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Abstract

Identifying drug-drug interactions (DDIs) is critical for ensuring drug safety and
advancing drug development, a topic that has garnered significant research interest.
While existing methods have made considerable progress, approaches relying
solely on known DDIs face a key challenge when applied to drugs with limited data
(e.g., novel and few-shot drugs): insufficient exploration of the space of unlabeled
pairwise drugs. To address these issues, we innovatively introduce S2VM, a Self-
supervised Visual pretraining framework for pair-wise Molecules, to fully fuse
structural representations and explore the space of drug pairs for DDI prediction.
S2VM incorporates the explicit structure and correlations of visual molecules, such
as the positional relationships and connectivity between functional substructures.
Specifically, we blend the visual fragments of drug pairs into a unified input for
joint encoding and then recover molecule-specific visual information for each
drug individually. This approach integrates fine-grained structural representations
from unlabeled drug pair data. By using visual fragments as anchors, S2VM
effectively captures the spatial information of local molecular components within
visual molecules, resulting in more comprehensive embeddings of drug pairs.
Experimental results show that S?VM achieves state-of-the-art performance on
widely used benchmarks, with Macro-F1 score improvements of 4.21% and 3.31%,
respectively. Further extensive results and theoretical analysis demonstrate the
effectiveness of S?VM for both few-shot and novel drugs. The code and data are
available at https://github.com/xiaomingaaa/S2VM.

1 Introduction

Combinatorial therapy, which involves the simultaneous use of multiple drugs, is a promising strategy
for treating patients with complex diseases [1, [2]. However, this approach poses challenges due
to potential drug-drug interactions (DDIs) that can alter the intended therapeutic outcomes. When
patients take multiple drugs at the same time, these interactions can result in unexpected side effects
or diminished clinical efficacy [3| 4]. Therefore, accurately predicting DDIs is essential to avoid
potential adverse effects, making it a critical task in the common therapeutic field [S]. Despite
ongoing efforts, predicting these interactions remains a significant challenge.

Numerous computational prediction methods have been developed to address these challenges to
predict unknown drug-drug interaction (DDI) events [6} 4, [7]. Many of these methods use handcrafted
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features (e.g., molecule structure [8, 9, [1]], side effects [10]], and phenotypic similarity [11]) to repre-
sent each drug for predicting potential DDIs. However, these methods rely heavily on expert domain
knowledge to design these features accurately. To address this, some approaches use deep learning
models to extract low-dimensional features from molecular sequences, learning representations
from SMILES in an end-to-end manner [12, [13]]. Additionally, to represent drug structures from a
functional perspective, several works [14, |15 [16]] extract molecular substructures and employ graph
neural networks to model the associations between drug pairs, resulting in promising predictive
performance. However, they primarily focus on molecular features, neglecting other biological
entities involved in drug interaction events, such as proteins, pathways, and diseases, which are
crucial to identifying DDIs. Recent works [[17, [18] [19] 20} 21} 122} [23]] have taken advantage of the se-
mantic relations and topological structures of biomedical knowledge graphs to improve the structural
representation of molecules for accurate prediction of DDI. While these methods have achieved some
improvements, they primarily predict unknown DDIs by learning drug representations from known
DDIs, which are limited to novel and few-shot drugs due to the challenge: limited exploration for the
space of drug pairs from huge unlabeled data. As illustrated in Figure[I] previous methods mainly
represent drug pairs by concatenating the molecular embeddings from individual drug encoders,
which were trained on existing DDIs (Figure [Th), resulting in weak structural fusion and exploration
capabilities for broad unknown drug pairs. We provide a more detailed discussion in Appendix [C.1]

To address these limitations,

we propose a self-supervised S°VM _om
pretraining framework (called e g
S2VM) to learning from over irrsiri Z o0 I_l

200M drug pairs, designed to
encode input drugs jointly by

Drug Pairs

DeepDDI  MRCGNN ImageMol  Ours
Known

- . A S Ours outperforms others on Deng's data
capturing both intrinsic struc- DDIs 2 <
tures and extrinsic interactions . El 1
. ViOou: = 4 .
between molecules. Specifically, Mothods %
Z
S2VM first samples and blends Z
input drugs based on their lo- Observed Space of Drug Pairs ImageMol VM
. .. S?VM performs better representation
cal visual fragments for joint across 8 types of DDIs
encoding by the drug encoder. (a) S?°VM explores broad space (b) S*VM shows superior performance

Then, S?VM introduces a de-

coder to reconstruct the orig- Figure 1: (a) S2VM explores a comprehensive space of drug pairs
inal visual structure of input for existing drugs. (b) The self-supervised S2VM shows superior
molecules from the blended rep- performance and representations.

resentation. This reconstruction

process establishes structural cor-

relations between input drugs using molecular visual information in a self-supervised manner. The
pretrained encoder is subsequently adopted for DDI prediction. Empirical observations (Figure Tp)
and theoretical (Section analysis indicate that S2VM is designed for effective structural represen-
tation of drug pairs, exhibiting superior exploration capabilities compared to the visually pretrained
molecule representation model ImageMol [24]. Our contributions include: (1) To the best of our
knowledge, we are the first to develop a self-supervised pretraining model based on large-scale
unlabeled drug pairs that jointly encodes the visual structural relations of drug pairs for DDI predic-
tion. (2) By representing the blended visual fragments of observed paired molecules and recovering
their original visual structures, S?VM effectively captures extrinsic relations and intrinsic structures
between molecules from both experimental and theoretical perspectives. (3) Through theoretical
analysis and empirical validation, we demonstrate that S?VM effectively integrates visual structural
relationships across diverse drug pairs, achieving state-of-the-art performance in DDI prediction
under various scenarios.

2 Related Work

Drug Interaction Prediction. Identifying potential drug interaction events is crucial to drug discovery.
Some works mainly adopt handcraft features of molecules to predict unknown DDIs [{8,9]. However,
these handcraft features are limited by reliance on domain knowledge of drugs [25} [17], suffering
from low expressive ability [26]]. DeepDDI [[12]] and CASTER [13]] utilize deep learning models to



mine low-dimensional representations of drugs and predict the interaction associations between input
drug pairs. Further, SSI-DDI [14], SA-DDI [27], and DSN-DDI [16] proposed substructure-based
GNN and fused the representation of molecules based on substructures adaptively. However, these
methods overlook the drug-related knowledge from biomedical networks [20} [17]]. To model the
structure of molecules and the interactive information of drugs, MUFFIN [18]] and SumGNN [[19]
adopt GNN [28]] to represent the molecular structure and the relational semantics of the biomedical
knowledge graph. To further represent the interactive association between drugs, MRCGNN [21]] and
TIGER [22] utilized a shared encoder with a contrastive learning mechanism to integrate the structural
information of molecules and the information of multi-relational DDI events. However, they learn
separate drug inputs from known DDIs, limited by modeling the structural relations between them.
We innovatively designed a self-supervised pretraining framework to introduce a unified model to
represent huge unlabeled drug pairs jointly.

