
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CARTS: COOPERATIVE REINFORCEMENT LEARNING
FOR TRAFFIC SIGNAL CONTROL AND CARBON EMIS-
SION REDUCTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Existing traffic signal control systems often rely on overly simplistic, rule-based
approaches. Even reinforcement learning (RL)-based methods tend to be subopti-
mal and unstable due to the inherently local nature of control agents. To address
the potential conflicts among these agents, we propose a cooperative architecture
named CARTS (CooperAtive Reinforcement learning for Traffic Signal control).
CARTS introduces multiple reward terms, weighted with an age-decaying mech-
anism, to optimize traffic signal control at a global scale. Our framework fea-
tures two types of agents: local agents that focus on optimizing traffic flow at
individual intersections, and a global agent that coordinates across intersections to
enhance overall throughput. Importantly, the system is designed to reduce both ve-
hicle waiting time and carbon emissions. We evaluated CARTS using real-world
traffic data obtained from traffic cameras in an Asian country. Despite incorpo-
rating a global agent during training, CARTS remains decentralized at inference
time, requiring no centralized coordination during deployment. Experimental re-
sults show that CARTS consistently outperforms state-of-the-art methods across
all evaluated performance metrics. Moreover, CARTS effectively links carbon
emission reduction with global agent coordination, providing an interpretable and
practical approach to sustainable traffic signal control.

1 INTRODUCTION

Traffic signal control is a complex and critical real-world problem aimed at minimizing overall ve-
hicle travel time by efficiently coordinating traffic flow at intersections. Traditional traffic signal
systems still rely heavily on manually crafted rules, which are often inflexible and incapable of
adapting to dynamic traffic patterns or scaling to modern, large-scale transportation networks. Re-
cent advancements in reinforcement learning (RL), particularly deep RL Alemzadeh et al. (2020);
Zheng et al. (2019c), offer a promising alternative by enabling agents to learn state representations
and policy approximations directly from raw input data. In this paper, we investigate the feasibility
of applying RL to on-policy traffic signal control with minimal prior assumptions, paving the way
toward more adaptive and intelligent traffic management systems.

Recent studies have proposed various RL-based frameworks for traffic signal control Wei et al.
(2021), with most being value-based approaches Zheng et al. (2019c); Mannion et al. (2016); Pham
et al. (2013); Van der Pol & Oliehoek (2016); Wei et al. (2018); Arel et al. (2010); Calvo & Dusparic
(2018) that converge efficiently but are limited to discrete action, state, and time spaces. Although
methods such as Lutter et al. (2021) address value iteration in continuous domains, they have yet
to be applied to traffic optimization. In traffic control, this discreteness implies that light phase de-
cisions are bound by pre-defined cyclic sequences (e.g., red/green phases). While discretizing time
slots simplifies implementation and enables basic optimization, it fails to adapt to real-time traffic
dynamics. Moreover, small fluctuations in the value function can lead to significant shifts in pol-
icy. To overcome these issues, recent work has increasingly adopted policy-based RL methods Chu
et al. (2019); Nishi et al. (2018); Mousavi et al. (2017), which support continuous phase durations.
However, these approaches are heavily sample-dependent and prone to convergence to suboptimal
solutions.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a) (b)

Figure 1: Overview of CARTS. (a) Architecture used in the training stage. A main novelty of
CARTS is the introduction of a global agent highlighted in red. (b) Architecture used in the in-
ference stage. The global agent is not required for performing. Thus, the overall system remains
decentralized.

To bridge value-based and policy-based reinforcement learning (RL), the actor-critic frame-
work—especially Deep Deterministic Policy Gradient (DDPG)Lillicrap et al. (2015)—is widely
used for stabilizing training by learning both a Q-function and a deterministic policyPang & Gao
(2019); Wu (2020). However, DDPG often converges to local optima and lacks global coordination.
Most RL-based traffic signal control methods Pang & Gao (2019); Wu (2020); Chu et al. (2019);
Nishi et al. (2018); Mousavi et al. (2017) rely on decentralized agents using only local rewards, often
leading to conflicts across intersections. Additionally, few frameworks Aslani et al. (2017; 2018)
address phase duration explicitly, typically using fixed time slots. CoSLight Ruan et al. (2024)
improves coordination via dynamic collaborator selection, showing strong results. Still, predefined-
duration approaches remain less adaptive than on-demand solutions for congestion relief.

We propose CARTS (CooperAtive Reinforcement Learning for Traffic Signal control), a novel
framework designed to optimize traffic signal control while simultaneously reducing carbon emis-
sions (see Fig. 1). The core innovation of CARTS is the introduction of a global agent that collabo-
rates with local agents by balancing their individual objectives to improve overall traffic throughput.
Each local agent learns a policy based on intersection-level rewards, such as clearance efficiency. In
parallel, the global agent optimizes a higher-level objective-“total traffic waiting time” by aggregat-
ing information across intersections using an actor-critic framework. CARTS selects optimal traffic
signal phases and determines their dynamic durations to maximize flow efficiency. Importantly, the
global agent is used only during training, making the system fully decentralized at inference. To en-
sure scalability, it receives information solely from nearby intersections. Unlike prior policy-based
approaches that rely on fixed-duration action pools, CARTS jointly learns both the optimal phase
and its variable length. Furthermore, the framework explicitly targets carbon emission reduction, a
feature not addressed in existing work. Extensive experiments on real-world traffic datasets and the
benchmark from Ault & Sharon (2021) show that CARTS significantly outperforms state-of-the-art
methods in both traffic efficiency and environmental impact.

• We introduce CARTS, a cooperative RL framework that effectively reduces congestion,
minimizes travel time, and increases network-wide traffic throughput.

• We introduce a global agent that resolves conflicts during training and steers local agents
toward coherent policies, while keeping inference fully decentralized.

• CARTS supports dynamic phase durations, moving beyond fixed action durations used in
SoTA methods.

• Our framework is the first to link carbon emissions with global coordination, demonstrating
significant reductions in both waiting time and CO2 emissions.

• Comprehensive experiments on real-world data and public benchmarks confirm that
CARTS achieves state-of-the-art performance in traffic signal control.

