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Figure 1: Generalizability of D3RoMa in the real world. Our method robustly predicts transparent
(bottles) and specular (basin and cups) object depths in tabletop environments and beyond. RGB
image, pseudo colorized raw disparity map, our prediction, and point cloud are displayed for each
case of a total of 6 frames captured by camera RealSense D415 and D435. * RGB and depth images
are not aligned for the D435 camera for better visualization.

Abstract: Depth sensing is an important problem for 3D vision-based robotics.
Yet, a real-world active stereo or ToF depth camera often produces noisy and in-
complete depth which bottlenecks robot performances. In this work, we propose
D3RoMa, a learning-based depth estimation framework on stereo image pairs that
predicts clean and accurate depth in diverse indoor scenes, even in the most chal-
lenging scenarios with translucent or specular surfaces where classical depth sens-
ing completely fails. Key to our method is that we unify depth estimation and
restoration into an image-to-image translation problem by predicting the dispar-
ity map with a denoising diffusion probabilistic model. At inference time, we
further incorporated a left-right consistency constraint as classifier guidance to
the diffusion process. Our framework combines recently advanced learning-based
approaches and geometric constraints from traditional stereo vision. For model
training, we create a large scene-level synthetic dataset with diverse transparent
and specular objects to compensate for existing tabletop datasets. The trained
model can be directly applied to real-world in-the-wild scenes and achieve state-
of-the-art performance in multiple public depth estimation benchmarks. Further
experiments in real environments show that accurate depth prediction significantly
improves robotic manipulation in various scenarios.
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1 Introduction

With the extensive use of stereo cameras, stereo depth estimation has been one of the most widely
studied problems in robotics for determining the target object position or acquiring 3D information
of the environment [1, 2, 3, 4]. However, the depth maps provided by existing stereo cameras
suffer from severe noise, inaccuracy, and incompleteness issues, bottlenecking robot performances
regardless of their well-developed recognition and manipulation algorithms.

Traditional stereo-to-depth algorithms such as SGM [5] have fundamental issues: (i) In principle,
they cannot tackle non-Lambertian surfaces due to the intricate light paths; (ii) Occlusion and out-
of-view areas prohibit the computation of pixel correspondences. Recent works have leveraged
learning-based techniques for acquiring or restoring better depth maps [6, 7]. While they alleviate
the above issues to a certain extent, predicting the depth for transparent and specular objects re-
mains challenging as their image features from RGB pixel values are inherently ambiguous due to
foreground-background color blending and thus can be misleading to correspondence estimation [8].

In this work, we propose D3RoMa. Instead of building our network with cost volumes as in most
prior works, we transform the dense matching problem in depth estimation into an image-to-image
translation problem by predicting the disparity map with a denoising diffusion probabilistic model.
Such a paradigm does not rely on low-level feature matching but rather unleashes the power of gen-
erative models to directly translate the left and right frames into the target disparity image. More
concretely, our method brings twofold benefits: (i) Unlike the regression models as in prior works,
the diffusion model in our framework enables generative modeling of multi-modal depth distribu-
tions for transparent or translucent surfaces. (ii) The multi-step denoising process resembles the
iterative solver, replacing prior iterative networks such as RAFT-Stereo [7] and HitNet [9].

Additionally, at inference time, we further incorporate the geometric constraints from traditional
stereo vision by introducing a left-right consistency loss. The loss is integrated into the diffusion
sampling process as a classifier guidance. The whole paradigm combines learning-based predic-
tions and traditional geometric modeling through a simple summation of their gradients in the score
function of the diffusion model.

To train the network, we craft a synthetic dataset HSSD-IsaacSim-STD (HISS) of around 10, 000
stereo image pairs simulating real active stereo infrared patterns, including more than 350 trans-
parent and specular objects in more than 160 indoor scenes [10]. Our dataset greatly extends the
existing datasets that are limited to near-diffusive materials, table-top settings, or without realistic
depth sensor simulation [11, 12, 13, 14, 15, 16]. Trained on our synthetic dataset, our model can
be directly applied to real-world in-the-wild scenes (Figure 1) and achieve state-of-the-art perfor-
mances not only on traditional stereo benchmarks but also on datasets targeting specular, transparent,
and diffusive (STD) objects. To further validate our effectiveness in robotic manipulation, we con-
duct experiments on both simulated and real environments ranging from tabletop grasping to mobile
grasping in indoor scenes. We observe that with the high-quality depth maps and 3D point clouds
predicted by our method, the success rates of robotic manipulation can be significantly improved in
diverse settings.

To summarize, our contributions are: (1) A diffusion model-based stereo depth estimation frame-
work that can predict state-of-the-art depth and restore noisy depth maps for transparent and specu-
lar surfaces; (2) An integration of stereo geometry constraints into the learning paradigm via guided
diffusion; (3) A new scene-level STD synthetic dataset that simulates real depth sensor IR patterns
and photo-realistic renderings; (4) Significant improvements in robotic manipulation tasks with our
higher-quality depth maps and 3D point clouds.

2 Related Work

Stereo Depth Estimation and Completion. Modern deep-learning stereo methods [7, 17] typi-
cally have the following structures. First, a feature encoder are used to extract the left and right
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image features. The feature encoders are either pre-trained and frozen or trained end-to-end. Sec-
ond, a cost volume is built by enumerating all the possible matching. Some works incorporate 3D
CNN or attention networks to increase the receptive field of convolution layers which have proved to
be beneficial [18, 19]. Finally, a detection head is added to regress the disparities. The most success-
ful ingredient is the iterative mechanism which is proposed by the seminar work RAFT [6] [7]. On
the other hand, Weinzaepfel et al. [20] uses cross-view completion pertaining and achieves impres-
sive results. Despite all the progress that has been made, in the real world, transparent and specular
objects are ubiquitous and the RGB features of the surfaces are inherently ambiguous to be used to
search for correspondence because the foreground and background colors are blended.

