
Under review as submission to TMLR

Layerwise Bregman Representation Learning
with Applications to Knowledge Distillation

Anonymous authors
Paper under double-blind review

Abstract

In this work, we propose a novel approach for layerwise representation learning of
a trained neural network. In particular, we form a Bregman divergence based on
the layer’s transfer function and construct an extension of the original Bregman
PCA formulation by incorporating a mean vector and normalizing the principal
directions with respect to the geometry of the local convex function around the
mean. This generalization allows exporting the learned representation as a fixed
layer with a non-linearity. As an application to knowledge distillation, we cast the
learning problem for the student network as predicting the compression coefficients
of the teacher’s representations, which are passed as the input to the imported layer.
Our empirical findings indicate that our approach is substantially more effective
for transferring information between networks than typical teacher-student training
using the teacher’s penultimate layer representations and soft labels.

1 Introduction

Principal Component Analysis (PCA) (Pearson, 1901; Shlens, 2014) is perhaps one of the most com-
monly used techniques for data compression, dimensionality reduction, and representation learning.
In the simplest form, the PCA problem is defined as minimizing the compression loss of representing
a set of points as linear combinations of a set of orthonormal principal directions. More concretely,
given X = {xi ∈ Rd} and k ≤ d, the PCA problem can be formulated as finding the mean vector
m ∈ Rd and principal directions V ∈ Rd×k where V >V = Ik such that the compression loss,

m,V , {ci} = arg min{
m̃∈Rd,Ṽ ∈Std,k,

{c̃i∈Rk}

}∑
i

‖xi − (m̃ + Ṽ c̃i)‖2 (1)

is minimized. Here, Std,k = {U ∈ Rd×k : U>U = Ik} denotes the Stiefel manifold of k-frames in
Rd (Hatcher, 2000) and ci ∈ Rk corresponds to the compression coefficients of xi. The problem
in Eq. (1) can be solved effectively in two steps. First, we note that m can be viewed as a constant
shared representation for all points in X (for which the code length k = 0) that minimizes the total
compression loss. With this interpretation, the mean vector can be written as the minimizer of

m = arg min
m̃∈Rd

∑
i

‖xi − m̃‖2 , (2)
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for which, the solution corresponds to the geometric mean m = 1
|X |
∑
i xi. By fixing m, the

solution for V and {ci} can be obtained by enforcing the orthonormality constraints using a set
of Lagrange multipliers and setting the derivatives to zero. The solution to V amounts to the the
top-k eigenvectors of the covariance matrix 1/|X |

∑
i(xi −m)(xi −m)> and ci = V >(xi −m)

corresponds to the projection of the centered point onto the column space of V . Note that the
online variants of PCA, such as Oja’s algorithm (Oja, 1982) alternatively apply a gradient step on
V and project the update onto Std,k by an application of QR decomposition (Golub & Van Loan,
1996).

Knowledge distillation refers to a set of techniques used for transferring information from typically
a larger trained model, called the teacher, to a smaller model, called the student (Hinton et al.,
2015; Anil et al., 2018; Xie et al., 2020). The goal of distillation is to improve the performance of the
student model by augmenting the knowledge learned by the larger model with the raw information
provided by the set of train examples. Since its introduction, various approaches have applied
knowledge distillation to obtain improved results for language modeling (Sanh et al., 2019), image
classification (Beyer et al., 2021), and robustness against adversarial attacks (Papernot et al., 2016).

The teacher’s knowledge is typically encapsulated in the form of (expanded) soft labels, which
are usually smoothened further by incorporating a temperature parameter at the output layer of
the teacher model (Hinton et al., 2015; Müller et al., 2020). Other approaches consider matching
the teacher’s representations, typically in the penultimate layer, for a given input by the stu-
dent (Romero et al., 2014). In this paper, we explore the idea of directly transferring information
from a teacher to a student in the form of learned (fixed) principal directions in arbitrary layers
of the teacher model. Our focus for representation learning will be on a generalized form of the
PCA method based on the broader class of Bregman divergences. The Bregman divergence (Breg-
man, 1967) induced by the strictly-convex and differentiable convex function G : Rd → R between
u,v ∈ domG is defined as

DG(u,v) = G(u)−G(v)− g(v) · (u− v) , (3)

where g = ∇G is the gradient function (commonly known as the link function). Bregman divergence
is always non-negative and zero iff the arguments are equal. This broad class of divergences includes
many well-known cases, such as the squared Euclidean and KL divergences as special cases. In
addition, a Bregman divergence is not necessarily symmetric but satisfies a duality property in
terms of the Bregman divergence between the dual variables. Let G∗(u∗) = supz z · u∗ − G(z)
be the Legendre dual (Hiriart-Urruty & Lemaréchal, 2001) of G. Then, we can write DG(u,v) =
DG∗(v∗,u∗) where u∗ = g(u) and v∗ = g(v) are the pair of dual variables. When G is strictly
convex and differentiable, we have g∗ = g−1 and u = g∗(u∗) and v = g∗(v∗). Also, the derivative
of a Bregman divergence with respect to the first argument takes the following simple form

