK

In this work, we present TianQuan-S2S, a novel framework that addresses the challenges in
subseasonal-to-seasonal (S2S) forecasting, particularly the limitations of model collapse and the
insufficient use of climate information. Our extensive experiments on the ERAS dataset demonstrate
that TianQuan-S2S outperforms both traditional numerical S2S systems and data-driven models,
providing significant improvements in both deterministic and ensemble forecasting. Ablation studies
have further substantiated the effectiveness of model designs, and additional empirical analysis
illustrates the superior performance across all lead times. In the future, we plan to optimize our model
framework to enable higher-resolution forecasts and incorporate additional information such as land,
ocean, and sea ice data to improve the learning capabilities of the model.

10
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file with detailed instructions for data preparation and script execution are available at https:
//github.com/zhangminglang42/TianQuan and also provided in the Appendix. The
appendix offers comprehensive details to support our claims. Appendix C describes the details and
hyperparameters of our proposed TianQuan-S2S. In Appendix D, we further explored the differences
in the prediction methods of each model and conducted extensive experiments on the prediction
methods of our own model. Furthermore, Appendix E and F list in detail the sources and processing
methods of the experimental data, and the calculation formulas of the indicators are also included.
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APPENDIX

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this study, Large Language Models (LLMs) were used as an assistive tool to enhance the overall
quality and clarity of the text. The primary research, analysis, and intellectual contributions remain
solely the work of the authors. The key applications of LLMs in this study are as follows:

* Text Refinement: LLMs were employed to enhance the grammatical accuracy, structure, and
consistency of the manuscript. This involved refining sentence flow and ensuring consistent
phrasing and tone across the entire paper.

* Coherence and Structure: LLMs were used to organize and strengthen the logical flow of ideas.
Suggestions were incorporated to improve transitions between sections and paragraphs, making the
narrative more cohesive.

* Idea Articulation: At various stages, LLMs acted as a sounding board, helping to articulate
complex ideas more clearly and explore alternative expressions for the concepts already proposed
by the authors.

All recommendations made by the LLM were critically reviewed, revised, and approved by the

authors to ensure accuracy and alignment with the research intent. The final responsibility for the
content lies solely with the authors.

B NOTATIONS

Table 5 summarizes the notations appearing in this paper.

Table 5: Summary of key notations.

Symbol Description
G Latitude-longitude grid with dimensions  x W x 2
X, Xetim the state of global weather at time ¢ and climatology R xWxXK
K Total number of weather variables, calculated as V4 x C + Vg
C Number of pressure levels
Va, Vs Number of upper-air variables, surface variables
th;m Predicted weather variables from day 15 to day 45
Foim Convolutional feature map extracted from climatology X ;m,
Fg, F, Spatial and channel feature maps from convolution operations
Fx Enhanced climate feature map after fusion of F and F,.
AW Reshaped feature tensor after flattening spatial dimensions

QW K v®

Query, key, and value matrices for attention mechanism

Wo kv Learnable projection matrices for query, key, and value
Wit Attention weights for spatial fusion
E E4 Egq Combined and upper-air and surface embedding tensors after patchify
EWn) Transformer output after applying attention mechanism
gn(.) Learnable noise function in the uncertainty block
L, 1at(7) Latitude-weighted mean squared error loss function, and latitude of the ¢-th grid row
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C MODEL DETAILS
This section presents the improved details of TianQuan-S2S.

C.1 IMPROVED DETAILS

After comparing our proposed TianQuan-S2S with FuXi-S2S and ClimaX in the experiments, we
identified the following details as critical for subseasonal forecasts performance:

* Multi-scale Temporal Modeling: Capturing features at different time scales is crucial for sub-
seasonal forecasts. Using multi-scale convolutions or multi-layer recurrent neural networks can
effectively handle both short-term and long-term dependencies.

* Incorporation of Attention Mechanisms: Self-attention mechanisms can dynamically assign
importance to different time steps, allowing the model to focus more on the time steps that have a
greater impact on future predictions, thereby improving accuracy.

* Climate change trend information: For time series with significant seasonality and long-term
climate trends, enhancing and fusing climate features separately can significantly improve prediction
performance.

C.2 HYPERPARAMETERS
The hyperparameters of the model are shown in Table 6.

Table 6: Hyperparameters and their meanings for the model.

