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Abstract
The enhanced capabilities of large language
models (LLMs) necessitate effective AI align-
ment. Learning from preference-based feedback
has recently become popular as a promising ap-
proach to align large language models with hu-
man preference. Despite the impressive capabili-
ties demonstrated by these aligned models across
various tasks, they lack a unified theoretical
framework for expression and deeper theoretical
understanding. In this work, we propose the uni-
fied theoretical paradigm on human preference-
based optimization, known as the Unified Prefer-
ence Optimization (UPO), which can be proven
as the generalization of ΨPO. Through un-
derstanding of Unified Preference Optimization
(UPO), we can obtain a deeper theoretical com-
prehension of the practical algorithms, as UPO
serves as a generalization for them. Furthermore,
we explore a specific scenario of UPO by sim-
ply setting the mapping to the Identity. By em-
ploying this method, we develop a novel prac-
tical algorithm, with the name of Identity Uni-
fied Preference Optimization (IUPO). It can be
demonstrated that IUPO serves as a generaliza-
tion of IPO under diverse divergence constraints.
Our experiments comparing JS-divergence based
IUPO to IPO on the fine-tuning task of GPT2
demonstrate that IUPO, particularly JS-IUPO,
outperforms IPO.

1. Introduction
The significant advancement in the capabilities of large lan-
guage models (LLMs) provides a substantial step towards
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achieving artificial general intelligence (AGI). However,
this development has also brought about a plethora of con-
current risks, which requires effective AI alignment.

Reinforcement learning from Human Feedback(Christiano
et al., 2023) (RLHF) has been proven to be effective in
aligning the behavior of LLMs with human preferences and
following human instructions. The process can be sum-
marized as three main steps: 1) supervised fine-tuning,
2) reward model training and 3) RL fine-tuning. The
RLHF pipeline, while effective, is considerably more in-
tricate than supervised learning. Specially, RLHF greatly
benefits from training an individual reward model. How-
ever, researchers has found that LLMs may exploit er-
rors learned through the reward model(Gao et al., 2022),
which raises potential misuse of LLMs(Hendrycks et al.,
2023)(Shevlane et al., 2023). Furthermore, reinforcement
learning algorithms such as PPO often exhibit less stability
and demand more memory.

Direct Preference Optimisation (DPO)(Rafailov et al.,
2023) has been proposed as an approach that skips the re-
ward model building stage and learns a policy directly from
collected data. The essence of this method lies in leverag-
ing the mapping between the reward function and the opti-
mal policy. Ψ-preference optimization (ΨPO)(Azar et al.,
2023) demonstrates the feasibility of characterizing the
objective functions of Reinforcement Learning from Hu-
man Feedback (RLHF) and Direct Preference Optimization
(DPO) as specific instances of a broader objective exclu-
sively formulated based on pairwise preferences. Further-
more, it provides a straightforward solution to mitigate the
issue of overfitting by setting Ψ to identity in the ΨPO, call-
ing Identity-PO (IPO), whose construction circumvents the
modeling assumption of the Bradley-Terry model(Bradley
& Terry, 1952) for preferences.

Nonetheless, most current studies focus on solutions lim-
ited to the KL divergence, with a lack of exploration into
the integration of other divergences. In addition, it has been
noted that fine-tuning large language models with RLHF
under the KL regularization only will lead to a narrow
range of political perspectives(Santurkar et al., 2023). As
a countermeasure, incorporating various divergences can
lead to solutions. f -DPO(Wang et al., 2023) generalizes
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the DPO framework to integrate a range of divergence con-
straints, which not only eliminates the need for estimating
the normalizing constant in the Bradley-Terry model, but
also enables a tractable mapping between the reward func-
tion and the optimal policy.

