
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PUZZLEFUSION++: AUTO-AGGLOMERATIVE 3D FRAC-
TURE ASSEMBLY BY DENOISE AND VERIFY

Anonymous authors
Paper under double-blind review

Denoise

Verify Iter 1 Iter 2 Iter 3

Figure 1: PuzzleFusion++ iteratively aligns and assembles fracture fragments into a 3D shape,
resembling how humans solve jigsaw puzzles. At each iteration, a diffusion model solves for the
6-DoF alignments of the fragments, and a transformer verifies the pairwise alignments and merge
them into larger fragments. We call our approach “auto-agglomerative,” referring to auto-regressive
methods for the iterative process and agglomeration clustering for the hierarchical grouping.

ABSTRACT

This paper proposes a novel “auto-agglomerative” 3D fracture assembly method,
PuzzleFusion++, resembling how humans solve challenging spatial puzzles. Start-
ing from individual fragments, the approach 1) aligns and merges fragments into
larger groups akin to agglomerative clustering and 2) repeats the process iteratively
in completing the assembly akin to auto-regressive methods. Concretely, a diffusion
model denoises the 6-DoF alignment parameters of the fragments simultaneously,
and a transformer model verifies and merges pairwise alignments into larger ones,
whose process repeats iteratively. Extensive experiments on the Breaking Bad
dataset show that PuzzleFusion++ outperforms all other state-of-the-art techniques
by significant margins across all metrics In particular by over 10% in part accuracy
and 50% in Chamfer distance. We will release code and model.

1 INTRODUCTION

Humans have an innate proficiency in solving complex spatial puzzles. Starting with scattered pieces,
we assess connections based on their shapes and fits, gradually merge them into larger components,
and repeat the process through trial and error until forming a single assembly. The task requires a
combination of sophisticated skills on shape analysis, spatial reasoning, and trial and error process of
navigating the massive combinatorial solution space.

A computational system with such capabilities would have significant impacts across broad domains.
For example, archaeologists could reassemble fragments and uncover ancient artifacts. Forensic
specialists could reconstruct broken objects from accident scenes to deduce causative events. Bio-
chemistry scientists could discover effective drugs by analyzing compatible protein 3D structures.

Deep neural networks (DNNs) have brought dramatic progress in developing such an intelligent
computational method. DNN-based encoder enables robust shape matching by encoding raw 3D
scans (i.e., point clouds) into latent embeddings, where a combinatorial optimization technique

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

searches for an optimal set of pairwise alignments (Lu et al., 2023). PuzzleFusion (Hossieni et al.,
2023) proposed an innovative fully neural system based on Diffusion Models that simultaneously
aligns all the pieces in solving 2D jigsaw puzzles. This paper pushes the frontier of spatial puzzle
solving by proposing a fully neural system that simulates how humans tackle this problem.

Starting from individual fracture fragments, the approach 1) simultaneously aligns and merges
fragments into larger groups, akin to agglomerative clustering, and 2) repeats this process iteratively in
completing the assembly akin to auto-regressive methods. We call our approach “auto-agglomerative”,
mimicking the way humans tackle challenging spatial puzzles. Concretely, after using PointNet++ (Qi
et al., 2017) and VQVAE (Van Den Oord et al., 2017) to encode each fragment into latent embeddings,
the approach uses a diffusion model to solve for the 6-DoF alignments of all the fragments. A
transformer model verifies the inferred pairwise alignments and merges verified pairs into larger
groups. The process repeats until forming a single assembly.

Extensive experiments on the Breaking Bad dataset (Sellán et al., 2022) show that PuzzleFusion++
outperforms all existing methods by significant margins in all metrics, specifically by over 10% in
part accuracy and over 50% in the Chamfer distance metric, pushing the frontier of computational
methods for challenging spatial puzzle tasks. We will release code and models.

2 RELATED WORK

Diffusion models. Diffusion models (Ho et al., 2020; Song et al., 2020; Sohl-Dickstein et al.,
2015) have gained prominence for their exceptional performance in generating images (Ramesh
et al., 2022; Rombach et al., 2022; Dhariwal & Nichol, 2021b), videos (Blattmann et al., 2023a;b),
and 3D assets (Zeng et al., 2022; Luo & Hu, 2021; Poole et al., 2022; Tang et al., 2024; Alliegro
et al., 2023). The great capacity to capture complex data distribution makes diffusion-based models
suitable for many tasks beyond generation. Recent works have extended diffusion models as general
solvers for deterministic tasks, including object detection (Chen et al., 2023b), camera pose estima-
tion (Wang et al., 2023), shape reconstruction (Cheng et al., 2023; Chen et al., 2023a), and puzzle
solving (Hossieni et al., 2023; Scarpellini et al., 2024). Our method exploits diffusion models within
an agglomerative puzzle-solving framework to deal with the complex geometric reasoning for the
fracture assembly tasks.

Auto-regressive methods. Auto-regressive methods recursively predict the next values in a se-
quence based on the previously observed or predicted elements. Auto-regressive approaches like
GPT (Radford et al., 2018) and its follow-ups have revolutionized natural language processing (NLP).
Similar approaches also generate images as pixel sequences (Van Den Oord et al., 2016b), audio (Van
Den Oord et al., 2016a), or 3D shapes (Nash et al., 2020; Siddiqui et al., 2023), etc. The auto-
regressive agglomeration process in our method draws inspiration from these successes. By iteratively
aligning and merging fractured fragments into larger ones for future iterations, we gradually assemble
all fragments into a single object. The process mimics human cognitive puzzle-solving strategies,
aiming for more precise and efficient assembly.

3D shape assembly. 3D fracture assembly has been a challenge for machine intelligence (Huang
et al., 2006). PartNet (Mo et al., 2019) presents a large 3D object segmentation database (e.g., the
legs or seat of a chair), fueling research on learning-based methods (Yin et al., 2020; Li et al., 2023;
Narayan et al., 2022). Recent transformer-based approaches (Xu et al., 2024; Du et al., 2024; Zhang
et al., 2022) capture the global semantic and geometric contexts well to enhance the alignment
accuracy. Chen et al. (2022) proposes a shape-mating dataset where objects are randomly fractured
into two fragments, and an adversarial learning framework reassembles the two fragments. Lamb
et al. (2023) collects a dataset with real-world broken objects. The Breaking Bad dataset (Sellán et al.,
2022) introduces a more challenging benchmark, where diverse objects are fractured into multiple
(i.e., 2 to 100) fragments via physical simulations. Jigsaw (Lu et al., 2023) utilizes deep networks for
fracture surface segmentation and matching, followed by a global alignment step to derive the poses.
SE(3)-equiv (Wu et al., 2023) extracts global equivariant and invariant features to represent each
fractured fragment and directly regress the 6-DoF alignment parameters. DiffAssemble (Scarpellini
et al., 2024) further applies a diffusion model to this framework. This paper introduces an auto-
agglomerative framework to mimic how humans solve spatial puzzles, where a diffusion model with
local geometric features serves as a spatial solver in each iteration, and a transformer verifies the
correctness of aligned fragments and merges them into larger groups.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Encoder 𝑥!
" "ℎ",$	

𝑥! 𝑥!&' 𝑥(

VerifierDenoiser

𝒃
. V

er
ify

 T
ra

ns
.  

