
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

RAEE: A ROBUST RETRIEVAL-AUGMENTED EARLY
EXIT FRAMEWORK FOR EFFICIENT INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Deploying large language model inference remains challenging due to their high
computational overhead. Early exit optimizes model inference by adaptively re-
ducing the number of inference layers. Current methods typically train internal
classifiers to determine whether to exit at intermediate layers. However, such
classifier-based early exit frameworks require significant effort to train the clas-
sifiers while can only achieve comparable performance at best. To address these
limitations, this paper proposes RAEE, a robust Retrieval-Augmented Early Exit
framework for efficient inference. This paper first demonstrates that the early exit
problem can be effectively modeled as a distribution prediction problem, in which
the distribution is approximated through the exit information of similar data. Subse-
quently, it outlines the methodology for collecting exit information to construct the
retrieval database. Finally, leveraging the pre-constructed retrieval database, RAEE
utilizes the exit information from retrieved similar data to guide the backbone
model’s exit at the layer. Experimental results demonstrate that RAEE significantly
accelerates inference while achieving robust zero-shot performance across eight
downstream tasks.

1 INTRODUCTION

Large language models have been widely used in various application scenarios due to their excellent
performance (Thoppilan et al., 2022; Touvron et al., 2023; Scao et al., 2022). However, improving the
efficiency of model inference remains a critical and challenging task due to the high computational
overhead involved in the process (Dao et al., 2022; Liu et al., 2023). As an advanced technique,
model pruning provides a new direction for efficient inference (Valicenti et al., 2023; Ma et al., 2023).
It selectively removes less important weights or connections from the neural network to reduce
complexity and computational requirements without significantly degrading performance. One
popular model pruning method is the early exit technique, which speeds up inference by adaptively
reducing the number of inference layers.

Most early exit frameworks (Liu et al., 2020; Zhu, 2021; Xin et al., 2020; Fan et al., 2024) leverage
classifiers to predict the exit layer and stop the inference at the predicted exit layer. Those early exit
frameworks can be categorized into three branches according to the training strategy. The first one is
training-based early exit frameworks (Zhu, 2021; Zhou et al., 2020; Zhu et al., 2023; Bae et al.,
2023; Schuster et al., 2022), which requires training the classifiers along with the backbone models
and updating all parameters of backbone models as well as classifiers. These methods introduce
significant training overheads, particularly when applied to large language models. The second one
is semi-training-based early exit frameworks (Fan et al., 2024). The backbone models in those
works would not be updated, and only classifiers would be fitted to predict the exit layer. These
methods may not capture the patterns between inputs and exit layers well, requiring significant human
effort in feature engineering. The last one is training-free early exit frameworks (Sun et al., 2022),
which requires no parameter updates and uses heuristics to determine the exit layer. These methods
lack the generalization ability to predict the exit layer and often fail to achieve good performance.
Moreover, most early exit frameworks sacrifice the model performance for acceleration (Fan et al.,
2024; Sun et al., 2022; Schuster et al., 2022; Bae et al., 2023). This paper mainly focuses on improving
training-free early exit methods to avoid introducing too many training overheads.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Build
Train Example

LM Head

Inference

(1 ,𝑝𝑝1) (𝑗𝑗 , 𝑝𝑝𝑗𝑗) (𝑚𝑚 ,𝑝𝑝𝑚𝑚) (0 ,𝑝𝑝0)

Layer 1 Layer 2 Layer j Layer m

Test Example LM
Head

collect features

Logits

Layer 1 Layer 2 Layer j Layer m Logits

 correct prediction wrong prediction

Retriever

En
co

de
r

activated modules inactivated modules

{(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙𝑖𝑖 ,𝑝𝑝)}

(2 ,𝑝𝑝2)

EM
B

Database

Exit Features

……………

EM
B ……

Embeddings as keys

Index
Embeddings
as queries

…………

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑖𝑖𝑖𝑖𝑖𝑖𝑙𝑙𝑖𝑖 ,𝑝𝑝 , …

Exit at layer j

model forward build retriever retrieve exit layer

Figure 1: The overview of retrieval-augmented early exit framework. During the build phase, a
retrieval database is constructed from the collected exit features, including layer indexes and their
corresponding probabilities for correct predictions. During the inference phase, the framework
retrieves similar data’s exit information based on data embeddings to guide the model in selecting the
optimal exit layer.