∇uDG(u,v) = g(u)− g(v) . (4)

The loss construction in Amid et al. (2022) provides a natural way of generating layerwise Bregman
divergences for deep neural networks as line integrals of the strictly monotonic transfer functions.
A dual view of such Bregman divergences in one dimension is illustrated in Figure 1(a) as areas
under the curves of the strictly monotonic transfer function f and its inverse. We will utilize
such Bregman divergences for layerwise representation learning via an extension of the Bregman
PCA algorithm. Note that the generalization of PCA in Eq. (1) to Bregman divergences was done
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Figure 1: (a) A dual view of Bregman divergences as area under the curves of the transfer function
f and its inverse f∗ = f−1 (Helmbold et al., 1999; Amid et al., 2022). (b) An illustration of
knowledge distillation using Bregman representation learning. Given an input example xi, the
output representation y`i of the teacher network at layer ` ∈ L is approximated as ŷ`i = f `(V ci+m)
where the principal directions V and the mean vector m are learned using Bregman PCA on the full
train set. The compression coefficients ci are predicted by the student network, and the approximate
representation ŷ`i is passed instead of y`i through the rest of the network from layer `+ 1 to L. The
teacher component inside the dashed bounding box can be discarded once the student network is
trained.

in Collins et al. (2001) and extended in several previous works (Roy & Gordon, 2002; Chiquet
et al., 2018). However, our generalization differs largely from the previous approaches in terms of
the following:

• We extend the formulation to include a generalized mean vector to handle the non-centered
data. To the best of our knowledge, our work is the first formulation to tackle this case.

• We improve the orthonormality constraint of the Euclidean geometry to conjugacy in
terms of the Riemannian metric (Lee, 2006) induced by the Bregman divergence. Our
extended formulation of mean and the conjugacy constraint recovers the vanilla PCA prob-
lem in Eq. (1) in the Euclidean case.

• We introduce a simple variant of QR decomposition to enforce the generalized conjugacy
constraint efficiently. We also provide a simple trick to handle the case of constrained
conjugate directions for the softmax link function.

• We provide an application of our construction for layerwise representation learning of deep
neural networks with strictly monotonic transfer functions. Our work builds on the layer-
wise loss construction approach proposed in Amid et al. (2022). We show that even low-
rank approximations of the input examples maintain the representativeness of the original
network.

• Finally, we propose a new approach for knowledge distillation by importing the fixed prin-
cipal directions learned from the teacher model into the student model.

Our extension of the Bregman PCA formulation allows viewing the learned representation as a fixed
layer. Thus, the distillation problem reduces to learning the corresponding compression coefficients
of a given example by the student, which is fed as input to this layer. Our knowledge distillation
approach using Bregman representation learning is summarized in Figure 1(b).
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1.1 Related Work

Generalized PCA: Collins et al. (2001) propose a generalization of the original PCA problem,
defined for Gaussian models, to general exponential family distributions. Several extensions of
this work focus on applying the framework to Poisson distributions (Chiquet et al., 2018) and
compositional data (Avalos et al., 2018). Landgraf & Lee (2020b) apply logistic PCA for binary
data to dimensionality reduction. Landgraf & Lee (2020a) also propose a majorization-minimization
approach for solving the generalized PCA problem. Despite the success of earlier generalized PCA
methods, a direct generalization of the original PCA formulation in Eq. (1) with a mean vector, as
well as a normalization that considers the local geometry of the space around the mean, is lacking.

Knowledge Distillation: There have been several lines of work that go beyond extracting knowl-
edge from the model’s predictive distribution. These include the work by Romero et al. (2014) where
they add a regression loss between the representation of the teacher and a thinner (in the number
of units) student representation. In their work, they learn a projection matrix to match the entire
representation of the teacher rather than the relevant ones that are useful for the task. They also
require the student to be thinner and deeper, which can result in difficulty in training. This line
of work has been improved by Zagoruyko & Komodakis (2016) where the students are less deep
and make use of attention maps from the teacher model from a modern convolutional network
which performs well on the problem. Additionally, Czarnecki et al. (2017) propose incorporating
the derivative of the teacher’s prediction w.r.t to the input to be matched by the student, and this
additional information has been shown to improve the distillation procedure. More recently, Tian
et al. (2019) propose adding contrastive losses to transfer representation between two networks and
show improvement over vanilla distillation. However, their procedure requires extra computation
to push apart the teacher’s representation of randomly sampled inputs from the student’s represen-
tation of actual inputs. Finally, Müller et al. (2020) tackle the task of extracting more information
from the teacher model when the number of classes is small. They propose creating sub-classes
corresponding to every class, followed by soft-label training for distillation.