Previous work [13] tried to restore the missing depths with the help of neighboring raw depth values
and their RGB color clues [12] [21] but with limited generalizability. Another line of work directly
fine-tunes a trained deep stereo network [14] on transparent surfaces allowing the feature encoders
to learn to match the transparent surfaces. However, the aforementioned foreground and background
ambiguities confuse the feature-matching-based pipeline when dealing with regular diffuse objects.

Diffusion Model for Depth Estimation. Recently, researchers have employed diffusion models
to estimate optical flow [22] and predict depths with a single RGB image input [23] [24] [25] [26].
Such monocular methods can estimate the depth map up to an unknown absolute scale. Bhat et al.
[27] proposed to train an extraneous network to predict the scale and achieve decent accuracy. How-
ever, the monocular methods either lack the absolute scale or have inferior accuracy for robotic
manipulation tasks. Another line of work has pioneered adjusting the diffusion model to stereo
settings. Nam et al. [28] proposed to learn matching based on cost volume in a diffusion manner,
which could not handle matching ambiguities. Shao et al. [29] proposed to refine raw map for high
quality human reconstruction. The authors designed a novel linear scheduler and condition on all
the stereo-related information. Nonetheless, we found that using the default DDPM [30] scheduling
works well and only needs to condition on stereo images and raw disparity if necessary. Addition-
ally, we combined the stereo matching loss gradient with the learned gradient by the diffusion model.
The stereo matching loss is obtained by checking the left-right image photometric consistency in an
unsupervised manner [31] [32]. Such guided diffusion model [33] achieves the best results in our
experiments.

3D Vision-Based Robotic Manipulation. 3D vision is becoming increasingly critical for robotic
manipulation [34]. Most basically, depth perception enables robots to comprehend the size, shape,
and position of objects within three-dimensional space, thereby facilitating more sophisticated and
reliable interactions [35, 36]. Moreover, numerous works [37, 38, 39, 40] utilize RGB-D point
clouds as input. However, the substantial domain gap between simulated and real RGB-D images
can result in a significant sim-to-real gap [41]. Additionally, transparent and specular objects ex-
acerbate this issue, leading to poor depth-sensing performance. Policies trained in simulators often
struggle to transfer effectively to real-world scenarios, particularly in the context of mobile ma-
nipulation. Our proposed high-performance depth estimation network is a promising direction to
improve existing 3D vision-based tasks.

3 Method

In this section, we introduce D3RoMa, a disparity diffusion-based depth sensing framework for
material-agnostic robotic manipulation. Our framework focuses on improving the accuracy of dis-
parity map in depth estimation, especially for transparent and specular objects which are ubiquitous
yet challenging in robotic manipulation tasks. Given an observation of the scene, our framework
takes the raw disparity map D̃ and the left-right stereo image pair Il, Ir from the depth sensor as
input, and outputs a restored disparity map x0, which will be converted into the restored depth map.

3



Figure 2: Disparity diffusion with stereo-geometry guidance. Our disparity diffusion-based depth
sensing framework takes the raw disparity map D̃ and the left-right stereo image pair Il, Ir as input.
With the geometry prior from the stereo matching between Il and Ir as guidance for the reverse
sampling, our diffusion model can gradually perform the denoising process conditioned on D̃ to
predict the restored disparity map x0.

3.1 Preliminaries

Stereo Vision and Depth Estimation. Once the disparity map x for the observed points between
a pair of stereo cameras is known, the depth map d for the points can then be calculated using the
camera intrinsic parameters through d = (f · b)/x, where f and b are the camera focal length and
the stereo baseline, respectively. The estimation of the disparity map x is traditionally modeled
as a dense matching problem, which can be solved within the image domain. Thus, stereo depth
estimation can be studied independently from different camera devices.

Denoising Diffusion Probabilistic Model. Diffusion models [30] [42] are special latent variable
models that reverse the diffusion (forward) process which gradually diffuses the original data x0

through a Markov process. When the network sθ is trained converged, the gradient of the noise
distribution also called the score function [43] is

∇xt log p(xt) ≈ − 1√
1− ᾱt

sθ∗(xt, t; θ). (1)

During inference, data samples can be generated through ancestral sampling which resembles the
stochastic gradient Langevin dynamics (SGLD) [44]

xt−1 =
1√

1− βt

(xt + βt∇xt
log p(xt)) + βtϵt, ϵt ∼ N (0, I). (2)

3.2 Disparity Diffusion for Depth Estimation

In this work, we formulate the stereo depth estimation problem as an image-to-image translation
problem in the diffusion model. One important design choice is what to condition on. The model
is usually formulated to condition on the stereo image pairs Il, Ir for stereo depth estimation. Our
experiments found that conditioning additionally on raw disparity D̃ makes the network converge
faster during training and generalizes more robustly in out-of-distribution scenarios. The raw dis-
parity can be easily obtained either from a traditional stereo matching algorithm SGM [5] or from
the real camera sensor outputs. For real active stereo depth sensors like RealSense, the left and right
images are captured by infrared (IR) cameras with special shadow patterns projected by an IR pro-
jector. As a result, conditioning on the left and right images and the raw disparity map D̃, we train
a conditional diffusion model to learn the distribution of the disparity map

pθ(x0|y) =
∫

pθ(x0:T |y)dx1:T , p(x0:T |y) = p(xT )

T∏
t=1

pθ(xt−1|xt, y) (3)

where y = {Il, Ir, D̃}. Empirically, this conditional denoising network has been shown to be
successful [45] [46]. Batzolis et al. [47] further provided proof (see Theorem 1) that the conditional
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score ∇xtp(xt|y) can be learned through the same training objectives as in the unconditional case
even though the condition y does not appear in the training objectives. After the network is trained,
the estimated disparity can then be sampled through

xt−1|y =
1√

1− βt

(xt + βt∇xt
log p(xt|y)) + βtϵt, ϵt ∼ N (0, I). (4)