Representation of Visual Molecules. The molecular images are intuitive in representing spatial
information such as the positional relations and connectivity between functional substructures. Some
researchers consider representing molecules as images and adopting computer vision techniques to
extract features for chemical properties prediction [29,[30]]. To effectively understand the structural
information of visual molecules, ImageMol [24] proposed a pretraining model based on molecular
images to learn representation from 10 million molecules. To enhance the image representation
of visual molecules, CGIP [31] is further proposed to model the molecular graphs and images
in a contrastive manner. Although vision-based molecular representation has shown excellent
performance, these methods are limited to modeling the paired molecules simultaneously. In this
paper, we design a novel architecture to pretrain a unified encoder for representing the paired drugs.

3 Preliminaries

Background. In this paper, we use RDKit to convert molecular SMILES [32] into visual molecules
(i.e., 2D images). The molecular images contain more spatial information (e.g., the positional rela-
tionships between functional groups and atoms), which are intuitive and informative for representing
molecules. Therefore, we consider molecular images as our inputs.

Structure-level Visual Pretraining. In order to explore the structure-level representation fusion of
drugs, we design a self-supervised pretraining framework based on visual fragments. Specifically, the
framework is in an encoder-decoder architecture, which contains a transformer-based encoder F and
decoder F. Given a pair of drugs (d,,, d,), where d,, € REXWXC and d, € REXWXC are the visual
molecules converted by RDKit, our goal is to learn the structural fusion embedding é,,,, as follows:

z = F(blend(dy, dy)); du, dy, = F(2);

% — argmin A(dy, dy) + A(dy, dy), M
where (H, W, C) is the resolution of input images and the pretrained encoder F is adopted to embed
inputs for downstream DDI prediction.

Problem Definition. We focus on predicting the potential drug interaction events between drugs. The
prediction is achieved by blending input drug pairs and fusing the substructure-based representation
based on visual molecules. We formulate the visual-based DDI prediction as a multi-classification
task, aiming to estimate the probability of corresponding interaction events. Specifically, given a
pair of drugs (d., d,, ), we propose a model to identify the interaction event denoted as ¥4, ,4,) =
I'((du, dv)|©, F).

4 Method

4.1 Proposed S°VM

Overview. S2VM aims to learn the essential representations of input drugs (i.e., a pair of molecules)
that possess inherent connections while appearing distinctive between different molecules. Specifi-
cally, S2VM proposes an image-based self-supervised framework to pretrain a unified encoder for
representing a pair of molecules. As illustrated in Figure [2, S?VM mainly consists of four compo-
nents: (a) Structure-level encoding module encodes the input drugs into a sequence of visual tokens;
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Figure 2: S?VM consists of four components: (a) To fuse the drug pairs into unified input, we sample
and blend them into structural tokens (i.e., fragments of visual molecules); (b) We feed the structural
tokens into a vision-based Encoder-Decoder to model the semantic relations of molecular fragments;
(c) To promote the structural fusion of drug pairs, we set a reconstruction operation to recover the
input drugs; (d) The pretrained encoder is adopted to predict potential drug interactions.

(b) The Pairwise Drug Encoder-decoder architecture embeds the sequence of visual tokens; (c) We
introduce a self-supervised objective to reconstruct original molecular images; (d) The pretrained
encoder is used to represent a pair of drugs for DDI prediction.

Structure-level Encoding. In the context of molecules, the local substructures are the common
intrinsic attributes across different molecules. Based on this, we leverage the substructures as anchors,
to represent a pair of drugs in a fine-grained manner, blending molecular local structures in the early
stage. Specifically, we propose a Structure-level Encoding module to blend molecules at the structure
level (Figure ). Given the input drugs (d,,, d.,), to focus on the local structure of molecules, we split
them into a matrix of visual fragments M,, € R™*" and M,, € R™*", wherem = H/P,n = W/P,
(P, P,C) is the resolution of each fragment, and N = HW/P? indicates the number of fragments.
To deeply fuse the structures of input drugs, we design a sampling strategy to blend M,, and M,
into one fused matrix M,g., € RY, which is then fed into a single image encoder for molecule
representation. We define a binomial distribution .S with a probability vector p = (p1, p2). For each
fragment of M (0 < i < m,0 < j < n) in the fused matrix, we sample s/ € {1,2} following
the probability distribution p, determining the corresponding element of the blended matrix:
1] 3 (Y —
M, = M e @)
M7 otherwise,

where each element in position (i, j) are randomly selected from M and M. According to this
process, the extrinsic and intrinsic relations of local structures across molecules are blended into a
single structure-blended matrix M,s,,. We then inject the blended matrix M, into a sequence of
visual tokens z; € RN*(P Q'C), where C' denotes the number of channels. The tokenized sequence z;
is represented by a transformer-based encoder that mines the semantics between the local structures
of blended molecules.

Pairwise Drug Encoder-Decoder. We utilize an encoder-decoder architecture to embed the visual
tokens x; into hidden space and decode the latent embedding for the reconstruction of molecular
images. To effectively model the semantic relations of local structures within x;, we apply standard
ViT [33]] as our encoder F (i.e., 12 blocks of ViT). Following ViT, we prepend a learnable embedding
Teps € RIX(P *-C) to the sequence of embedded tokens x;, whose state at the output of the encoder
F serves as the representation of input drugs. Specifically, the forward process of the encoder is as
follows:
20 = [2asW; 2t W3 22 W . 2N W) + Wene

pos
z; = MSA(LayerNorm(z;—1)) + 21, 3)
z; = MLP(LayerNorm(z))) + z;,



where the W € R(P*-0)xdim ang Wene ¢ RIN+1)xdim gre the trainable parameters and positional
embedding. MSA represents the multiheaded self-attention. After L layers of iterations, we obtain
the fused latent embedding z;,. To further the structural fusion of input drugs, we feed z;, into a
lightweight decoder F (i.e., 4 blocks of ViT) for molecule reconstruction. Similar to the encoder, the
reasoning process of decoder F is defined as follows:

ey =z, + Wdec

pos?
= MSA(LayerNorm(e;_1)) + €1, )

= MLP(LayerNorm(e))) + €],
where Wicc ¢ RIVFLXdim genotes the positional embedding of the decoder and e, € R(N+1)xdim
is the decoded representation by F. Then the decoded embedding e; is input into two heads for
image reconstruction, described in the next section. The decoder is only used during pretraining
to reconstruct the original molecular images, and the encoder is adopted for the downstream DDI
prediction task.