Hyperparam Meaning Value
[V| Number of default variables 67
D Embedding dimension 384
Depth Number of UD-ViT blocks 8
heads Number of attention heads 12
Drop path For stochastic depth 0.1
Dropout Dropout rate 0.12

D INFERENCE DETAILS

A A

i PM20/ /PMZS/ /PM30/ /PM35/ PM40 PM45
=

L —
npu
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Outputs: 15-45 days predicted data

|y
-

S

Figure 7: Multi-model forecasting strategy. PMK denotes forecast models with K-day lead times.
With at least 5 days of input data, predictions can be made for the following 15-45 days.

Our approach differs from hierarchical temporal aggregation methods used in Pangu-Weather (Bi
et al., 2023). We divide the 1545 day prediction horizon into 5-day segments and train a separate
model P My for each. Formally, this design can be written as:

Xiayk,. . t+k = PMg (Xi—4,..¢), tER (1)
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where K = {20, 25, ..., 45} represents the lead time of the prediction model. Each model generates
its prediction solely from the initial fields spanning time steps ¢t — 4 to ¢, without relying on outputs
from earlier models, thereby preventing the accumulation of errors across models. Meanwhile, we
proposed the Content Fusion Module to integrate auxiliary signals (e.g., t+n climatology) and utilize
the robust backbone (UD-ViT) for improved long-range modeling. It can improve the accuracy of
each segment.

D.1 FORECAST STRATEGY RESEARCH

At present, the methods of weather forecasting are mainly divided into autoregressive forecasting and
multi-model single-step combination forecasting.

To help distinguish the predictions of currently common weather forecast models, we compare the
models of Pangu-Weather (Bi et al., 2023), FuXi (Chen et al., 2023b), and ClimaX (Nguyen et al.,
2023).

Table 7: Comparison of representative forecasting models.

Model Pretrain Single-Model AR Horizon Gran. Horizon
Pangu-Weather X X 1h, 3h, 6h, 24h Upto7d
FuXi v’ (ERAS) v' (Cascade) Each model 5d Upto 15d
ClimaX v' (CMIP6) v (ClimaX-iter) 1,3,5,7, 10, 14, 30d Up to 30d
TianQuan-S2S X X 15, 20, ..., 45d (step=5) 15-45d

We have also implemented a single autoregressive model fine-tuned by scheduled sampling based on
our framework. The RMSE comparison results are shown in the following table:

Table 8: Comparison of multi-model and single autoregressive model.

Strategy Vars 5 10 15 20 25 30 35 40 45
T2m 1.83 2.82 2.64 2.73 2.82 2.922 2.942 2.998 3.052
. T850 1.73 2.95 3.249 3.283 3.307 3.346 3.442 3.481 3.563
multi-model
Wind10 2.03 2.37 2.4185 2.4203 2.4219 2.4368 2.5043 2.5321 2.5984
7500 3.40 7.80 843.6 869.2 882.6 887.4 900.8 904.5 921.6
. T2m 1.52 2.67 2.79 2.89 2.95 3.25 341 3.61 3.80
single auto-
T850 1.82 3.12 3.32 3412 3.5142 3.6142 3.7814 3.941 4.023
. Wind10 1.94 2.26 2.465 2.501 2.583 2.623 2.771 2.817 3.062
regressive model
7500 3.10 7.74 875.1 888.9 899.3 935.4 948.2 967.1 985.6

As shown in the table 8, the autoregressive strategy outperforms the multi-model strategy in most
metrics for lead times under 10 days. However, for longer-range forecasts (beyond 10 days), the
multi-model strategy consistently achieves better performance across key metrics, highlighting its
superiority in the subseasonal-to-seasonal forecasting domain.

E DiscussioN

E.1 CONSISTENCY ANALYSIS OF MULTI-MODEL OUTPUTS

To address the concern regarding temporal discontinuities between adjacent lead times, our model
primarily analyzes the continuity of the output at the two key points:

* Residual connections for consistent representations: Residual connections in the Transformer

preserve information across layers, helping the model maintain coherent representations from short
to long leads and reducing abrupt shifts in the forecasts.
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* Smooth transitions and stability: Beyond climatology fusion, we add lead-time and absolute-time
embeddings (days since 1 Jan 1970) so the model is explicitly aware of the target time, which
improves temporal continuity and stability between adjacent lead-time forecasts.

