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Abstract
This paper tackled the challenging Fourier phase
retrieval problem, the absolute uniqueness of
which does not hold. The existence of equivalent
solution (a.k.a. trivial solution ambiguity) hin-
ders the successful recovery, especially for multi-
channel color image. The traditional iterative en-
gine, such as the Relaxed Averaged Alternating
Reflections (RAAR), can be applied to reconstruct
the image channel-wisely. However, due to the
relative uniqueness of the solution, the restora-
tion is not automatically aligned with the accurate
orientation for each channel, resulting in a recon-
structed image that deviates significantly from the
true solution manifold. To address this issue, by
penalizing the mismatch of the image channels,
a diffusion model as the strong prior of the color
image is integrated into the iterative engine. The
combination of the traditional iterative engine and
the diffusion model provides an effective solu-
tion to the oversampled Fourier phase retrieval.
The formed algorithm, DiffFPR, is validated by
experiments. The code is available at https:
//github.com/Chilie/DiffFPR.

1. Introduction
The phase retrieval problem arises from a broad spectrum
of applications, including the astronomy (Gonsalves, 2014;
Fienup & Dainty, 1987), optics (Shechtman et al., 2015),
ptychography (Qian et al., 2014; Wen et al., 2012), as well
as the coherent diffraction imaging (CDI) (Candès et al.,
2015). For the CDI application, the specimen is imaged
using X-ray and the propagation of the X-ray is specified by
Fourier transform (Goodman, 2005), especially in the Fraun-
hofer regime (the “far field”). The specimen structure can be
explored from the optical field after the reaction between the
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illumination optics and the specimen. There are two com-
ponents of the optical field: the magnitude and the phase.
Due to the limitation of the measurement instrument, only
the magnitude of the optical field can be recorded. Phase
retrieval means to reconstructing the unobserved phase in-
formation of the optical field. With the resolved optical
phase, the specimen structure can be resolved using the
back-propagation of the obtained full optical field.

Due to the missing of phase information, it is impossible
to reconstruct the image without additional constraints. To
this end, the oversampling in measurement compensates
the missing information to some extent. It equals to warp
the image with zero-padding boundary. In this paper, we
focus on the three-channel color image x0 ∈ Rh×w×3. To
facilitate the presentation, we define the related two opera-
tors: Zero-padding operator and its adjoint (effect-reverting)
operator. The zpadr2 : Rh×w×3 → Rrh×rw×3 denotes
padding the centered original image using zero at the bound-
ary, and the revzpadr2 : Rrh×rw×3 → Rh×w×3 takes off
the added padding region. In the notations, the subscripts
denote the oversampling ratio, which is omitted if the over-
sampling ratio is predefined in the context. Then we ap-
plied a channel-wise two-dimensional Fourier transform to
the padded image zpadr2(x0) to produce the measurement
y = |F(zpadr2(x0))| ∈ Rrh×rw×3. Here the F is the
standard normalized discrete Fourier transform.

There have been a large body of works on the conditions
of the oversampling ratio to ensure the relative uniqueness
of the phase retrieval problem (Balan et al., 2006; Balan,
2015a;b; Hayes, 1982). The relative uniqueness means the
solution is unique up to trivial shifting, twin image with
rotation by 180◦, and the minus image with multiplication
by −1. Though the solution ambiguity does not impact the
image contents, it plays a negative impact on the numerical
solution to phase retrieval.

The translation and the minus image solution ambiguity can
be avoided by constraining the support and the nonnega-
tivity of the solution. For gray-scale image, though phase
retrieval is nonconvex, there exists iterative engine to obtain
the solution up to trivial ambiguities. For one-channel gray-
scale image, the ambiguity is a negligible issue, however,
for three-channel color problem, the orientation ambigu-
ity leads to erroneous reconstruction. See Figure 1 for the
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representative results of Relaxed Averaged Alternating Re-
flections (RAAR) (Li & Zhou, 2017; Luke, 2004), with
the comparison to our approach. The main issue of RAAR
is the mismatch of the image channels. In this case, one
may manually align the reconstructed channels, which is
image-specific. It is desired to achieve an automatic solving
approach for color image.

Measurement RAAR DPS Ours GT

Figure 1. Illustration of the results of noiseless 4× oversam-
pled phase retrieval. RAAR produces restoration with misaligned
channel orientation, DPS (Chung et al., 2022a) generates deviated
solution, while ours produces much better solution.

Among generative models, we choose the diffusion model as
the prior provider for several reasons: its notable modeling
performance, the iterative generation process that naturally
integrates the previous traditional engine into the diffusion
generation, and the advantage of not requiring retraining for
different oversampling ratios. Consequently, in this paper,
we propose using a pretrained diffusion model to penalize
the deviation of the RAAR iteration from the underlying im-
age manifold. The unconditional generation process can be
interpreted as the transition from the noisy image manifold
to the clean image manifold gradually. With this interpreta-
tion, we combined the traditional RAAR and the diffusion
model together to solve multi-channel Fourier phase re-
trieval. The general flowchart of our approach is depicted
in Figure 2. Specially, the main steps for such conditional
generation process are as follows.