Drug Reconstruction. S?VM introduces a reconstruction objective, recovering the original molecular
images d,, and d, from e; by predicting the pixel value of each missing patch within the target
molecule. Specifically, we introduce two linear projections to scale the latent embedding e;, defined

as follows:
h, =¢el:,]E; + b,

h = el[ ]E2 + bg,
where E; € R4mx(P*-0) and E, € R¥m*(P*C) represent learnable parameters. h,, € RV*(P*-0)

and h, € RVx(” *©) denote the constructed latent embedding, which then is reshaped to form
the reconstructed molecular images d,, and d,. As depicted in Eq. , to emphasize the visual

&)

information in molecules, we remove the global [class] token (i.e., el[ ]) as e;[1: ,]. Subsequently,
we introduce a mean squared error (MSE) as our loss function to optimize the reconstruction process:
lrec = MSE(d,,, d,) + MSE(d,, d, ). (6)

By minimizing ¢,.. during pretraining, we can obtain a unified encoder to represent the paired drugs.

Downstream DDI Prediction and Optimization. We consider the DDI prediction a multi-class
classification task. Given a predicted drug pair (d,, d,), we use the structure-level encoding module
to convert it into a sequence x; of visual tokens. We then feed them into the pretrained encoder F
and obtain their latent embedding z. To focus on the global representation of the drug pair, we adopt
the embedding of [class] token z[0, : | to predict the interaction probability of the given drug pair as
follows:

9(du.a,) = o (MLP(2[0,:])), @)
where o (+) is the softmax activation function. We then utilize the cross-entropy loss:
bpre = Z 108(9(4,.d,)) (1, ., (®)
keK

where KC is the number of DDI event types and (4, 4, represent the ground truth.

4.2 Theoretical Analysis

In this section, we present a theoretical perspective based on mutual information maximization [34}(35]]
to understand better the effectiveness of S?VM. Given a pair of drugs (d,,d,), as described in
Structure-level Encoding module, they are randomly partitioned into two parts, represented as
d, = [A1, As] and d,, = [By, Bs]. A; shares identical indexes of visual fragments with B;, i € {1, 2}
and the blended matrix is denoted as Mg, = [A1, Ba].

Proposition 1 (Mutual Information Maximization) S2VM represents input molecules with structure-
level encoding into latent space and then recovers them, maximizing the lower bound of the mutual
information: EgI(Az; Ay, By) + I(B1; A1, Bs). The proof is detailed in Appendix [A.1]

Proposition 2 (Objectives of Pretraining Process) The mutual information I1(Az; A1, Ba) +
I1(By; Ay, Bs) can be decomposed into extrinsic and intrinsic objectives: (1) contrastive and



generative between input drugs, and (2) recover missing visual fragments for each molecule (i.e., Eq.
(9)). The proof refers to Appendix [A.2]

1
5[1(141;31) + I(Az; Ba) + 1(Ay; Bi|Ba) + I(Ag; Ba|Ay)]

contrastive and generative conditional contrastive and generative ( 9)
1
+§[I(A1; Ag) + I(B1; Ba) + I(A1; A2|B) + I1(By; Ba|Ay))

recovery conditional recovery

Based on the above propositions, we conclude that S2VM has two strengths in embedding paired
molecules: (i) S?VM using contrastive and generative objectives can learn finer-grained associations
(e.g., structural interactions between different molecules) from large-scale paired drugs, which
improves the generability of molecular representations (i.e., Extrinsic Relations); (ii) S?VM can
effectively model the relationship between local structures within a molecule through the recovery
of missing visual fragments, which helps to enhance the structural representation of the molecule
(i.e., Intrinsic Structure). In conclusion, S?VM effectively enhances downstream DDI prediction by
modeling paired molecular representation from both external and internal perspectives.

5 Experiments

In this section, to evaluate the effectiveness of S2VM, we carefully consider the following key research
questions: Q1: Does S2VM outperform SOTA baselines on DDI prediction across various scenarios?
Q2: Are the designed self-supervised pretraining architecture and unified encoder effective? Q3: Can
S2VM achieve superior performance in new drugs and explore structural mechanisms for DDIs?

5.1 Experimental Settings

Datasets. To evaluate our S?VM, we adopt widely-used datasets: (1) Deng’s dataset [36] contains
65 types of DDI events with a total of 37,264 DDIs among 570 drugs, (2) Ryu’s dataset (i.e.,
DrugBank) [12]] includes 86 types of DDI events with a total of 191,570 DDIs between 1,700
drugs, and (3) TWOSIDES [37] has 604 drugs and 252,111 for 200 event types. Further, following
MRCGNN [21], we count the number of DDI instances involving each DDI event as event frequency
and split these DDI events into two groups for few-shot settings (Few and Rare). We present event
types and corresponding proportions in each group in Appendix [B.I] The TWOSIDES is adopted
to evaluate the performance of S2VM in emerging drugs. Specifically, we adopt two strategies: S/
setting, determining the interaction type between an emerging drug and an existing drug, and S2
setting, predicting the interaction type between two new drugs. For pretraining, we adopt 200,000
molecules from PubChem to construct ~ 200M pairs of drugs. Refer to Appendix [B.1]for details.
Each molecule is transformed into a molecular image through a standardized and reproducible
pipeline, which serves as the visual input to our model, as detailed in[B.T]

Evaluation. Following MRCGNN [21], we split Deng’s and Ryu’s datasets into training, validation,
and test sets with a ratio of 7:1:2, ensuring that each set contains DDI events from all interaction
types. We treat the prediction on Deng’s and Ryu’s datasets as a multi-class classification task,
employing Accuracy, Macro-F1, Macro-Recall, and Macro-Precision as our evaluation metrics in
both common and few-shot scenarios. In the TWOSIDES dataset under the inductive setting, a drug
pair may exhibit multiple interaction types. The task here is to predict whether a specific type of
interaction would occur between the paired drugs using a binary classification setting. So we utilize
the Accuracy and ROC-AUC metrics on the TWOSIDES datasets. In addition, we select the best
model on the validation set based on Macro-F1 for the multi-class classification task and ROC-AUC
for the multi-type classification task. Table[T]reports the average results from five runs on the test set.