2 RELATED WORK

Traditional traffic control methods fall into three categories: (1) fixed-time control Roess et al.
(2004), (2) actuated control Fellendorf (1994); Mirchandani & Head (2001), and (3) adaptive con-
trol Zheng et al. (2019a;c). These methods rely heavily on human expertise to design signal cycles
and strategies, making parameter tuning labor-intensive and inflexible across varying conditions

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

such as peak, off-peak, and normal hours. Fixed-time control is widely adopted for its simplicity,
using preset schedules regardless of traffic flow. Actuated control responds to real-time traffic con-
ditions based on predefined thresholds—for example, triggering a green phase when queue lengths
exceed a certain limit. Adaptive control methods, such as SCATS Lowrie (1990), dynamically se-
lect signal phases based on live traffic data and offer improved optimization compared to static
approaches.

RL traffic control: Recent advances in reinforcement learning (RL) offer promising improvements
for automated traffic signal control. RL methods generally fall into three categories: value-based,
policy-based, and actor-critic (AC) approaches Aslani et al. (2017). Value-based methods, like Q-
learning Watkins & Dayan (1992), estimate expected returns for state-action pairs and derive policies
accordingly. Early traffic signal applications include Abdoos et al. (2011), but maintaining full
Q-tables becomes infeasible for large state-action spaces. Deep Q-Networks (DQNs)Guo et al.
(2014) mitigate this but suffer from overestimation, which Double DQNVan Hasselt et al. (2016)
resolves using separate networks for selection and evaluation. While fast to converge, value-based
methods are limited to discrete actions. In contrast, policy-based methods use policy gradients to
support continuous control and better adaptability but often require longer training due to round-
based updates.

RL methods can also be categorized by action type: (i) setting green-light duration, (ii) deciding
whether to switch phases, and (iii) selecting the next phase. Value-based and AC methods are better
suited for (ii) and (iii), which involve discrete choices. However, they are less ideal for (i), where
continuous phase durations are required. DDPG Lillicrap et al. (2015) is well-suited for this setting
and has inspired various DDPG-based traffic control frameworks Pang & Gao (2019); Wu (2020).
Most of these, however, are limited to single intersections. In practice, traffic signal control requires
coordination across many intersections. To handle this, multi-agent DDPG algorithms Gupta et al.
(2017); Lowe et al. (2017) have been proposed to incorporate inter-agent communication. Notably,
CityFlow Zhang et al. (2019) simulates large-scale urban traffic and applies MARL for control.
However, existing multi-agent frameworks still lack the ability to output dynamic phase durations,
limiting their ability to communicate precise phase timing to drivers in real-world deployments.

Recent frameworks have begun integrating domain knowledge into large language models (LLMs)
to enhance global traffic signal control (TSC) capabilities. For instance, LA-LightWang et al. (2024)
incorporates an LLM agent to leverage commonsense reasoning for tool selection, enabling more
informed decision-making in complex scenarios such as emergencies or equipment failures. Simi-
larly, PromptGATDa et al. (2024) uses prompt-based grounded action transformation to incorporate
LLM knowledge and address the sim-to-real gap in traffic control. However, these approaches typi-
cally relegate LLMs to a supplementary role, limiting their potential for autonomous, globally-aware
decision-making. Moreover, for real-time applications, latency introduced by LLM inference poses
a significant challenge compared to traditional RL agents.

3 BACKGROUND AND NOTATIONS

The basic elements of an RL problem for traffic signal control can be formulated as a Markov Deci-
sion Process (MDP) mathematical framework of < S,A, T,R, γ >, with the following definitions:

• S denotes the set of states, which is the set of all lanes containing all possible vehicles.
st ∈ S is a state at time step t for an agent.

• A denotes the set of possible actions, which is the duration of the green light. In our
scenarios, both the durations of a traffic cycle and a yellow light are fixed. Then, once the
state of the green light is chosen, the duration of the red light can be determined. At time
step t, the agent can take an action at from A.

• T denotes the transition function, which stores the probability of an agent transiting from
state st to st+1 if the action at is taken; that is, T (st+1|st, at) : S ×A→ S.

• R denotes the reward, where at time step t, the agent obtains a reward rt specified by a
reward function R(st, at) if the action at is taken under state st.

• γ denotes the discount, which controls the importance of the immediate reward versus
future rewards, and also ensures the convergence, where γ ∈ [0, 1).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

At time-step t, the agent determines its next action at based on the current state st. After executing
at, it will transit to next state st+1 and receive a reward rt(s, a); that is, rt(s, a) = E[Rt|st =
s, at = a], where Rt is named as the one-step reward. The way that the RL agent chooses an action
is named policy and denoted by π. The policy is a function π(s) that chooses an action from the
current state s; that is, π(s) : S → A. Our goal is to find such a policy to maximize the future
reward Gt:

Gt = Σ∞
k=0γ

kRt+k. (1)

Deep Q-Network (DQN): In Hester et al. (2018); Van Hasselt et al. (2016), a deep neural network
is used to approximate the Q function, which enables the RL algorithm to learn Q well in high-
dimensional spaces. Let Qtar be the true target value expressed as Qtar = r + γmax

a′
Q(s′, a′; θ).

Also, let Q(s, a; θ) be the estimated value, where θ is the set of its parameters. We define the loss
function for training the DQN as:

L(θ) = Es,a,r,s′ [(Qtar −Q(s, a; θ))2]. (2)

In Mnih et al. (2015), Qtar is often overestimated during training and results in the problem of
unstable convergence of the Q function. In Van Hasselt et al. (2016), a Double DQN (DDQN) was
proposed to address this unstable problem by separating the DDQN into two value functions, so
there are two sets of weights θ and ϕ to parameterize the original value function and the second
target network, respectively. The second DQN Qtar with parameters ϕ is a lagged copy of the first
DQN Q(s, q; θ) that can fairly evaluate the Q value as follows:

Qtar = r + γQ(s′,max
a′

Q(s′, a′; θ);ϕ) (3)

Deep Deterministic Policy Gradient (DDPG): DDPG is a model-free, off-policy reinforcement
learning framework that leverages deep neural networks for function approximation. Unlike DQN,
which is limited to discrete and low-dimensional action spaces, DDPG is designed to handle con-
tinuous action spaces. As an actor-critic method, it consists of both a policy network (actor) and a
value function network (critic). The critic network in DDPG is similar to that in traditional actor-
critic architectures. Inspired by Double DQN Van Hasselt et al. (2016), DDPG improves robustness
by maintaining two separate networks (target and online) to estimate value functions and reduce
overestimation bias. In our work, we adopt DDPG to jointly learn both the optimal Q-function and
its corresponding policy in continuous control settings.