1. We use the Tweedie’s formula to push the intermediate
generation xt+1 back to the clear image manifold of
the diffusion model and achieve x̂0(xt+1);

2. The pulled-back point is the initialization to drive the
traditional RAAR engine and we achieve x̂′0(xt+1);

3. The updated estimation x̂′0(xt+1) and the uncondi-
tional generative point x̂0(xt+1) is weighted to pro-
duce the new point x̂′0(xt+1);

4. Finally, the point x̂′0(xt+1) is remapped back to xt,
which is supposed lying on the next-level noisy image
manifold.

In this manner, the diffusion model serves as the prior of
the color image solution and the traditional iterative en-
gine is the driving force to produce next estimation with
the measurement guidance consistency. To the best of our
knowledge, this is the first work to solve color-scale Fourier

phase retrieval with the combination of diffusion model and
the traditional iterative engine.

2. Background
In this section, we introduce the related preliminaries of
our approach for phase retrieval. The traditional iterative
engine for phase retrieval and the diffusion model as prior
for inverse problems will be reviewed.

2.1. Iterative Engine for Phase Retrieval

For projection-based approach of phase retrieval, the zero-
padding is viewed as the known support for the unknown
image. In this case, we denote the unknown truth image by
x̃0 = zpad(x0), and its zero-valued set is

S := {i|i is the index of the zero-padding region.}.

With such view, the noiseless Fourier phase retrieval can be
cast as a two-set feasibility problem (Bauschke et al., 2002):

find x̃0 ∈ X ∩ Y, (1)

where the measurement constraint set Y := {x||F(x)| =
y ∈ Rhr×wr×3}, and the prior constraint set X :=
{x|x[j] = 0, j ∈ S, and x ≥ 0}. Here the indices of
the three-channel image are transformed into one dimension
for simple notation. The projections onto the two sets have
closed-form expressions:

PY(z) : = F−1
(
y ◦ F(z)

|F(z)|

)
,

PX (z) : =

{
0 if j ∈ S
max(z[j], 0) otherwise.

With the two projections, the Douglas-Rachford splitting
(DRS) (Themelis & Patrinos, 2020) can be developed to
solve the phase retrieval. DRS scheme generates the se-
quences {xk} using the iteration:

xk+1 = T (xk) :=
1

2
(RXRY + I)(xk)

= [I − PX + PX (2PY − I)](xk),
(2)

whereRi = 2Pi − I are the reflection operators.

There exists solution for noiseless case of (1). However, for
noisy measurement, the DRS iterations exhibit oscillation
phenomenon. To stabilize the iteration, RAAR iteration is
proposed to solve noisy phase retrieval. The iteration reads
as

xk+1 = βT (xk) + (1− β)PY(xk), (3)

where β is the hyperparameter.
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noise estimationmeasurement

Figure 2. The overview of our approach. At each sampling step (in purple box), the Tweedie’s formula is first executed and obtain
x̂0(xt+1), then the measurement guidance is leveraged to achieve the updated point x̂′

0(xt+1) with damping strategy. The update of the
prediction x̂′

0(xt+1) is implemented using the traditional iterative engine, such as RAAR (3).

2.2. Diffusion Model

Diffusion model is a powerful approach to generate a clean
image from the underlying data distribution of a given
dataset. The diffusion model comprises of two processes:
forward process and generative process. The procedure of
the forward process is to gradually perturb the clean data
x0 with a series of pre-configured noise scales. From the
continuous modeling perspective, the process is described
using the stochastic differential equation (SDE):

dxt = f(t)xtdt+ g(t)dwt, (4)

where wt is the standard Brownian process. Hence for a
given clean image point x0, equation (4) generates a series
of transition conditional distribution p(xt|x0), which are a
series of Gaussian distributions.

Ho et al. (2020) proposed a discrete scheme to gen-
erate these Gaussian transition conditional distributions
p(xt|x0). Ho et al. (2020) considered a sequence of
positive noise scales {βi}Ti=1 and 0 < βi < 1. For
each training data point x0, a Markov chain noisy degra-
dation path {x0,x1, . . . ,xT } can be constructed such
that p(xt|xt−1) = N (xt;

√
1− βtxt−1, βtI). By in-

duction, we have the degradation model p(xt|x0) =
N (xt;

√
αtx0, (1− αt)I), where αt := Πt

j=1(1− βj).

The generative process is to revert the forward process,
it obtains a clean image gradually from a Gaussian noise
image xT . The reverse process is governed by the reverse
SDE:

dxt =
[
f(t)xt − g2(t)∇xt log pt(xt)

]
dt+g(t)dwt, (5)

where dwt corresponds the Brownian process running in
backward time.

For the outstanding denoising diffusion probabilistic model
(DDPM) (Ho et al., 2020), it uses a neural network εθ(xt, t)
to estimate the scaled score function, i.e., εθ(xt, t) '
−
√

1− αt∇xt log pt(xt). There are two samplers, called
DDPM and DDIM in the literature. As an efficient sam-
pling, the DDIM is a non-Markov process to accelerate the

sampling process (Song et al., 2021). DDIM is given by

x̂0(xt) =
1
√
αt

(
xt −

√
1− αtεθ(xt, t)

)
xt−1 =

√
αt−1x̂0(xt) +

√
1− αt−1 − δ2t εθ(xt, t) + δtz,

(6)
where

δt = ηβ̃t := η
√

(1− αt−1)/(1− αt)
√

(1− αt/αt−1).
(7)

When set η = 1, it restores the DDPM, when set η = 0,
it is DDIM without randomness in the iteration. Note that
x̂0(xt) is the predicted clean image x0 from xt, which is
the expectation E[x0|xt]. It is actually an application of the
Tweedie’s formula (Chung et al., 2022a).