Implementation Details. For the pretraining process, we set the learning rate Ir = 1.5 x 10™4, the
number of iterations as 2, 000, the size of the molecular image is 224 x 224 x 3, the size of the visual
fragment is 16 x 16 x 3, and the numbers of transformer layers in the encoder and decoder are 12 and
4, respectively. For the downstream DDI prediction task, we set the learning rate Ir = 1 x 1072 and
the number of iterations as 100. The image and fragment sizes remain consistent with the pretraining
process. The encoder’s weights are frozen and utilized to model the representation of DDI pairs.
We provide hyperparameter analysis in Appendix|C| All experiments are conducted on the Linux
server with one RTX 3090 (24GB RAM) or RTX 2080Ti (12GB RAM) (refer to Appendix .



Table 1: Results of S?VM and baselines for drug interaction prediction on two datasets. We mark the
best score with a bold font and the second best with an underline.

Method Deng’s dataset Ryu’s dataset

ACC. Macro-F1 Macro-Rec. Macro-Pre. ACC. Macro-F1 Macro-Rec. Macro-Pre.
DeepDDI 78.07 60.55 58.39 66.11 93.23 86.43 85.12 89.28
SSI-DDI 78.66 42.16 38.96 51.39  90.08 66.63 62.87 75.07
MUFFIN 82.69 52.45 48.44 62.04 95.10 85.66 83.39 89.80
KGNN 85.57 72.62 69.87 77.14 9231 83.77 83.91 89.81
GoGNN 87.66 69.38 68.41 73.16 94.24 85.89 84.51 89.49
MRCGNN  89.79 7791 76.88 81.01 95.67 88.94 87.27 92.21
CGIP 87.57 76.33 76.41 81.72 93.35 85.72 87.65 88.47
ImageMol  88.75 77.83 76.13 82.72 91.74 87.57 86.62 89.93
CSSE-DDI  82.90 63.46 61.19 70.05  90.90 87.21 85.64 89.82
S2VM 91.05 82.12 79.31 8542 95.86 92.07 91.48 94.31
Impr. (%) 11.26 13.83 12.43 12.70  10.19 13.13 14.21 12.10

Table 2: Results comparison on the few-shotTable 3: Performance comparison on the few-shot

Deng’s dataset. Ryu’s dataset.
Few Setting Rare Setting Few Setting Rare Setting

Method  ,cC.” Macro-FI  ACC. Macro-Fl Method  ,cC." Macro-FI  ACC. Macro-Fl
DeepDDI 47.18 4191 36.36 31.86 DeepDDI 65.17 62.32 4243 37.23
SSI-DDI 64.40 61.73 41.17 38.04 SSI-DDI 72.21 71.15 56.17 52.37
META-DDIE 76.85 74.12 55.13 51.01 META-DDIE 84.06 79.25 69.58 64.21
MRCGNN 81.89 79.92 47.27 43.75 MRCGNN 90.16 89.06 66.67 61.21
ImageMol 87.12 89.76  63.69 66.67 ImageMol 95.21 91.56 92.72 92.03
S2VM 91.53 91.76 68.54 73.33 S2VM 99.51 9537 99.23 98.44
Impr. (%) 12.91 120 136 16.66  Impr. (%) 14.30 13.81 1651 16.41

Baselines. To evaluate the performance of S?VM, we compare it with several SOTA methods:
the descriptor-based DeepDDI [[12], the molecular structure-based SSI-DDI [14], the biomedical
knowledge graph based KGNN [17]], the molecular substructure together with DDI-related biomedical
knowledge MUFFIN [18]], GoGNN [38], MRCGNN [21], and CSSE-DDI [23]], and the image-based
molecule representation methods ImageMol [24] and CGIP [31]. Additionally, we include scenario-
specific methods: META-DDIE [39] for the few-shot scenario and STNN-DDI [40] together with
CSMDDI [25] for the inductive scenario. Refer to Appendix [B.3|for more details.

5.2 Main Results (Q1)

In response to Q1, we design various experiments to evaluate S2VM in different scenarios.

Comparison with Baselines. We present the absolute performance gains of VM and baselines for
predicting DDIs in Table As shown in Table we observe that S2VM achieves the best results in
the DDI prediction task on both Deng’s and Ryu’s datasets. Specifically, S2VM improves the Macro-
F1 and Macro-Rec. by at least 4.21% and 2.43% respectively on Deng’s dataset, and achieves the
3.13% and 4.21% absolute increase over the best baseline on Ryu’s dataset. Furthermore, we have the
following observations: (1) Compared with DeepDDI and SSI-DDI, which focus solely on modeling
molecular structures, KGNN, which utilizes local semantic relations of drug entities, performs better.
This suggests that DDI-related semantics are more effective than molecular structures alone in
predicting potential DDIs. (2) Compared with KGNN, MRCGNN, which leverages both the semantic
relations of drug interaction networks and molecular structures, achieves better performance. This
indicates that integrating DDI-related semantics with molecular structures enhances the prediction
task. (3) Compared with MRCGNN, CGIP, and ImageMol, which mine visual information (e.g.,
positional relations of functional substructures) from separate molecular images, show comparable
results on both Deng’s and Ryu’s datasets. This demonstrates the potential of visual molecular
information in predicting unknown DDIs. (4) S2VM, which considers paired drugs as a unified
input for joint encoding and explores a wide space of drug pairs using self-supervised pretraining,
outperforms all other methods, especially the methods based on semantic relations together with
molecular structure. This demonstrates that finer-grained structural fusion and exploration of broad
drug pairs can effectively capture the extrinsic and intrinsic associations between drugs.



Few-shot Scenario. To investigate the effectiveness of S?VM on the few-shot DDI prediction task, we
design two subsets (See Table 1 in AppendixJ@ with Few Setting and Rare Setting from Deng’s and
Ryu’s datasets, respectively. The results of S°VM on these few-shot scenarios are presented in Table
and Table S2VM consistently outperforms the baselines, achieving a Macro-F1 improvement of 2%
and 6.66% in the Few and Rare settings on Deng’s dataset, respectively. Similarly, S2VM increases
the Accuracy score by 4.3% and 5.51% in the Few and Rare settings on Ryu’s dataset. Besides,
we observe that (1) MRCGNN, which incorporates drug-related semantic relations and molecular
structures, outperforms the structure-based methods SSI-DDI and DeepDDI, indicating that the
inclusion of biomedical information from knowledge graphs enhances the few-shot DDI prediction
task; (2) Image-based methods CGIP and ImageMol perform comparably to methods like MRCGNN,
demonstrating that visual information from molecular images is effective for predicting DDIs under
limited supervision; (3) S?VM, which unifies paired drugs through structural fusion, achieves the
best performance, highlighting that finer-grained structural representations of visual molecules are
crucial for identifying unknown DDIs, even with limited interaction information. These findings
suggest that S2VM unifying input drugs through structural fusion and self-supervised learning offers
a novel and effective perspective for few-shot DDI prediction.