4 THE PROPOSED METHOD

he original DDPG leverages off-policy data and the Bellman equation Barron & Ishii (1989) to learn
the Q-function, from which it derives the policy. It alternates between approximating the optimal
value function Q(s, a) and determining the corresponding optimal action a(s), enabling learning in
continuous action spaces. In DDPG, the output is a continuous-valued action, which in our case
represents the duration (in seconds) of the green light. Although DDPG is inherently off-policy,
it can incorporate past experiences and current environment parameters by interacting with traffic
simulators—such as TSISOwen et al. (2000) or SUMOKrajzewicz et al. (2002)—to generate diverse
training data, including on-policy samples. For consistency and fair comparison with state-of-the-art
methods, which predominantly use SUMO, we also conduct all our experiments and ablation studies
using SUMO exclusively.

The main novelty of this paper lies in introducing a cooperative learning mechanism with a global
agent to guide local agents and prevent them from blindly exploring the environment, thereby signif-
icantly improving both learning effectiveness and overall traffic throughput (see Fig. 5). In standard
DDPG, exploration is encouraged by adding random noise to the action outputs. While this pro-
motes environmental exploration, it can lead to inefficient and uncoordinated behavior, especially
in multi-agent traffic signal control, where each intersection is controlled by a separate local agent.
Existing methods typically apply the same noise-based strategy to every agent, which increases the
likelihood of conflicting decisions between neighboring intersections during training. Blind explo-
ration not only hampers convergence but also reduces throughput, as conflicting local actions can
degrade overall system performance. To address this, we propose integrating a global agent into

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

(a) (b)

Figure 2: Architectures for the global agent. (a) The global critic network calculates the predicted
total waiting time throughout the site. (b) The global actor network calculates a vector containing
the actions and weight vectors at all intersections.

the DDPG framework to coordinate local agents during training. This cooperative mechanism helps
align local decisions with global goals, resulting in more efficient and conflict-free policy learning.

4.1 COOPERATIVE DPGG NETWORK ARCHITECTURE

Most policy-based RL methods Chu et al. (2019); Nishi et al. (2018); Mousavi et al. (2017) rely on
local agents to control intersections, which can cause conflicting objectives and slow convergence.
To address this, we propose CARTS, where each intersection is managed by a local agent but guided
by a global agent during training (Fig. 1). The global agent coordinates local policies to optimize
system-wide rewards, then is removed at inference. Trained agents operate autonomously, using
observations from all intersections to make real-time signal decisions.

Although the DDPG method is off-policy, we use TSIS Owen et al. (2000) and SUMO Krajzewicz
et al. (2002) to collect on-policy data for RL training. With the on-policy data, the parameters of
local and global agents are updated by the Local Agent Updating (LAU) algorithm and Global
Agent Updating (GAU) algorithm, respectively. Let Wm

G represent the global agent’s importance
to the m-th intersection. Then, the importance Wm

L of the m-th local agent will be 1-Wm
G . For

the m-th intersection, its next action will be predicted by Generating On-policy Data (GOD) and
LAU algorithms, respectively, via an epsilon greedy exploration scheme. The output seconds of
the global agent and the local agent are compared based on Wm

G and Wm
L . Then, the one with

higher importance will be chosen for the output seconds. Details of our algorithm are provided in
Algorithm 1 (see the appendix).

4.2 GENERATING ON-POLICY DATA

During the RL-based training process, before starting, we will perform a one-hour simulation to
collect data (see detailed algorithm in the supplementary material) and store them in the replay
buffer B based on TSIS or SUMO. Let Bm be the set o f on-policy data collected for training the
m-th local agent. Then B is the union of all Bm, i.e., B= (B1, ...,Bm, ...,BM). In the process
of interacting with the environment, we will add the ϵ-greedy and weight-decayed method to the
selection of actions. In particular, the ϵ-greedy method will gradually reduce ϵ from 0.9 to 0.1 and a
time decay mechanism is adopted to decay Wm

G by the ratio (0.95)t in the t-th iteration.

4.3 THE LOCAL AGENTS

In our simulation, each intersection is assigned a fixed cycle duration for traffic signal changes. Ad-
ditionally, the yellow light duration is fixed at Y seconds. Thus, the model only needs to determine
the green light phase duration, while the red light duration can be directly derived from the cycle
length. At each intersection, a DDPG-based architecture is employed to represent the local agent
responsible for traffic control. The following definitions describe this local agent.

1. The duration of the traffic phase ranges from Dmin to Dmax seconds.
2. Stopped vehicles are defined as vehicles whose speeds are less than 3 km/hr.
3. The state at an intersection is defined by a vector in which each entry records the number

of vehicles stopped in each lane at this intersection at the end of the green light and the
current traffic signal phase.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The reward for evaluating the quality of a state at an intersection is based on the degree of clearance,
i.e., the number of vehicles remaining when the green-light phase ends. Rewards are assigned in
two scenarios: (1) The green light ends but vehicles remain. (2) The green light is still active, but
no vehicles are present. No rewards or penalties are given in other situations. Let Nm,t denote the
number of vehicles at intersection m at time t, and let Nmax be the maximum traffic flow. We use
the clearance degree as a reward for qualifying the mth local agent. When the green light ends and
there is no vehicle, a pre-defined max reward Rmax is assigned to the m-th local agent. If there are
still some vehicles, a penalty proportional to Nm,t is assigned to this local agent. More precisely,
for Case 1, the reward rlocalm,t for the intersection m is defined as:
Case 1: If the green light ends but some vehicles are still,

rlocalm,t =

{
Rmax, if

Nm,t

Nmax
≤ 1

Nmax
;

−RmaxNm,t

Nmax
, else.