2.3. Diffusion Model for Inverse Problem

Given a general inverse problem corrupted with Gaussian
white noise, y = A(x0) + n. Leveraging diffusion model
as a prior, the natural way is to solve the conditional reverse
SDE:

dxt =
[
f(t)xt − g2(t)(∇xt log pt(xt) +∇xt log pt(y|xt))

]
dt

+ g(t)dwt,
(8)

where the Bayes’ rule∇xt log pt(xt|y) = ∇xt log pt(xt)+
∇xt log pt(y|xt) is used. Based on the reverse SDE, the
numerical conditional sampling method can be developed.
The key issue is that there does not exist an analytical formu-
lation for the likelihood term pt(y|xt). To address the issue,
there are two categories of works: 1) to adopt alternating
projections onto the measurement subspace to guide the gen-
eration, such as DDRM (Kawar et al., 2022), DDNM (Wang
et al., 2022), MCG (Chung et al., 2022b) and ILVR (Choi
et al., 2021). The issue is that the projection requires cal-
culation of the singular value decomposition (SVD), which
may not feasible for a general operator. 2) to estimate the
noisy likelihood with heuristic assumptions, such as (Chung
et al., 2022a; Song et al., 2022), etc. There are two consec-
utive steps to accomplish the sampling. The unconditional
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sampling step is expressed as

x′t−1 = f(xt, εθ(xt, t)), (9)

where f can be the DDPM or DDIM. The two kinds of guid-
ance differ from each other the post-processing: 1) Update
x′t−1 to match the measurement guidance by projection,
such as (Chung et al., 2022b; Choi et al., 2021); 2) Perform
gradient descent with data fidelity

xt−1 = x′t−1 − ηt∇xt ‖y −A(x̂0(xt))‖22 , (10)

where ηt is the tunable step-size for each iteration (Chung
et al., 2022a).

3. Related Works
In this section, we introduce the Gaussian phase retrieval, as
an extension to the Fourier phase retrieval, and the solving
methods for phase retrieval.

3.1. Gaussian Phase Retrieval

As discussed in the introduction, the relative uniqueness
of the Fourier phase retrieval results from the property of
Fourier transform. The existence of equivalent solution
leads to the difficulty of developing numerical methods. To
diminish the set of equivalent solutions, Gaussian phase
retrieval is proposed as a mathematical proxy to study the
nonconvex phase retrieval problem. With this setting, the
equivalent solution is only up to a constant phase shift (or
a minus symbol difference for real image) (Candes et al.,
2015; Candès et al., 2012). The condition on the complexity
of measurement to ensure the uniqueness up to the constant
phase shift is well studied, such as (Candes et al., 2015;
Candès et al., 2012).

In terms of the numerical algorithms, optimizations built on
different objective loss have been proposed (Candes et al.,
2015; Chen & Candès, 2017; Wang et al., 2017). The global
convergence is assured when a good enough initialization is
provided (Candes et al., 2015; Ma et al., 2019). Fortunately,
a close-to-the-truth initialization is provided by some ini-
tialization routines with enough measurement complexity.
Similar to Gaussian phase retrieval, Fourier transform with
randomized mask (Coded diffraction pattern) is proposed to
diminish the gap between the Gaussian phase retrieval and
the practical Fourier phase retrieval. However, due to the
limitation on the resolution of the mask, coded diffraction
pattern is only a proof-of-concept. Though its limited appli-
cation, Gaussian phase retrieval is of high interests among
the mathematicians (Luke, 2017). It is now a canonical
problem to study the nonconvex continuous optimization.

3.2. Iterative Phase Retrieval

The Fourier phase retrieval is generally reformulated as a
two-set feasibility problem. When the two sets are convex,
the projection methods has been well understood in the liter-
ature (Bauschke et al., 2002). Several convergent methods
have been proposed to solve the feasibility problem. These
methods can be directly applied to phase retrieval without
any modification, while losing the global convergence guar-
antee. Among the methods, DRS (2) is the outstanding
solver, and the local convergence is assured. Actually, DRS
is equivalent to ADMM iteration on the reformulation of
the feasibility problem using indicator functions:

min 1Y(z) + 1X (x)

s.t. z = x.

Here the indicator function 1X (x) = 0, if x ∈ X , other-
wise, 1X (x) = +∞. The DRS is also equivalent to the
classical hybrid input-output (HIO) method with special
hyperparameter configuration (Bauschke et al., 2002).

The feasibility problem yields empty intersection when the
measurement is corrupted by noise. The direct application
of DRS will lead to oscillation. To circumvent the oscilla-
tion, efforts have been made to diminish the effect of noise
on the iterative methods. RAAR (3) introduced a weighted
iteration to push the iteration close to the measurement con-
straints. Besides, there are other projection-based solvers,
such as difference map (Fannjiang, 2014), graph projection
splitting (Li & Zhao, 2020).