5.3 Ablation Study (Q2)

To investigate the impact of each mod-

ule in SzVM, we Perform an ablation Results on Deng’s dataset Results on Ryu’s dataset
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tively extracts both extrinsic and in-
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w/ shared. From the results reported in Figure 3] we notice a degradation in performance compared
with S2VM on both Deng’s and Ryu’s datasets. This observation demonstrates representing paired
drugs jointly is beneficial in fusing structural visual information from molecular images. The
performance reductions observed in w/o pretrain and w/ shared underscore the importance of
mining structural relationships between drug pairs in a self-supervised manner and jointly encoding
paired drugs for DDI prediction.

5.4 Effectiveness and Interpretability of S°VM (Q3)

Inductive Scenario. Predicting potential DDIs for new drugs remains a significant challenge. S?VM
introduces a self-supervised framework that mines both extrinsic and intrinsic mechanisms of drug
interactions, showing potential for predicting unknown DDIs for emerging drugs. To evaluate the



prediction ability of SVM on new drugs, we design inductive experiments for two settings: S/
and S2. As shown in Figure EI, we can see that SVM performs best on both S/ and S2 settings.
Specifically, the results indicate that MRCGNN outperforms molecular structure-based methods
like SSI-DDI and STNN-DDI, suggesting that incorporating semantic relations can enhance the
inductive prediction ability for emerging drugs. Besides, ImageMol shows better performance than
previous models, demonstrating that the representations of visual molecules are beneficial to DDI
prediction in inductive scenarios. Furthermore, S2VM, by introducing a self-supervised framework
that effectively represents paired drugs jointly and explores structural correlations within the broad
space of drug pairs, achieves notable improvements in both S7 and S2 settings. This suggests that
S2VM self-supervised exploration of large-scale observed drug pairs can effectively extract the
structural relations between new drugs.

Structural Interpretation for DDI
Mechanisms. In DDI prediction, per- (a) An example of the focused substructures of drug Paroxetine for S°VM

petrators can alter the pharmacoki- ! f o i
netics (PK) of victim drugs by in-  1.3-Benzodiovole piperidine |
ducing or inhibiting metabolic en- oj©/°\““' (D/ o~ (j@/ ~
zymes [41]. To evaluate the inter- ( o o

pretability of S2VM, we focused on 4-fluorobenzene

substructures of perpetrator drugs that Key region for 231 DDI pairs Key region for 119 DDI [;airs Key region for 136 DDI pairs
are reported in the literature to in-

hibit metabolic enzymes. We utilize

a manually curated dataset compris- 100 BN Hits@! W Hits@3
ing multiple chemicals known to in- BN Hits@5 = His@7
hibit metabolic enzymes via specific
substructures. Figure [5h demonstrates
how S2VM identifies the most salient
structural motifs in the drug Paroxe-
tine across multiple DDI pairs. No-
tably, the highlighted substructures 20
in Paroxetine correspond to known
inhibitors of CYP2D6, such as 1,3- 0 Acetylene Amines Alkylimidazole
Benzodioxole [42)]. These key frag- Functional Group
ments were consistently highlighted
in DDIs involving Paroxetine [43]],
suggesting mechanistic relevance. To
quantitatively assess the ability of SVM to focus on key substructures, we analyze the predictions
that emphasized known inhibitory motifs across 4,543 DDIs involving nine distinct drugs. As shown
in Figure [5p, we introduce four metrics to assess the hit rate of the top-weighted substructures by
S2VM. The results indicate that the model’s top-attended substructures are well-aligned with domain
knowledge, underscoring its strong interpretability in identifying biologically meaningful features
for DDI prediction. Additional details on the evaluation metrics, cases of highlighted regions, and
annotated data are provided in Appendix

(b) A quantitative assessment of S’VM in exploring key substructures for DDIs

d

1,3-Benzodioxole

Figure 5: The structure-based explainability of S?VM.

6 Limitation and Conclusion

Limitation. While S?VM advances DDI prediction, three considerations warrant attention. Real-
world DDI distributions are influenced by temporal emergence patterns, therapeutic classes, and
toxicity profiles—factors not explicitly modeled into the pretraining stage, which could enhance
adverse interaction detection. Second, 2D molecular representations ignore 3D conformational
effects, which reflect inherent scalability-granularity trade-offs rather than critical flaws, suggesting
future directions. Third, the current framework primarily focuses on structural learning to support
new or under-annotated drugs, where biological context is often limited or unavailable, thereby
potentially overlooking pharmacological or mechanistic factors underlying DDIs. Compared to
knowledge-enhanced models such as MUFFIN , which rely on entity coverage, S?VM achieves up
to 32.5% higher accuracy on rare DDIs, demonstrating stronger generalization under low-resource
scenarios.



Conclusion. Predicting drug-drug interactions (DDIs) is essential for ensuring patient safety and
optimizing therapeutic strategies. However, existing models are often limited by insufficient represen-
tation of structural correlations between paired drugs and inadequate exploration of the vast space of
potential drug pairs. To address these issues, we propose S2VM, a self-supervised pretraining frame-
work with a pre-fusion strategy that enhances structural modeling and generalization using over 200
million drug pairs. While S?VM demonstrates effectiveness, challenges such as computational costs,
data diversity, and limited interpretability remain, presenting opportunities for further improvement.
Moving forward, we aim to refine the pretrained encoder as a backbone for drug representation and
extend its applications to broad drug discovery.
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Technical Appendices and Supplementary Material

A Theoretical Analysis

In this section, we use uppercase to denote the random variables and lowercase to represent samples
of the random variables, followed by the common notations from [44]} 35].

A.1 Lemma 1 (Chain rule of mutual information)

Mutual information with conditions follows the law below, i.e.,

I(X1,X0;Y) = [(X1;Y) + I(Xy; Y| X1) (10)
Proof.
p(xlay)
I(X1;Y) + 1(Xo;Y[Xy) = By og +
e [10 p(:vl)p(y)]
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End Proof.