(4)

For Case 2, if there is no traffic but a long period still remaining for the green light, various vehicles
moving on another road should stop and wait until this green light turns off. To avoid this case, a
penalty should be given to this local agent. Let gm,t denote the remaining green light time (counted
by seconds) when there is no traffic flow in the m-th intersection at time step t, and Gmax the longest
green light duration. Then, the reward function for Case 2 is defined as:
Case 2: If there is no traffic but the green light is still on,

rlocalm,t =

{
Rmax, if

gm,t

Gmax
≤ 1

Gmax
;

−Rmaxgm,t

Gmax
, else.

(5)

Detailed architectures for local agents are shown in the supplementary material. Its inputs are the
number of vehicles stopped at the end of the green light in each lane, the remaining seconds of the
green light, and the current phases of the traffic signals at all intersections. Thus, the input dimension
for each local critic network is

(
2M +

∑M
m=1 Nm

)
, where M denotes the number of intersections

and Nm is the number of lanes at the m-th intersection. Then, a hyperbolic tangent function is used
as an activation function to normalize all input and output values. There are two fully connected
hidden layers to model the Q-value. The output is the expected value of a future return of taking
this action in the state. The inputs used to model the local actor network include the number of
stopped vehicles at the end of the green light at each lane, and the current traffic signal phases of all
intersections. Thus, the dimension for each local actor network is (M +

∑M
m=1 Nm). Let θQm and

θµm denote the sets of parameters of the mth local critic and actor networks, respectively. To train
θQm and θµm, we sample a random mini-batch of Nb transitions (Si,Ai,Ri,Si+1) from B, where

1. Each state Si is an M × 1 vector containing the local states of all intersections;
2. Each action Ai is an M × 1 vector containing the seconds of current phase of all intersec-

tions;
3. Each reward Ri is an M ×1 vector containing the rewards obtained from each intersection

after taking Ai at the state Si. The m-th entry of Ri is the reward of the mth intersection
after taking Ai.

Let ymi denote the reward after taking action Ai from the m-th target critic network. Based on ymi ,
the loss functions for updating θQm and θµm are defined, respectively, as follows:

Lm
critic =

1

Nb

Nb∑
i=1

(ymi −Q(Si,Ai|θQm))2 and

Lm
actor = − 1

Nb

Nb∑
i=1

Q(Si, µ(Si|θµm)|θQm).

(6)

With θQm and θµm, the parameters θQ
′

m and θµ
′

m for the target network are constantly updated as follows:

θQ
′

m ← (1− τ)θQm + τθQ
′

m and θµ
′

m ← (1− τ)θµm + τθµ
′

m . (7)

The parameter τ is set to 0.8 to update the target network. Refer to the supplementary material for
the detailed algorithm to update the parameters of local agents.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Methods I-1 I-2 I-3 I-4 I-5 Average
Fixed 1,530 1,560 1,996 2,288 2,291 1,933
MA-DDPG 1,782 1,819 2,098 1,896 2,400 1,999
PPO 979 957 1,206 1,517 1,619 1,255.6
TD3 1,370 1,394 1,787 2,070 2,147 1,753.6
CARTS (Ours) 2,225 2,310 2,784 3,052 2,868 2,647.8

Table 1: Comparisons of throughput against other SoTA methods. Best scores are marked in bold.

Methods Delay Speed Time loss Travel time Wait time
IDQN 2,745.96 11.01 258.99 227.67 217.78
IPPO 2,463.69 9.62 1,576.62 236.49 1,538.05
FMA2C 2,734.2 11.19 151.12 226.56 69.95
MPLight 2,712.2 11.19 158.55 226.53 73.71
MPLight* 2,709.93 11.19 186.94 226.51 90.81
CART 522 14.56 138.4 156.56 38.4

* MPLight full+IDQN

Table 2: Performance comparisons on two intersections. Best scores are marked in bold.

4.4 THE GLOBAL AGENT

To resolve potential conflicts among local agents, we introduce a global agent that explores the
environment with a broader perspective. The global agent optimizes the total waiting time across
all intersections. Fig. 5 illustrates the global critic and actor networks; detailed architectures are
provided in the supplementary material. To address the high memory demand of a large global agent,
we propose a localized global agent that considers only nearby intersections, since information from
distant intersections is less relevant. Specifically, we implement global agents covering 3 × 3 and
5 × 5 grids, as shown in Fig. 3. For example, the 5 × 5 grid centers on a blue dot representing the
target intersection, and this window can be shifted to cover other intersections as needed. For the m-
th intersection, we use Vm to denote the number of total vehicles, and Tw,i

m,n the waiting time of the
n-th vehicle at time step i. Then, the total waiting time on the entire site is used to define the global
reward as follows: rGi = − 1

M

∑M
m=1

∑Vm

n=1 T
w,i
m,n. Let θQG and θµG denote the parameters of the

global critic and actor networks, respectively. To train θQG and θµG, we sample a random minibatch of
Nb transitions (Si,Ai,Ri,Si+1) from B. Let yGi denote the reward after performing Ai obtained
from the global target critic network. Then, the loss function for updating θQG is defined as follows:

LG
critic =

1

Nb

Nb∑
i=1

(yGi −QG(Si,Ai|θQG))
2. (8)

Note that the output of this global critic network is a scalar value, i.e., the predicted total waiting
time throughout the site. To train θµG , we use the following loss function:

LG
actor = − 1

Nb

Nb∑
i=1

QG(Si,µG(Si|θµG)|θQG). (9)

The output of the global actor network is an M × 1 vector, representing the suggested actions
for all intersections. The weight Wm

G denotes the importance of the m-th intersection within the
global agent’s scope. Both local and global agents are modeled using DDPG networks. For detailed
algorithmic steps on updating the global agent, please refer to the supplementary material. We
utilize the TSIS and SUMO simulation platforms to model traffic flow, generating various vehicles
that traverse intersections of different scales.