3.3. Deep Learning for Phase Retrieval

The supervised learning for image restoration has shown
outstanding performance for certain degradations. The su-
pervised learning is to learn an end-to-end mapping from
the measurement to the clean image. Using a bulk of paired
training data, the trained model achieved significant im-
provements over traditional methods in areas such as de-
noising, image deblurring, and general inverse problem,
such as CT and MRI. The supervised learning for Gaussian
phase retrieval has been developed (Yang et al., 2023; Chen
et al., 2022; Kazemi et al., 2022; BaoShun & QiuSheng,
2022). The recovery improvement over traditional methods
is promising, as the inference is fast. Manekar et al. (2020)
proposed a passive loss, which is invariant to symmetries,
for the supervised training to diminish the effect of trivial
ambiguity. Cha et al. (2021) intimated the PhaseCut algo-
rithm (Waldspurger et al., 2015) and formulated a novel loss
function to train the networks. The trained model works
for gray-scale images of small size, its application to color
image has not explored yet.

The prediction mapping of the supervised learning is as-
sumed one-to-one and well posed. However, such assump-
tion is problematic for the Fourier phase retrieval. Even we
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provide the precise knowledge of the image support and
the nonnegativity of the image, the existence of rotation
ambiguity destroyed the assumptions. In this case, it is hard
to learn en effective mapping for the Fourier phase retrieval
in supervised manner.

3.4. Prior by Denoiser

Instead of employing the supervised learning for Fourier
phase retrieval, the deep denoiser is adopted to improve the
traditional optimization methods for phase retrieval:

min L := l(x; b) +R(x)

where l is the data fidelity term and R is a regularizer to
promote the image statistics.

The general step to solve the optimization is to alternatively
run the gradient descent using l, and then run the denoising
step involving the regularizer R. The denoising step is to
solve a proximal problem:

D(z) := min
x

1

2
‖x− z‖22 +R(x).

Metzler et al. (2018) proposed the Gaussian denoiser D to
replace the proximal step.

Another choice of the regularizer is the Regularization-by-
denoising (RED):

R(x) =
λ

2
〈x,x−D(x)〉.

It has been shown that if the denoiser D has the proper-
ties of local homogeneity and Jacobian symmetry, then the
evaluation of the proximal operator at x required to solving

z − x+ λ(z −D(z)) = 0.

The properties rarely hold for common denoiser, such as the
deep denoiser. Recent applications of RED to Fourier phase
retrieval have validated the the performance improvement
over the traditional iterative methods, such as (Metzler et al.,
2016; 2018; Wang et al., 2020).

3.5. Generative Prior for Phase Retrieval

GAN-based prior. The GAN-based deep generative priors
have be explored for the Gaussian phase retrieval problems.
In these applications, the range constraint of the generative
manifold is implicitly leveraged in the optimization. Such
works include the general deep generative prior (Hand et al.,
2018), the untrained neural network prior (Jagatap & Hegde,
2019; Li & Wang, 2022).

Diffusion model as a prior. The diffusion model can serve
as a strong prior to solve inverse problem. The key idea is

using the data fidelity to guide the unconditional generation
process. The conditional generation process runs

xt−1 = f(xt; εθ, z)︸ ︷︷ ︸
unconditional generation

+ηt∇xt log p(y|xt)︸ ︷︷ ︸
measurement guide

, (11)

where the unconditional generation can be any of sampling
scheme, such as DDPM (Ho et al., 2020), DDIM (Song et al.,
2021), etc. To run the iteration (11), one is required to derive
the intractable log p(y|xt). Using the decomposition rela-
tionship p(y|xt) =

∫
p(y|x0)p(x0|xt)dx0, Chung et al.

(2022a) approximated

p(y|xt) ' p(y|E[x0|xt]), (12)

as only p(y|x0) is the known likelihood. The expectation
E[x0|xt] can be estimated using the trained score network
εθ. The so-called diffusion posterior sampling (DPS) is
applied to oversampled Fourier phase retrieval. However, it
generally failed as illustrated in Figure 1. The existence of
the trivial ambiguities and the nonconvexity of the function
p(y|x0) account for the failure. Besides, the calculation
of the gradient leads to back-propagation through the score
network, which is computationally demanding.

4. Methodology
To address the difficulty of DPS for phase retrieval, we
propose combining the diffusion prior and the traditional
iterative engine for phase retrieval. The iterative engine
can reconstruct each channel of the color image. The exis-
tence of the trivial rotation ambiguities lead to orientation
misalignment, which leads to erroneous restoration. The
combination approach leveraged the strong diffusion prior
to rectify the orientation in the intermediate generation.

4.1. Geometry of the Diffusion and Generation Process

We first review the diffusion process, a series of noisy im-
ages are generated, in which the corrupted Gaussian noise
level becomes larger gradually.

Geometric interpretation of the diffusion pro-
cess (Chung et al., 2022b). Suppose that M0 ⊂ Rn

is the data manifold, which denotes the set of all data
points. Then the distribution of noisy data pt(xt) =∫
p(xt|x0)p(x0)dx0, p(xt|x0) ∼ N (

√
αtx0, (1 − αt)I).

Hence pt(xt) is concentrated on a manifoldMt := {y ∈
Rn : d(y,

√
αtM0) = rt :=

√
1− αt

√
n− l}, where l is

the dimensionality of the manifoldM0. The degradation
path {x0,x1, . . . ,xT } can be interpreted as the transition
from clean image manifold to noisy image manifold.

Geometric interpretation of the generation process. The
generation process is to transit form the noisy image man-
ifoldMT to the clean image manifoldM0. We recall the
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Algorithm 1 RAAR for Fourier phase retrieval.
Input: Iteration number T , parameter β, initialization x0

and measurement y
Output: Estimated image x0.