2 Extended Bregman PCA

Given a strictly convex and differentiable function F : Rd → R with link function f = ∇F , we cast
the generalized Bregman PCA problem as approximating xi ∈ |X | as a linear combination of a set
of orthonormal principal directions in the dual space. This formulation reduces to Eq. (1) for the
choice of f = idd, which corresponds to the squared Euclidean divergence. However, before defining
the objective function formally, we consider the problem of finding a generalized mean in the dual
space as follows. Let X = {xi ∈ domF ∗} be a set of given data points. We define the generalized
mean vector m as the minimizer of the following objective,

m = arg min
m̃∈domF

∑
i

DF∗(xi, f(m̃)) . (5)

Note that the above Eq. (5) is a direct generalization of Eq. (2) in terms of finding a shared
constant representation for all points in X that minimizes a notion of Bregman compression loss.
The following proposition states the solution of the generalized mean in a closed form.
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Proposition 1. The generalized dual mean in Eq. (5) can be written as

m = f∗
( 1
|X |

∑
i

xi
)
. (6)

Thus, the dual mean simply corresponds to the dual of the arithmetic mean of the data points.
When f = idd, i.e., the identity function, the dual mean reduces to the arithmetic mean.

Given the definition of the dual mean in Eq. (6), we now extend the vanilla PCA formulation
in Eq. (1) to the class of Bregman divergences. First, we note that the geometry of the space
of principal directions is altered when switching from a squared loss to a more general Bregman
divergence. Specifically, given the convex function G of a Bregman divergence, the inner-product
is locally governed by the Riemannian metric (Lee, 2006),

DG(u + δu,u) = DG(u,u + δu) ≈ 1/2 δu>HG(u)δu ,

where δu is a small perturbation and HG = ∇2G is the Hessian of G. Thus, the definition of
orthonormality needs to conform with the new geometry imposed by the Bregman divergence. In
the following, we extend the definition of a Stiefel manifold to include a Riemannian metric. Recall
that for a strictly convex function G, we have HG ∈ Sn+ where Sn+ denotes the set of n×n symmetric
positive-definite matrices.
Definition 1. The generalized Stiefel manifold of k-frames in Rd with respect to the Riemannian
metric M = M(v) ∈ Sd+,v ∈ Rd is defined as

St(M)
d,k = {U ∈ Rd×k : U>M U = Ik} .

Note that for the Euclidean geometry, M(v) = Id for all v ∈ Rd. Thus, the definition of St(M)
d,k

recovers St(Id)
d,k = Std,k and we arrive at the orthonormality in the sense of Euclidean geometry.

We now formulate the generalized Bregman PCA problem following the local geometry of the
strictly convex function at m. Let X = {xi ∈ domF ∗} be a set of given points. We define the
generalized Bregman PCA as finding a linear combination of a set of generalized principal directions
that minimizes the Bregman compression loss:

V , {ci} = arg min{
Ṽ ∈St(HF (m))

d,k
,

{c̃i∈Rk}

}∑
i

DF∗(xi, f(m + Ṽ c̃i)) , (7)

where HF (m) = ∇2F (m). Note that the constraint V ∈ Std,k in Eq. (1) is now replaced with
V ∈ St(HF (m))

d,k , i.e., using the Riemannian metric induced by the Hessian of the convex function F
evaluated at the dual mean m.

2.1 Optimization

The generalized Bregman PCA objective in Eq. (7) does not yield a closed-form solution in terms
of V and {ci}. However, the problem can be solved iteratively by applications of gradient descent
steps on {ci} and V . Let x̂i := f(m + V ci) denote the approximation of xi. For the compression
coefficients {ci}, we apply

cnew
i = ci − ηaV >(x̂i − xi) , (8)
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where ηa > 0 denotes the learning rate. Updating V involves two stages: gradient updates followed
by a projection onto St(HF (m))

d,k . We apply gradient decent updates,

V new = V − ηV
∑
i

(x̂i − xi) c>i . (9)

where ηV > 0 denotes the learning rate. The final step involves projecting V onto St(HF (m))
d,k . Notice

that this projection needs to be applied only once at the end of optimization since both V and {ci}
are trained using gradient descent (any intermediate factor can be absorbed into the gradients).
For the vanilla PCA where HF (m) = Id, this can be applied easily by an application of QR
decomposition. We provide a simple modification of the standard QR decomposition algorithm
that achieves this for any HF (m) ∈ Sn+, with almost no additional overhead in practice for our
application.