4.5 CARBON EMISSION REDUCTION

Another key contribution of this work is the reduction of carbon emissions in traffic signal control.
For the first time, we integrate the HBEFA emission model, built into the SUMO simulation plat-
form, to record and output real-time data on vehicle fuel consumption and carbon emissions. The
calculation formulas for CO emissions are provided below, with detailed parameter explanations in

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3: Our lightweight global agent at the size of 5× 5.

Methods Delay Speed Time loss Travel time Wait time
IDQN 1,527.49 10.72 715.76 264.53 201.27
IPPO 1,789.1 7.27 1,268.89 346.06 658.61
FMA2C 1,434.68 10.72 275.69 167.96 254.54
MPLight 1,489.91 10.61 322.02 243.11 260.19
MPLight* 1,778.32 9.32 931.36 280.76 281.14
CARTS 466.05 10.75 115.74 113.25 134.89

* MPLight full+IDQN

Table 3: Performance comparison on five intersections. Best scores are marked in bold.

the supplementary material. The formula for CO2 emissions follows a similar structure, with CO
replaced by CO2.

COmove =
COengine × Vengine × FC ×Mfuel

Mair × 1000
, (10)

COstop =
COengine × Vengine × rstop × tstop

3600×Mair
, (11)

CO = COmove + COstop, (12)

where CO and CO2 denote the vehicle emissions of carbon monoxide and carbon dioxide, measured
in grams under driving conditions. COengine and CO2engine represent the respective emissions
from the engine, measured in grams per kilowatt-hour (g/kWh). Vengine is the engine displacement
in liters, while FC denotes fuel consumption in liters per 100 kilometers (L/100km). Mfuel and
Mair are the molecular weights of the fuel and air, measured in grams per mole, with Mair=28.97
g/mol. The value of Mfuel depends on the fuel type. According to the HBEFA formula, the primary
influencing factors are the distance traveled (v) and the waiting time (tstop). Since tstop during our
experiments, the waiting time is the main variable affecting emissions. Thus, reducing tstop directly
decreases carbon emissions.

5 EXPERIMENTAL RESULTS

Our traffic dataset consists of visual monitoring sequences from five consecutive intersections dur-
ing the morning rush hour in a midsize Asian city. Experiments simulating real traffic flows were
conducted using two simulators: TSISOwen et al. (2000) and SUMO. A fixed-time traffic signal
control with a total one-hour waiting time served as the baseline for comparison. We performed ab-
lation studies to evaluate the impact of the global agent within the CARTS framework. Additionally,
we benchmarked our method against an open datasetAult & Sharon (2021) for fair comparison with
other state-of-the-art approaches.

Table 1 reports throughput across five intersections for fixed-time control, MA-DDPG, PPO, TD3,
and CARTS. The global agent notably boosts throughput beyond both baselines and MA-DDPG.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Methods Travel time Avg. wait time Speed Fuel CO CO2

No global agent 1,857.74 269.57 7.97 1 109.12 2,208.37
W/ global agent 1,680.89 217.51 9.2 0.93 107.86 2,160.67

Table 4: Ablation study of our method on a real-world site with 16 intersections. Unit for Fuel, CO,
and CO2 is mg/s.

Ablation Study 49 intersections 169 intersections
Methods Avg. wait time Fuel CO CO2 Avg. wait time Fuel CO CO2

No global agent 301.22 1.03 114.57 2,334.7 659.2 1.08 114.63 2,511.99
Using global agent of 3× 3 224.43 0.95 106.24 2,206.69 528.77 1.03 107.3 2,400.36
Using global agent of 5× 5 217.51 0.94 105.9 2,190.12 494.53 1 103.35 2,333.42

Table 5: Ablation study of our method on the simulation with 49 and 169 intersections to simulate
traffic conditions in a large city. Unit for Fuel, CO, and CO2 is mg/s.

For larger networks (¿10 intersections), processing all nodes is impractical, so the global agent is
restricted to eight nearby intersections during training. For fair benchmarking, we use the SUMO-
based RL testbed Ault & Sharon (2021), which supports single- and multi-agent traffic control with
OpenAI Gym integration and open-source data/code. We evaluate five SoTA baselines: IDQN Ault
& Sharon (2021), IPPO Ault & Sharon (2020), FMA2C Chu et al. (2016), MPLight Zheng et al.
(2019b), and MPLight-full Ault & Sharon (2021); Zheng et al. (2019b). IDQN and IPPO are de-
centralized; FMA2C scales to large multi-agent settings; MPLight models phase competition; and
MPLight-full augments MPLight with pressure-state sensing. Each method applies its own state and
reward design.

Table 2 compares CARTS with existing methods under a two-intersection setting. IDQN Ault &
Sharon (2021) and IPPO, both independent-agent approaches, underperform multi-agent methods
like FMA2C and MPLight. While MPLight Zheng et al. (2019b) improves coordination via pres-
sure dynamics, it still lags behind FMA2C and CARTS. Our framework uses a global agent during
training to guide local agents, then removes it at inference to remain decentralized. This design en-
hances coordination and policy learning, enabling CARTS to consistently surpass all SoTA baselines
across every metric.

To test scalability, we extended evaluation to five intersections (Tab. 3). IPPO remains unstable,
especially in Time Loss, while MPLight-full offers modest gains and IDQN Ault & Sharon (2021)
improves in Speed and Waiting Time. FMA2C performs strongly across several metrics, but CARTS
consistently outperforms all baselines, confirming its robustness, coordination efficiency, and scala-
bility for larger traffic networks.

Ablation Study. Table 4 presents ablation study results for a 16-intersection scenario, evaluating
Travel Time, Average Wait Time, Speed, CO, CO2 and Fuel Consumption. We use a real-world map
composed of multiple major junctions arranged in a 4 × 4 checkerboard pattern. The results show
that our method performs significantly better with the inclusion of the global agent. Additionally,
following the HBEFA model integrated in SUMO, emissions of CO2 and fuel consumption are also
reduced. To test the scalability of our architecture to more than one hundreds of intersections, we
further evaluated larger networks of size 7× 7 and 13× 13, comparing different global agent sizes,
where there are 169 intersections in the 13×13 case. In addition to 3×3 agent, we explored a larger
5× 5 configuration. As shown in Table 5, increasing the size of the global agent leads to consistent
improvements in overall system performance.