In this work, we generalize the ΨPO framework(Azar
et al., 2023) to incorporate f -divergence constraints which
is named Unified Preference Optimization (UPO). By
analyzing the generalized optimization target using the
Karush–Kuhn–Tucker (KKT) conditions, it can be demon-
strated that the normalizing constant can be eliminated in
the Bradley-Terry model. Furthermore, we set Ψ as a
special function, it can be demonstrated that f -DPO is a
specific form of UPO. By employing various mathemat-
ical methods, we can establish the relationship between
UPO, f -DPO, ΨPO and DPO: UPO is the generalization
of both ΨPO and f -DPO, and at the same time, ΨPO
and f -DPO are generalizations of DPO. Furthermore,
motivated by the work(Azar et al., 2023), we propose a
novel practical solution, achieved by setting Ψ straightfor-
ward to the Identity in the UPO with the name of Identity-
UPO (IUPO), which guides to the practical solution of
UPO. The experiments are conducted by comparing JS-
divergence based IUPO to IPO on the GPT2 language
model(Radford et al., 2019) under different penalty coef-
ficients. The experimental results indicate that, across a
lot scenarios, IUPO, especially IUPO with JS-divergence
constrains, consistently outperforms IPO. Hence, the main
contributions of this work can be summarized as follows:

• A unified theoretical paradigm on human preference-
based optimization UPO is proposed, which is the
generalization of ΨPO, f -DPO and DPO.

• IUPO, as a practical solution of UPO, is the general-
ization of IPO within the f -divergence constrains.

• Experiments comparing JS-divergence based IUPO to
IPO demonstrate that IUPO does outperform IPO.

2. Preliminary
2.1. Bradley-Terry Model

Bradley-Terry Model(Bradley & Terry, 1952) has been
widely employed for pairwise comparisons. In practice, it
usually adopts a specific form, denoted as

P (ywin ⪰ yloss) =
exp (R (ywin))

exp (R (ywin)) + exp (R (yloss))
(1)

, whereR(ywin) represents the rating of the item preferred
by human, and in contrast, R(yloss) represents the item
that are less preferred by human. Furthermore, (1) is often

expressed in the logistic formula as follows:

P (ywin ⪰ yloss) =
1

1 + exp (− (R (ywin)−R (yloss)))

= σ (R (ywin)−R (yloss))

(2)

, where σ(x) is the Sigmoid function.

2.2. RLHF: Reinforcement Learning from Human
Feedbacks

The impact of RLHF on fine-tuning the behavior of LLMs
to better align with human values, such as helpfulness and
harmlessness, has been thoroughly investigated. The ad-
vantages of RLHF have also been demonstrated in specific
tasks, such as summarization, where models are trained
to condense extensive information into succinct represen-
tations. The technique has three steps: supervised fine-
tuning, reward model training and RL fine-tuning. In the
last step, it often maximizes the following objective:

Ex∼Dprompt,y∼πθ(·|x)[rφ(y|x)]− βDKL(πθ(·|x)|πref (·|x))
(3)

, whereDprompt =
{
xi, yiwin, y

i
loss

}N

i=1
is the human pref-

erence dataset sampled from P; rφ(y|x)represents the re-
ward function learned from the dataset; πref (·|x) is the
reference model which is often the supervised fine-tuning
model in step 1; and β is the penalty coefficient of KL di-
vergence between πθ(·|x) and πref (·|x), with the purpose
of avoiding model degeneration.

2.3. DPO: Direct Preference Optimization

The initial DPO technique (Rafailov et al., 2023) estab-
lishes a functional mapping between the reward model and
the optimum policy with the constraint of KL divergence.
With the method of reparameterizing the reward function
using the policy in a supervised manner, it makes directly
optimize the policy possible. By setting reward function as

R(·|x) = β log
πθ(·|x)
πref (·|x)

+ β logZ (x)

, where Z (x) is the partition function or the normalizing
constant. Substituting the reward function into the Bradley-
Terry model, it can be found that the partition function can
be cancelled out. Hence, the loss function can be given as
follows:

−ED

[
log σ

(
β log

πθ(yw|x)
πref (yw|x)

− β log
πθ(yl|x)
πref (yl|x)

)]
(4)

, where D =
{
xi, yiw, y

i
l

}N

i=1
is the human preference

dataset, yiw represents the item preferred by human, and
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yil represents the item that are less preferred by human. In
the subsequent discussion, we will continue such notation.