Based on the above lemma, we can decompose our mutual information Egl(As; A1, Ba) +
I1(By; Ay, Bs), described next.
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A.2 Proposition 1 (Objectives of Pretrain Process)

As described in the main paper, the I(Ag; A1, Bo)+1(B1; A1, B2) can be decomposed into following

parts:

1
3 [I(Al; B1) + I(A2; B2) + I(A1; B1|B2) + I(Asg; B2|A1)}+

1
5 [I(Al;AQ) + ](Bl; Bg) =+ I(Al;AQ'BQ) + ](Bl; B2‘A1)}

an

Proof. We provide the first term in [(Ag; Ay, B2) + I(Bq; A1, Bs), i.e. I(As; A1, By). Based on

the Lemma 1, and let X1 = A1, Xo = B>,Y = A,, we have:
I(Ag; A1, B2) = I(A1; A2) + I(Az; Ba|Ay).
Also use Lemma I and let X1 = By, Xo = A1,Y = A, then we have:
I(Ag; Ay, By) = I(Bsg; Ag) + I1(Ag; Aq|Bs).
Based on Eq. (1213), the I(As; A1, B>) can be divided into:
1

Similarly, we adopt Lemma 1 to decompose the second term (By; A1, Bs):

2
End Proof.

14

5 |:[(A1,A2) + ](AQ;B2|A1) + ](BQ;Az) + ](A27A1|BQ)] .

1
— [I(Bl;Al) —+ I(BQ; BQ'Al) —+ I(Bl; BQ) + I(Bl;Al'BQ)}-

(12)

13)
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Table 4: The DDIs division of Deng’s and Ryu’s datasets.

Deng’s dataset
Few Setting  Rare Setting
Event range #39 - #49 #50 - #65
Event Frequency | > 15 and < 50 <15
Event Proportion 1.11% 0.35%
Ryu’s dataset
Few Setting  Rare Setting
Event range #64 - #75 #76 - #86
Event Frequency >15 and <50 <15
Event Proportion 7.42% 4.71%

Table 5: The statistics of TWOSIDES for inductive settings.

S1 Setting  S2 Setting

# Drugs in Train 514 514
# Drugs in Valid 30 30
# Drugs in Test 60 60
# training set 185,673 185,673
# valid set 16,113 467
# test set 45,365 2,466

B Experimental Details

All experiments of S2VM and baseline methods were implemented on a Linux Server with 12 vCPU
Intel(R) Xeon(R) Platinum 8255C and one RTX 3090/RTX 2080Ti.

B.1 Datasets.

For few-shot settings, we split the source data into two groups according to their event frequency. As
shown in Table[d] we reported detailed event types and their proportions for few and rare settings. We
can observe from Table E]together with performance in the main paper that S?VM can also achieve
superior performance under a few supervised signals. For the inductive scenario, we follow [6] and
the detailed drugs and DDIs are reported in Table [5]

In the self-supervised pretraining stage, we build large-scale drug pairs from a set of base drugs.
Specifically, we randomly select 200k molecules from PubChes a base set of molecules. Then
we randomly sample 2,000 molecules from PubChem for each molecule of the base set. Based
on this, we construct ~ 200M pairs of drugs for pretraining. The detailed data is provided in the
anonymous repository: https://anonymous.4open.science/r/S?VM. We conduct more experiments to
verify S2VM on different scales of the base set (Appendix C.2).

We generate molecular images through a standardized and reproducible pipeline designed to ensure
visual consistency and structural fidelity. All molecules are first canonicalized using RDKit to obtain
a unique and deterministic SMILES representation, eliminating variations due to atom ordering
or tautomers. The 2D molecular structures are then rendered using RDKit’s MolsToGridImage
function, explicitly depicting atoms and bonds, with each molecule represented as a 224x224 pixel
image without stochastic augmentation to guarantee deterministic and consistent visual representation
across runs. Finally, all layout-related parameters, including sub-image spacing, drawing style, and
molecule alignment, are fixed to ensure that chemically identical molecules yield identical image
representations.

3https://drive.google.com/file/d/1t1 Ws-wPYPeeuc8f_SGgnfUCVCzIM_jUJ/viewusp=sharing
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Table 6: The hyperparameters of S2VM.

Pretraining DDI prediction

learning rate 1.5x 1074 1x1073
patch size 16 16
#layers of encoder 12 12
#layers of decoder 4 -
scale 200k -
batch size 512 64
P p=(0.5,0.5) -
embedding dim 192 192

Table 7: Performance (Macro-F1 (%)) of predicting DDIs on Deng’s dataset for different fusion
strategies.

Fusion Strategy Feature Operation

Concat Sum
Post Fusion 56.37 58.94
Pre Fusion 59.73 60.25

B.2 Implementation details of S2VM.

In the pretraining stage, we tune the learning rate among {1.5 x 1071, 1.5 x 1072, 1.5 x 1073, 1.5 x
107%,1.5 x 107°,1.5 x 1076}, the size of visual fragment/patch in {8, 16, 32, 48}, the number of
transformer layers in encoder among {4, 8,12, 16}, the number of transformer layers in decoder in
{2,4, 6}, the scale of training data in {50k, 100k, 200k, 300k }. Furthermore, we vary the blending
probability vector p = (p1,p2) into p = (0.3,0.7), p = (0.5,0.5), and p = (0.7,0.3). The p =
(0.5,0.5) is selected finally. For the DDI prediction task, we tune the learning rate in {1 x 1071, 1 x
1072,1 x 1072, 1 x 10~*}, the batch size among {32, 64, 128, 256 }. The final hyperparameters are
shown in Table[6l

B.3 Implementation details of baselines.

In the common prediction scenario, we implemented KGNI\E], CGIPE], CSSE—DD]ﬂ and ImageMo
using their official code. The results of other methods MRCGNN, DeepDDI, SSI-DDI, MUFFIN, and
GoGNN are from MRCGNN [21]]. In the few-shot scenario, we implemented DeepDD]ﬂ SSI—DD]ﬂ
META-DDI MRCGN ImageMol using their source code. In the inductive settings, we
implemented SSI-DDI, MRCGNN, and ImageMol based on their available sources. The results
of STNN-DDI and CSMDDI were from the method [6]. Note that, for the image-based molecular
representation model CGIP and ImageMol, we concat the embeddings of paired drugs and feed it
into a 3-layer MLPs for classification. The parameters of CGIP or ImageMol are jointly trained with
the classifier.
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Table 8: The Macro-F1 (%) performance of S2VM and its variant under inductive scenario on
TWOSIDES.