Additionally, we further assess temporal continuity by computing the first-order differences between
adjacent model outputs and analyzing mean/std/max in the Table 9.

Table 9: Mean, standard deviation, and maximum of first-order differences for different variables and
lead-time ranges.

Metrics Vars 15-20 20-25 25-30 30-35 35-40 40-45
T2m 0.132  0.152 0.187 0210 0.286  0.316
T850 0.199 0206 0227 0239 0302 0.329

mean
Wind10 0.0138 0.0189 0.0196 0.0255 0.0353 0.0531
7500 13.01 13.96 1647 16.60  18.15  27.90
T2m 1.973 1986 2432 259  2.603 2716

std T850 2.558 2657 2921 3228  3.257  3.527
Wind10  0.971 1.128 1.180  1.377 1414 1497
7500 176.2 1737  203.5 1823 2045  226.2
T2m 11.88 13.01 15.36 1645 17.57 18.79
T850 1743  22.09 27.16 2822 2875  28.82

max

Wind10 6.852  7.331 8595 9913 12.33 12.36
7500 1031 1078 1252 1361 1322 1482

Note: K-(K+5) denotes the continuity metric between the K-day and (K+5)-day model predictions.

Overall, the mean, standard deviation, and maximum of the first-order differences increase with lead
time across all variables, consistent with the gradual degradation of forecast skill at longer ranges.
At the same time, the growth of these statistics across adjacent lead-time windows is smooth rather
than abrupt, indicating that the fields evolve in a temporally continuous manner instead of exhibiting
erratic, frame-to-frame jumps.

E.2 CHALLENGE IN WIND FORECASTING

The challenge in accurately forecasting near-surface variables, such as Wind10, primarily stems from
the extreme complexity of the underlying surface conditions and strong thermodynamic processes.
Factors like heterogeneous terrain, land-sea contrast, and surface heating induce intense turbulence
and high variability, making near-surface wind inherently less predictable than large-scale atmospheric
variables.

We acknowledge that current data-driven models, including FuXi-S2S and TianQuan-S2S, are cur-
rently limited by the absence of high-resolution surface data and explicit solar radiation inputs, which
are essential for capturing these fine-scale processes. This limitation explains why simple climatology,
which smooths out subseasonal variability, can sometimes appear more stable in evaluation metrics
for Wind10.

We fully agree on the importance of these inputs. The current model is evaluated primarily on
lower-resolution data and does not yet incorporate other crucial Earth system components (e.g., land
surface, ocean, and sea ice data), which significantly influence subseasonal climate variability.

We plan to extend the model to support higher-resolution inputs and integrate multi-source Earth
observation data (including detailed surface and radiation information) to enhance its physical
consistency and forecasting skill.
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Table 10: Dataset Variable List for Different Types and Levels.

Type | Variable name | Abbrev. | Levels

Static Land-sea mask LSM -
Static Orography - -
Surface | 2 metre temperature | T2m -
Surface | 10m Wind speed Windyy | -

Upper Geopotential Z 50, 100, 150
Upper | Wind speed Wind 200, 250, 300
Upper | Temperature T 400, 500, 600
Upper Specific humidity Q 700, 850
Upper | Relative humidity R 925, 1000

F EMPLOYED DATA

In this paper, two pre-generated datasets, ERAS and ECMWEF-S2S, are primarily utilized. The
following sections will introduce their sources and respective roles.

F.1 ERAS

We used the ERAS5 (Rasp et al., 2020) dataset to complete the model training process.
ERAS was created as a standard benchmark dataset and evaluation framework for compar-
ing data-driven weather forecasting models. WeatherBench regridded the original ERAS
from 0.25° to three lower resolutions: 5.625° and 1.40625°. The corresponding data can
be downloaded from https://cds.climate.copernicus.eu/cdsapp#!/dataset/
reanalysis—-erab-complete?tab=overview.