2.2 Generalized QR Decomposition

A QR decomposition is a factorization of a matrix A ∈ Rm×n where n ≤ m into a product
A = QR where Q ∈ St{m,n} and R ∈ Rn×n is an upper-triangular matrix. The first factor Q
can be viewed as an orthonormalization of columns of A, similar to the result of a Gram-Schmidt
procedure. However, QR decomposition provides a more numerically stable procedure in general.
The method of Householder reflections (Golub & Van Loan, 1996) is the most common algorithm
for QR decomposition.

The following theorem provides a procedure that extends the standard QR decomposition to produce
conjugate factors Q>MQ = In for a given M ∈ Sn+.
Theorem 1. Let QR denote the procedure that returns the QR factors. Given M ∈ Sn+ and A ∈
Rm×n, let Q̃,R = QR(

√
MA). Then, the matrix Q =

√
M−1Q̃ corresponds to the generalized QR

decomposition of A such that A = QR and Q>MQ = Im.

The generalized QR decomposition imposes almost no extra overhead compared to standard QR
when the matrix M is diagonal. As we will see, this is in fact the case for the local metric induced
by the majority of the commonly used transfer functions such as leaky ReLU, sigmoid, and tanh.

2.3 The Case of Softmax Transfer Function

Algorithm 1 GQR(A,M): Generalized QR
Decomposition
Input: matrix A ∈ Rm×n s.t. n ≤ m, Rie-
mannian metric M ∈ Sm+
Output: Q ∈ Rm×n and R ∈ Rn×n factors
such that A = QR and Q>MQ = In
Q̃,R← QR(

√
MA)

Q←
√

M−1Q̃
Return: Q, R

Consider the case where the input examples are
probability distributions {xi ∈ ∆d−1} belonging to
the (d − 1)-simplex ∆d−1 = {u ∈ Rd+|u>1d = 1}.
The transfer function in this case corresponds to
fSM = softmax which induces the KL Bregman di-
vergence DF∗

SM
(u,v) =

∑
j(uj log uj

vj
) − uj + vj .

Requiring fSM to be inevitable imposes the con-
straint dom fSM = Rd − {±c1d, c ∈ R+} as
fSM(u + c1d) = fSM(u) for c ∈ R. Thus, for the
principal directions, we have 1d /∈ CS(V ) where
CS denotes column span. The above constraint can be easily incorporated into the generalized QR
decomposition in Algorithm 1 when using the Householder method for the internal QR step.
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Figure 2: Visualization of (a) the output probabilities of the teacher model {yLi } and (b)-(d)
the reconstructed representation of the training examples at the leaky ReLU layer {ŷL−1

i } using
TriMap (Amid & Warmuth, 2019). As the number of components k increases, the approximated
representations become better separable. Interestingly, TriMap reveals that the representations at
layer L− 1 form similar clusters as the ones in layer L.

The Householder method applies a series of reflections Pi = Im−2 bib>i
b>

i
bi

s.t. b ∈ Rm and i ∈ [n−1],
on matrix A such that

R = Pn−1Pn−2 . . .P2P1A

is upper-triangular. The orthonormal matrix Q then can be written as

Q = P1P2 . . .Pn−2Pn−1 .

The following proposition shows that, in order to obtain Q ∈ St(M)
d,k from A s.t. Q>M1 = 0

using Householder reflections, it suffices to augment A from left by a column of all ones and apply
Algorithm 1. The resulting matrix Q corresponds to the first factor when the first column is
dropped. All proofs are relegated to the appendix.
Proposition 2. Given A ∈ Rm×n s.t. n < m, let Q̃, R̃ = GQR([1m,A],M) by applying Algorithm 1
using Householder reflections. The Q and R factors, QR = A s.t. Q ∈ St(M)

d,k and Q>M1m = 0,
can be obtained from Q̃ and R̃, respectively, by dropping the first columns.

Our generalized Bregman PCA algorithm with mean is given in Algorithm 2. We omit the case of
the softmax function in the main algorithm for simplicity (see Appendix 3 for the full algorithm).

3 Representation Learning of Deep Neural Networks

One important application of our Bregman PCA is learning the representations of a deep neural
network in each layer. Specifically, in a deep neural network, each layer transforms the represen-
tation that receives from the previous layer and passes it to the next layer. In a given layer, we
are interested in learning the mean and principal directions that can encapsulate the representa-
tions of all training examples in that layer. Although vanilla PCA might be the naïve choice for
this purpose, we will consider learning better representations using our extended Bregman PCA
approach.