2.4. f -divergence and f -DPO

The f -divergence encompasses a wide range of frequently
utilized divergences, including reverse KL divergence,
forward KL divergence, Jensen-Shannon divergence, α-
divergence and so on. Its rigorous mathematical definition
is as follows. For any convex function f : R+ → R, sat-
isfying f(1) = 0 and f is strictly convex around 1, the
divergence between two distributions p(x) and q(x) can be
defined as:

Df (p, q) = Eq(x)

[
f

(
p (x)

q (x)

)]
.

The DPO framework is generalized to f -DPO (Wang et al.,
2023) by integrating a variety of f -divergence for regu-
larization. Through addressing the Karush–Kuhn–Tucker
(KKT) conditions of the optimization objective, the reward
function can be rewritten as:

R(y|x) = βf ′
(

π∗(y|x)
πref (y|x)

)
+ const.

By plugging the reward function into the Bradley-Terry
model, the following expression can be given:

P (yw ⪰ yl)

= σ

(
βf ′

(
π∗(yw|x)
πref (yw|x)

)
− βf ′

(
π∗(yl|x)
πref (yl|x)

))
, where π∗ is the optimal policy; f ′ is the derivative of
function f . Therefore, in order to train a better model πθ,
we can minimize the following negative log-likelihood loss
function:

−ED

[
log σ

(
βf ′

(
πθ(yw|x)
πref (yw|x)

)
− βf ′

(
πθ(yl|x)
πref (yl|x)

))]
(5)

When Df is the reverse KL divergence, we have f(x) =
x log x, and f ′(x) = log x+1. In this situation, by simpli-
fying (5), we can obtain the formula of (4). This indicates
that f -DPO is a generalization of DPO.

2.5. ΨPO: Ψ-Preference Optimization

In the work (Azar et al., 2023), it is demonstrated that the
objective functions of RLHF and DPO can be characterized
as special cases of a more general objective exclusively ex-
pressed using pairwise preferences. The objective is called
Ψ-preference optimization (ΨPO) objective, where Ψ is an
arbitrary non-deceasing mapping. The objective can be de-
scribed as follows.

Considering a general non-decreasing mapping Ψ :
[0, 1] → R and a real positive regularisation parameter
β ∈ R∗

+, the ΨPO objective can be defined as:

max
π

E
x∼ρ

y∼π(.|x)
y′∼µ(.|x)

[Ψ (p∗ (y ⪰ y′|x))− βDKL (π||πref )] (6)

, where x is the given context and follows the context distri-
bution ρ; y is the action generated by the policy π that is an
discrete probability distribution and associates to each con-
text; y′ is the action generated by the reference policy πref

and µ(·|x) is the behaviour policy. The true human prefer-
ence, denoted as p∗ (y ⪰ y′|x), is defined as the probability
of action generated by the policy π being preferred to action
generated by the reference policy πref given the context x.

By supposing that Ψ(x) = log(x/(1−x)), the first term of
(6) holds the following formula:

Ey′∼µ(·|x) [Ψ (p∗ (y ⪰ y′|x))]

=Ey′∼µ(·|x)

[
Ψ

(
er(y)

er(y) + er(y′)

)]
=Ey′∼µ(·|x)

[
log

er(y)

er(y′)

]
= Ey′∼µ(·|x) [r (y)− r (y′)]

=r (y) + const
(7)

The result is equivalent to the reward in (3), and in the state-
ment of DPO, we know that the optimal policy for the DPO
objective in (4) is identical to the RLHF objective in (3).
Hence, with a special form of Ψ(x), it can be proved that
ΨPO is the generalization of RLHF and DPO.

2.6. IPO: Identity Preference Optimization

The Identity Preference Optimization (IPO) can be viewed
as a practical application of the Ψ-Preference Optimization
(ΨPO). Specifically, this is achieved by setting Ψ as the
identity mapping in (6), leading to the direct regularized
optimization of total preferences, just as the following for-
mula:

max
π

P∗ (π ⪰ πref )− βDKL (π||πref ) (8)

Through appropriate practical simplifications, the loss
function for the IPO is ultimately derived. Firstly, we de-
fine:

hπ (x, yw, yl) = log

(
π (yw |x)πref (yl |x )
π (yl |x )πref (yw |x )

)
= log

(
π (yw |x )
π (yl |x )

)
− log

(
πref (yw |x )
πref (yl |x )

)
.