F.2 ECMWEF-S2S

The Sub-seasonal to Seasonal Prediction Project (S2S) (Vitart et al., 2017), initiated in November
2013 by the World Weather Research Programme (WWRP) and the World Climate Research Pro-
gramme (WCRP), aims to enhance forecast skill and deepen our understanding of the dynamics and
climate drivers on the sub-seasonal to seasonal timescale (ranging from two weeks to a season). This
project seeks to bridge the gap between medium-range and seasonal forecasting by leveraging the
combined expertise of the weather and climate research communities, thereby addressing critical
issues relevant to the Global Framework for Climate Services (GFCS). We can download its data
from https://apps.ecmwf.int/datasets/data/s2s/

F.3 FuXi-S2S

The forecast results of FuXi-S2S were downloaded from Hugging Face to facilitate a direct compari-
son with our model. The data, available at https://huggingface.co/FuXi-S28S, were used
to evaluate the performance of our approach in forecasting subseasonal-to-seasonal (S2S) predictions.
This comparison allowed us to assess the forecast accuracy and skill across various variables, such as
temperature and precipitation, in order to better understand the relative strengths and weaknesses of
our model.

F.4 DATA PROCESSING

Since our task is performed on ERAS daily average data, we simply introduce this data processing
here. We preprocess the hourly ERAS data by sampling every six hours (00, 06, 12, 18 UTC+00)
and then computing daily averages over these four time points. For example, the 00-day average
represents the sum of the average values from 23 to 00 on the previous day. The calculation is
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expressed as follows:

to
1
Vary, = T Z Vary, T =24 (12)

where V ar represents other variables except wind speed. For wind speed, the daily mean is calculated

as: . t
Windy, = Z VuR4v?, T =24 (13)

t=to—T+1
where u,; and v; are the zonal and meridional wind components at each sampled time.

G QUANTITATIVE EVALUATION

In this section, we detail the evaluation metrics applied in our experiments. The predictions and
ground truth are formatted as N x H x W, where N indicates the quantity of predictions or test
samples, and H x W defines the spatial resolution. To address the varying sizes of grid cells, L(3) is
introduced as a latitude-based weighting factor.

Root mean square error (RMSE) Root mean square error (RMSE) measures the average magni-
tude of the prediction errors in a dataset. It quantifies how closely predicted values match the actual
values, with lower RMSE indicating more accurate predictions.

RMSE = NZ Hi WZZL yk i, — Yk, z,j) (14)

=1 j=1

Anomaly correlation coefficient (ACC) Anomaly Correlation Coefficient (ACC) assesses the
accuracy of a forecast by measuring the correlation between predicted and observed anomalies. It is
commonly used in climate and weather forecasting to evaluate how well the model captures deviations
from the climatological average. Higher ACC values indicate better predictive skill.

Zkij ()Ykijkz]
\/Zkz] kszkzj ()kl2zj
Y/k,i,j = ﬂk,i,j = Ck,ijs Ykyig = Ykyig — Ch,i,j (16)

where Climatology C represents the average of the ground truth data across the entire test set over
time.

ACC = (15)

R-squared (R?), Mean Absolute Error (MAE) and Bias R-squared (R2), Mean Absolute Error
(MAE) and Bias are commonly used to assess the performance of predictive models. The metrics are

shown in Figure 5.
N N
Zizl(yi - yz‘)z

B =N oy )
1 N

MAEzﬁz;Iyi—m (18)
1 N

Bias = + > (i —wi) (19)

i=1

Continuous Ranked Probability Score (CRPS) CRPS measures the difference between the
forecast CDF and the step function at the observed value, thus evaluating both the sharpness and
reliability of a probabilistic forecast. A lower CRPS indicates a more accurate forecast. Calculation

Formula:
+oo

CRPS(F,y) = / (F(x) 1z > y})2 de, (20)

— 00

21



Published as a conference paper at ICLR 2026

where F'(x) is the forecast cumulative distribution function (CDF) and 1{z > y} is the indicator
function for the observed value y.

Spread Mean Error (SME) SME quantifies the difference between the ensemble spread and the
absolute error of the ensemble mean. This metric is useful to determine whether the ensemble is
under-dispersive (negative SME) or over-dispersive (positive SME), and thus helps in assessing the
reliability of the ensemble prediction system.Calculation Formula:

N
1
SME = = > (i = [yi — pil) 21

i=1

where for each case i, 0; is the ensemble spread (e.g., the standard deviation), u; is the ensemble
mean, and y; is the observed value.