3.3 Reverse Sampling Guided by Stereo Geometry

Inspired by the classier guidance to image generation tasks [48] [49], we propose to guide the dis-
parity diffusion process with the model-based geometry gradient. The guided reverse process is
illustrated in Figure 2. Specifically, the conditional score function is perturbed with gradient com-
puted from stereo-matching

∇xt
log p(xt|y) = − 1√

1− ᾱt
sθ∗(xt, t, y; θ) + s∇xt

Lsm(Il, Ir, xt) (5)

where Lsm is the similarity loss function which compares the left image with the warped left image.
The warped left image is obtained by warping the right image with the estimated disparity. s ∈ R+

controls the geometric guidance strength and it balances the learned gradient from diffusion model
and geometric gradient from stereo models. A detailed derivation of Equation 5 is provided in
Appendix B. To mitigate the gradient locality in stereo matching, we downsample the stereo images
into multiple different lower resolutions when computing the gradient of stereo matching. More
specifically, we have

Lsm(Il, Ir, xt) =
∑
k

Lssim(Il, Ir, xt) + γLsmooth(Il, xt) (6)

where k is the index of the layer for different resolutions and γ ∈ R+ is a weighting constant
balances the two photometric and smoothness losses. The Lssim is the structural similarity index
(SSIM) [50] which computes the photometric loss between the left image Il and warped image Ĩleft:

Lssim(Il, Ir, xt) = SSIM(Il, Ĩl), (7)

Ĩl(u, v) = Ir⟨u+ xt, v⟩ (8)

where u, v are the pixel coordinates in the image plane and ⟨ ⟩ is linear sampling operation. Lsmooth

is an edge-aware smoothness loss [31] [32] defined as

Lsmooth(Il, xt) = |∂uxt|e−|∂uIl| (9)

which regularizes the disparity by penalizing large discontinuity in non-edge areas. Here ∂u means
partial derivative in u (horizontal) direction in the image plane. Then we predict the disparity map x0

with the perturbed gradient from Equation 5 following the sampling process introduced in Equation
2. Finally, We can convert the disparity to depth once we know the camera parameters.

3.4 HISS Synthetic Dataset

We create our synthetic dataset HISS based on Habitat Synthetic Scenes Dataset (HSSD) [10]. We
leverage the 168 high-quality indoor scenes from HSSD to increase scene diversity. For objects,
we include a total of over 350 object models from DREDS [13] and GraspNet [34]. The scene and
randomly selected object CAD models are rendered in Isaac Sim [51]. During rendering, object
materials and scene lighting are specifically randomized in simulation to mimic the transparent or
specular physical properties of objects (cups, glasses, bottles, etc.) in the real world. To obtain the
correct depth values for transparent surfaces, we adopt a two-pass methodology. We first render
RGB images and depth maps of the scenes with object materials set to diffuse. The lightings are all
turned to enable photorealistic rendering. In the second pass, we turn the normal lighting off and
project a similar shadow pattern on the scenes to mimic the RealSense D415 infrared stereo images.
Using the intrinsics of the RealSense D415 depth camera, we render over 10,000 photo-realistic
stereo images with simulated shadow patterns. Experiments demonstrate that our dataset is the key
enabler of our method’s excellent generalizability in the real world.
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4 Experiments

4.1 Depth Estimation in Robotic Scenarios

DREDS. We evaluate our method on DREDS [13], a tabletop-level depth dataset with both syn-
thetic and annotated real data for specular and transparent objects. We compare our method with
several state-of-the-art baselines: 1) NLSPN, 2) LIDF, 3) SwinDR, and 4) ASGrasp, which are four
methods that have been shown effective on depth estimation for transparent or specular objects.
We also compare another 3 stereo depth SoTA methods: RAFT-Stereo, IGEV-Stereo, and CroCo-
Stereo. We use mean absolute error (MAE), relative depth error (REL), root mean square error
(RMSE), along with 3 other metrics related to depth accuracy as metrics for evaluation. We include
detailed descriptions for the baselines and the metrics in the Appendix C.

As shown in Table 1, on the DREDS-CatKnown data split (synthetic data), all variants of our method
surpass all baselines on all metrics. Further, the results of our ablations show that the performance
of our method can be steadily improved with more information provided, especially the integration
of the raw disparity.

Table 1: Comparisons of Depth Estimation Results on DREDS Dataset (DREDS-CatKnown
split, synthetic). We also studied different combinations of conditioned images for the denosing
network. Best shown in bold and second best shown in underlined.

Methods RMSE ↓ REL ↓ MAE ↓ δ1.05 ↑ δ1.10 ↑ δ1.25 ↑

NLSPN (Park et al. [21]) 0.010 0.009 0.006 97.48 99.51 99.97
LIDF (Zhu et al. [12]) 0.016 0.018 0.011 93.60 98.71 99.92
SwinDR (Dai et al. [13]) 0.010 0.008 0.005 98.04 99.62 99.98
ASGrasp (Shi et al. [14]) 0.007 0.006 0.004 - - -
RAFT-Stereo (Lipson et al. [7]) 0.007 0.006 0.005 98.13 99.83 99.97
IGEV-Stereo (Xu et al. [18]) 0.006 0.007 0.002 98.19 99.66 99.97
CroCo-Stereo (Weinzaepfel et al. [52]) 0.008 0.010 0.002 94.49 98.32 99.87

D3RoMa(Cond. on RGB+Raw) 0.0045 0.0016 0.0011 99.64 99.88 99.99
D3RoMa(Cond. on RGB+Left+Right) 0.0070 0.0048 0.0032 99.11 99.79 99.98
D3RoMa(Cond. on RGB+Left+Right+Raw) 0.0040 0.0014 0.0010 99.71 99.90 99.99

More ablation studies regarding the geometry-based guidance, network hyper-parameters and archi-
tectures are provided in Appendix F.