1: Produce the zero-padded initialization zpad(x0) and
set xT = zpad(x0)

2: for t = T : −1 : 1 do
3: %% RAAR iteration:

xt−1 = [β(I + PX (2PY − I))− (2β − 1)PY ] (xt)
4: end for
5: Extract the centered image: x0 = revzpad(x0)

generation process of DDIM (DDPM is a special case of
general DDIM). The DDIM consists of two steps:

1. Pull-back xt ∈ Mt to the clean image manifoldM0

and get the predicted point x̂0(xt):

x̂0(xt) =
1
√
αt

(
xt −

√
1− αtεθ(xt, t)

)
2. Push point x̂0(xt) to the less noisy manifoldMt−1:

xt−1 =
√
αt−1x̂0(xt)+

√
1− αt−1 − δ2t εθ(xt, t)+δtz.

Hence the generation chain is

xT → · · · → xt+1 → x̂0(xt+1)→ xt → · · · → x0.

4.2. Measurement Guidance

With such geometrical view, we propose leveraging the
measurement condition to update the predicted point x̂0(xt)
and achieving a new point x̂′0(xt). To assure the closeness
of the update to the measurement, we run traditional iterative
engine to update the point x̂0(xt) with a fixed iteration
number TRAAR. The remapping back to the manifoldMt−1
is not changed. For better sampling efficiency, we adopted
the DDIM iteration for the unconditional generation and
we chose the RAAR method (Algorithm 1) to perform the
measurement guidance for its better processing of noisy
measurement than HIO. The overall algorithm is listed in
Algorithm 2. Following such framework, for our approach,
there are alternative options for the unconditional generative
method and the traditional iterative engine.

Damping the update. The update scheme for uncondi-
tional x̂0(xt) to x̂′0(xt) can be written as:

x̂′0(xt) = x̂0(xt) + (x̂′0(xt)− x̂0(xt))︸ ︷︷ ︸
ascent grad

. (13)

It is observed that directly using the updated point x̂′0(xt)
increases the failure of the reconstruction. It indicts that the
update shall be damped. Hence we propose the adaptive
damped update

x̂′0(xt) = x̂0(xt) +
√
αt(x̂

′
0(xt)− x̂0(xt)). (14)

Algorithm 2 Measurement-guided diffusion model for
Fourier phase retrieval.
Input: Sampling iterations T , pretrained diffusion model

εθ, hyperparameter β and TRAAR of RAAR
Output: Estimated image x0.

1: Set xT = z ∼ N (0, I)
2: for t = T : −1 : 1 do
3: %% Prediction of clean image:

x̂0 = xt−
√
1−αtεθ(xt,t)√

αt

4: %% Run Algorithm 1 with TRAAR iteration:
x̂′0 = RAAR(x̂0, β,y, TRAAR)

5: %% Damping the update:
x̂′0 = (1−√αt)x̂0 +

√
αtx̂

′
0

6: %% Push toMt−1 using DDPM or DDIM iteration:
xt−1 =

√
αt−1x̂

′
0 +

√
1− αt−1 − σ2

t εθ(xt, t) +
σtz

7: end for

Note that with t approaching to 0, αt approaches to unity,
and αT → 0. Hence the gradient ascent contributes more
and more when the generation process evolves.

Justification of the damped update. There are two rea-
sons to showcase the possible failure of the undamped up-
date. Regarding the unknown signal x is a random variable,
the bias of the prediction x̂0(xt) to solution x0 (up to pos-
sible ambiguities) decreases gradually. Though we can
calculate the expectation of the distribution by Tweedie’s
formula, the distribution p(x0|xt) is complicated and in-
tractable. Its variance is expected increasing as time in-
creases. Song et al. (2022) proposed the Gaussian approxi-
mation p(x0|xt) ' N (x̂0, (1 − αt)I). With this approxi-
mation, at time step t, the truth x0 should be approximated
by

x0 = x̂0(xt) +
√

1− αtz. (15)

Therefore, we have the relationship

y = F(zpad(x0)) + n

' F(zpad(x̂0(xt) +
√

1− αtz)) + n.
(16)

From (16), the variance of p(y|xt) is larger at the beginning
of the generation process. And it decreases gradually as the
generation executes. In other word, the gradient ascent re-
sulted from the measurement information should be damped
to match the high variance at the beginning of the generation.
Another reason comes from the relative uniqueness of phase
retrieval problem. The erroneous alignment of x̂′0(xt) from
iterative engine will lead itself off from the clean image man-
ifold. To account for the possible mismatch, the damped
gradient is adopted to impose strong diffusion prior at the
beginning of the generation. Using the damped update, the
failure of our combination approach is circumvented.
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4.3. Discussion

Manifold projection does not contribute much. As dis-
cussed before, to some extent, the damped gradient ascent
can avoid the erroneous alignment of the restoration at the
beginning of the generation. If the orientation mismatch
happens, the gradient is not tangent to the manifoldM0. If
we adopted the manifold constraint, we can compute the
projected gradient on the tangent plane ofM0. Motivated
by (Chung et al., 2022b), the projection can be computed
using the following PyTorch code.
x0_hat = (xt - np.sqrt(1-alpha[t])\

model(xt,t))/np.sqrt(alpha[t])
# x0_hat_p is the return of RAAR
grad = (x0_hat_p - x0_hat).detach()
loss = (grad*x0_hat).sum()
grad_p = torch.autograd.grad(outputs=\

loss,inputs=xt)[0]
# grad_p is the projection of the grad
# onto the tangent plane of the manifold

The projection will intrigue the back-propagation through
the pretrained model, which is computationally demanding.
The projection on the manifold does not improve the recon-
struction significantly, see Appendix B.2. To trade off the
computation cost and the performance, we did not consider
the manifold constraint in the experiment.