To address the above limitations, this paper first demonstrates that the exit layer can be predicted
from an exit distribution, which can be approximated by similar data’s exit information. Based on
the observations, this paper proposes RAEE, a robust retrieval-augmented early exit framework for
efficient inference. First, RAEE collects exit information from data. Next, RAEE builds the indexing
and database to retrieve exit information from similar data. Finally, RAEE predicts the exit layer
based on the top-k nearest neighbors’ exit information during the inference and stops the model
inference at the predicted exit layer.

We conduct comprehensive experiments to evaluate the proposed RAEE and various comparison
methods on eight downstream tasks. Experimental results demonstrate that RAEE can accelerate the
model inference while achieving robust model performance. Codes are available at 1.

The main contributions of this paper are:

• We model the early exit problem as a distribution prediction problem and demonstrate that
the exit information of similar data can approximate the exit distribution;

• We propose a robust retrieval-augmented early exit framework, RAEE, which leverages an
external database to guide the early exit;

• Experimental results show that the proposed RAEE can accelerate the model inference and
achieve robust performance.

2 MOTIVATIONS

In this section, we demonstrate that using retrieval-based techniques is a simple yet effective way to
augment the early exit framework during the inference stage.

Problem Statement. Formally, early exit can be defined as follows: Given a backbone model M
with m layers and an input x, The early exit framework aims to design an exit function or classifier
l = f(x) to determine whether to exit at the layer l or which layer l to exit. The final prediction y is
then transformed from the intermediate output states hl of the l-th layer. And the final prediction

1https://anonymous.4open.science/r/RAEE-D724

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Layer index

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

test

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Layer index

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

test

(b)

Figure 2: Exit layer probabilities for two SST-2 test samples and their top-8 nearest neighbors
from the SST-2 training set. Each subfigure illustrates the probability distribution across different
exit layers for one test sample and its corresponding nearest neighbors. The two test samples show
different probability distribution phenomena. The results are collected with the backbone model
RoBERTa-Large.

probability can be formulated as,

P (y | x) = P (y | hf(x)), (1)

where f(x) is trained or built on the downstream tasks’ training data D.

Motivations of Retrieval-Augmented Early Exit. This paper aims to leverage retrieval-based
techniques to guide the early exit, which behaves like training-free-based early exit frameworks
requiring no parameters to update. Existing retrieval databases use clustering and product quantization
to build the retrieval indexing over millions of embeddings, which can efficiently approximate nearest-
neighbor searching. The indexing building process is not resource-constrained and can run on either
GPUs or CPUs. Besides, since the retrieval database stores the original data, every retrieval in the
retrieval-augmented early exit can be regarded as a generalization over several semantically similar
data. In contrast, those original data may be used to train classifiers or build hashing functions in
other early exit frameworks. The retrieval-augmented techniques also exhibit strong adaptability to
new data. The index can retrieve up-to-date information by adding new data to the retrieval database.

To further demonstrate the efficacy of retrieval-augmented early exit, this paper conducts some
analysis experiments in Figure 2. It shows the distribution of probability values for predicting
the correct answers across all model layers during inference, including two SST-2 test samples
(represented by the blue line with dots) and their respective top-8 nearest neighbors (depicted as blue
box plots at each layer) retrieved from the SST-2 training dataset. The probability values in Figure 2
are calculated as the normalized logits of the answer label tokens. Note that the reason why we can
collect the probability values of SST-2 data for predicting the correct answers across all model layers
is because the SST-2 task has labels that allow us to extract the relevant probability data for predicting
the label token.