SynTODD. SynTODD [15] is another synthetic dataset for transparent objects by using Blender.
It contains 87512 train images and 5263 test images. The authors proposed a novel multi-view
method (MVTrans) to estimate object depths, poses, and segmentations. Because the dataset pro-
vides neither simulated raw disparity nor correct camera intrinsic for stereo images, We compare
with MVTrans[15] using our monocular variant, ie., we modify the network to condition only on
RGB images. We do scale alignment after the prediction of the scale-invariant depth following Mi-
Das [53]. As shown in Table 2, Our method achieves better performance than all the variants of
MVTrans including 2-views, 3-views, and 5-views.

ClearPose ClearPose [16] is a large-scale real-world RGB-D benchmark for transparent and
translucent objects. The dataset contains 350,000 real images captured by the RealSense L515
depth camera. The authors collected a set of very challenging scenes including different back-
grounds, heavy occlusions, objects in translucent and opaque covers, on non-planar surfaces, and
even filled with liquid. We evaluate our method on ClearPose in all settings. Our method D3RoMa
outperforms two previous SoTA ImplicitDepth [54] and TransCG [55] by a large margin as shown in
Table 3. More detailed statistics of each scene are provided in Table 11 and Figure 10 in Appendix
H. ClearPose is captured with RealSense L515 camera, the depth noise is large when point distance
is larger than 5 meters. We mask out the noise depth values out of the range [0.2,5] meters for all
the experiments.
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Table 2: Depth estimation results on Syn-TODD.

Methods RMSE ↓ REL ↓ MAE ↓

SimNet(Laskey et al. [56]) 1.229 0.975 1.020
MVTrans (2 images) 0.134 0.135 0.089
MVTrans (3 images) 0.125 0.125 0.083
MVTrans (5 images) 0.124 0.117 0.080

D3RoMa(Cond. on RGB) 0.065 0.079 0.040

Table 3: Results on Depth completion
benchmark ClearPose.

Methods RMSE↓ REL ↓ MAE ↓

ImplicitDepth 0.133 0.120 0.101
TransCG 0.077 0.065 0.060

D3RoMa
(Cond. On RGB+Raw) 0.093 0.031 0.412

Figure 3: Qualitative Comparisons with SOTA methods in the Real World. Each row (from left
to right) shows the RGB image and disparity results of our method, pre-trained Raft Stereo, Raft
Stereo fine-tuned on our dataset, and ASGrasp.

4.2 Comparisons with SOTA Stereo Matching Methods in General Scenarios

We further demonstrate the effectiveness of our method for stereo matching in general scenarios. We
compare our method with state-of-the-art stereo-matching baselines on SceneFlow [57], a synthetic
dataset containing more than 39,000 stereo frames in 960×540 pixel resolution. The dataset contains
three challenging scenes, FlyingThings3D, Driving, and Monkaa, which makes it a high-quality
dataset for pre-training [7, 18, 20]. We train our model from scratch using 35,454 stereo pairs for
training and leave the rest as testing split. We also resize the images in the dataset into 480×270
to be consistent with our robotic perception settings. Following the previous work [18], the ground
truth disparity is normalized using the maximum disparity value 192, which is also used to crop
the test data. More implementation details are provided in Appendix E. As shown in Table 4, we
achieve the best results compared to existing state-of-the-art methods.

Table 4: Comparisons with SOTA Stereo Matching Methods on SceneFlow Dataset. ∗Ours is
not built on Cost Volumes.

Methods GA-Net [58] LEAStereo [59] EdgeStereo [60]

EPE 0.84 0.78 0.74

ACVNet[61] IGEV-Stereo[18] HitNet [9] D3RoMa∗

0.48 0.47 0.36 0.36

4.3 Robotic Manipulation

In the grasping experiments, we first acquire the depth map by D = (f · b)/X . Then back project
the depth into point cloud P = DK−1P , where K ∈ R3×3 is the camera intrinsics and P are the
homogeneous points in the image plane corresponding to each pixel. With the restored point cloud,
we leverage GSNet [62] to predict 6 DoF grasping poses. To increase the grasping success rate for
all baselines, we filter the grasping pose which has the angle between the grasping pose and the z
(up) direction less than 30 degrees. We always select the grasping pose with the highest core and
transform it into the robot base frame.

Environment Setup. We set up a tabletop grasping, articulated object manipulation and a mobile
grasping environment in the real world, as shown in Figure 4. In the tabletop grasping experiments,
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Table-top Grasping Articulated Object Manipulation Mobile Grasping

Figure 4: Robotic Manipulation. We examine our approach on challenging robot manipulation
tasks and our performance significantly outperforms all baselines.

we use a Franka 7-DoF robotic arm. We place STD objects on surfaces with bumps and pits, which
are challenging setups for both depth sensing and robot grasping. The objects have non-diffusive
surface materials such as glass, porcelain, glass, etc.

In the mobile grasping experiments, we use a customized wheeled robot with 7 DoF arms as shown
in Appendix E.3. The robot is arbitrarily placed near the target objects omitting the navigation phase
which is beyond our scope. We place the objects in clusters at different tables and furniture with both
flat and non-flat surfaces and different backgrounds, bringing challenges to depth sensing with the
complex scene environments. More details about the articulated object manipulation experiments
can be found in Appendix J.

Results and Analysis. We compare our method with two other baselines. All baselines use the
same motion planner CuRobo [63] but different depth sensing. We also compare with ASGrasp [14]
which was mainly designed for table-top grasping of STD objects. We report the results for different
objects (STD) respectively and a overall success rate in Table 6. The quantitative results for three
different scenes of mobile manipulation are provided in Table 5. While ASGrasp and D3RoMa both
improved over the raw sensor outputs, our method outperforms ASGrasp with a large margin.