Post-projection option underperforms Algorithm 2. In-
stead of performing the measurement guidance inM0, we
also consider performing Algorithm 1 on the unconditional
sampling x′t−1. Due to the execution order, this option
is called post-projection. It is not reasonable to let the
sampling x′t−1 match the measurement, as the sampling
x′t−1 is farther away from x0 than that of the prediction
x̂0(x′t−1), especially at the beginning of the generation.
See Section 5.2 for the ablation study.

5. Experiments
In this section, we conduct experiments to evaluate the
performance of our approach on Fourier phase retrieval.
Two datasets, including Flickr Faces High Quality (FFHQ)
256 × 256 and ImageNet 256 × 256 are considered. The
pretrained diffusion models are directly downloaded from
the open-source library without any refinement. Each test
dataset contains 1K images. To quantitatively compare
the performance, we report the reference-based PSNR/S-
SIM metric to measure the closeness to the original image,
and the LPIPS metric to measure the perception quality
of the restoration. There is no available deep learning ap-
proach tailed for multi-channel Fourier phase retrieval. The
works, including prDeep (Metzler et al., 2018) and Deep-
ITA (Wang et al., 2020), can not produce decent restora-
tion with the color image deep denoiser, as the orientation
misalignment is not addressed yet. The works based on
DIP (Ulyanov et al., 2018) targeted vanishing losses, which

does not imply the successful restoration due to the noncon-
vexity. Hence we compare our method to RAAR.

We first provide the quantitative results of our approach for
the two datasets for noiseless and noisy measurement. Then
we provide ablation studies to explore the effects on the
performance with different options.

5.1. Quantitative Results

Suppose that y = |F(zpad(x0))| + n, where the noise
n ∼ N (0, σ2

yI). Hence σy = 0.00 means noiseless mea-
surement. In the default configuration, we select 1000
diffusion-step DDIM as the unconditional sampling, and the
one-step RAAR as the inner iterative engine. The hyperpa-
rameter β is set to unity and 0.75 for noiseless and noisy
cases respectively. We compare our method to DPS and
RAAR. Due to the possible failure of all the three methods,
for each test image, we run each method three times and take
the best result as the final restoration. When calculating the
quantitative metrics, the possible 180◦ rotation ambiguity is
considered.

Table 1. Results of methods on the
resized FFHQ.

Method PSNR SSIM LPIPS

HIO 32.71 0.832 0.212
DIP 16.92 0.474 0.578

SIREN 15.54 0.292 0.610
E2E 14.25 0.273 0.506

CDM 13.11 0.300 0.470
Ours 37.59 0.840 0.141

Evaluation on 128×
128 images. We initially
compare DiffFPR with
other methods using 100
noiseless images from
the FFHQ dataset. The
methods compared in-
clude the traditional HIO
(hybrid input-output)
method, neural network
representation-based
methods, and the end-to-end supervised method. In com-
parison to RAAR, the HIO method performed worse under
noisy conditions. For neural network representation-based
methods, we evaluate the deep image prior (DIP) (Ulyanov
et al., 2018) and the SIREN network (Sitzmann et al., 2020),
with the training loss taken from (Li et al., 2024). In these
two methods, the network architecture acts as an implicit
prior for the image. For end-to-end (E2E) supervised
learning, the Unet architecture is employed. Additionally,
we train a conditional diffusion model (CDM) similar
to (Whang et al., 2022; Saharia et al., 2022) to address
phase retrieval in a supervised learning context. As a simple
demonstration, we resize the 256× 256 images from FFHQ
to 128× 128, and the oversampling ratio 4 is considered.
In this way, the measurement is of size 256 × 256. For
the E2E and conditional diffusion model, we learn the
mapping from the measurement to the zero-padded image.
For supervised learning, the paired training dataset contains
1000 images. Table 1 shows the significant advantages of
our method. The ambiguity solution still exists for SIREN
and DIP, which accounts for the unreal restoration.
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Evaluation on the 1K dataset. The high likelihood of
failure for DPS happens for phase retrieval, as shown in
Appendix B.1. Out of the 1K images in FFHQ and Ima-
geNet, only 14.5% and 4.0% resulted in restoration with a
PSNR exceeding 20dB, respectively. In contrast, RAAR
achieved success rates of 52.4% and 48.2% for FFHQ and
ImageNet, while Our method achieved a 100% success rate,
highlighting its significant advantage over other methods.
To make more fair comparison, DPS* is the average results
of the selected image subset. See Table 2 for the results
of phase retrieval (with oversampling ratio r2 = 4.0) from
noiseless and noisy measurement. The best performer is
indicated in bold text.
Table 2. Quantitative results on the FFHQ and ImageNet dataset.