S1 setting  S2 setting

S2VM w/o pretrain 62.33 57.85
S2VM 78.19 69.34

C Additional Experiments

C1

Motivation Discussion

* Limited representation of structural correlations between paired drugs. A major
mechanism of drug interactions results from a few local functional substructures instead
of the whole chemical substructure [13| [14]. While the remaining substructures are less
relevant. Therefore, the structural correlations between drugs are crucial to predict DDIs.
To deeply model the structural representation of the whole drug interactions, we adopt
a pre-fusion strategy to encode the input drugs jointly. In table[/| we conduct a simple
experiment to validate the effectiveness of pre-fusion. We introduce two fusion strategies
based on molecular morgan fingerprints: (1) Post Fusion, concatenating or summing the
latent embeddings of a pair of drugs from a 3-layer DNN encoder based on their fingerprint
features (2048-dimensional vectors); (2) Pre Fusion, previously concatenating or summing
the molecular fingerprints of paired drugs as a unified input and then encode the input into a
latent embedding using a 3-layer DNN. The experimental settings of the two strategies are
the same. As shown in Table[7] we observe that the pre-fusion strategy performs better. This
phenomenon suggests that direct joint encoding of inputs helps to model drug interactions.

* Limited exploration for the space of drug pairs. Previous methods mainly learned the
representations of drug pairs from known DDIs, which are limited by the labeled data and
generalizability, especially for the new drugs [45,[13]]. To address this limitation, we propose
a self-supervised pretraining framework learning from over 200M drug pairs to extract
comprehensive structural correlations between molecules. To validate the effectiveness of the
self-supervised objective, we design a simple experiment on S?VM for the inductive scenario.
Specifically, we perform S?VM and its variant S°VM w/o pretrain on TWOSIDES with
S1 and S2 settings. As shown in Table |8 we observe that the S?VM has a significant
improvement in predicting DDIs compared with S°VM w/o pretrain. This shows that
S2VM using self-supervised learning on a broad range of drug pairs has the potential to
predict unknown DDIs over emerging drugs. Similarly, in the common scenario depicted
in Figure @ S2VM shows better interaction distribution than others, indicating S?VM is
efficient in embedding latent space.

Table 9: The Macro-F1 (%) of S?VM under different probability vector P on Deng’s and Ryu’s
datasets.

p1:p2  Deng’s dataset Ryu’s dataset

7:3 81.59 91.76
5:5 82.97 92.53
3:7 80.87 92.08

*https://github.com/xzenglab/KGNN
>https://github.com/HongxinXiang/CGIP
Shttps://github.com/LARS-research/CSSE-DDI
"https://github.com/HongxinXiang/ImageMol
8https://github.com/deepddi-transfer-learning/deepddi
“https://github.com/kanz76/SSI-DDI
Ohttps://github.com/YifanDengWHU/META-DDIE
"https://github.com/Zhankun-Xiong/MRCGNN
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Figure 6: Distributions of DDI representations from S2VM, ImageMol, CGIP, and MRCGNN across
8 event types.
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Figure 7: The performance of S2VM and corresponding running time for one step on various patch
sizes.

C.2 Representational Distribution of drug pairs.

To explore the representation distributions of drug pairs under different methods, we visualize the
embeddings of the paired drugs using the T-SNE [46] tool. Specifically, we randomly select 2890 pair
of drugs across 8 event types and then extract their embeddings from MRCGNN, CGIP, ImageMol,
and S?VM for visualization. As shown in Figure@ we can find that S2VM can effectively divide the
space for different DDI types, performing best representation distributions.

C.3 Performance on various patch sizes.

We investigate the performance of S?VM on different patch sizes (i.e., the value of P and (P, P, C)
is the resolution of each patch/fragment). We vary P across {8, 16, 32,48}. The results and corre-
sponding average running time (for on step) are reported in Figure We observe that S2VM achieves
best under P = 8 but suffers expensive time costs. In contrast, S?VM performs a better balance
between the predictive capabilities and time costs when P = 16. Meanwhile, the effect decreases as
P increases and is accompanied by a low time cost. This is because a larger P reduces the number
of tokens and brings about inefficient structural fusion, thus exhibiting high time efficiency and low
prediction accuracy. Therefore, we finally select P = 16 as our patch size.

C.4 Performance of S°VM on various scales of pretraining data.

To study the performance of S2VM on various scales of pretraining data, we select different numbers
({50k, 100k, 200k, 300k }) of molecules from PubChem as our base set of drugs. We then randomly
construct drug pairs from the base set by sampling 2000 molecules for each drug. The performance
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Figure 8: The performance of S2VM under various scales of pretraining data.
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Figure 9: Performance on reconstruction and DDI prediction (Deng’s dataset) under different input
strategies.

of S2VM under different scales is depicted in Figure As the data size increases, SVM shows a
linear growth trend, while the growth slows down when it reaches 300k. Meanwhile, the increase in
data size can bring more time costs, so we finally consider 200k molecules as our base set of drugs.

C.5 Performance of S°VM on different blending ratios.

We study the impact of blending ratios for input drugs by varying the probability vector p = (p1, p2)
for the binomial distribution S. In table EI, we show the performance of S2VM by varying p into
p=(0.3,0.7), p = (0.5,0.5), and p = (0.7, 0.3). SVM performs best when p = (0.5, 0.5) and we
finally select p = (0.5, 0.5) as our sampling ratio.

C.6 Performance of Reconstruction.

To investigate the performance of molecular image reconstruction, we illustrate the loss curve on
various scales of drugs and show two cases of recovery effect. As depicted in Figure Dp, we observe
that the curve is smooth and the loss is coverage gradually on various scales of training data, indicating
S2VM performs well in this pretraining setting. Further, from the reconstruction cases, we see that
S2VM can recover most missing regions of the molecular images. These observations demonstrate
that S2VM is effective in capturing the local structural correlations between molecules, enhancing its
ability to predict missing regions from the visible ones.

C.7 Position-independent Structural Fusion.

To verify the effectiveness of S?VM in extracting robust structural relations from visual molecules,
we experiment with adjusting the arrangements of blending paired drugs (input). Specifically, we
design three strategies: (1) randomly blend the tokens (i.e., visual fragments) of molecular images
(called Ours (Random)), (2) the tokens of the first drug extend tokens of the second one (called Ours
(A+B)), and (3) the tokens of the second drug extend tokens of the first one (called Ours (B+A)).
Note that the Random indicates that the relative positions of tokens in a molecule are kept the same
as the original molecular structure, and the relative positions of tokens between two molecules are
random. Refer to Appendixfor more details. We observe that S2VM with the three types of inputs
achieves similar results, which demonstrates that S2VM is insensitive to the absolute position of the
input fragments. This phenomenon indicates that the positional relations between local fragments
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Figure 10: Further explanations for different positional strategies.

in visual molecules can be efficiently modeled, which is crucial to representing drug pairs for DDI
prediction.