Table 5: Mobile grasping success rate of different
baselines with the same motion planner in real
environments. Each cell shows SR on specular,
transparent, and diffusive objects separated with /.

Baselines Tea Table Kitchen Table Sofa

Raw 0.40/0.22/0.67 0.67/0.63/1.00 0.50/0.75/0.67
ASGrasp 0.60/0.89/0.83 0.67/0.75/0.83 0.67/0.875/0.83
D3RoMa 0.80/1.00/1.00 0.67/0.88/1.00 0.83 / 0.875 / 0.83

Table 6: Comparisons of tabletop grasp-
ing Success Rate (SR) with different
depth sources. S. = specular, T. = trans-
parent, D. = diffusive.

Baselines S. T. D. Overall

Raw 0.33 0.25 0.70 0.45
ASGrasp 0.63 0.43 0.50 0.50
D3RoMa 0.83 0.63 0.78 0.77

5 Conclusion

In this work, we proposed a novel geometry gradient guidance to diffusion model in disparity space
to predict depth for stereo images. Conditioning on stereo image pair and a raw disparity map, our
network achieves SOTA performance on existing benchmarks. Both disparity evaluation on pure
synthetic datasets and depth evaluation on depth datasets demonstrate the efficiency of our method.
Our key observations include data diversity can make a big impact on generalization in the wild and
guidance helps in more challenging real-world scenes. Current 3D vision-based robotics manipu-
lation pipelines including grasping and part manipulation can be significantly improved simply by
improved depth perception. Especially, we found that depth estimation for challenging transparent
objects could be better dealt with generative models than traditional stereo methods.

Limitations and Future Work One limitation inherited from the diffusion model is the iterative
inference with many denoising steps. This issue can be mitigated by incorporating diffusion sam-
pling acceleration techniques studied in a variety of existing works. Another limitation is that the
EPE is linear to the resolution of the input image. Future research could use coarse-to-fine or simple
sliced techniques to split high resolution images into smaller patches to resolve this issue.
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Supplementary Materials

A Overview

In this supplementary material, we will give the derivation for geometry guided diffusion model
for stereo vision in Appendix B, introduce different metrics in Appendix C, study some interesting
properties of our method in Appendix D, provide more implementation details in Appendix E, ana-
lyze different guidance modes in Appendix F, study alternative guidance in Appendix G, show more
results of our methods in Appendix H, provide more data samples in our dataset HISS in Appendix I,
and perform more experiments of mobile part manipulation in Appendix J.

B Geometry Guidance for Stereo Vision

To complement the main body of the paper, we provide the detailed derivation of the geometry
guided diffusion model which appears in Equation 9 in the main text.

B.1 Stereo Vision

We define y = {Il, Ir} represents the conditioning stereo image pair and xt is the noisy depth at
time step t. By Bayes’ theorem, we have

p(xt|y) =
p(xt)p(y|xt)

p(y)
(10)

log p(xt|y) = log p(xt) + log p(y|xt)− log p(y) (11)

Task derivative with respect to xt on both sides of Equation 11:

∇xt log p(xt|y) = ∇xt log p(xt) +∇xt log p(y|xt) (12)

Now, partition the second term log p(y|xt) as

log p(y|xt) = log p(Il, Ir|xt)

= log p(Il|xt) + log p(Ir|Il, xt)

= log p(xt|Il) + log p(Il)− log p(xt) + log p(Ir|Il, xt) (13)
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where we apply Bayes’ theorem again in the third equation. Substitute Equation 13 back to Equation
12, we have

∇xt log p(xt|y) = ∇xt log p(xt|Il) +∇xt log p(Ir|Il, xt) (14)

The first term is learned by the denoising network and the second term is the geometric guidance
which can be calculated by stereo matching. In the experiments, we leverage more available data
such as Ir and D̃ in addition to Il into the network during training:

∇xt
log p(xt|y) = − 1√

1− ᾱt
sθ∗(xt, t, y; θ) + s∇xt

Lsm(Il, Ir, xt) (15)

Here we empirically scale the geometry gradient with s ∈ R+ and set it to 1 in the experiments.

B.2 Extend to Active Stereo Vision

In addition to the left and right IR images, active stereo cameras provide another color image Ic
captured from a third color camera. While the above derivation directly applies to active stereo
cameras if we ignore the color image, we found that further feeding the color image into the network
slightly improves the performance in DREDS [13]. However, most stereo datasets are passive and
do not have additional color images. Therefore, during mixed dataset training, this additional color
image is dropped. Here, we provide an active stereo version of derivation analogous to Equation 13:

log p(y|xt) = log p(Ic, Il, Ir|xt)

= log p(Ic|xt) + log p(Il|Ic, xt) + log p(Ir|Il, Ic, xt)

= log p(Ic|xt) + log p(Ir|Il, xt)

= log p(xt|Ic) + log p(Ic)− log p(xt) + log p(Ir|Il, xt) (16)

where the third equation assumes p(Il|Ic, xt) = 1. The Ic and Il are already aligned and the only
difference is the shadow pattern projected from the camera IR projector. The shadow pattern is
irrelevant to the depth. Therefore, Ic is approximately the sufficient statistic of Il. For the same
argument, we have log p(Ir|Il, xt) = p(Ir|Il, Ic, xt). Likewise, the guidance for the active stereo
camera can then be obtained by substituting Equation 16 into Equation 12:

∇xt log p(xt|y) = ∇xt log p(xt|Ic) +∇xt log p(Ir|Il, xt) (17)

In active stereo vision scenarios, we further train the network by conditioning it also on other avail-
able images. We set y = {Il, Ir, Ic, D̃}.