A natural choice of a Bregman divergence for a layer having a strictly increasing transfer function
is the one induced by the convex integral function of the transfer function (Amid et al., 2022). In

7
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Algorithm 2 Bregman PCA with Mean
Input: X = {xi ∈ domF ∗}, number of components k
Output: dual mean m ∈ domF , V ∈ St(HF (m))

d,k , {ci ∈ Rk}
m← f∗

( 1
|X |
∑
i xi
)

initialize V and {ci}
repeat

for i ∈ [|X |] do
x̂i ← f(m + V ci)
ci ← ci − ηaV >(x̂i − xi)

V ← V − ηV
∑
i(x̂i − xi)c>i

until V , {ci} not converged
V ,T ← GQR(V ,HF (m))
return m, V , {T ci}

Bregman PCA, we essentially minimize the matching loss of the transfer function f instead of the
quadratic compression loss used for vanilla PCA. The matching loss was introduced in Helmbold
et al. (1999); Kivinen & Warmuth (2001) and is also the main tool in the recent work on training
deep neural networks (Amid et al., 2019; 2022). Specifically, let a

(`)
i ∈ Rd and y

(`)
i ∈ Rd respectively

be the pre and post (transfer function) activations of a neural network for a given input example
xi at layer ` ∈ [L] having a (elementwise) strictly increasing transfer function f (`) s.t. y

(`)
i =

f (`)(a(`)
i ). Let F (`) denote the convex integral function of f (`) where f (`) = ∇F (`). Then, for a

given set of input examples X = {xi} having post-activation representations Y(`) = {y(`)
i }, we can

cast the Bregman PCA problem in layer ` ∈ [L] as learning V (`) ∈ St(H
F (`) (m(`)))

d,k and {c(`)
i } with

m(`) = f∗(`)
( 1
|Y(`)|

∑
i y

(`)
i

)
that minimize the objective∑

i

DF∗(`)(y(`)
i , f `(m(`) + V (`)c

(`)
i )) . (10)

We explore several ideas based on this layerwise construction, including learning the principal
directions in each layer in the next section. Specifically, we consider representation learning in the
final softmax layer as well as the fully-connected leaky ReLU layer before the final softmax layer
of a ResNet-18 model. However, our construction is applicable to other types of layers, such as
convolutions. We then consider knowledge distillation using the representations learned from the
ResNet-18 teacher model to train a smaller convolutional student model on the same dataset. Our
knowledge distillation approach is illustrated in Figure 1. Our approach consists of learning the
dual mean m and the principal V in the `-th layer of the student network. The representation
y`i of a training example xi is then approximated by ŷ`i = f `(V ci + m) where the compression
coefficients ci ∈ Rk are predicted by a smaller student network. The approximated representation
ŷ`i can then be passed through the rest of the pre-trained teacher network or a smaller network
that is trained from scratch to predict the output labels. This approach can easily be extended to
distilling information from several different layers of the teacher model, where one can use a cascade
of student networks in which the approximate output representation produced by the previous
student network is passed as input to the next student network. However, we defer exploring such
extensions to future work and focus on knowledge distillation using the representation of a single
layer of the teacher model.
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4 Experiments

We conduct the first set of experiments on the CIFAR-10 and CIFAR-100 datasets, each consisting
of 50,000 train and 10,000 test images of size 32×32 from, respectively, 10 and 100 classes.1 In order
to extract representations, we first train a PreAct ResNet-18 model using SGD with a Nesterov
momentum optimizer and a batch size of 128. The only modification we apply to the network is
replacing the global average pooling layer before the final dense layer with a flattening operator.
This modification yields a representation of dimension 8192 before the final layer. We also change
the transfer function of that layer from a ReLU to a leaky ReLU with a small negative slope of
β = 1e−4 to obtain a strictly monotonic transfer function. The network achieves 92.62% and
70.44% top-1 test accuracy on CIFAR-10 and CIFAR-100, respectively. We then pass the train
and test examples of both datasets and store the leaky ReLU post-activations (d = 8192) and the
output softmax probabilities (d = 10 and d = 100 for CIFAR-10 and CIFAR-100, respectively)
of each example. In the following, we consider several experiments for compressing each of these
representations. We use SGD with a heavy-ball momentum for optimizing our Bregman PCA
problem. At last, we also provide results on the ImageNet-1k datasets (Deng et al., 2009).

4.1 PCA on Output Probabilities

We first consider the problem of compressing the output probabilities. This problem corresponds
to a Bregman PCA with a softmax link function and a KL divergence. For comparison, we consider
vanilla PCA (Eq. (1)) in the pre-activations (i.e. logits) domain. Note that vanilla PCA is not
directly applicable to the post-activation probabilities, as the reconstructed examples may not
correspond to valid probability distributions. We also consider CoDA PCA (Avalos et al., 2018) by
augmenting a constant bias of 1 to the coefficient to handle the non-centered case, as suggested in
the paper. We also use SGD with a heavy-ball momentum for solving the CoDA PCA problem.
We report the KL divergence between the model probabilities and the reconstructed probabilities
for the train and test sets as the performance measure.