The experimental results in Figure 2 (a) and (b) indicate that the layer-wise probability trends for
correctly predicting the answers during inference exhibit a similar pattern between the test samples
and their respective nearest neighbors. At the same time, different inputs exhibit diverse behaviors
in these layer-wise predictive probabilities. Notably, as observed in Figure 2 (a), the probability
values for predicting the correct answers of the SST-2 test sample and its top-8 nearest neighbors
at the 24th layer are lower than those at layers 20 to 23. In such cases, leveraging the probability
distribution of the top-8 nearest neighbors to guide the determination of the test sample’s exit layer
can allow it to exit at a layer with higher probability values for correct predictions. Thus this
approach not only enhances inference speed by reducing the number of inference layers but also
improves the accuracy of predictions. Consequently, the experimental results demonstrate that the
probabilities of top-k nearest neighbors from the pre-collected database can approximate the
layer-wise exit probabilities of new input data. Additionally, different inputs exhibit distinct
probability distributions across the model’s all exit layers. These observations motivate us to propose
a retrieval-augmented early exit framework.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Algorithm 3.1 Collect the exit features as keys and values for building the retrieval database.

Input: Training data D = {(xtrain
1 , ytrain

1), . . . , (xtrain
|D| , ytrain

|D|)}, backbone model M with m layers
{L1, . . . ,Lm}, encoder E (None value means no encoder is provided).

Output: Keys K and values V .
1: K = [],V = []
2: for i = 1, . . . , |D| do
3: vi = [];
4: h0 = Memb(x

train
i);

5: for j=1, . . . , m do
6: hj = Lj(hj−1); /* Compute the intermediate outputs of the layer j */
7: logits = Mlm_head(hj); /* Predict from the layer j */
8: ŷ = argmax logits, pji = max{softmax(logits)} ;
9: if ŷ is equal to ytrain

i then
10: Add (j, pji) into vi; /* Store the possible exit layer */
11: end if
12: end for
13: Add vi into V;
14: if E is None then
15: Add h0 into K; /* Store the embeddings of backbone model when no encoder model */
16: end if
17: end for
18: if E is not None then
19: Add all E(xtrain

i) into K; /* Store the embeddings of encoder */
20: end if
21: return K,V;

3 METHODOLOGY

This section presents the retrieval-augmented early exit framework in detail. First, this paper outlines
the process of collecting exit features and constructing the retrieval database to facilitate early exit.
Then, this paper introduces the retrieval-augmented early exit framework, denoted as RAEE.

3.1 COLLECTING THE EXIT FEATURES AND BUILDING THE RETRIEVAL DATABASE

This paper uses the collected exit features as the keys and values within the retrieval database. To
avoid introducing too much retrieving overheads, this paper only retrieves once at the beginning of
the backbone model. Consider the training data D = {(xtrain

1 , ytrain1), . . . , (xtrain
|D| , ytrain|D|)} and

a backbone model M with m layers {L1, . . . ,Lm}. In this context, as shown in the top part of
Figure 1, the keys K are input embeddings of training data, which can be obtained from an extra
encoder model E , such as BERT (Devlin et al., 2019), or the outputs of embedding layers in the
backbone model Memb,

K = {ei}|D|
i=1 = {E(xtrain

i)}|D|
i=1. (2)

For the values, this paper collects a set of possible exit layers li and corresponding probabilities pi for
each embedding ei, i.e., vi = {(lji , p

j
i)}

mi
j=1, where mi indicates the number of possible exit layers

for the embedding ei. The layer l chosen as the exit layer is determined by whether the outputs of
this layer hl can be used to make the right predictions ŷ compared to the training labels ytrain. Then,
the values V are all sets of possible exit layers,

V = {vi}|D|
i=1 =

{
{(lji , p

j
i)}

mi
j=1

}|D|

i=1
. (3)

Algorithm 3.1 shows the detailed steps of preparing keys and values. We follow the same dataset
splitting used in the LM-BFF (Gao et al., 2021), the collecting process requires no parameters to
update, only model inference is performed. When the encoder E is unavailable, RAEE can also
leverage the hidden states generated by the backbone model M as embeddings for indexing purposes
(Lines 14-16).