C Baselines and Metrics

Baselines. NLSPN [21] is a depth completion work that uses an end-to-end non-local spatial prop-
agation network to predict dense depth given sparse inputs. LIDF [12] proposes to learn an implicit
density field that can recover missing depth given noisy RGB-D input. SwinDR [13] proposes
a depth restoration framework based on SWIN transformer and is trained on a proposed table-top
dataset with STD objects (DREDS). ASGrasp [14] proposes a stereo-depth estimation method based
on Raft-Stereo to predict two-layer depths for tabletop grasping. Raft-Stereo [7] is the seminal deep
stereo network. To this day, it is still the most adopted architecture in stereo vision.

Disparity Metric. End-Point Error (EPE) = 1
H×W

∑
|X − X̂| is the mean absolute difference

for all pixels between the ground truth and estimated disparity map.

Depth Metrics. We use the following depth metrics: 1) RMSE =
√

1
H×W |D − D̂|2 is the

root mean square error between ground truth and predicted depths, 2) MAE = 1
H×W |D − D̂|

is the mean absolute depth error, 3) REL = 1
H×W |D − D̂|/D is the mean absolute relative dif-

ference, and 4) accuracy metric δi is the percentage of pixels satisfying max(d
d̂
, d̂
d ) < δi where

δi ∈ {1.05, 1.10, 1.25}.
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D Interesting Properties of Generative Stereo Vision

D.1 Uncertainty Estimation

Because our method is diffusion model based, we inherited the stochasticity in the reverse sampling
process. To visualize the stochasticity, we run the same input 10 times. The uncertainty is obtained
as the variance of the output disparity map. We conduct the experiments on DREDS and show the
results in Figure 5. We observed that high uncertainty area corresponds to object edges where depth
dramatically changes between foreground and background. Flat surfaces have lower uncertainty as
the geometry is simpler. Such uncertainty could be used to filter outliers.

Figure 5: We visualize sample variance as uncertainty in the last column.

D.2 Generalization Comparisons with Monocular Methods

While our method works only in stereo cases, there are seminar works predicting depth given single
RBG images. The attractive part of monocular depth estimation (MDE) is that more data is available
for training. Therefore, these methods can be generalized well in the wild. While some monocular
methods like ZeoDepth [27] propose to recover metric depth after a special training procedure, most
monocular methods predict relative depth. The relative depth can be recovered with an absolute
scale which can be obtained via other sensors like lidar or prior knowledge. However, our experi-
ments (Figure 6) found that most monocular methods produce inferior quality depth even without
considering the absolute scale.

E Implementation Details

E.1 CUDA accelerated Semi-Global Matching

We used libSGM[64], a CUDA-accelerated, widely adopted implementation of the Semi-Global
Matching (SGM)[5] algorithm. To seamlessly integrate libSGM into our pipeline, we utilized py-
bind11 to encapsulate the original codebase within our Python-based framework. This integration
allows the adapted version of libSGM to achieve a performance of approximately 55 frames per
second (FPS) at an input resolution of 960 × 540, with around 380MB of memory allocated on an
NVIDIA RTX 4090 GPU.
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Figure 6: Generalization comparisons with State-of-the-art monocular depth estimation methods.
All the results except ours are taken from their official web demo. Different methods used different
color maps.

E.2 Network HyperParameters and Training

We implement our network using Hugging Face Diffusers [65] and pre-compute raw disparity maps
using libSGM [64]. The network is trained 600 epochs with the batch size 6×8 and a constant learn-
ing rate 0.0001. All the images are randomly cropped to 320×240 and no other data augmentation
is used during training. We use cosine scheduler [66] with 128 denoising time steps for βt starting
at 0.0001 and ending at 0.02. We use UNet as our denoising network. In the DREDS experiments,
we have 6 downsampling ResNet blocks each layer has 128, 128, 256, 256, 512, and 512 channels.
The second-to-last channel is a downsampling block with spatial attention. We use MSE as our
loss function. For the SceneFlow experiment, we scale down the original image resolutions from
960×640 into 480×270. We use a multi-resolution pyramid noise strategy as in [26]. We further
use pretrained StableDiffusion v2 [67] in the grasping experiments and adapt the input Conv block
accordingly to the conditioning inputs [26]. We also train the mixed datasets including DREDS,
HISS, and SceneFlow at the batch level.

E.3 Grasping Implementation and Hardware Setup

In the grasping experiments, we mount the RealSense D415 on the wrist of the arm. After the camera
captures a frame, we first acquire the depth map by D = (f ·b)/X . Then back project the depth into
point cloud P = DK−1P , where K ∈ R3×3 is the camera intrinsics and P are the homogeneous
points in the image plane corresponding to each pixel. With the restored point cloud, we leverage
GSNet [62] to predict 6 DoF grasping poses. To increase the grasping success rate for all baselines,
we filter the grasping pose which has the angle between the grasping pose and the z (up) direction
less than 30 degrees. We always select the grasping pose with the highest core and transform it into
the robot base frame. Then we grasp the object with a motion planner like CuRobo [63]. We did not
perform workspace point cloud cropping operation as in the baseline ASGrasp [14] hence leading
to an overall success rate drop in the main text compared with the numbers reported in ASGrasp.

We use a wheeled mobile base mounted with two 7 DoF customized arms in the real mobile grasping
experiments. Each arm attaches a parallel gripper. We only use the left arm in the experiments.
Figure 7 displays the robot and the workplace.
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Figure 7: The robot used in the real mobile grasping experiments.

F Ablations Studies

F.1 Ablations on Geometry-Guidance

Since DREDS does not provide IR images for the STD-CatKnown and STD-CatNovel data split
(real data), we train the variant of our framework which only conditions on RGB image and raw
disparity to compare with SwinDR.

We further perform ablation studies for the geometry-based guidance on the STD-CatKnown and
STD-CatNovel data split to validate its effectiveness for diffusion-based depth estimation in real-
world scenarios. As Table 7 shows, our geometry-based guidance can significantly boost perfor-
mance, especially for out-of-distribution scenarios. More ablation studies regarding network hyper-
parameters and architectures are provided in Appendix F.