𝒃
. V

er
ify

 T
ra

ns
.  Verifier

𝑥(

Denoiser

𝑥! 𝑥!&'

Denoise to 
The End

Merged
Cluster

𝒂
. D

en
oi

se
 T

ra
ns

.  
𝒂
. D

en
oi

se
 T

ra
ns

.  

It
er

at
io

n 
1

It
er

at
io

n 
2

𝒃 . Verify Transformer  

SA

FFN 0.13

FFN 0.42

FFN 0.13

FFN 0.95

𝑧+,!
" , 𝛾(𝑐+.!

" , 𝛾(𝑛")], ∀𝑝

𝒂 .	Denoise Transformer

!𝛿!"

Lo
ca

l S
A

G
lo

ba
l S

A

Po
ol

in
g

!𝛿!#

Lo
ca

l S
A

Po
ol

in
g

{ $𝑥$,!" }

{ $𝑥$,!# }

Figure 2: The architecture overview of PuzzleFusion++ (mesh used only for visualization). Left: An
illustration of the auto-agglomerative fracture assembly process with the first two iterations. Right:
Close-ups of the SE3 denoise transformer and the pairwise alignment verifier transformer. Please
refer to Figure 3 for the details of the architectures.

3 PUZZLEFUSION++: AN AUTO-AGGLOMERATIVE APPROACH FOR FRACTURE
ASSEMBLY

PuzzleFusion++ innovates computational methods for fracture assembly via an “auto-agglomerative”
approach, where the task is to take a set of rigid fractured fragments as input and estimate their
6-DoF alignments. In our case, an input fragment and an output alignment are a point-cloud and a 3D
rigid transformation, respectively. PuzzleFusion++ consists of two modules, the denoiser and the
verifier. The denoiser aligns individual fragments (§3.2), where the verifier classifies the correctness
of pairwise alignments and merges verified pairs into larger fragments (§3.3), akin to agglomerative
clustering. The approach repeats the process based on previous predictions until forming a single 3D
shape, akin to auto-regressive methods (§3.4).

3.1 PRELIMINARIES

Input representation. An input fragment comes as point clouds. We train PointNet++ (Qi et al.,
2017) and VQ-VAE (Van Den Oord et al., 2017) to encode the point clouds into latent vectors at
the points (details in Section A.1). PointNet++ employs furthest point sampling to select 25 points,
creating 25 corresponding point latent vectors for each fragment. This approach retains intricate
surface details, offering an advantage over the global feature extraction used in previous studies (Wu
et al., 2023; Scarpellini et al., 2024). Note that the encoding process normalizes the 3D coordinate
frame so that the center of mass is at the origin, and the longest dimension of the axis-aligned
bounding box becomes a unit length. The encoding is still sensitive to rotation, where latent vectors
are re-calculated as we optimize fragment alignments.

Output representation. The output alignment is represented as a 7D vector for each fragment,
composed of a 4D quaternion and a 3D translation vector.

Anchor fragments. Fracture assembly has an inherent ambiguity in the 3D rigid transformation.
We introduce the concept of anchor fragments to settle down a reference coordinate system. The
anchor fragments have fixed alignments (i.e., the identity matrix for rotation and the zero vector
for translation) and do not move in the assembly process. At the beginning of the inference, the
largest fragment (based on the longest dimension of its axis-aligned bounding box) becomes an

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Denoiser
Input at time step 𝑻 = 𝟏𝟎𝟎𝟎:

[{𝑥𝑇
0, 𝑥𝑇

1 , … }~𝒩 0, 𝐈 , {𝑐𝑝
0, 𝑐𝑝

1, … }, {𝑛0, 𝑛1, … }, 𝑇]

1. Feature Preparation

𝑧𝑝,𝑡
𝑓

𝑝 ← 𝑃𝑛𝑒𝑡 𝑐𝑝
𝑓

, 𝑥𝑡
𝑓

𝑝

ො𝑥𝑝,𝑡
𝑓

← MLP([𝑧𝑝,𝑡
𝑓

, 𝛾 𝑐𝑝,𝑡
𝑓

, 𝛾 𝑛𝑓 , 𝛾(𝑥𝑡
𝑓

)]), ∀𝑓, ∀𝑝

2. Denoising Transformer

ො𝑥𝑝,𝑡
𝑓

𝑝 ← LocalSA( ො𝑥𝑝,𝑡
𝑓

𝑝 ), ∀𝑓

ො𝑥𝑝,𝑡
𝑓

𝑓, 𝑝 ← GlobalSA( ො𝑥𝑝,𝑡
𝑓

𝑓, 𝑝 )

ሚ𝛿𝑡
𝑓

← AvePool ( ො𝑥𝑝,𝑡
𝑓

𝑝 ), ∀𝑓

𝑥
𝑡′
𝑓

←
1

𝛼𝑡
 (𝑥𝑡

𝑓
−

1 − 𝛼𝑡

1 − ത𝛼𝑡

ሚ𝛿𝑡
𝑓

)+ 1 − 𝛼𝑡𝒩 0, 𝐈

Output at time step 𝒕:

Input:

Verifier

ℎ(𝑓,𝑔) ← H𝑖𝑠𝑡 𝑐𝑝,0
𝑓

, 𝑐𝑞,0
𝑔

𝑝, 𝑞 ∈ M , 

∀ 𝑓, 𝑔 :

𝑐𝑝,0
𝑓  ←  𝑅𝑖𝑔𝑖𝑑 𝑐𝑝

𝑓
;  𝑥0

𝑓
,

ℎ(𝑓,𝑔) ← 𝑃𝐸 𝑓 , 𝑃𝐸 𝑔 + MLP ℎ(𝑓,𝑔) ,

{ ǁ𝑠(𝑓,𝑔)} ← SA ℎ(𝑓,𝑔) 𝑓, 𝑔 .

[{𝑥𝑡=0
0 , 𝑥𝑡=0

1 , … }, {𝑐𝑝
0, 𝑐𝑝

1, … }, M]

𝑐𝑞,0
𝑔

 ←  𝑅𝑖𝑔𝑖𝑑 𝑐𝑞
𝑔

; 𝑥0
𝑔

,

Output: 𝑐′
𝑝
𝑓

 ←  𝑀𝑒𝑟𝑔𝑒 𝑐𝑝,0
𝑓

, 𝑐𝑞,0
𝑔

; ǁ𝑠(𝑓,𝑔) , ∀(𝑓, 𝑔)

Output at time step 𝟎: [{𝑥𝑡=0
0 , 𝑥𝑡=0

1 , … }]

Input at time step 𝒕: [{𝑥𝑡
𝑓

}]

Update fragments

𝑥: align. param.

𝑐: 3D coordinate

𝑠: score 𝑝/𝑞: point index

𝑧: point latent 𝑓/𝑔: frag. index𝑛: norm. factor

𝛾: spatial pos. enc. M: matches

𝑃𝐸: index pos. enc.ො𝑥: feat. emb.

Figure 3: Inference pipeline with architecture specifications. The denoiser (blue) is a diffusion model
with Transformer architecture at its core. The verifier (orange) is a Transformer.

anchor. In the assembly process, any fragment that merges with an anchor also becomes an anchor.
During training, we set anchors to be the largest fragment (with the same definition as above) plus its
neighboring fragments with a 50% chance each to simulate the inference-time merging process.