6 CONCLUSION

We presented CARTS, a novel cooperative RL architecture that well handles the cooperation prob-
lems for traffic signal control among local agents by adding a global agent. The global agent has
access to all intersection information to guide local agents to improve training. CARTS remains
decentralized despite the inclusion of a global agent, so the global agent is not required for perform-
ing inference. Using SUMO traffic simulation, we have shown how CARTS significantly improves
system throughput and reduce carbon emissions.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Monireh Abdoos, Nasser Mozayani, and Ana LC Bazzan. Traffic light control in non-stationary
environments based on multi agent q-learning. In 2011 14th International IEEE conference on
intelligent transportation systems (ITSC), pp. 1580–1585. IEEE, 2011.

Siavash Alemzadeh, Ramin Moslemi, Ratnesh Sharma, and Mehran Mesbahi. Adaptive traffic
control with deep reinforcement learning: Towards state-of-the-art and beyond. arXiv preprint
arXiv:2007.10960, 2020.

Itamar Arel, Cong Liu, Tom Urbanik, and Airton G Kohls. Reinforcement learning-based multi-
agent system for network traffic signal control. IET Intelligent Transport Systems, 4(2):128–135,
2010.

Mohammad Aslani, Mohammad Saadi Mesgari, and Marco Wiering. Adaptive traffic signal control
with actor-critic methods in a real-world traffic network with different traffic disruption events.
Transportation Research Part C: Emerging Technologies, 85:732–752, 2017.

Mohammad Aslani, Stefan Seipel, Mohammad Saadi Mesgari, and Marco Wiering. Traffic signal
optimization through discrete and continuous reinforcement learning with robustness analysis in
downtown tehran. Advanced Engineering Informatics, 38:639–655, 2018.

James Ault and Guni Sharon. Learning an interpretable traffic signal control policy. In Proceedings
of the 19th International Conference on Autonomous Agents and MultiAgent Systems, 2020.

James Ault and Guni Sharon. Reinforcement learning benchmarks for traffic signal control. In
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 1), 2021.

E. N. Barron and H Ishii. The bellman equation for minimizing the maximum cost. Nonlinear
Analysis: Theory, Methods and Applications, 13(9):1067–1090, 1989.

Jeancarlo Arguello Calvo and Ivana Dusparic. Heterogeneous multi-agent deep reinforcement learn-
ing for traffic lights control. In AICS, pp. 2–13, 2018.

Tianshu Chu, Shuhui Qu, and Jie Wang. Large-scale multi-agent reinforcement learning using
image-based state representation. In 2016 IEEE 55th Conference on Decision and Control (CDC),
pp. 7592–7597. IEEE, 2016.

Tianshu Chu, Jie Wang, Lara Codecà, and Zhaojian Li. Multi-agent deep reinforcement learning for
large-scale traffic signal control. IEEE Transactions on Intelligent Transportation Systems, 21(3):
1086–1095, 2019.

Longchao Da, Minquan Gao, Hao Mei, and Hua Wei. Prompt to transfer: Sim-to-real transfer for
traffic signal control with prompt learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2024.

Martin Fellendorf. Vissim: A microscopic simulation tool to evaluate actuated signal control in-
cluding bus priority. In 64th Institute of Transportation Engineers Annual Meeting, volume 32,
pp. 1–9. Springer, 1994.

Xiaoxiao Guo, Satinder Singh, Honglak Lee, Richard L Lewis, and Xiaoshi Wang. Deep learning
for real-time atari game play using offline monte-carlo tree search planning. Advances in neural
information processing systems, 27:3338–3346, 2014.

Jayesh K Gupta, Maxim Egorov, and Mykel Kochenderfer. Cooperative multi-agent control using
deep reinforcement learning. In International Conference on Autonomous Agents and Multiagent
Systems, pp. 66–83. Springer, 2017.

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan,
John Quan, Andrew Sendonaris, Ian Osband, et al. Deep Q-learning from demonstrations. In
Proceedings of the AAAI Conference on Artificial Intelligence, 2018.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Daniel Krajzewicz, Georg Hertkorn, Christian Feld, and Peter Wagner. Sumo (simulation of urban
mobility); an open-source traffic simulation. pp. 183–187, 01 2002. ISBN 90-77039-09-0.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor-
critic for mixed cooperative-competitive environments. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, 2017.

PR Lowrie. Scats, sydney co-ordinated adaptive traffic system: A traffic responsive method of con-
trolling urban traffic. Darlinghurst, NSW, Australia, 1990.

Michael Lutter, Shie Mannor, Jan Peters, Dieter Fox, and Animesh Garg. Value iteration in contin-
uous actions, states and time. In ICML, 2021.

Patrick Mannion, Jim Duggan, and Enda Howley. An experimental review of reinforcement learning
algorithms for adaptive traffic signal control. Autonomic road transport support systems, pp. 47–
66, 2016.

Pitu Mirchandani and Larry Head. A real-time traffic signal control system: architecture, algorithms,
and analysis. Transportation Research Part C: Emerging Technologies, 9(6):415–432, 2001.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Seyed Sajad Mousavi, Michael Schukat, and Enda Howley. Traffic light control using deep policy-
gradient and value-function-based reinforcement learning. IET Intelligent Transport Systems, 11
(7):417–423, 2017.

Tomoki Nishi, Keisuke Otaki, Keiichiro Hayakawa, and Takayoshi Yoshimura. Traffic signal control
based on reinforcement learning with graph convolutional neural nets. In 2018 21st International
Conference on Intelligent Transportation Systems (ITSC), pp. 877–883. IEEE, 2018.

Larry E Owen, Yunlong Zhang, Lei Rao, and Gene McHale. Traffic flow simulation using corsim.
In 2000 Winter Simulation Conference Proceedings (Cat. No. 00CH37165), volume 2, pp. 1143–
1147. IEEE, 2000.

Hali Pang and Weilong Gao. Deep deterministic policy gradient for traffic signal control of single
intersection. In 2019 Chinese Control And Decision Conference (CCDC), pp. 5861–5866. IEEE,
2019.