Table 7: Evaluations of Geometry Guidance on DREDS Dataset (STD-CatKnown and STD-
CatNovel split, real). Ground truth depth is cropped in range [0.2, 2].

Methods Guidance RMSE ↓ REL ↓ MAE ↓ δ1.05 ↑ δ1.10 ↑ δ1.25 ↑

STD-CatKnown

SwinDR (Dai et al. [13]) 0.015 0.013 0.008 96.66 99.03 99.92

D3RoMa(Cond. on RGB+Raw) × 0.0109 0.0051 0.0036 98.41 99.46 99.94
D3RoMa(Cond. on RGB+Raw) ✓ 0.0101 0.0042 0.0030 99.03 99.57 99.93

STD-CatNovel

SwinDR (Dai et al. [13]) 0.025 0.033 0.017 81.55 93.10 99.84

D3RoMa(Cond. on RGB+Raw) × 0.0390 0.0177 0.0104 91.19 96.17 99.51
D3RoMa(Cond. on RGB+Raw) ✓ 0.0397 0.0158 0.0092 92.78 97.13 99.61

F.2 Ablations on Network HyperParameters and Architectures

We provide ablation studies on the DREDS dataset in Table 8. The baseline is conditioned on the
left, and right image and raw disparity. Its hyperparameters and network architecture are described
in Appendix E.2. We also trained variants with different network architectures, loss functions, and
noise strategies. We reduce the channels from 512 to 256 of the last two layers denoted as reduced
channels. We also changed the loss function from MSE to L1 and used the default standard Gaussian
noise.
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Table 8: Ablation Studies on Hyperparameters and Network Architectures.

Methods RMSE ↓ REL ↓ MAE ↓ δ1.05 ↑ δ1.10 ↑ δ1.25 ↑

Baseline 0.0040 0.0014 0.0010 99.71 99.90 99.99
D3RoMa (reduced channels) 0.0048 0.0016 0.0011 99.60 99.85 99.98
D3RoMa (L1 loss) 0.0047 0.0008 0.0012 99.60 99.83 99.98
D3RoMa (randn noise) 0.0048 0.0017 0.0012 99.64 99.87 99.98

F.3 Ablations on Different Samplers and Inference Time

The main factors of run time are the input image resolution and the number of denoising steps. To
better understand the computation-accuracy tradeoff, we list the runtime of our method and other
SoTAs in Table 9. We also evaluate the effects of different samplers in the real experiments where
we used pretrained StableDiffusion [67]. We report the inference time of our method in Table 10.
The network has about 865M parameters in total for this variant. We fixed the number of time
steps during training to 1000 and used the same standard cosine scheduler [66], and all the samplers
take 10 denoising steps during inference. We perform reverse sampling using different schedulers
implemented by Diffusers [65]. All the samplers achieve similar qualitative results except Euler
Ancestral. The results are shown in Figure 8. Empirically, we select DDPM with 10 denoising steps
and a resolution of 640×360 in our real experiments.

Table 9: Runtime and memory consumption comparisons. Our method has 113M parameters
and takes 10 denoising steps during inference.

Methods NLSPN LIDF SwinDR ASGrasp IGEV-Stereo Croco-Stereo D3RoMa

Runtime 15ms 37ms 10ms 40ms 162ms 138ms 670ms
Peak Memory Usage 4.79G 1.16G 1.07G 3.14G 2.84G 2.78G 2.81G

Table 10: Runtime and memory consumption of our method during reverse sampling for single
input. All times are reported on NVIDIA A100.

Disparity Resolutions 1280×720 640×360 480×270 320×180 224×126

5 Denoising steps 5.53 2.56 2.31 1.95 1.96
10 Denoising Steps 8.82 3.19 2.91 2.25 2.17
50 Denoising Steps 34.56 8.45 5.79 4.28 3.86

Peak Memory Usage 18.62G 7.87G 7.57G 6.94G 6.89G

G Alternative Guidance with Raw Disparity

This section will study alternative guidance to the diffusion model during the reverse sampling
processes. In the stereo vision case, the gradient of the photometric loss is obtained by checking
the consistency of the left and right images. Mathematically, the gradient should also have the same
direction with x0 − xt where x0 is the ground truth disparity. In test time, x0 is unknown but can
be approximated by an external less noisy measurement source such as a Lidar. The external depth
measurement can be converted to the disparity space x̃0 and is multiplied with a mask if it is sparse:

∇xt
log p(xt|y) = ∇xt

log p(xt|Ic) +∇xt
log p(Ir|Il, xt)

≈ ∇xt
log p(xt|Ic) + αω(u, v)sign(x̃0 − xt) (18)

We here experiment with raw depth guidance. The guidance x̃0 is approximated by camera raw
sensor depth. Therefore the sign(x̃0 − xt) is the approximate gradient. We set mask ω(u, v) =
(x̃0 > 0) and α is a constant controls the guidance strength. We qualitatively study the guidance
of the approximate gradient in Figure 9. The benefits of guidance by the approximate gradient are
limited when raw depth is highly noisy.
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Figure 8: Comparisons of different samplers used during reverse sampling. We use DDPM [30]
sampler with 10 steps in the experiments.

Figure 9: Guidance with raw disparity.

H More Experimental Results

H.1 Detailed Comparisons on ClearPose Dataset

We provide the results of our method on ClearPose compared with two other baselines as shown in
Table 11. There are a total of 6 different scenes, including different backgrounds, heavy occlusions,
objects in translucent and opaque covers, on non-planar surfaces, and even filled with liquid.

Table 11: Results on Depth completion benchmark ClearPose. Our method D3RoMa consis-
tently outperforms both ImplicitDepth and TransCG on 6 different test scenarios.