3.2 SE3 DENOISER

Forward process. Let xf
t denote the 7D alignment vector of fragment f at timestep t. xf

0 is the
ground-truth alignment before noise injection. A piece-wise quadratic scheduler adds a Gaussian
noise (except to the anchor fragment) δft to xf

0 , using m=700 and T=1000:

xf
t =
√
ᾱtx

f
0 +
√
1− ᾱtδ

f
t , ᾱ =

1− (0.1)
(

t
m

)2
if t ≤ m

0.9

(
1−

(
t−m
T−m

)2
)

if m < t ≤ T
(1)

Reverse process. Following PuzzleFusion (Hossieni et al., 2023), each sampled point of each
fragment keeps track of the alignment estimate in the denoise transformer architecture. The denoising
architecture is standard (See Figures 2 and 3), where the main components are 1) Intra-fragment
self-attention (Local SA) among 25 sampled points within a fragment; 2) Inter-fragment self-attention
(Global SA) among all sampled points across all fragments; and 3) Average pooling over the 25
sampled points of fragment f to predict the residual δ̃ft .

Both intra-fragment and inter-fragment SA modules utilize adaptive layer norm (Dhariwal & Nichol,
2021a) to inject the timestep t. Each module comprises 6 self-attention layers, each with 8 multi-heads
and a feature dimension of 512.

A feature embedding x̂f
p,t ∈ R512 of a sampled point p of a fragment f is the concatenation of the

four features: 1) The alignment estimate xf
t ∈ R7 with a positional encoding (γ() ∈ R147; 2) The

point latent zfp,t ∈ R64; 3) The 3D coordinate cfp,t ∈ R3 with a positional encoding (γ() ∈ R63); and
4) The scale normalization factor nf of the point-cloud (§3.1) with a positional encoding (γ() ∈ R21).
MLP maps the concatenated feature into a 512D latent embedding.

Note that anchor fragments are processed exactly the same way, while their alignment should be the
identity rotation and zero-vector translation. Therefore, alignment estimation is discarded at every

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

denoising step during inference, and no gradients are injected during training for anchor fragments.

The standard DDPM (Ho et al., 2020) loss is imposed on non-anchor fragments: Et,xf
0 ,δ

f
t

∥∥∥δft − δ̃ft

∥∥∥2.

DiffAssemble (Scarpellini et al., 2024) applies diffusion models to solve both 2D and 3D reassembly
problems but obtains suboptimal performance in the complex 3D fracture assembly task. Our denoiser
provides tailored designs over all critical components of diffusion models. Please refer to §4.3 for
detailed analyses and experimental results.

3.3 PAIRWISE ALIGNMENT VERIFIER

Given the alignment of F fragments, the verifier employs a Transformer architecture with
(
F
2

)
nodes

to perform binary classification on the correctness of
(
F
2

)
pairwise alignments simultaneously. Note

that verifying the correctness of a given alignment is a lot easier than searching for an optimal
alignment of many fragments, thus a straightforward Transformer architecture with the following
node embeddings suffices for this task.

An input node embedding for a pair of fragments (f and g) is the sum of two vectors. The first vector is
the concatenation of the sinusoidal positional encodings of the fragment indices, [PE(f), PE(g)] ∈
R256. The second vector represents the alignment quality of f and g, utilizing a point matching
module from Jigsaw by Lu et al. (2023). Specifically, the module takes the point clouds of all the
fragments (without alignment) and identifies a set of matching points. For point matches between
f and g, we calculate the Euclidean distances of points and construct a normalized histogram with
six bins. We append the total number of matches as the seventh value, which is fed into an MLP to
construct the second vector. The distance thresholds of these bins are set at (0, 1e-3, 5e-3, 1e-2, 5e-2,
1e-1,∞). The verifier is optimized using the standard binary cross-entropy loss.

3.4 AUTO-AGGLOMERATIVE INFERENCE

The denoiser and the verifier iteratively align and merge fracture fragments into larger groups.
This process repeats six iterations or until all the fragments are merged into a single component.
Fragment pairs are verified for merging if their classification score exceeds a threshold of 0.9. One
challenge in fragment merging is the potential inclusion of points from inner surfaces when taking
the union of the point-clouds. We employ simple heuristics to detect and remove such inner points
before merging. Specifically, we compute a surface normal for each point of a point-cloud using
estimate_pointcloud_normals in the pytorch3d.ops module. A point is identified as an inner surface
point if another point in the opposing point-cloud is within a distance of 0.001 and their surface
normals yield a negative dot product. A point-cloud of a fragment contains 1,000 points. After
removing inner surface points, we resample to maintain 1,000 points using the farthest point sampling
method. For anchor fragments, we preserve them as separate and freeze their alignments rather than
merging to retain the high-resolution information crucial for large (e.g., anchor) fragments.

4 EXPERIMENTS

We use a server with four NVIDIA RTX A6000 GPUs for experiments. The denoiser is trained for
2000 epochs with a batch size of 64. The initial learning rate is 2e-4 and decays by a factor of 10 at
1200 and 1700 epochs. The AdamW optimizer is used with a decay factor of 1e-6. The verifier is
trained for 100 epochs using the same training settings as the denoiser. The training of the denoiser
and the verifier takes approximately 75 hours and 10 minutes.

Datasets. Following recent works (Wu et al., 2023; Lu et al., 2023), we use the Breaking Bad
dataset (Sellán et al., 2022). Specifically, 34,075 assemblies from 407 objects in the everyday subset
are for training. 7,679 assemblies from 91 objects in the everyday subset and 3,651 assemblies from
40 uncategorized objects in the artifact subset are for testing. We limit assemblies with at most
20 fragments and do not use the assembly category labels (e.g., bottles, vases, and mirrors). Each
fragment is represented as a point cloud consisting of 1,000 points, following the baseline settings.
Note that the training/testing split is exactly the same as Breaking Bad dataset (Sellán et al., 2022)
for fair comparisons.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Quantitative evaluations on the Breaking Bad dataset. The numbers for the five baselines
(marked as ∗) are copied from their papers, except for the CD metric of Jigsaw which we calculated
by running their official codebase. SE(3)-Equiv reported numbers for assemblies with at most 8
fragments in their paper, where we modified their codebase to calculate the metrics under our setting
(i.e., for assemblies with at most 20 fragments). The running speed is measured on a single RTX
NVIDIA 4090 GPU by running the official codebase if available. The cyan and the orange texts
denote the best and the second best results, respectively.