The average KL divergence values between the original output and the reconstructed probabilities
are shown in Figure 3(a)-(b). As can be seen from the figure, Bregman PCA yields a much lower
loss compared to vanilla PCA and CoDA PCA. Also, notice that CoDA-PCA becomes inefficient
as the dimension of the problem (d or k) increases.

4.2 PCA on Leaky ReLU Outputs

We consider the problem of compressing the representation in the leaky ReLU layer before the final
dense layer (a.k.a. the penultimate layer). The convex conjugate function F ∗β corresponding to
a leaky ReLU transfer function fβ(u) = max(u,0) − βmax(−u,0) with a slope β > 0 amounts
to F ∗β (u) = 1/2 u � fβ−1(u) where � denotes Hadamard product. For this problem, we consider
vanilla PCA on the pre and post-leaky ReLU activations as well as our Bregman PCA. In order to
compare the methods, we pass the reconstructed representation of each example through the final
layer of the trained ResNet-18 model and measure the top-1 accuracy.

The results are given in Figure 3(c)-(d). Our Bregman PCA works significantly better than vanilla
PCA for reconstructing the representation and yields a much higher classification accuracy at the

1Available at https://www.cs.toronto.edu/~kriz/cifar.html.
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Figure 3: (a) and (b): KL divergence between the original and reconstructed class probabilities
of the train and test examples at the final layer. (Lower values are better.) Our Bregman PCA
approach significantly outperforms both vanilla PCA on the logits as well as CoDA PCA. (c) and
(d): Top-1 classification accuracy of the reconstructed leaky ReLU representations when passed
through the rest of the network. (Higher values are better.) Our Bregman PCA works significantly
better than vanilla PCA for reconstructing the representation and yields a much higher classification
accuracy.

output. In order to visualize these representations, we illustrate the 2-D TriMap (Amid &Warmuth,
2019) projections of the CIFAR-10 output probabilities as well as the reconstructed representations
of the examples at the leaky ReLU layer using our method. We can see from the figures that the
two representations, although one layer apart, form very similar clusters. Also, as the number of
components k increases, the leaky ReLU representations become better separable.

4.3 Distillation Results on CIFAR-10/100

We conduct knowledge distillation experiments using our Bregman Representation Learning (BRL)
method. The architecture we consider for the experiments is shown in Figure 1. The student
network consists of a small convolutional neural network with 5 convolutional layers of size [128 (×2),
256 (×2), 512] followed by a dense linear layer which outputs k coefficients. These coefficients are
then passed through a dense layer (with weights V and bias m), which outputs a representation of
size 8192. The final dense (readout) layer with softmax transfer function converts this representation
into output class probabilities.

For comparison, we consider the following approaches: 1) Baseline model for which all the weights
are randomly initialized and are trained using the same training examples as the teacher, 2) Baseline
+ Readout where all the weights are initialized randomly except the readout layer, which is set to
the pre-trained weights of the teacher, 3) Baseline Distillation where we use a convex combination
of the teacher’s soft labels (for which we also tune a temperature for the logits) with the one-hot
training labels. The ratio of the teacher’s soft labels to train labels is tuned for each case. 4) BRL,
where we randomly initialize all the weights except V and m, which are set to the values obtained
by applying our Bregman PCA on the leaky ReLU representations of the training examples, as in
the previous section. 5) BRL + Readout, which is similar to BRL, but we set the readout layer
weights to the teacher weights. Each model is trained for 51 epochs using a batch size of 128 using
SGD with a Nesterov momentum optimizer with a linear decay schedule. In each case, we tune the
learning rate and momentum hyper-parameters.
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Figure 4: Results of training different baselines, including soft-label teacher-student distillation
and our BRL distillation approach on the full and 50% randomly subsampled (half) CIFAR-10 and
CIFAR-100 datasets. In each case, + Readout indicates using the teacher’s pre-trained readout
weights for the student.

To train BRL, we first train the student model by minimizing a squared loss between the predicted
coefficients of the student and the compression coefficients obtained by directly applying our Breg-
man PCA to the teacher’s representations (as in the previous section). This essentially reduces
the training of the student network from classification to a regression problem. We find that this
pre-training on the teacher coefficients significantly improves the convergence of the student model.
After training on the compression coefficients for 25 epochs, we switch to directly minimizing the
cross-entropy loss at the output layer for the rest of the iterations.

To disentangle the improvements due to better information transfer for knowledge distillation from
the gains obtained due to data augmentation, we conduct the experiments on the original examples
without any additional augmentations (such as random horizontal flip, random crop, Mixup (Zhang
et al., 2018), etc.), which are standard for training these models. This resembles a limited sample
regime where the number of training examples is relatively small. We conduct additional experi-
ments by adding these augmentations and observe improvements for all baselines (see the appendix).
In order to highlight the limited samples aspect even further, we also repeat each experiment using
only half of the training dataset, which is uniformly sampled from the full dataset (and fixed for all
methods).