Tong Thanh Pham, Tim Brys, Matthew E Taylor, Tim Brys, Madalina M Drugan, PA Bosman,
Martine-De Cock, Cosmin Lazar, L Demarchi, David Steenhoff, et al. Learning coordinated
traffic light control. In Proceedings of the Adaptive and Learning Agents workshop (at AAMAS-
13), volume 10, pp. 1196–1201. IEEE, 2013.

Roger P Roess, Elena S Prassas, and William R McShane. Traffic engineering. Pearson/Prentice
Hall, 2004.

Jingqing Ruan, Ziyue Li, Hua Wei, Haoyuan Jiang, Jiaming Lu, Xuantang Xiong, Hangyu Mao, and
Rui Zhao. Coslight: Co-optimizing collaborator selection and decision-making to enhance traffic
signal control. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining (KDD ’24), 2024. doi: 10.1145/3637528.3671998. URL https://arxiv.
org/abs/2405.17152.

Elise Van der Pol and Frans A Oliehoek. Coordinated deep reinforcement learners for traffic light
control. Proceedings of Learning, Inference and Control of Multi-Agent Systems (at NIPS 2016),
2016.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double Q-
learning. Proceedings of the AAAI Conference on Artificial Intelligence, 30(1), 2016.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Maonan Wang, Aoyu Pang, Yuheng Kan, Man-On Pun, Chung Shue Chen, and Bo Huang. Llm-
assisted light: Leveraging large language model capabilities for human-mimetic traffic signal
control in complex urban environments. arXiv preprint arXiv:2403.08337, 2024.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

Hua Wei, Guanjie Zheng, Huaxiu Yao, and Zhenhui Li. Intellilight: A reinforcement learning ap-
proach for intelligent traffic light control. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 2496–2505, 2018.

Hua Wei, Guanjie Zheng, Vikash Gayah, and Zhenhui Li. Recent advances in reinforcement learn-
ing for traffic signal control: A survey of models and evaluation. ACM SIGKDD Explorations
Newsletter, 22(2):12–18, 2021.

Haosheng Wu. Control method of traffic signal lights based on ddpg reinforcement learning. In
Journal of Physics: Conference Series, volume 1646, pp. 012077. IOP Publishing, 2020.

Huichu Zhang, Siyuan Feng, Chang Liu, Yaoyao Ding, and Yichen Zhu. Cityflow: a multi-agent
reinforcement learning environment for large scale city traffic scenario. In WWW ’19: The World
Wide Web Conference, pp. 3620–3624, 2019.

Guanjie Zheng, Yuanhao Xiong, Xinshi Zang, Jie Feng, Hua Wei, Huichu Zhang, Yong Li, Kai Xu,
and Zhenhui Li. Learning phase competition for traffic signal control. In Proceedings of the 28th
ACM International Conference on Information and Knowledge Management, pp. 1963–1972,
2019a.

Guanjie Zheng, Yuanhao Xiong, Xinshi Zhang, Hua Wei, Huichu Zhang, Yong Li, Kai Xu, and
Zhenhui Li. Learning traffic signal control from demonstrations. In Proceedings of the 28th ACM
International Conference on Information and Knowledge Management, pp. 2289–2292, 2019b.

Guanjie Zheng, Xinshi Zang, Nan Xu, Hua Wei, Zhengyao Yu, Vikash Gayah, Kai Xu, and Zhenhui
Li. Diagnosing reinforcement learning for traffic signal control. arXiv preprint arXiv:1905.04716,
2019c.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

In this section, we will prove that value function in our method will actually converge.

Definition A.1. A metric space < M, d > is complete (or Cauchy) if and only if all Cauchy se-
quences in M will converge to M . In other words, in a complete metric space, for any point se-
quence a1, a2, · · · ∈M , if the sequence is Cauchy, then the sequence converges to M :

lim
n→∞

an ∈M.

Definition A.2. Let (X,d) be a complete metric space. Then, a map T : X→ X is called a contraction
mapping on X if there exists q ∈ [0, 1) such that d(T (x), T (y)) < qd(x, y), ∀x, y ∈ X .

Theorem 1 (Banach fixed-point theorem). Let (X,d) be a non-empty complete metric space with a
contraction mapping T : X→ X. Then T admits a unique fixed-point x∗ in X. i.e. T (x∗) = x∗.

Theorem 2 (Gershgorin circle theorem). Let A be a complex n × n matrix, with entries aij . For
i ∈ 1, 2, ..., n, let Ri be the sum of the absolute of values of the non-diagonal entries in the ith row:

Ri =

n∑
j=0,j ̸=i

|aij |.

Let D(aii, Ri) ⊆ C be a closed disc centered at aii with radius Ri, and every eigenvalue of A lies
within at least one of the Gershgorin discs D(aii, Ri).

Lemma 3. We claim that the value function of RL can actually converge, and we also apply it to
traffic control.

Proof. The value function is to calculate the value of each state, which is defined as follows:

V π(s) =
∑
a
π(a|s)

∑
s′,r

p(s′, r|s, a)[r + γV π(s′)]

=
∑
a
π(a|s)

∑
s′,r

p(s′, r|s, a)r

+
∑
a
π(a|s)

∑
s′,r

p(s′, r|s, a)[γV π(s′)].

(13)

Since the immediate reward is determined, it can be regarded as a constant term relative to the second
term. Assuming that the state is finite, we express the state value function in matrix form below. Set
the state set S = {S0, S1, · · · , Sn}, V π = {V π(s0), V

π(s1), · · · , V π(sn)}T , and the transition
matrix is

Pπ =

 0 Pπ
0,1 · · · Pπ

0,n

Pπ
1,0 0 · · · Pπ

1,n

· · · · · · · · · · · ·
Pπ
n,0 Pπ

n,1 · · · 0

 , (14)

where Pπ
i,j =

∑
a
π(a|si)p(sj , r|si, a). The constant term is expressed as Rπ =

{R0, R1, · · · , Rn}T . Then we can rewrite the state-value function as:

V π = Rπ + λPπV π. (15)

Above we define the state value function vector as V π = {V π(s0), V
π(s1), · · · , V π(sn)}T , which

belongs to the value function space V . We consider V to be an n-dimensional vector full space, and
define the metric of this space is the infinite norm. It means:

d(u, v) =∥ u− v ∥∞= max
s∈S
|u(s)− v(s)|,∀u, v ∈ V (16)

Since < V, d > is the full space of vectors, V is a complete metric space. Then, the iteration result
of the state value function is unew = Tπ(u) = Rπ + λPπu. We can show that it is a contraction
mapping.

d(Tπ(u), Tπ(v)) =∥ (Rπ + λPπu)− (Rπ + λPπv) ∥∞
=∥ λPπ(u− v) ∥∞
≤∥ λPπ ∥ u− v ∥∞∥∞ .