Method RMSE(R) ↓ RMSE(T) ↓ PA ↑ CD ↓ Speed
degree ×10−2 % ×10−3 ms/sample

Trained and tested on the everyday subset

Global (Li et al., 2020)∗ 80.7 15.1 24.6 14.6 23.7
LSTM (Wu et al., 2020)∗ 84.2 16.2 22.7 15.8 29.9
DGL (Zhan et al., 2020)∗ 79.4 15.0 31.0 14.3 28.7
SE(3)-Equiv(Wu et al., 2023) 79.3 16.9 8.41 28.5 129.9
DiffAsb(Scarpellini et al., 2024)∗ 73.3 14.8 27.5 - -
Jigsaw(Lu et al., 2023)∗ 42.3 10.7 57.3 13.3 1063.5
PuzzleFusion++ (Ours) 38.1 8.04 70.6 6.03 928.5

Trained on the everyday subset, tested on the artifact subset

Jigsaw(Lu et al., 2023)∗ 52.4 22.2 45.6 14.3 -
PuzzleFusion++ (Ours) 52.1 13.9 49.6 14.5 -

Evaluation metrics. The Breaking Bad dataset offers three evaluation metrics, where the biggest
fragment is used to align the predicted assembly with the ground truth before calculating the metrics,
which is the same as in Jigsaw (Lu et al., 2023) evaluation settings:
• Root mean square error (RMSE) of both the rotation and the translation parameters.
• Part accuracy (PA) is the ratio of fragments whose per-fragment Chamfer distance is less than 0.01.
• Chamfer distance (CD) is calculated per assembly.

Pre-processing. At test time, we apply random rotations to all the fragments and move the center-
of-mass of each fragment to the coordinate frame origin to hide all the ground-truth information.
At training time, we prepare ground-truth assemblies and their alignment parameters by applying a
random rotation to each whole assembly and moving the center-of-mass of its anchor fragment to the
coordinate frame origin.

Competing methods. We include three baselines from the Breaking Bad dataset and three other
existing approaches designed for the fracture assembly task:
• Global, LSTM, and DGL are the initial baselines provided by the Breaking Bad dataset. Global
combines the global shape features with per-fragment features and directly regresses the pose. LSTM
focuses on learning cross-fragment relationships, using a bi-directional LSTM to predict pose. DGL
utilizes the graph neural network to find the relationship between fragments. These methods are
originally designed for PartNet (Mo et al., 2019) assembly tasks.
• SE(3)-Equiv (Wu et al., 2023) integrates equivariant and invariant features to model multi-part
correlations. The released code only trains and tests on samples with at most 8 fragments. We train
and test their system for assemblies with at most 20 fragments for fair comparison.
• DiffAssemble (Scarpellini et al., 2024) uses the equivariant encoder to extract per-fragment features
similar to SE(3) (Wu et al., 2023) and uses a diffusion model to predict the pose.
• Jigsaw (Lu et al., 2023) is the state-of-the-art fracture assembly method, leveraging hierarchical
features of global and local geometry to do fracture surface point matching and recover the poses.

4.1 QUANTITATIVE EVALUATIONS

Table 1 demonstrates that PuzzleFusion++ outperforms all the six baselines across all the metrics
with significant margins, except one metric in one case to be discussed below. Among the six
baselines, Jigsaw is a clear winner that boasts a learning-based point matcher, leveraging global and
local geometry. However, Jigsaw is not a fully neural system, relying on classical optimization in
searching for a compatible set of point matches. PuzzleFusion++ is fully neural, directly searches

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

for a compatible alignment of fragments with a powerful diffusion model, and repeats the process
many times as confident partial alignments are merged into bigger fragments, which is precisely how
humans would solve the task.

The lower section of Table 1 evaluates the generalization capabilities of Jigsaw and PuzzleFusion++.
Both models are trained on the everyday subset and tested on the artifact subset. Jigsaw marginally
surpasses PuzzleFusion++ in the CD metric (14.5 vs 14.3), where PuzzleFusion++ suffers from
a major performance decline across all metrics compared to Jigsaw. Despite apparent superior
generalization by Jigsaw, we argue that this is a side-effect of powerful global geometry learning by
PuzzleFusion++, which learns what “everyday” objects are at training and fail on “artifact” objects at
test time. Jigsaw focuses more on local geometry learning which is less affected by the change of an
object category.

Table 2: Ablation study on the number of itera-
tions.

Method RMSE
(Rot.)

RMSE
(Trans.) PA CD Speed

(ms)

Jigsaw 42.3 10.7 57.3 13.3 1063.5
Ours (#ite=1) 40.8 9.06 67.3 6.45 243.5
Ours (#ite=2) 39.4 8.48 68.8 6.28 429.3
Ours (#ite=4) 39.1 8.23 69.8 6.15 685.2
Ours (#ite=6) 38.1 8.04 70.6 6.02 928.5

Table 3: Ablation study on the number of sam-
pling steps when only using the denoiser.

Steps RMSE
(Rot.)

RMSE
(Trans.) PA CD Speed

(ms)

5 46.1 10.3 62.4 7.79 76.8
10 42.2 9.26 66.4 6.65 132.6
20 40.8 9.06 67.3 6.45 243.5
50 40.9 9.09 67.2 6.86 589.1

Table 4: Ablation study on the core design of the
denoiser.
Scheduler Autoencoder Anchor RMSE

(Rot.)
RMSE
(Trans.) PA

× ✓ ✓ 48.2 11.9 57.5
✓ × ✓ 53.5 10.5 56.9
✓ ✓ × 47.4 10.7 61.1
✓ ✓ ✓ 40.8 9.06 67.3

Table 5: Ablation study on different types of
verifier.

Method Verifier Type RMSE
(Rot.)

RMSE
(Trans.) PA

Ours (#ite=1) None 40.8 9.06 67.3
Ours (#ite=6) Jigsaw 38.1 8.04 70.6
Ours (#ite=6) GT (Upper Bound) 34.0 5.87 82.9

Table 6: Ablation on verifier’s performance
Threshold Accuracy (%) Precision (%) Recall (%)

0.5 87.99 58.64 73.51
0.9 90.77 87.88 45.95

Table 7: Random initializations of the anchor
fragment.

RMSE(R) RMSE(T) PA CD

40.86± 0.37 9.03± 0.18 67.49± 0.51 6.69± 0.62

4.2 QUALITATIVE EVALUATIONS

Figure 4 visualizes the assembly results of PuzzleFusion++ and baselines for representative examples.
The §B provides many more results, organized by the number of fragments in each assembly without
cherry-picking to provide a broad and unbiased selection. For each result, we put the number of
correctly assembled fragments and the number of total fragments. We show two easy examples with
less than 6 fragments in the first two rows, where Jigsaw obtains similar results to ours. The rest of
the figure presents challenging examples with more than 10 fragments. As the number of fragments
increases, all baselines have trouble making reasonable assembly while PuzzleFusion++ produces
much more accurate and reasonable results. Specifically, the potential ambiguity in local geometric
features could deteriorate the performance of Jigsaw when there are too many small fragments, while
our approach stays robust by exploiting high-level geometric reasoning in the auto-agglomerative
process. Please refer to §B for direct comparisons between Jigsaw and our PuzzleFusion++, and the
supplementary video for the animations.

4.3 ABLATION STUDIES AND ANALYSES

Iterations of the auto-agglomerative process. Table 2 presents the ablation study on the number of
auto-agglomerative iterations (#ite): The second row (#ite=1) demonstrates that our denoiser alone
performs better than the other baselines (Table 1).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

GTOursJigsawDGLSE(3) Global

5/54/50/50/50/5

2/31/3 3/31/3

6/102/10 10/102/101/10

2/100/10 10/100/100/10

1/200/20 17/200/200/20

3/110/11 8/110/110/11

3/101/10 8/100/100/10

1/3

2/120/12 11/120/120/12

4/134/13 12/132/133/13

Figure 4: Qualitative comparisons on the Breaking Bad dataset (mesh used only for visualization).
We transform the assembled objects to same coordinate system and normalize their sizes for clearer
visualization. For each result, we show the number of successfully assembled fragments versus the
total number of fragments (i.e., the part accuracy metric). Please see the Appendix for additional
results.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

.