Testset Metric RMSE↓ REL↓ MAE↓ δ1.05 ↑ δ1.10 ↑ δ1.25 ↑

New Background
ImplicitDepth 0.07 0.05 0.04 67.00 87.03 97.50
TransCG 0.03 0.03 0.02 86.50 97.02 99.74
D3RoMa(Cond. On RGB+Raw) 0.05 0.01 0.01 96.71 98.84 99.74

Heavy Occlusion
ImplicitDepth 0.11 0.09 0.08 41.43 66.52 91.96
TransCG 0.06 0.04 0.04 72.03 90.61 98.73
D3RoMa(Cond. On RGB+Raw) 0.10 0.03 0.04 83.97 93.69 98.79

Translucent Cover
ImplicitDepth 0.16 0.16 0.13 22.85 41.17 73.11
TransCG 0.16 0.15 0.14 23.44 39.75 67.56
D3RoMa(Cond. On RGB+Raw) 0.13 0.06 0.07 63.07 82.78 95.80

Opaque Distractor
ImplicitDepth 0.14 0.13 0.10 34.41 55.59 83.23
TransCG 0.08 0.06 0.06 52.43 75.52 97.53
D3RoMa(Cond. On RGB+Raw) 0.11 0.03 0.05 82.46 91.46 97.97

Filled Liquid
ImplicitDepth 0.14 0.13 0.11 32.84 53.44 84.84
TransCG 0.04 0.04 0.03 77.65 93.81 99.50
D3RoMa(Cond. On RGB+Raw) 0.09 0.03 0.04 87.58 94.85 99.15

Non Planar
ImplicitDepth 0.18 0.16 0.15 20.34 38.57 74.02
TransCG 0.09 0.07 0.07 55.31 76.47 94.88
D3RoMa(Cond. On RGB+Raw) 0.08 0.03 0.04 84.67 92.85 98.21

H.2 Results on HISS Test Split

In this section, we train other SOTA stereo methods from scratch and compare with our method
on the HISS dataset. We further rendered 300 images in 5 new scenes different from our training
dataset as the test set. The results are given in Table 12. We also show more real depth estimation
results in Figure 12 and more comparisons in Figure 13, which we consider also attributed to the
joint training on our dataset.
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Figure 10: Qualitative depth completion results on ClearPose. From left to right, there are RGB
image, raw depth, ground truth depth rendered using object CAD models, completed depth by Tran-
sCG, ImplicitDepth, and our method D3RoMa.

Table 12: Quantatives evaluations on HISS dataset.

Methods EPE RMSE ↓ REL ↓ MAE ↓ δ1.05 ↑ δ1.10 ↑ δ1.25 ↑

Raft-Stereo 0.0721 0.0521 0.0092 0.0164 95.26 98.89 99.10
D3RoMa 0.0579 0.0378 0.0067 0.0084 97.86 99.22 99.76

H.3 Deonising Process

One of the motivations for using the diffusion model to predict depth is the multi-step reverse sam-
pling process. It resembles the iterative solver which has been proven successful in RAFT [6] and its
successors. In figure 11 we show an example of the denoising process trained on our HISS dataset.
The total denoising steps is set to 128 and we visualize every 32 timesteps.

I HISS Dataset

HISS. We further evaluate the effectiveness of our dataset for transparent and specular object
depth estimation. We compare our method with the previous state-of-the-art methods. As shown
in Figure 13, compared with RAFT-Stereo [7], which is trained on large-scale datasets for stereo-
matching, our method can predict better depth, especially on transparent bottles. To ensure fair
comparisons, we further fine-tune RAFT-Stereo on HISS for 400,000 epochs. Compared to the
original model, the fine-tuned RAFT-Stereo can recover the missing depth of transparent objects
better but the object shapes are still inaccurate. We also compare our method with ASGrasp [14]
which is specially designed to detect and grasp transparent objects based on depth estimation. It
has a similar performance to the fine-tuned RAFT-Stereo but has blurred object boundaries. Our
methods can provide the best depth for all STD objects, with significantly clearer object boundaries
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Figure 11: Visualization of the denoising process on the HISS dataset. The 4 left columns show
the denoising steps every 2 time steps. The 2 right columns show the final output and ground truth
disparity map respectively.

and accurate shapes. More quantitative and qualitative results for the effectiveness of our dataset are
provided in Appendix H.

One aspect that characterizes our dataset is scene-level and photo-realistic rendering of the specular,
transparent, and diffuse objects. We rendered over 350 objects in 168 different HSSD [10] scenes.
The objects randomly fall onto the furniture, ground, and tables to simulate real-world object place-
ments. The infrared (IR) images are rendered properly with seeing-through or specular lighting
effects on Non-Lambertian surfaces. We provide some data samples in Figure 14.

J Part Manipulation

J.1 Interaction Policy

Following [35, 36], we first do part segmentation and pose estimation using the perception method.
Based on the predictions of the part poses, we move the robot arm toward the target part and turn
the gripper in the direction suitable for grabbing. Finally, we move the gripper along the proposed
trajectories toward the target position, following our GAPart pose definition.

J.2 Experiment Setup

In the experiments, we use the Franka Emika Panda robot arm with CuRobo[63] motion planning
and the end-effector trajectory just like GAPartNet[35]. For manipulation tasks in the real world,
a partial point cloud of the target object instance is acquired from our method. With the proposed
network and manipulation heuristics in [35], the pose trajectory of the end-effector can be predicted.
Then we use cuRobo[63] to solve the pose of Franka to follow our end-effector trajectory.
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Figure 12: More in-the-wild examples. Each example consists of an RGB image, a raw disparity
map, and our prediction.

Figure 13: Qualitative comparisons with other state-of-the-arts.
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Figure 14: RGB Data samples from Our dataset HISS except the bottom row which shows a group
of rendering of RGB image, (left) IR image, and normal.
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