The results of training the smaller student model are shown in Figure 4. We observe a significant
improvement in accuracy using our BRL distillation approach across different numbers of com-
ponents (k). For CIFAR-10, even with a small k, BRL shows a major advantage over soft-label
teacher-student training. For CIFAR-100, these improvements are minor for smaller k values as the
leaky ReLU representations require a relatively larger number of components to be reconstructed
efficiently compared to CIFAR-10 (see Figure 3(c)-(d)). However, as k increases, we observe that the
added benefit from more Bregman representations outweighs the benefit of a higher capacity model
(due to larger V ) for the baseline distillation approach using soft labels (56.5% top-1 accuracy for
BRL compared to 54.1% for Baseline Distillation).

Additionally, in Figure 4, we observe that the gap between BRL and soft-label distillation becomes
even more prominent as the number of training examples decreases (6.3% gap for full vs. 9.0%
gap for half CIFAR-10 dataset). This shows that BRL is a more sample-efficient approach for
transferring information between the teacher and the student models. Finally, in both cases, we see
a marginal improvement for using the pre-trained readout layer weights over training the readout
layer from scratch for larger k values.
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4.4 Distillation Results on ImageNet-1k

We consider the problem of distilling a PreAct ResNet-50 teacher model trained on the ImageNet-
1k dataset into a PreAct ResNet-18 student. Similar to the previous experiments, we replace the
transfer function of the penultimate layer with a leaky ReLU with a negative slope of β = 1e−2.
The teacher model is trained for 90 epochs using SGD with momentum with a piecewise constant
schedule and achieves a 76.2% top-1 test accuracy. The baseline ResNet-18 model using the same
training procedure achieves a 70.1% top-1 test accuracy. As the distillation baseline, we consider
soft-label teacher-student training (Hinton et al., 2015) and tune the soft-label ratio and the logit
temperature, and train the model for 90 epochs using the same optimization hyperparameters as
the ResNet-18 baseline. The soft-label distillation baseline achieves a 71.5% top-1 test accuracy.

Table 1: ImageNet-1k distillation accuracy results using a ResNet-50 teacher and a ResNet-18
student. Each model is trained for 90 epochs.

Model Top-5 Accuracy Top-5 Accuracy
ResNet-50 Teacher 76.2% 93.0%
ResNet-18 Baseline 70.1% 89.4%
ResNet-18 Soft-label Distillation (Hinton et al., 2015) 71.5% 90.4%
ResNet-18 BRL (Ours) 72.6% 91.1%

The teacher’s penultimate layer has dimension d = 2048 which we compress into k = 512 principal
directions. To extract the Bregman representations and the mean vector for BRL, we simply apply
our Bregman PCA algorithm in an online fashion in the last 10 epochs of the teacher model’s
training. (To find the mean, we apply an exponential moving average.) We then import and fix
these representations into the student model. We replace the last ResNet-18 layer with a linear
layer to produce the 512 compression coefficients. We also use the weights of the teacher’s readout
layer at the student’s output. We replace the optimizer with Adam (Kingma & Ba, 2014) with a
cosine learning rate schedule. Similar to soft-label distillation, we consider the teacher’s soft labels
with the same ratio as the distillation baseline. We also add a squared regularizer term between the
teacher’s target and the student’s predicted compression coefficients. Our BRL method combined
with the teacher’s soft labels achieves a 72.6% top-1 test accuracy after 90 epochs. The results are
summarized in Table 1.

5 Conclusion and Future Work

We presented a new direction for knowledge distillation based on directly transferring the Bregman
representations learned by the teacher model into the student model. Our work significantly ad-
vances the previous approaches for knowledge distillation which rely on either training using soft
teacher labels or matching the representations of the teacher and the student in the intermediate
layers. Our construction is more flexible and can be extended to training a cascade of student
networks, in which each model constructs the representation that is passed as the input to the next
model. Such training strategies are interesting future directions for our technique.

One limitation of our current approach is that it only applies to layers with strictly monotonic
transfer functions. The extension of our work to non-monotonic transfer functions is an interesting
open problem.
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A Omitted Proofs

Proposition 1. The generalized dual mean in Eq. (5) can be written as

m = f∗
( 1
|X |

∑
i

xi
)
. (6)

Proof. Using the duality property of Bregman divergence, Eq. (5) can be written as

min
m̃∈domF

[∑
i

DF∗(xi, f(m̃)) =
∑
i

DF (m̃, f∗(xi))
]
.

Applying Eq. (4) and setting the derivative of above wrt m̃ to zero, we have∑
i

(
f(m)− f(f∗(xi))

)
= |X | · f(m)−

∑
i

xi = 0 .

Rearranging the term and applying the inverse yields the result.