(17)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

From Theorem 2, we can show that every eigenvalue of Pπ is in the disc centered at (0, 0) with
radius 1. That is, the maximum absolute value of eigenvalue will be less than 1.

d(Tπ(u), Tπ(v)) ≤∥ λPπ ∥ u− v ∥∞∥∞
≤ λ ∥ u− v ∥∞
= λd(u, v).

(18)

From the Theorem 1, Eq.(2) converges to only V π .

B ALGORITHM

Algorithm 1 CARTS: CooperAtive Reinforcement Learn- ing for Traffic Signal control
Initialize critic network Q(s, a|θQ) and actor network µ(s|θµ) with random weights θQ and θµ.
Initialize target network Q′ and µ′ with weights θQ

′
← θQ, θµ

′
← θµ and also initialize replay buffer R.

for t=1, ... ,T do
Clean the replay buffer B.
/* B = (B1, ...,Bm, ...,BM); */
/* Bm: on-policy data for the m-th intersection */
/* Generate on-policy data */
B= GOD(t);
for episode=1, ..., 400 do

for m=1,..., M, Global do
if m ̸= Global then

LAU (B,m);// Update local agents

if agent=Global then
GAU (B);// Update the global agent

Algorithm 2 COMA-DDPG traffic signal control RL algorithm.
Initialize critic network Q(s, a|θQ) and actor network µ(s|θµ) with random weights θQ and θµ.
Initialize target network Q′ and µ′ with weights θQ

′ ← θQ, θµ
′ ← θµ and also initialize replay

buffer R. for t=1, ... ,T do
Clean the replay buffer B.
/* B = (B1, ...,Bm, ...,BM); */
/* Bm: on-policy data for the mth intersection */
/* Generate on-policy data */
B= GOD(t);
for episode=1, ..., 400 do

for m=1,..., M, Global do
if m ̸= Global then

LAU (B,m);// Update local agents

end
if agent=Global then

GAU (B);// Update the global agent

end
end

end
end

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 3 GOD (Generating On-policy Data)
/* Run one hour of simulation with noise η*/
Input: t: timestamp
θµm: parameters for the mth actor network
θµG: parameters for the global actor network
Output: B: on-policy data
β = 0.95t; rate for time decline
for m=1, ... , M do

Get Wm
G from the global actor network with the parameters θµG;

Wm
G = β ×Wm

G ; Wm
L =1-Wm

G ;
for l=1, ... ,3600 do

/* ϵ: the probability of choosing to explore */
/* ηm: noise for epsilon greedy exploration*/
p = random(0,1);

ηm =

{
0, if p ≤ ϵ,

random(−5, 5), if p > ϵ;

aml =

{
µ(sl|θµm) + ηm, if Wm

L > Wm
G ,

µG(sl|θµG)(m) + ηm, if Wm
L < Wm

G ;
Execute aml and observe rml , sml+1;
Store transition (sml , aml , rml , sml+1) in Bm;

B = (B1, ...,Bm, ...,BM);
Return(B);

Algorithm 4 LAU (Local Agent Updating)
Input:
B: on-policy data; m: the mth agent
θQm: set of parameters for the local critic network;
θµm: set of parameters for the local actor network;
(θQ

′

m ,θµ
′

m): sets of parameters for the target network;
Output:
θQm: new parameters for the mth critic network;
θµm: new parameters for the mth actor network;
(θQ

′

m ,θµ
′

m): new parameters for the target network;
Sample a random minibatch of Nb transitions (Si,Ai,Ri,Si+1) from B;
Set ymi = Ri(m) + γQ′(Si+1|µ′(Si+1|θµ

′

m)|θQ′

m);
Update the critic parameters θQm by minimizing the loss: Lm

critic =
1
Nb

∑
i(y

m
i −Q(Si,Ai|θQm))2;

Update the actor parameters θµm by minimizing the loss: Lm
actor = − 1

Nb

∑
i Q(Si, µ(Si|θµm)|θQm);

Update the target network:
θQ

′

m ← (1− τ)θQm + τθQ
′

m ;

θµ
′

m ← (1− τ)θµm + τθµ
′

m ;

Algorithm 5 GAU(Global Agent Updating)
Sample a random minibatch of Nb transitions (Si,Ai,Ri,Si+1) from B;
Calculate rGi by Eq.(17);
Set yGi = rGi + γQ′

G(Si+1|µ′
G(Si+1|θµ

′

G)|θQ
′

G);
Update the critic parameter θQG by minimizing the loss: LG

critic =
1
Nb

∑
i(y

G
i −QG(Si,Ai|θQG))2;

Update the actor parameter θµG by minimizing the loss: LG
actor = − 1

Nb

∑
i QG(Si,µG(Si|θµG)|θ

Q
G);

Update the target networks:
θQ

′

G ← (1− τ)θQG + τθQ
′

G ;

θµ
′

G ← (1− τ)θµG + τθµ
′

G ;

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C PICTURE

(a) (b)

Figure 4: Architectures for local agent. (a) Local critic.(b) Local actor.

(a) (b)

Figure 5: Architectures for global agent. (a) Global critic.(b) Global actor.

(a)

(b)

Figure 6: (a) Simulation traffic environment for RL traffic control, where yellow area is the visible
range of each lane. (b) Control process. Here, ti means the duration of green light of phase i.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 7: Waiting time converge conditions during the training process among different methods.

(a) (b)

(c) (d)

(e)

Figure 8: Figures (a) to (e) show the convergence of our method, where (a) is delay, (b) is speed, (c)
is time loss, (d) is travel time, and finally (e) is waiting time

17