(9)

Then, the loss function of IPO can be written as :

E(x,yw,yl)∼D

[
hπ (x, yw, yl)−

1

2β

]2
(10)
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Comparing the loss function in (10) and (4), we can
know that IPO, unlike DPO, is consistently regular-
ized towards πref by managing the discrepancy between
the log-likelihood ratios log (π (yw |x ) /π (yl |x )) and
log (πref (yw |x ) /πref (yl |x )), thereby mitigating over-
fitting to the preference dataset.

3. Methodology
3.1. The Unified Preference Optimization (UPO)

In the previous human preference-based algorithms (es-
pecially ΨPO: a general theoretical paradigm on learning
from human preference), it is customary to apply regular-
ization to the fine-tuned model in order to ensure its prox-
imity to the original or reference model, as measured by
KL divergence. However, this form of regularization is
excessively limiting. Our goal is to build a wider range
of regularization, with the help of f -divergence, which en-
compasses many commonly employed divergences such as
forward KL, reverse KL, JS divergence and so on.

Starting with the objective of ΨPO in (6), we formulate the
Unified Preference Optimization (UPO) objective as fol-
lows:

max
π

E
x∼ρ

y∼π(.|x)
y′∼µ(.|x)

[Ψ (p∗ (y ⪰ y′|x))− βDf (π, πref )] (11)

In order to get a general solution form of the optimization
objective mentioned above, we propose the following the-
orem:

Theorem 3.1. For all valid x, πref ≻ 0 and f ′(x) is invert-
ible with 0 /∈ dom(f ′(x)), the expectation of the mapping
Ψ can be reparameterized using the policy model π and the
reference model πref as following formula:

E
x∼ρ

y∼π(.|x)
y′∼µ(.|x)

Ψ(p∗ (y ⪰ y′|x)) = βf ′
(

π∗ (y |x )

πref (y |x )

)
+ λ

(12)

Proof. We consider this problem from a optimization per-
spective, and describe it as a constrained optimization prob-
lem:

max
π

E
x∼ρ

y∼π(.|x)
y′∼µ(.|x)

[Ψ (p∗ (y ⪰ y′|x))− βDf (π, πref )]

s.t. ∀y
∑
y

π (y|x) = 1 and π (y|x) ≥ 0

In order to solve the constrained problem, we apply the
Lagrange Multiplier Method, which the following formula

can be given:

L = E
x∼ρ

y∼π(.|x)
y′∼µ(.|x)

[
Ψ(p∗ (y ⪰ y′|x))− βf

(
π (y |x )

πref (y |x )

)]

− λ

[∑
y

π (y|x)− 1

]
+

∑
y

η(y)π (y|x)

(13)

Examining the Karush-Kuhn-Tucker (KKT) conditions for
this optimization problem:
1. Stationarity Condition:

It is required that the gradient of the Equation with respect
to the primal variables (π(y|x)) be zero:

∀y ∇π(y|x)L(π(y|x), λ, η(y)) = 0

Hence, we can obtain:

∇π(y|x)L(π(y|x), λ, η(y))

= E
x∼ρ

y∼π(.|x)
y′∼µ(.|x)

Ψ(p∗ (y ⪰ y′|x))− βπref (y|x) f ′
(

π (y |x )
πref (y |x )

)

· 1

πref (y |x )
− λ+ η (y)

= E
x∼ρ

y∼π(.|x)
y′∼µ(.|x)

Ψ(p∗ (y ⪰ y′|x))− βf ′
(

π (y |x )

πref (y |x)

)
− λ+ η (y)

= 0

(14)

Therefore, we can derive the following equation:

E
x∼ρ

y∼π(.|x)
y′∼µ(.|x)

Ψ(p∗ (y ⪰ y′|x)) = βf ′
(

π (y |x )
πref (y |x)

)
+ λ− η (y)

(15)

2. Primal Feasibility:

The ultimate solution must meet the initial constraints of
the problem.