C.8 Details of Position-independent Experiments.

To investigate the impact of different positional arrangements on DDI prediction, we experiment to
verify the S?VM. Specifically, we design three strategies: (a) Ours (Random), (b) Ours (A+B), and
(c) Ours (B+A). For ease of understanding, we visualize each strategy in Figure , Figure|10b, and
Figure[I0k, respectively. Ours (Random) randomly blends visual fragments (i.e., tokens) of input
drugs into a sequence. OQurs (A+B) splices the fragments of drug A before the fragments of drug B.
Similarly, Ours (B+A) concatenates the fragments of drug B before the fragments of drug A. This
processed matrix will be tokenized into a sequence by column.

C.9 Performance of S°VM under I-JEPA Pretraining

To further validate the robustness and generality of the S?VM framework, we implemented an image-
level I-JEPA [47]] variant of S?VM, trained under the same settings and scale (50K base molecules,
50M drug pairs) for fair comparison. For the I-JEPA variant, we replaced the ViT backbone in
S2VM with the I-JEPA architecture and adapted it to handle paired molecular images. Each drug
image is masked and encoded separately to obtain its context features, which are then combined to
reconstruct the missing regions of each image following the standard I-JEPA procedure. All default
I-JEPA hyperparameters were retained, except for those shared with ViT (e.g., embed_dim=192).
As summarized in Table [I0} the I-JEPA variant achieves comparable performance on the Ryu
dataset and only slightly underperforms on the Deng dataset. These consistent results across two
distinct pretraining paradigms demonstrate that S>VM effectively captures transferable molecular
representations regardless of the underlying encoder design, while also highlighting the potential of
JEPA-style models as a viable alternative for future extensions.

Table 10: Performance Macro-F1 (%) comparison between ViT-based and JEPA-based S>VM models
under small-scale pretraining

Method Deng’s dataset Ryu’s dataset

I-JPEA 71.54 88.78
S?VM 77.12 88.83

Table 11: Performance comparison between S?VM and single-molecule representation baselines.

Deng’s dataset Ryu’s dataset
ACC Macro-F1 ACC Macro-F1

MAE 82.76 69.61 92.15 89.20
S?°VM  91.05 82.12 95.86 92.07

Method
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Figure 11: Examples of visualization by using Grad-CAM. The focused regions of S?VM are mainly
located in key substructures.

C.10 Performance of S?’VM under sing-molecule Pretraining

We conducted the control experiment by pretraining a ViT-based masked autoencoder (MAE) us-
ing single-molecule reconstruction only. This baseline uses the same architecture, the same 200K
PubChem molecules, and identical training epochs as S?VM, ensuring a fair comparison. During
downstream DDI prediction, we adopted a post-fusion strategy where each drug is encoded individu-
ally and the resulting representations are concatenated for classification. As shown in Table[T1] the
single-molecule MAE baseline consistently underperforms S2VM across all metrics and datasets.
This demonstrates that joint reconstruction pretraining yields more expressive and interaction-aware
representations, beyond what is achievable through standard single-drug encoding.

D Implementation details for interpretable analysis

D.1 Evaluation metrics

To quantifiably evaluate the ability of S2VM in focusing key molecular substructures, we introduce
the Hits@K metric. Specifically, the Hits@K is computed by filtering Grad-CAM [48]] heatmaps
using predefined anchor boxes (Figure[TI). Let hx denote the set of top-K % hot pixels within the
entire molecular image (sorted by the pixel value), B indicate the whole pixels in the box, and T is
the set of all pixels within the molecular image. The Hits@K is defined as follows:

N
Hits = f(hk,B,T),

i=1 (16)
HitsOK — 20

where Hits denotes the number of hit samples (i.e., S?VM successfully focuses the key functional
groups), K € {1,3,5,7} and f(hg,B,T) is:

|hg N B| @ <3
f(hi,B,T) = |B| |T| (17)
0 others

The core idea is to assess whether the S?VM’s region of interest is concentrated in key substructures.

D.2 Case

As shown in Figure we used Grad-CAM to generate the attention map of S?VM, with the high-
attention regions that predominantly influence its predictions. These high-attention regions are mostly
concentrated in critical substructures within the molecules, such as Amine, 1, 3-Benzodioxole, and
Acetylene groups, which are key contributors to the occurrence of adverse DDIs.
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Table 12: The labeled key structures for DDI mechanisms. The evidence is available at [49]

Chemical Name DrugBank ID Functional Group  Enzyme inhibited =~ Chemical Formula

Paroxetine DB00715 1,3-Benzdioxole CYP2D6 C19Ho0FNOg3
Stiripentol DB09118 1,3-Benzdioxole  CYP2CI19IICYP2D6 C14H1503
Ethinylestradiol DB00977 Acetylene CYP3A4 Co0H2409
Gestodene DB06730 Acetylene CYP3A4 Cy1Ho609
Icotinib DB11737 Acetylene CYP3A4lICYP3AS CosHo1 N30y
Midazolam DB00683 Alkylimidazole CYP3A4 C1gH13CIF N3
Verapamil DB00661 Amine CYP3A4 Co7H33NoOy
Troleandomycin DB13179 Amine CYP3A4 Cy1Heg7NOq5
Erythromycin DB00199 Amine CYP3A4 C37Hg7NO13
Amiodarone DBO1118 Amine CYP1A2IICYP2C9 CosHoglo NOs

D.3 Labeled Key Structures for DDI Mechanisms

We show the evaluation data used for the structured interpretation of the DDI mechanism in Table
For example, for drug Paroxetine and other drugs that produce adverse DDIs, the main reason is that
the functional group 1,3-Benzdioxole in Paroxetine inhibits the drug metabolizing enzyme CYP2D6.
Therefore, if S?°VM can effectively model these key substructures it will greatly improve the detection
efficiency and discover new structuring mechanisms. We adopt a subset of all the labeled data [49]
and are available at this link.

E Broader impacts

S2VM’s improved DDI prediction could enhance patient safety by reducing adverse drug interactions
and accelerate therapeutic development through efficient preclinical screening. However, overreliance
on Al predictions without clinical validation might risk misdiagnosis, while data biases could amplify
healthcare disparities for underrepresented populations. Additionally, misuse of the model to design
harmful drug combinations poses ethical concerns. To mitigate these risks, rigorous validation with
pharmacologists, bias-aware data curation, and ethical governance frameworks are critical to ensure
transparent and responsible deployment in real-world healthcare systems.
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