Theorem 1. Let QR denote the procedure that returns the QR factors. Given M ∈ Sn+ and A ∈
Rm×n, let Q̃,R = QR(

√
MA). Then, the matrix Q =

√
M−1Q̃ corresponds to the generalized QR

decomposition of A such that A = QR and Q>MQ = Im.

Proof. Since Q̃R =
√

MA, we have

QR =
√

M−1Q̃R =
√

M−1
√

MA = A ,

and Q satisfies
Q>MQ = Q̃>

√
M−1M

√
M−1Q̃ = Q̃>Q̃ = Im .

Proposition 2. Given A ∈ Rm×n s.t. n < m, let Q̃, R̃ = GQR([1m,A],M) by applying Algorithm 1
using Householder reflections. The Q and R factors, QR = A s.t. Q ∈ St(M)

d,k and Q>M1m = 0,
can be obtained from Q̃ and R̃, respectively, by dropping the first columns.

Proof. The first reflection P1 of the Householder method transforms the first column of the input
matrix into a unit vector s1e1 where s1 ∈ R. Thus, the first column of the resulting Q̃ term is just
a rescaling of the first column of the input matrix. Thus, for the augmented matrix [1m,A], the
first column of Q̃ corresponds to r11m with r1 ∈ R s.t. r2

11>mM1m = 1. The remaining columns
of Q̃, i.e., the matrix Q, correspond to the column space of A minus the direction 1m. Also, we
have Q>MQ = In and Q>M1m = 0. Note that the direction 1m is redundant for the softmax
function, i.e. softmax(QR) = softmax(A) where the softmax function is applied to each column
and R corresponds to the upper-triangular matrix by removing the first row and column of R̃.
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B The Full Bregman PCA with Mean Algorithm

We provide the full procedure for the Bregman PCA algorithm with mean, including the case of
the softmax function.

Algorithm 3 Bregman PCA with Mean (Including Softmax)
Input: X = {xi ∈ domF ∗}, number of components k
Output: dual mean m ∈ domF , V ∈ St(HF (m))

d,k , {ci ∈ Rk}
m← f∗

( 1
|X |
∑
i xi
)

initialize V and {ci}
repeat

for i ∈ [|X |] do
x̂i ← f(m + V ci)
ci ← ci − ηaV >(x̂i − xi)

V ← V − ηV
∑
i(x̂i − xi)c>i

until V , {ci} not converged
if f is softmax then

V ← [1d,V ] . Augment a column of all ones.
V ,T ← GQR(V ,HF ([0; m])) . Augment a zero element to the mean vector.

else
V ,T ← GQR(V ,HF (m))

if f is softmax then
V ← V:,1: . Drop the first column.
T ← T1:,1: . Drop the first row and column.

return m, V , {T ci}

C Further Details on the Experiments

CIFAR-10/100 Experiments: For each experiment, we tune the learning rate and the momen-
tum hyperparameters in the range [10−5, 0.2] and [0.5, 0.99], respectively. The results are averaged
over 5 independent trials for each experiment. The input images are normalized for each dataset
by subtracting the mean and dividing by the standard deviation over the whole training set.

Compute Resources: For the CIFAR-10/100 experiments, we use V-100 GPUs. For the
ImageNet-1k experiments, we use 8× 8 TPU v3s.

D Experimental Results with Data Augmentation and Mixup

Data augmentation is a standard procedure for training deep neural networks. However, our main
results in the paper focus on decoupling the information transfer from the teacher due to the
knowledge distillation technique from the generalization improvement due to data augmentation.
In this section, we showcase results using standard augmentation procedures (random horizontal
flip and random crop) combined with Mixup (Zhang et al., 2018) with α = β = 1. Table 2 presents
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the results of different methods with k = 100 components and 51 training epochs with a batch size
of 128.

Table 2: Top-1 accuracy for different methods with number of components k = 100 and using data
augmentation combined with Mixup (Zhang et al., 2018).

Method Dataset
CIFAR-10 CIFAR-100

Baseline 83.65± 0.41 54.25± 0.35
Baseline + Readout 83.34± 0.51 55.11± 0.34
Baseline Distillation 86.00± 0.22 62.25± 0.15
BRL 87.03 ± 0.12 62.72 ± 0.28
BRL + Readout 86.24± 0.29 61.11± 0.29

From the table, we see that the performance of all methods consistently improves with data augmen-
tation. Additionally, among all methods, BRL performs the best. However, the difference between
BRL and soft-label knowledge distillation is not as prominent as before (see Figure 4). Nonetheless,
such behavior is not surprising as we expect soft-label knowledge distillation and our method to
eventually reach the teacher’s performance, given that a sufficient amount of data (i.e., training
examples) for distillation is provided (Beyer et al., 2022). As we show in the main experiments,
BRL delivers a clear advantage in a setup with a limited number of samples.
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