Iteration 1 Iteration 2 Iteration 3
17/20

GT

15/202/20

t=T t=T/4 t=0 t=T t=T/4 t=0 t=T t=T/4 t=0

3/10 10/10 10/10

Figure 5: Visualization of the assembly process in the first three auto-agglomerative iterations (mesh
used only for visualization). We show two challenging examples with more than 9 fragments. The
number of successfully assembled fragments increases as the system runs for more iterations.

The rest of the table shows that our performance consistently improves with more auto-agglomerative
iterations (i.e., iterating the denoiser and the verifier). The iterations are particularly important for
complex assemblies with many fragments, as shown by two hard examples in Figure 10. The verifier
finds a few small fragments correctly aligned in the early iterations, which simplifies the problem for
the denoiser and helps complete the assembly in the later iterations.

Denoiser. Table 3 shows how performance varies with different numbers of sampling steps when
only the denoiser is used during testing. The optimal performance is achieved with 20 sampling steps,
yet performance remains robust even with fewer steps.

DiffAssemble (Scarpellini et al., 2024) was initially designed to solve 2D jigsaw puzzles using a
diffusion model, and it directly extends the 2D architecture to tackle the 3D variant without proper
designs for 3D. While achieving SOTA performance on the 2D jigsaw puzzle, it fails to produce
reasonable results on the 3D task – our denoiser-only result outperforms it by a huge margin (67.3%
vs. 27.5%). Table 4 shows the ablation of our key denoiser designs: 1) pre-training the autoencoder
to learn better local geometric features for fractures, 2) introducing an anchor fragment to resolve
the ambiguity in 3D assembly, and 3) adjusting the sampling scheduler to balance the rough and
fine alignments. These three changes bring performance closer to the baseline method, Jigsaw.
Additionally, our research contribution (auto-agglomerative formulation) provides a significant
advantage over Jigsaw in addition to these improvements.

Verifier. Table 6 shows the performance of the verifier with different thresholds. In practice, we
use the threshold of 0.9 for the transformer’s output to be classified as correct alignment. This high
threshold ensures that the selected pairs have high confidence, which is crucial since our framework
does not backtrack errors. The verifier’s accuracy is 90.77%, which is high because all pairs are input
into the transformer, and most pairs are trivially not matched (i.e., they do not have any matching
points). The lower recall (45.95%) indicates the model misses many true matches.

The suboptimal accuracy of the verifier limits the gain brought by increasing the number of auto-
agglomerative iterations. To understand the upper bound of our method, we experiment with a
“ground-truth verifier”, which always makes the correct merging of pieces. Note that this verifier does
not leak ground-truth pose information to the denoiser but rather provides correct high-level piece-
merging guidance. Interestingly, Table 5 shows that this leads to significantly better performance than
the verifier using Jigsaw matchings. A more robust verifier model, as well as a potential backtracking
strategy, are promising directions for future work.

Random initialization of the anchor fragment. Table 7 presents the results of 10 model inferences
with different random initializations of the anchor fragment and calculates the mean and standard
deviation of the metrics. Different anchor fragment initialization does not affect the quality of the
assembly results. In addition, Figure 6 shows one example assembly process with different anchor

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

initialization. The anchor fragment is randomly rotated and moved to the origin during both training
and testing. As explained in §3.1, it helps set up a fixed reference coordinate frame for the assembly
process, resolving the inherent ambiguity in 3D rigid transformation.

t=T t=T/2 t=0 t=T t=T/2 t=0

Figure 6: Assembled results of a single example with different anchor initialization from timestep
T to 0. The red circle shows the anchor fragment, and the object is assembled based on this anchor
fragment.

4.4 FAILURE CASES AND LIMITATIONS

Figure 7 shows two failure modes due to 1) local geometric ambiguity and 2) small fracture surfaces.
We discuss the two challenges and the limitations of our approach below:
• Local geometric ambiguity (left four examples) result in the misplacement of fragments such
as the red and yellow fragments on a mug handle in the first column. The third column presents
an exceptionally difficult scenario with 20 fragments. As the number of fragments increases, the
likelihood of encountering fragments with similar local geometries also rises. Nonetheless, our
method uses global shape priors to assemble all fragments into a coherent global shape.
• Small fracture surfaces (right two examples) make it hard to assess the fitness of fragments. In
the right examples, the bases of two objects are successfully reassembled but fail to connect to the
main bodies due to the thin structures serving as connections. Specifically, the right-most column
illustrates a 180-degree rotation error in the base of the wine glass.

3/5 12/20 2/4

Ours

GT

1/162/85/8

Figure 7: Two popular failure modes are local geometric ambiguity (left four examples) and small
fracture surfaces (right two examples).

5 CONCLUSION

This paper introduces PuzzleFusion++, an advanced framework for 3D fracture assembly. Our key
contributions are a fully neural auto-agglomerative design that simulates human cognitive strategies
for puzzle solving and a diffusion model enhanced with feature embedding designs that directly
estimate 6-DoF alignment parameters. Extensive quantitative and qualitative experiments show that
PuzzleFusion++ outperforms existing methods with significant margins on the Breaking Bad dataset.
Future work will focus on increasing inference speed and scaling the approach to more complex
assembly tasks involving up to 100 fragments.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Antonio Alliegro, Yawar Siddiqui, Tatiana Tommasi, and Matthias Nießner. Polydiff: Generating 3d
polygonal meshes with diffusion models. arXiv preprint arXiv:2312.11417, 2023.

Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
latent video diffusion models to large datasets. arXiv preprint arXiv:2311.15127, 2023a.

Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler, and
Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion models. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
2023b.

Jiacheng Chen, Ruizhi Deng, and Yasutaka Furukawa. Polydiffuse: Polygonal shape reconstruction
via guided set diffusion models. Advances in Neural Information Processing Systems, 2023a.

Shoufa Chen, Peize Sun, Yibing Song, and Ping Luo. Diffusiondet: Diffusion model for object
detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV),
2023b.

Yun-Chun Chen, Haoda Li, Dylan Turpin, Alec Jacobson, and Animesh Garg. Neural shape mating:
Self-supervised object assembly with adversarial shape priors. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

Yen-Chi Cheng, Hsin-Ying Lee, Sergey Tulyakov, Alexander G Schwing, and Liang-Yan Gui.
Sdfusion: Multimodal 3d shape completion, reconstruction, and generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023.

Wenting Cui, Runzhao Yao, and Shaoyi Du. Phformer: Multi-fragment assembly using proxy-level
hybrid transformer. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38,
pp. 1408–1416, 2024.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021a.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems (NeurIPS), 2021b.

Bi’an Du, Xiang Gao, Wei Hu, and Renjie Liao. Generative 3d part assembly via part-whole-hierarchy
message passing. arXiv preprint arXiv:2402.17464, 2024.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Sepidehsadat Sepid Hossieni, Mohammad Amin Shabani, Saghar Irandoust, and Yasutaka Furukawa.
Puzzlefusion: Unleashing the power of diffusion models for spatial puzzle solving. Advances in
Neural Information Processing Systems, 2023.