σy Method FFHQ ImageNet
PSNR SSIM LPIPS PSNR SSIM LPIPS

0.00
RAAR 22.50 0.601 0.508 21.80 0.546 0.509
DPS* 24.85 0.704 0.237 22.89 0.676 0.343
Ours 37.24 0.902 0.087 31.76 0.751 0.204

0.01
RAAR 12.74 0.250 0.731 12.80 0.220 0.705
DPS* 25.89 0.736 0.228 21.52 0.653 0.358
Ours 29.17 0.774 0.197 25.94 0.663 0.277

0.05
RAAR 12.51 0.198 0.752 12.66 0.173 0.722
Ours 22.15 0.429 0.458 19.81 0.343 0.504

Overall the restoration performance almost decreases when
noise level increases. It shows that the diffusion model is
crucial and improve the RAAR significantly. The strong
prior brought by diffusion model addresses the orientation
mismatch problem of RAAR. See Figure 3 for the visualiza-
tion comparison of the results. Our method produces very
decent restoration. See Appendix B.3 for more visualiza-
tion results. The results for oversampling ratio r2 = 2.0 is
provided in the Appendix B.2. For the more challenging
scenario, the performance of ours is very promising.

Table 3. Running time in (s).

Method FFHQ ImageNet

RAAR 0.075 0.075
Ours 1.089 4.482

Running time. Compared to
the RAAR, our method re-
quires extra computation to
perform the diffusion-related
step. The additional process-
ing time varies based on the
complexity of the diffusion model employed. See Table 3
for a comparison of the processing times required to handle
a single image. Despite the extra computational overhead,
this extra cost yields a notable enhancement in performance.

Comparison of RAAR and HIO. While HIO was initially
groundbreaking in addressing Fourier phase retrieval, the
RAAR method has proven to be more effective in handling
noisy scenarios. See Table 4 for a comprehensive compari-
son between RAAR and HIO within our framework. The
table highlights RAAR’s superiority over HIO, particularly
in dealing with noise levels.

Table 4. Comparison of RAAR and HIO.

σy Method FFHQ ImageNet
PSNR SSIM LPIPS PSNR SSIM LPIPS

0.00
Ours-HIO 36.28 0.893 0.116 30.31 0.705 0.218

Ours-RAAR 37.24 0.902 0.087 31.76 0.751 0.204

0.01
Ours-HIO 23.01 0.549 0.414 21.06 0.482 0.448

Ours-RAAR 29.17 0.774 0.197 25.94 0.663 0.277

0.05
Ours-HIO 14.08 0.197 0.722 14.03 0.153 0.689

Ours-RAAR 22.15 0.429 0.458 19.81 0.343 0.504

5.2. Ablation Study

Table 5. Results of the ablation
study on the FFHQ.

σy Method PSNR SSIM LPIPS

0.00

500-1 32.29 0.868 0.142
500-2 44.44 0.948 0.056
500-4 49.98 0.956 0.043

1000-1 37.24 0.902 0.087
1000-2 44.48 0.952 0.051

0.01
500-1 26.50 0.748 0.240
500-2 28.81 0.766 0.207
500-4 28.82 0.747 0.218

0.05
500-1 20.47 0.406 0.492
500-2 22.21 0.430 0.473
500-4 22.21 0.421 0.481

In this section, we pro-
vide ablation studies on
FFHQ dataset to explore
the effects on the per-
formance with different
experimental configura-
tion. First we illustrate
the results when i) the
post-projection option is
adopted. Then we report
the quantitative results to
compare the performance
of our approach with al-
ternative iteration config-
uration,i.e., ii) the itera-
tion number of the outer
sampling and the inner RAAR varies; For all experiments,
the oversampling ratio is set to 4.

Result of ablation study (i). We only consider the noise-
less case for this ablation study. To this end, with other
part of our approach being fixed, we exchange the order of
the measurement guidance and the unconditional sampling.
We compare the pre-projection used in our approach to its
alternative post-projection. Compared to ours, the PSNR/S-
SIM and LPIPS metrics of the post-projection degraded
by 15.46dB/0.213 and 0.299 respectively. See Figure 4
for the results from the two options for four representa-
tive images. The orientation misalignment still exists for
the post-projection, which leads to restoration failure. In
contrast, ours produces decent restoration.

Result of ablation study (ii). The quantitative result is
evaluated on the FFHQ dataset. The study is to investigate
and compare their importance of the two iteration number,
i.e., the total diffusion steps T and the inner RAAR step
TRAAR, in our approach. See Table 5 for the comparison of
our method with various iteration number configurations.
The naming convention m − n stands for performing Al-
gorithm 2 with T = m and TRAAR = n. For noiseless
case, fixing diffusion steps T , increasing TRAAR from 1 to 4
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(a) Reference︷ ︸︸ ︷ (b) σy=0.0︷ ︸︸ ︷ (c) σy=0.01︷ ︸︸ ︷ (d) σy=0.05︷ ︸︸ ︷

Input GT RAAR Ours RAAR Ours RAAR Ours

Figure 3. Visualization of the results from RAAR and Ours for FFHQ and ImageNet datasets with Gaussian noise (indicated as the top).

Ours Post Ours Post Ours Post Ours Post

Figure 4. Comparison of the results from pre-/post-projection approaches for noiseless phase retrieval.

will gradually achieve performance improvement. For noisy
case, the performance improvement achieve saturation for
TRAAR = 2. In contrast, fixing TRAAR, the performance
brought by more diffusion steps is slight. For noisy case,
the configurations 500-2 and 1000-1 (see Table. 2) yield
comparable results.