Relative Quantile Error (RQE) RQE measures the relative error between the forecast quantiles
and the observation across different probability levels. It helps to assess how well the forecast
distribution captures the observed outcome. A lower RQE indicates that the forecast quantiles are in
closer agreement with the observations, implying a more skillful probabilistic forecast. Calculation
Formula:

Assuming K quantile levels ay,, RQE is defined as:

7 (22)

1« Qay, — Y
RQE:R;W ’

where g, denotes the forecast quantile at probability level oy, y is the observed value, and wy, are
the weights (with S 0wy, = 1).
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H ADDITIONAL RESULTS
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Figure 8: Fixed-point time series diagrams for TianQuan-S2S and ClimaX across three variables
(T850, T2m, and Wind (). The time series covers the period from 2017 to 2018, with latitude and
longitude fixed at 23° and 113°.

Figure 8 primarily illustrates the differences between pointwise time series predictions and actual
values on 5.625° data. The results show that both TianQuan-S2S and ClimaX, as machine learning
methods, can effectively capture the temperature trends associated with seasonal changes, demonstrat-
ing the advantages of machine learning in climate forecasting. Although there is still some deviation
in more complex variables like 10m wind speed, both methods achieve relatively stable forecasting.
Notably, TianQuan-S2S outperforms ClimaX in long-term sequence metrics such as RE and SI on
the variable of temperature, but ClimaX is better on the variable of wind.

TianQuan-S2S

ClimaX

Figure 9: Comparison of TianQuan-S2S and ClimaX in predicting deviations for three atmo-
spheric variables: Z500, Q500, and Wind500. The top row shows deviations from TianQuan-S2S,
and the bottom row from ClimaX.

The Figure 9 illustrates the deviation of predictions from actual values for Z500, Q500, and W500

variables using TianQuan-S2S and ClimaX. Overall, TianQuan-S2S exhibits more accurate pre-
dictions with smaller and more evenly distributed deviations across all three variables, indicating
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Figure 10: The scatter plots in the figure compare the performance of TianQuan-S2S, ClimaX,
and ECMWF-S2S across three variables: T850, Wind10, and Z500. Each model’s predictions are
plotted against the ground truth, with density colors indicating the concentration of data points. The
performance metrics, including R2, MAE, and Bias, are provided for each model.

better alignment with the actual atmospheric patterns. In contrast, ClimaX shows larger deviations,
particularly in areas with more complex dynamics, suggesting it struggles to capture finer details and
variations. The results demonstrate TianQuan-S2S’s superior capability in minimizing prediction
errors across different atmospheric conditions.

The results shown in Figure 10 indicate the following: For the Wind10 and Z500 variables, all models
show a reduction in predictive accuracy compared to T850, with lower R? values across the board.
Despite this, TianQuan-S2S consistently outperforms the other models. It achieves the highest R?
values for both Wind10 (0.482) and Z500 (0.942), along with the lowest MAE values (1.863 and
608.716, respectively), indicating superior precision. While ClimaX performs reasonably well, its
accuracy is slightly diminished, as reflected in its higher MAE and marginally lower R? values.
ECMWF-S2S, however, struggles significantly with both variables, displaying minimal correlation
with the ground truth, especially in Wind10, where it shows almost no predictive capability. The
results confirm TianQuan-S2S’s robustness across varying atmospheric conditions, while ClimaX
and ECMWEF-S2S show limitations in handling more complex variables like Wind10 and Z500.

In addition, we have referred to the prior works and included a new comparison with traditional ML
models, including XGBoost and Lasso, for forecasting T2m within the 15-45 day range.
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Table 11: Comparison of TianQuan-S2S, XGBoost, and Lasso across different forecast horizons.

Models 15 20 25 30 35 40 45

TianQuan-S2S 2.64 2.73 2.82 2.92 2.94 2.99 3.05
XGBoost 2.82 2.99 3.14 3.29 3.42 3.52 3.61
Lasso 3.05 3.22 3.38 3.53 3.65 3.74 3.79

As shown in the Table 11, while these models perform reasonably well, our proposed TianQuan-S2S
consistently achieves lower RMSE, particularly at longer lead times. This demonstrates the superiority
of our architecture in S2S forecasting.

Table 12: T2m RMSE of ablation studies for North America and East Asia.