Qi-Xing Huang, Simon Flöry, Natasha Gelfand, Michael Hofer, and Helmut Pottmann. Reassembling
fractured objects by geometric matching. In ACM siggraph 2006 papers, pp. 569–578. 2006.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in neural information processing systems, 35:26565–26577,
2022.

Jinhyeok Kim, Inha Lee, and Kyungdon Joo. Fracture assembly with segmentation and iterative
registration. In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 6945–6949. IEEE, 2024.

Nikolas Lamb, Cameron Palmer, Benjamin Molloy, Sean Banerjee, and Natasha Kholgade Banerjee.
Fantastic breaks: A dataset of paired 3d scans of real-world broken objects and their complete
counterparts. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 4681–4691, 2023.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Nahyuk Lee, Juhong Min, Junha Lee, Seungwook Kim, Kanghee Lee, Jaesik Park, and Minsu Cho.
3d geometric shape assembly via efficient point cloud matching. arXiv preprint arXiv:2407.10542,
2024.

Jun Li, Chengjie Niu, and Kai Xu. Learning part generation and assembly for structure-aware
shape synthesis. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pp.
11362–11369, 2020.

Yichen Li, Kaichun Mo, Yueqi Duan, He Wang, Jiequan Zhang, Lin Shao, Wojciech Matusik,
and Leonidas Guibas. Category-level multi-part multi-joint 3d shape assembly. arXiv preprint
arXiv:2303.06163, 2023.

Jiaxin Lu, Yifan Sun, and Qixing Huang. Jigsaw: Learning to assemble multiple fractured objects.
Advances in Neural Information Processing Systems, 2023.

Shitong Luo and Wei Hu. Diffusion probabilistic models for 3d point cloud generation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021.

Kaichun Mo, Shilin Zhu, Angel X Chang, Li Yi, Subarna Tripathi, Leonidas J Guibas, and Hao
Su. Partnet: A large-scale benchmark for fine-grained and hierarchical part-level 3d object
understanding. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 909–918, 2019.

Abhinav Narayan, Rajendra Nagar, and Shanmuganathan Raman. Rgl-net: A recurrent graph learning
framework for progressive part assembly. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pp. 78–87, 2022.

Charlie Nash, Yaroslav Ganin, SM Ali Eslami, and Peter Battaglia. Polygen: An autoregressive
generative model of 3d meshes. In International conference on machine learning, pp. 7220–7229.
PMLR, 2020.

Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using 2d
diffusion. arXiv preprint arXiv:2209.14988, 2022.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature
learning on point sets in a metric space. Advances in neural information processing systems, 30,
2017.

Zheng Qin, Hao Yu, Changjian Wang, Yulan Guo, Yuxing Peng, and Kai Xu. Geometric transformer
for fast and robust point cloud registration. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 11143–11152, 2022.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3, 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition (CVPR), 2022.

Gianluca Scarpellini, Stefano Fiorini, Francesco Giuliari, Pietro Morerio, and Alessio Del Bue.
Diffassemble: A unified graph-diffusion model for 2d and 3d reassembly. arXiv preprint
arXiv:2402.19302, 2024.

Silvia Sellán, Yun-Chun Chen, Ziyi Wu, Animesh Garg, and Alec Jacobson. Breaking bad: A dataset
for geometric fracture and reassembly. Advances in Neural Information Processing Systems, 35:
38885–38898, 2022.

Yawar Siddiqui, Antonio Alliegro, Alexey Artemov, Tatiana Tommasi, Daniele Sirigatti, Vladislav
Rosov, Angela Dai, and Matthias Nießner. Meshgpt: Generating triangle meshes with decoder-only
transformers. arXiv preprint arXiv:2311.15475, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pp. 2256–2265. PMLR, 2015.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Shitao Tang, Jiacheng Chen, Dilin Wang, Chengzhou Tang, Fuyang Zhang, Yuchen Fan, Vikas
Chandra, Yasutaka Furukawa, and Rakesh Ranjan. Mvdiffusion++: A dense high-resolution
multi-view diffusion model for single or sparse-view 3d object reconstruction. arXiv preprint
arXiv:2402.12712, 2024.

Aaron Van Den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, Koray Kavukcuoglu, et al. Wavenet: A generative model for
raw audio. arXiv preprint arXiv:1609.03499, 2016a.

Aäron Van Den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks.
In International conference on machine learning. PMLR, 2016b.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Jianyuan Wang, Christian Rupprecht, and David Novotny. Posediffusion: Solving pose estimation
via diffusion-aided bundle adjustment. In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), 2023.

Ruihai Wu, Chenrui Tie, Yushi Du, Yan Zhao, and Hao Dong. Leveraging se (3) equivariance for
learning 3d geometric shape assembly. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 14311–14320, 2023.

Rundi Wu, Yixin Zhuang, Kai Xu, Hao Zhang, and Baoquan Chen. Pq-net: A generative part seq2seq
network for 3d shapes. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 829–838, 2020.

Boshen Xu, Sipeng Zheng, and Qin Jin. Spaformer: Sequential 3d part assembly with transformers.
arXiv preprint arXiv:2403.05874, 2024.

Kangxue Yin, Zhiqin Chen, Siddhartha Chaudhuri, Matthew Fisher, Vladimir G Kim, and Hao Zhang.
Coalesce: Component assembly by learning to synthesize connections. In 2020 International
Conference on 3D Vision (3DV), pp. 61–70. IEEE, 2020.

Xiaohui Zeng, Arash Vahdat, Francis Williams, Zan Gojcic, Or Litany, Sanja Fidler, and Karsten
Kreis. Lion: Latent point diffusion models for 3d shape generation. ArXiv, abs/2210.06978, 2022.
URL https://api.semanticscholar.org/CorpusID:252872881.

Guanqi Zhan, Qingnan Fan, Kaichun Mo, Lin Shao, Baoquan Chen, Leonidas J Guibas, Hao Dong,
et al. Generative 3d part assembly via dynamic graph learning. Advances in Neural Information
Processing Systems, 33:6315–6326, 2020.

Rufeng Zhang, Tao Kong, Weihao Wang, Xuan Han, and Mingyu You. 3d part assembly generation
with instance encoded transformer. IEEE Robotics and Automation Letters, 7(4):9051–9058, 2022.

13

https://api.semanticscholar.org/CorpusID:252872881


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Appendix: PuzzleFusion++: Auto-agglomerative 3D Fracture Assembly by
Denoise and Verify

The appendix provides the remaining system details and additional experimental results. Please
also refer to the file demo.mp4 in our supplementary material for a detailed video demonstration of
PuzzleFusion++’s auto-agglomerative assembly process.

A ADDITIONAL IMPLEMENTATION DETAILS

This section presents the remaining implementation details that are omitted in the main paper.

A.1 DETAILS OF THE FRAGMENT AUTOENCODER

Figure 8 shows the reconstruction results of our autoencoder. We employ PointNet++ for self-
supervised pre-training of the autoencoder, using a Single-Scale Grouping PointNet++ encoder E
to aggregate features. Each fragment is represented by a point cloud with 1,000 uniformly sampled
points. The point cloud is normalized so the center of mass is at the origin and the longest dimension
of the axis-aligned bounding box becomes a unit length. The point cloud is initially encoded into 25
distinct point latent vectors representing local features with dimension 64. Each point latent zp is
associated with the local center coordinates cp.