Limitation of our approach. The experiments have
shown that our combined approach is less effective in noisy
scenarios. As a result, the accumulated errors from the
traditional algorithm may lead to the introduction of noise
artifacts in the final restoration. To enhance the restoration
process, it is crucial to address how to reduce noise in the fi-
nal outcome. Another drawback of our study is its exclusive
focus on synthetic data. Our future research will involve
evaluating the performance of our method in real-world
phase retrieval problems.

6. Conclusion
We proposed DiffFPR, a method for solving oversampled
Fourier phase retrieval of color image by integrating the
diffusion model and the traditional iterative engine. Moti-
vated by the geometrical interpretation of the unconditional
generation process, we consider exploiting the measure-
ment guidance in the clean image manifold. To account for
the bias of the prediction at the beginning of the sampling,
we performed the damped gradient ascent. The proposed
method avoided the orientation misalignment issue of the
iterative engine, hence empowered the iterative engine sig-
nificantly. As a comparison, the gradient descent manner
of DPS failed for such highly nonconvex problem. Our
approach illustrates the promising solving framework for
other nonconvex problem with diffusion model.
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A. Detailed Statistics of Restoration
It has been observed that phase retrieval solutions, such as RAAR and our proposed DiffFPR, may produce unrealistic
results from a random initialization. We assess the stability, measured by the ratio where the reconstruction’s PSNR exceeds
20 dB, of RAAR and DiffFPR. For each method, we run 20 runs with different initializations. The assessment is carried out
on the first image of the 1K datasets of FFHQ and ImageNet for noiseless measurement. See Table 6 for the comparison.
Our approach demonstrates notably superior performance compared to RAAR.

Table 6. Statistics of restoration from 20 runs.

Method Statistics FFHQ ImageNet
PSNR SSIM LPIPS PSNR SSIM LPIPS

mean 14.70 0.349 0.643 15.20 0.228 0.698
best 17.15 0.398 0.612 16.53 0.250 0.675

RAAR worst 11.58 0.303 0.671 14.32 0.215 0.712
std 1.32 0.026 0.025 0.54 0.007 0.009

# PSNR>=20dB 0 0

mean 25.13 0.817 0.189 23.70 0.670 0.266
best 44.31 0.990 0.006 26.32 0.862 0.063

Ours worst 13.44 0.436 0.540 22.11 0.544 0.373
std 10.72 0.165 0.163 1.43 0.106 0.106

# PSNR>=20dB 14 20

B. More Visualization Results
In this section, we provide more visualization results to illustrate the performance of our method.

B.1. The Representative Results of DPS

First, we demonstrate the high failure probability of DPS. See Figure 5 for the reconstruction of the images for noiseless
measurement. Note that the presented images are the best from three runs.

GT DPS GT DPS GT DPS GT DPS

Figure 5. Visualization of the results from DPS for noiseless phase retrieval.

B.2. Visualization Results for the Case of Oversampling Ratio 2.0

In this section, we provide the result of Fourier phase retrieval with oversampling ratio r2 = 2.0. From the condition
on the relative uniqueness of Fourier phase retrieval (Hayes, 1982), performing successful reconstruction requires that
oversampling ratio is greater than 4.0. By this theorem, for the scenario of oversampling ratio being 2.0, the phase retrieval
problem is very challenging. Hence we consider the noiseless measurement. See Table 7 for the result of our approach with
the comparison to the RAAR. We also compare our baseline approach to its variant, including the different configuration
of the iteration steps and the manifold constraint version of our approach. The notation ”Ours-m-n” means that we run
m-step diffusion steps and the inner RAAR is run with n steps. It shows that with the help of strong prior provided by the
diffusion model, our approach outperformed RAAR by a large margin. Though Ours-Manifold yields the comparable result
of Ours-1000-1, the manifold constraint requires the back-propagation through the network, it is computational demanding
and memory intensive. See Figure 6 for the representative restoration results of ours and RAAR in the noiseless case.
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Table 7. Results of noiseless phase retrieval with oversampling ratio 2.0 on the FFHQ.

Method PSNR SSIM LPIPS

RAAR 11.48 0.18 0.778
Ours-500-1 19.98 0.583 0.397

Ours-1000-1 24.26 0.683 0.274
Ours-Manifold 24.18 0.774 0.217

RAAR Ours-1000-1 RAAR Ours-1000-1 RAAR Ours-1000-1 RAAR Ours-1000-1

Figure 6. Visualization of the results from Ours for noiseless phase retrieval.

B.3. More Results of Our Methods on FFHQ and ImageNet

In this section, we illustrate more visualization of our methods, with comparison to the RAAR. See Figure 7 and 8 for the
results on FFHQ and ImageNet datasets respectively. Our methods produce decent restoration, while RAAR produces the
mis-aligned restoration without the help of the diffusion model.

(a) Reference︷ ︸︸ ︷ (b) σy=0.0︷ ︸︸ ︷ (c) σy=0.01︷ ︸︸ ︷ (d) σy=0.05︷ ︸︸ ︷

Input GT RAAR Ours RAAR Ours RAAR Ours

Figure 7. Visualization of the results from RAAR and Ours for FFHQ with Gaussian noise (indicated as the top).
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(a) Reference︷ ︸︸ ︷ (b) σy=0.0︷ ︸︸ ︷ (c) σy=0.01︷ ︸︸ ︷ (d) σy=0.05︷ ︸︸ ︷

Input GT RAAR Ours RAAR Ours RAAR Ours

Figure 8. Visualization of the results from RAAR and Ours for ImageNet dataset with Gaussian noise (indicated as the top).
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