∀y
∑
y

π (y|x) = 1 and π (y|x) ≥ 0

3. Dual Feasibility:

It dictates that the Lagrange multipliers for the inequality
constraints must be non-negative.

∀y η (y) ≥ 0

4. Complementary Slackness:
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It requires that each inequality constraint is either fulfilled
with equality or has a corresponding Lagrange multiplier
of zero.

∀y π (y|x) η (y) = 0

Upon this condition, certain solutions can be disregarded,
as π (y|x) = 0 or η (y) must hold for each y.

Therefore, for functions f in which 0 /∈ dom(f ′(x)) and
under the assumption that πref ≻ 0 almost everywhere, it
can be deduced that π (y|x) ≻ 0 almost everywhere. Thus,
we must have: ∀y η (y) ≡ 0. This implies that (15) can
be simplified, as shown below:

E
x∼ρ

y∼π(.|x)
y′∼µ(.|x)

Ψ(p∗ (y ⪰ y′|x)) = βf ′
(

π (y |x )
πref (y |x)

)
+ λ

(16)

By integrating human preferred action yw and less pre-
ferred action yl into (16), we can establish the following
general form:

E
x∼ρ

yw,yl∼π(.|x)
y′
w,y′

l∼µ(.|x)

[Ψ (p∗ (yw ⪰ y′w|x))−Ψ(p∗ (yl ⪰ y′l|x))]

= β

[
f ′

(
π (yw|x )

πref (yw|x)

)
− f ′

(
π (yl |x )
πref (yl|x)

)]
(17)

3.2. The Relationship between UPO and f -DPO

Motivated by the form of (7), we observe that UPO serves
as a generalization of f -DPO. Actually, the following
proposition establishes the connection between UPO and
f -DPO.

Proposition 3.2. Setting Ψ(x) = log(x/(1 − x)), and
the true human preference p∗ satisfies to the Bradley-Terry
model, then the optimal policy for UPO in (17) is equiva-
lent to formula for f -DPO in (5).

Proof. As shown in (7), for action yw, we can obtain the
conclusion as follows:

E
x∼ρ

yw∼π(.|x)
y′
w∼µ(.|x)

Ψ(p∗ (yw ⪰ y′w|x)) = R (yw|x) + λ

Combining the (12) derived in Theorem 3.1, we can get:

R (yw|x) = βf ′
(

π (yw|x )
πref (yw|x)

)
+ λ

′
(18)

Similarly, in the case of action yl, we can also derive the
following formula:

R (yl|x) = βf ′
(

π (yl|x )
πref (yl|x)

)
+ λ

′
(19)

According to the Bradley-Terry model, the following for-
mula can be derived:

p∗ (yw ⪰ yl|x) = σ (R (yw|x)−R (yl|x))

=σ

(
βf ′

(
π (yw|x )

πref (yw|x)

)
− βf ′

(
π (yl|x )

πref (yl|x)

))
(20)

Therefore, in this instance, the loss function can be formu-
lated as follows, which takes the same formula as (5):

L = −ED∼(x,yw,yl) [log p
∗ (yw ⪰ yl|x)]

= −ED log σ

(
βf ′

(
π(yw|x)

πref (yw|x)

)
− βf ′

(
π(yl|x)

πref (yl|x)

))
(21)

4. Practical Algorithm
4.1. Identity Unified Preference Optimization (IUPO)

Similarly to IPO(Azar et al., 2023), here we regard Ψ to be
an identity mapping, which is a particularly natural form
to consider, and then we can derive the optimization objec-
tive of Identity Unified Preference Optimization (IUPO) as
follows:

max
π

Px∼ρ (π ⪰ πref )− βDf (π, πref ) (22)