We apply vector quantization (VQ) for regularization. We use a codebook containing 1024 embed-
dings, each with 16 dimensions. The encoder outputs point latents mapped to 4 codebook entries.
Then, these 4 codes, each with 16 dimensions reshaped back to 64 dimensions, become the regularized
local point embedding zp.

The decoder D takes the point latent zp and its corresponding local center coordinates cp. Then,
the MLP layer reconstructs each local latent vector to a local point cloud. We then shift all local
reconstructed point clouds based on the corresponding local center positions. The reconstructed
points are the union of all local reconstructions:

P rec ← {D(zp) + cp | p}.

We follow the training objectives of VQ-VAE, while using bidirectional Chamfer Distance for the
reconstruction loss between the original fragment point cloud P and the reconstructed P rec:

Loss = CD(Pp, P
rec
p ) + ∥sg[E(cp)]− zp∥22 + β∥E(cp)− sg[zp]∥22,∀(p)

The parameter β is set to 0.25. After training the autoencoder, we keep only the encoder and codebook
for our SE(3) denoiser to encode the fragment shape. During denoiser training, the weights of the
encoder and codebook are frozen.

A.2 DETAILS OF THE NOISE SCHEDULER

We have presented our noise scheduler in Figure 3 of the main paper. Similar to humans solving
jigsaw puzzles, accurately aligning local fracture surfaces is usually more challenging than knowing
the rough location of a fragment. Therefore, we allocate more denoising budgets to getting precise
alignments than moving fragments to the rough locations by designing the piecewise function.
Figure 9 plots the noise scheduling curves for the linear scheduler, the cosine scheduler, and our
customized scheduler. Figure 10 provides the visualization of the denoising process for a vase
model. Figure 11 and Table 8 provide the qualitative and quantitative comparisons of the three noise
schedulers, respectively.

Our noise scheduler is used for both training and testing, as we follow the vanilla DDPM formulation
rather than EDM (Karras et al., 2022). With our tailored noise scheduler for the 3D shape assembly
task, the denoising process allocates more steps to refining precise local adjustments rather than
finding the rough global location (at test time). As for training, this scheduler indeed makes the
process more efficient, as fewer training iterations are spent on "less important" timesteps. If the
default (linear or cosine) scheduler were used for training while our scheduler was applied during
testing, similar results might still be achieved but would require more training iterations.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Original PC Reconstruct PC Original PC Reconstruct PC

Figure 8: Reconstruction results of our point clouds VQ-VAE. The comparison highlights the
quality differences between the original point cloud and the reconstructed point cloud generated by
the VQ-VAE. In the reconstructed point cloud, the same color represents points reconstructed by the
same latent. Each latent is responsible for reconstructing only a local area. This figure demonstrates
that the key features of fracture fragments can be preserved in the latent codes.

To illustrate the advantages of our scheduler during the testing stage, we compare it to the linear and
cosine scheduler. The linear scheduler uses most of its steps (T=1000 to 150) for rough localization,
while the cosine scheduler allocates more denoising steps in the final adjustment phase, outperforming
the linear scheduler by a clear margin .

Building on this idea, our scheduler dedicates an even larger portion of the denoising steps to the
final adjustment, further improving results. The top three rows of Figure 11 show simpler cases
of objects comprising at most 5 fragments. While all the schedulers achieve 100% part accuracy,
gaps between fragments are visible for the linear or the cosine schedulers. Our precise alignments
may have minimal effects on the standard metrics but significantly enhance the quality of the final
assembly.

Table 8: Comparing different noise schedulers. Quantitative evaluations of the three noise sched-
ulers shown in Figure 9. Our customized scheduler spends more denoising steps at low noise levels,
achieving the best numbers in all the metrics.

Scheduler RMSE
(Rot.) ↓

RMSE
(Trans.) ↓ PA ↑ CD ↓

Linear 48.2 11.9 57.5 9.21
Cosine 43.4 9.24 64.4 7.10
Ours 40.8 9.06 67.3 6.45

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

diffusion step (t/T)

ത𝛼𝑡

Figure 9: Comparing different noise schedulers. Our customized scheduler adds large noise
near the end of the diffusion steps. During denoising, we spend more iterations at low noise levels,
figuring out precise final alignments.

Linear

Cosine

Ours

T=1000 T=500 T=250 T=200 T=150 T=0

Figure 10: Comparing different noise schedulers. The figure shows the denoising process for a
vase model for the three noise schedulers shown in Figure 9. The linear scheduler uses most of the
denoising steps (T=1000 to T=150) to find a rough location, leaving a few steps for alignment. The
cosine scheduler improves efficiency but still wastes steps on rough localization. In contrast, our
scheduler quickly identifies the rough location and dedicates more steps to precise alignment.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Linear Cosine Ours GT

4/4 4/4 4/4

2/2 2/2 2/2

3/3 3/3 3/3

1/5 4/5 5/5

7/9 8/9 9/9

3/5 5/5 5/5

Figure 11: Comparing different noise schedulers. The figure shows the final assembly results
of the three noise schedulers shown in Figure 9. The first three rows highlight simple cases where
our scheduler achieves precise alignment, surpassing others with visible gaps. The last three rows
showcase challenging cases, demonstrating the superior performance of our scheduler.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

B ADDITIONAL EXPERIMENTAL RESULTS AND ANALYSES

B.1 MORE ANALYSIS ON EVERYDAY OBJECT SUBSET

More qualitative results. We provide additional qualitative results based on the number of fragments:
Figure 12 for 2-5 fragments, Figure 13 for 6-10 fragments, Figure 14 for 11-15 fragments, and
Figure 15 for 16-20 fragments. In the main paper, we have demonstrated that Jigsaw is the primary
competing method to our method, so we exclude other baselines to save space.

The additional qualitative results show that Jigsaw yields good results on simple objects with fewer
than 6 fragments. When the number of fragments increases, PuzzleFusion++ consistently surpasses
Jigsaw. For both approaches, the performance declines as the number of fragments increases,
potentially attributed to the local geometric ambiguity discussed in §4.4 of the main paper.

GTOursJigsawGTOursJigsaw

3/3

2/2

2/2

3/3

2/4

2/2

5/5

2/2

2/4

4/4

2/3

2/2

1/2

3/3

1/4

1/2

3/5

2/2

2/4

3/4

Figure 12: More final assembly results for objects comprising 2 to 5 fragments.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

GTOursJigsawGTOursJigsaw

6/6

6/6

6/10

6/6

5/8

5/8

5/10

5/7

4/6

7/8

4/6

4/6

4/6

3/8

2/7 1/10

2/6

1/8

3/8

1/10

Figure 13: More final assembly results for objects comprising 6 to 10 fragments.