Regional Model 15 20 25 30 35 40 45
w/o noise and Clim. 3.108 3.226 3.345 3.632 3711 3.843 3.853
w/o noise 3.095 3.144 3.262 3.342 3.406 3.604 3.611
North American
w/o Clim. 2.980 3.027 3.103 3.203 3.250 3.332 3.312
Default 2.715 2.764 2913 3.007 3.048 3.113 3.123
w/o noise and Clim. 3.037 3.151 3.275 3.554 3.577 3.751 3.797
. w/0 noise 2.951 2.943 3.039 3.102 3.153 3.188 3.253
East Asia
w/o Clim. 2.966 3.099 3.160 3.201 3.332 3.440 3.545
Default 2.591 2.686 2.834 2.919 2.886 2.965 3.011

Additionally, we have supplemented our analysis with ablation experiments across two different
regions to further investigate the performance of our model in different places. Based on Table 12,
we provide a comprehensive discussion:

* Due to more complex orography and land—sea contrast, T2m RMSE over North America is overall
higher than over East Asia; moreover, in North America, the “w/o Clim.” case (only noise) is better
than “w/o noise” (only climatology), indicating that noise perturbations bring larger gains than
climatology in more complex terrain.

* From 15 to 45 days, the advantage of the Default over all ablations persists and generally enlarges,
confirming that our components are especially helpful for mitigating long-lead skill degradation
while still improving short leads.

Table 13: T2m RMSE of ablation studies for North America and East Asia.

Variables Model 15 20 25 30 35 40 45
w/o noise and Clim. 3.867 3.923 3.883 3.990 4.006 4.062 4.116

T850 w/0 noise 3.599 3.614 3.691 3.846 3.875 3.982 3.931
w/o Clim. 3.412 3.495 3.573 3.666 3.666 3.698 3.860
Default 3.249 3.283 3.307 3.346 3.442 3.481 3.563
w/o noise and Clim. 2.844 2.861 2.894 2.815 2919 2.922 3.110

Wind10 w/0 noise 2.694 2.719 2.756 2.793 2.804 2.903 2.923
w/o Clim. 2.658 2.598 2.558 2.670 2.748 2.694 2.795
Default 2.418 2.420 2.422 2437 2.504 2.532 2.598

From Table 13, for different variables (T850 and Wind10), the Default model (with noise + clima-
tology) consistently achieves the lowest RMSE across all leads, confirming that our design benefits
variables with diverse physical scales.
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To investigate performance during challenging conditions, we analyzed the model’s results during the
severe 2018 North American (NAM) and 2018 East Asian (EA) heatwaves, starting from June 28,
2018, and July 9, 2018, respectively in Table 14.

Table 14: T2m RMSE of ablation studies for North America and East Asia.

Lead Time Model NAM EA
ClimaX 2.948 3.046

25-day FuXi-S2S 2.634 2.851
TianQuan-S2S 2.522 2.721
ClimaX 3.081 3.120

40-day FuXi-S2S 2.724 2.942

TianQuan-S2S 2.685 2.843

We can find that TianQuan-S2S achieves better results compared to existing models (ClimaX, FuXi-
S2S) even under these extreme cases, demonstrating its practical usefulness. While these results
are encouraging, we acknowledge that improvements on extreme-weather metrics are more modest
than for bulk statistics, suggesting that rare, high-impact events in complex terrain remain more
challenging and warrant further targeted investigation.

Table 15: T2m RMSE Comparison of Ensemble Mean Results for Different Noise Scale.

Regional Model 15 20 25 30 35 40 45
oc=0.1 2.509 2.554 2.568 2.569 2.624 2.630 2.718
=05 2471 2.535 2.539 2.543 2.569 2.592 2.679

Input Perturbations oc=1 2.446 2.506 2.527 2.538 2.556 2.624 2.674
oc=15 2.551 2.580 2.594 2.614 2.664 2.692 2.734
o=2 2.611 2.637 2.642 2.652 2.696 2.710 2.774

oc=0.1 2.507 2.538 2.548 2.553 2.607 2.614 2.696
=05 2.505 2.556 2.565 2.583 2.617 2.635 2.707

Fixed Noise oc=1 2.497 2.556 2.560 2.583 2.601 2.616 2.719
oc=15 2.615 2.638 2.648 2.663 2.695 2.717 2.786
o=2 2.681 2.708 2.721 2.728 2.762 2.798 2.886

Notably, the results shown in Table 15, the performance of Input Perturbation and Fixed Noise rapidly
drops when the noise scale increases to 1.5.
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