Motivated by the processing in(Azar et al., 2023), where
hπ (x, yw, yl) is defined as the human preference func-
tion, we define the unified human preference function
here. In transitioning from DPO to f -DPO and from
ΨPO to UPO, the equation’s form changes, particularly
through the generalization of log (π (y |x ) /πref (y|x)) to
f ′ (π (y |x ) /πref (y|x)). Therefore, we can obtain uni-
fied human preference function by means of induction
from original hπ (x, yw, yl) = log (π (yw |x ) /π (yl |x ))−
log (πref (yw |x ) /πref (yl |x )) as follows:

Uhπ (x, yw, yl) = f ′
(
π (yw|x )
π (yl|x)

)
− f ′

(
πref (yw |x )
πref (yl|x)

)
(23)

Subsequently, the loss function of IUPO can be expressed
as follows:

E(x,yw,yl)∼D

[
Uhπ (x, yw, yl)−

1

2β

]2
(24)
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Algorithm 1 Identity Unified Preference Optimization (IUPO)
Require: Preference dataset D (x, yw, yl), batch size b, constraint coefficient β, f -divergence function f , learning rate lr,
reference policy πref .
Initialize the model πθ0 with supervised fine-tuned on dataset D (x, yw, yl)
Using f -divergence define

Uhπ (x, yw, yl) = f ′
(
π (yw|x )
π (yl|x)

)
− f ′

(
πref (yw |x )
πref (yl|x)

)
for n = 1, 2 ......N iterations do

Sample a batch B =
{(

xi, y
i
w, y

i
l

)}b

i=1
from dataset D;

Compute the loss using (24) with the chosen function f ;
Compute the gradient loss∇θL(θt−1,B);
Update the model θt ← θt−1 −∇θL(θt−1,B)

end
Return: Final model πθN

Actually, the simplified form of loss function pro-
vides valuable insights into IUPO’s policy optimiza-
tion: the model learns from the preferences dataset by
regressing the gap between f ′ (π (yw|x )/π (yl|x)) and
f ′ (πref (yw |x ) /πref (yl|x)) to 1/ (2β). We summarize
the full algorithm of IUPO in Algorithm 1.

4.2. The relationship between IUPO and IPO

Having derived the IUPO loss function form from the in-
ductive approach, it is evident to understand the relation-
ship between IUPO and IPO: IUPO is the generalization
of IPO. We illustrate their connection in detail through the
following proposition.

Proposition 4.1. Upon setting the f -divergence to reverse
KL divergence, specifically by defining f(x) = x log x, it
can be observed that the Uhπ (x, yw, yl) in (23) degener-
ates into the hπ (x, yw, yl) in (9).

Proof. Choosing the function f(x) as the reverse KL di-
vergence, we can calculate its derivative as follows:

f ′(x) = (x log x)′ = log x+ x · 1/x = log x+ 1

Thus, we can obtain that:

Uhπ (x, yw, yl) = f ′
(
π (yw|x )
π (yl|x)

)
− f ′

(
πref (yw |x )
πref (yl|x)

)
= log

(
π (yw|x )
π (yl|x)

)
+ 1− log

(
πref (yw |x )
πref (yl|x)

)
− 1

= log

(
π (yw|x )
π (yl|x)

)
− log

(
πref (yw |x )
πref (yl|x)

)
=hπ (x, yw, yl)

(25)

At this point, the loss function of IUPO in (24) is equivalent
to the loss function of IPO in (10).

5. Experiments
5.1. Experimental Setup

For our experiments, we adopt two datasets, including
Anthropic HH dataset(Bai et al., 2022) and Stanford Hu-
man Preferences (SHP) dataset(Ethayarajh et al., 2022).
Our primary baseline approach is IPO(Azar et al., 2023),
and we will compare it with the performance of IUPO
under JS-divergence (JS-IUPO). The expression for JS-
divergence is given by the function f(x) = x log x −
(x+ 1) log ((x+ 1) /2), and its derivative can be ex-
pressed as f ′(x) = log (2x/ (1 + x)). It is evident that
0 /∈ dom(f ′(x)), and we can derive the loss function for
JS-IUPO with the following formula:

ED

log
 2 · π(yw|x )

π(yl|x)
π(yw|x )
π(yl|x) + 1

− log

 2 · πref (yw|x )
πref (yl|x)