GTOursJigsawGTOursJigsaw

13/15

12/14

4/14

5/13

7/14

9/13

6/12

8/12

4/12

12/15

6/15

4/14

5/14

1/13

8/15

2/14

1/13

1/12

6/12

4/12

Figure 14: More final assembly results for objects comprising 11 to 15 fragments.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

GTOursJigsawGTOursJigsaw

9/16

6/17

3/20

5/19

10/16

11/17

10/19

3/20

13/20

10/18

2/16

3/17

2/20

4/19

7/18

2/16

4/17

4/19

1/20

2/20

Figure 15: More final assembly results for objects comprising 16 to 20 fragments.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

More quantitative analysis. Figure 16 shows the distribution of the part accuracy metric with respect
to the number of fragments compared with Jigsaw. Our performance drops when the number of
fragments increases, as there could be many small pieces and, leading to much higher difficulty.
However, compared to Jigsaw, our performance is still significantly better for a large number of
fragments.

Figure 16: Part accuracy grouped by the number of fragments: Results are tested on the everyday
object subset. Shaded areas show part accuracy distribution of our method and Jigsaw. Solid lines
indicate the average. Our method presents clear superiority for complex objects with more fragments.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

B.2 MORE ANALYSIS ON COMPLICATED OBJECT

The Everyday subset contains relatively simple objects, such as bottles, glasses and wine. To explore
the model’s ability to handle more complex shapes, we focused on the Artifact subset, which features
challenging archaeological objects with intricate structures. To evaluate this, we fine-tuned the model,
initially trained on the Everyday subset, on the Artifact subset.

Table 9 presents the quantitative evaluation on the Artifact subset, comparing our method with
baseline approaches: Global, LSTM, and DGL. Our method achieves significantly better performance
than these methods. Following this, Figure 17 showcases the qualitative results, further demonstrating
the effectiveness of our approach on the challenging object.

Table 9: The Artifact subset of the Breaking Bad dataset contains objects with complicated shapes.
We trained the models on the Everyday subset, fine-tuned on the Artifact subset, then evaluated on
the Artifact subset in this table.

Method RMSE
(Rot.) ↓

RMSE
(Trans.) ↓ PA ↑ CD ↓

Global 83.8 16.6 19.0 13.3
LSTM 84.6 16.8 21.5 11.7
DGL 81.7 16.6 17.3 19.4

Ours (#ite=1) 41.1 9.87 62.6 9.29

Ours GT Ours GT Ours GT

12/13

3/3

4/4

3/3

4/4

4/5

5/6

3/3

5/5

3/3

5/5

3/3

Figure 17: Final assembly results of 12 complex objects from the Artifact subset, including intricate
archaeological artifacts such as statues, animal figures, and ornamental designs.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

B.3 COMPARED WITH OTHER RECENT BASELINES

3D Geometric Shape Assembly via Efficient Point Cloud Matching. PMTR (Lee et al., 2024)
evaluated their method on a simplified version of the data in the Breaking Bad dataset, called the
volume-constrained version. This version filters out fragments below a minimum volume threshold,
effectively removing very small fragments and making the dataset less challenging. To ensure a fair
evaluation, we trained our method on the same volume-constrained Everyday subset and reported the
results in Table 10. Our method outperforms PMTR across all metrics, except for the rotation error
(RMSE(R)), where it lags by a small margin of approximately 1 degree.

Table 10: PMTR Lee et al. (2024) used a simplified version of the Breaking Bad dataset, called the
volume-constrained version. The version filters out fragments below a minimum volume threshold,
making the version easier than the standard set. For fair comparison, the table compares our system
and PMTR on the volume-constrained version of the Everyday subset.

Method RMSE
(Rot.) ↓

RMSE
(Trans.) ↓ PA ↑ CD ↓

PMTR(Lee et al., 2024) 31.57 9.95 70.6 5.56
Ours 32.70 5.41 78.9 3.01

Multi-Fragment Assembly Using Proxy-Level Hybrid Transformer. PHFormer (Cui et al., 2024)
employs a hybrid attention module to model the relationships between fragments. We compared our
performance with theirs in the Table 11.

Table 11: Comparison of our method and PHFormer performance on the Everyday subset

Method RMSE
(Rot.) ↓

RMSE
(Trans.) ↓ PA ↑ CD ↓

PHFormer 26.1 9.3 50.7 9.6
Ours 38.1 8.04 70.6 6.02

Our method outperforms PHFormer in three metrics but has a higher RMSE in rotation.

Fracture Assembly with Segmentation and Iterative Registration. FRASIER (Kim et al., 2024)
reassembles fractured objects using fracture surface segmentation and iterative registration. It uses
GeoTransformer (Qin et al., 2022) to match points between fragment pairs and samples 50k points
per fragment. This high point density allows FRASIER to capture detailed fracture surfaces but does
not align with the standard 1k-point setup used by baseline methods.

To infer FRASIER’s performance under the 1k-point setting, we refer to GeoTransformer’s reported
performance in Jigsaw (Lu et al., 2023) (Appendix E.3). With 1k points, GeoTransformer produces
poor results (RMSE (Rot.) = 84.8◦, RMSE (Trans.) = 14.3× 10−2, PA = 3.1%). Since FRASIER
depends on GeoTransformer for registration, it likely cannot deliver reasonable results under the
1k-point-per-fragment setting.

B.4 ANALYSIS ON HIGH ROTATION ERRORS

Table 6 shows the upper bound of our method, which leverages the ground truth verifier. However,
the rotation error remains high (34-degree error). We perform further analysis compared our method
and Jigsaw using the results from Table 1. Table 12 shows the improvement margin for rotation is
relatively modest (+9.93%), whereas other metrics show significant gains exceeding 20%.

Table 12: Improvement margins (Delta) calculated as the relative performance difference between
our method and Jigsaw. Positive values indicate that our method outperforms the baseline.

RMSE (Rot.) ↓ RMSE (Trans.) ↓ PA ↑ CD ↓
Delta +9.93% +24.86% +23.21% +54.66%

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

In addition, the failure cases illustrated in Figure 7 are also highly related to the high rotation error:

• Local geometric ambiguity: Similar geometry across fragments makes it difficult to
determine precise rotations.

• Small fracture surfaces: Tiny pieces often lack distinct surface features, leading to 180-
degree rotation errors.

All these results demonstrate that our diffusion-based method does not handle rotation as effectively
as traditional optimization-based approaches. We provide some thoughts below:

The other three metrics heavily rely on an accurate translation/placement of fragment pieces, where
the diffusion-based approach excels by learning global shape priors together with local alignments.
On the contrary, the RMSE of rotation mainly examines the accuracy of fine-grained alignments,
which relies more on accurate local shape matching. It seems that methods like Jigsaw can produce
better rotation-level alignments by conducting direct optimization based on the local surface matching
results, while our diffusion-based approach allocates most of the learning capacity for global shapes
(correct translations). We believe that a potential direction for improving the rotation-level accuracy
can be adding an additional stage that focuses on refining the rotation parameters.

24


	Introduction
	Related Work
	PuzzleFusion++: An auto-agglomerative approach for fracture assembly
	Preliminaries
	SE3 denoiser
	Pairwise alignment verifier
	Auto-agglomerative inference

	Experiments
	Quantitative evaluations
	Qualitative evaluations
	Ablation studies and analyses
	Failure cases and limitations

	Conclusion
	Additional Implementation Details
	Details of the Fragment Autoencoder
	Details of the noise scheduler

	Additional Experimental Results and Analyses
	More analysis on Everyday object subset
	More analysis on complicated object
	Compared with other recent baselines
	Analysis on high rotation errors