πref (yw|x )
πref (yl|x) + 1

− 1

2β

2

(26)

In the experiment, we select GPT-2(Radford et al., 2019)
as our benchmark model, which has a parameter count
of 137M. We initially carry out supervised fine-tuning to-
wards the GPT-2 model using the SHP and HH datasets,
with the purpose of alleviating the distribution shift be-
tween the true reference distribution which is unavailable
and πref utilized by IPO and JS-IUPO. Subsequently, we
train the fine-tuned GPT-2 model on SHP and HH datasets
with IPO and JS-IUPO. We set the penalty coefficients β
to be 0.1, 0.2 and 0.5, in order to compare the training out-
comes under different penalty coefficients. By comparing
the train loss curves, the evaluation loss curves, the eval-
uation accuracy curves and the evaluation margin reward
curves, we can assess the effectiveness of the algorithms.
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Figure 1. Setting the penalty coefficient β separately as 0.1, 0.2 and 0.5, the train loss curves, the evaluation loss curves, the evaluation
accuracy curves and the evaluation margin reward curves for IPO and JS-IUPO.

5.2. Experiments on the HH and SHP datasets

The result curves are depicted in Figure 1. In the analysis
of the experimental results, we are dedicated to addressing
the following two questions.
Question 5.1. Have the effectiveness of IPO and IUPO
been confirmed, and what are their performance on lan-
guage models?

Upon analysis of the result curves, it is apparent that the
train loss curves and evaluation loss curves display a dis-
tinct decreasing trend, and additionally, the evaluation ac-
curacy curves and the evaluation margin reward curves ex-
hibit a significant increasing trend, which means that it is
effective for IPO and IUPO to fine-tune language models.

As depicted in the figures, IPO consistently remains above
JS-IUPO in curves of train loss and evaluation loss, while
in curves of evaluation accuracy and evaluation margin
reward, IPO consistently lies below JS-IUPO. It indi-
cates that IUPO, particularly JS-divergence based IUPO,
achieves better performance than IPO.
Question 5.2. Are IPO and IUPO sensitive to the penalty
coefficient β? If so, what is a good choice for β?

Comparing the curves when penalty coefficient β are set as
0.1, 0.2, and 0.5. When setting β as 0.1, both the train loss
curves and evaluation loss curves exhibit stable decreases,

and the evaluation accuracy of JS-IUPO and IPO reach
0.605 and 0.595, respectively, after 1.1M steps. When set-
ting β as 0.2, the evaluation accuracy curves and the eval-
uation margin reward curves show slight fluctuations, with
minor performance degradation after approximately 800k
steps, and after 1.1M steps, the evaluation accuracy of JS-
IUPO and IPO are respectively 0.582 and 0.548. Setting
β as 0.5 results in significant fluctuations in the evaluation
accuracy curves and the evaluation margin reward curves,
with model performance degradation occurring after ap-
proximately 300k steps, and we therefore implement the
early stopping strategy to 610k steps during model training
in order to prevent more severe degradation.

The analysis above indicates that setting the penalty coef-
ficient β = 0.1 is an appropriate choice for both IPO and
JS-divergence based IUPO.

6. Conclusion, Limitation and Future Work
In this paper, the unified theoretical paradigm on human
preference-based optimization is proposed, namely Unified
Preference Optimization (UPO), which can be theoretically
proved to be the generalization of ΨPO, f -DPO and DPO.
Furthermore, from a practical perspective, we develop the
Identity-UPO (IUPO) algorithm, acting as the generaliza-
tion of IPO within the f -divergence constrains.
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The limitations of this paper are mainly as follows: Firstly,
the experiments are conducted exclusively on GPT-2, a
model with a limited number of parameters, the impact on
language models with larger parameter sizes remains un-
explored. Secondly, the ablation experiments on model hy-
perparameter β is relatively limited. Finally, experiments
on more tasks could be conducted to verify the effective-
ness of the proposed method.

Hence, future work will focus on more sophisticated mod-
els, more ablation experiments on hyperparameter β and
more tasks. Furthermore, we would like to further re-
search whether any potential ethical risks associates with
this method.
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