After collecting keys and values for the retrieval databases, this paper uses state-of-the-art approximate
nearest neighbor search indexing, such as FAISS (Johnson et al., 2019), and efficient key-value stores
to build the retrieval database.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Algorithm 3.2 Model inference with the synchronized retrieval-augmented early exit.
Input: Input x, backbone model M with m layers {L1, . . . ,Lm}, encoder E , indexing I, top-k, the exit layer

determination function f(·).
Output: Final prediction ŷ.

1: h0 = Memb(x);
2: if E is not None then
3: equery = E(x); /* Encode the inputs when the encoder is available */
4: else
5: equery = h0; /* Use the embeddings of backbone model */
6: end if
7: {(vi, disi)}ki=1 = I(equery, k); /* Retrieve the possible exit layers */
8: l = f ({(v1, dis1), . . . , (vk, disk)}); /* Obtain the exit layer */
9: for i = 1, . . . , l do

10: hi = Li(hi−1); /* Perform model inference with early exit */
11: end for
12: logits = Mlm_head(hl); /* Predict based on the layer hl outputs */
13: ŷ = argmax logits;
14: return ŷ;

3.2 THE RETRIEVAL-AUGMENTED EARLY EXIT FRAMEWORK

In this section, this paper then presents a retrieval-augmented early exit framework named RAEE to
optimize the model inference. RAEE regards the exit layer as a random variable z, taking values in the
set of {1, . . . ,m}, where m is the total number of layers in the backbone model M. The probability
mass function P (z = l) represents the probability of the case that the backbone model exits at the
layer l. With the gold label, we can observe that the random variable z follows an unknown discrete
distribution F . Then, this paper shows how to leverage the retrieval database to approximate the
distribution F .

Given an input x, RAEE first retrieves top-k nearest neighbors {v1, . . . , vk}, where each neighbor
vi has mi possible exit layers. Naturally, we can approximate the distribution F by estimating the
probability function P (z = l),

P (z = l | x) =
k∑

i=1

P (vi | x) ·
mi∑
j

1

(
any(lji = l && pji ≥ τ)

)
· pji , (4)

where 1 is the indicator function that returns 1 if the condition is true and 0 otherwise, any(·) is the
function that returns true if one condition is true and false otherwise, τ is the threshold for filtering
the layers, the inner loop only count once since there is at most one possible exit layer of neighbor i
that is equalt to l. Since different neighbors should have different contributions to the probability
function P (z = l), RAEE uses the reciprocal of the scaled distance between each neighbor and the
query to estimate the contribution,

P (vi | x) =
min

(
{distance(vj , x)}kj=1

)
distance(vi, x)

. (5)

Then, RAEE designs a function f(x) to determine the exit layer, which selects the layer that
maximizes the probability function P (z = l),

f(x) = argmax
l

P (z = l | x). (6)

Notably, when multiple exit layers have the same maximal probability, RAEE selects the earliest one.

The bottom part of Figure 1 shows the inference workflow of RAEE. Specifically, RAEE first
simultaneously feeds the inputs into both the backbone model for the label predictions and the
same encoder used in the building process for the query embeddings. Then, the retriever in RAEE
retrieves the top-k nearest neighbors in the retrieval databases based on the query embeddings. After
obtaining all possible exit layers of k nearest neighbors, RAEE computes the exit layers based on
the Equations 4-6. Finally, RAEE stops the forwarding at the calculated exit layer and passes the
intermediate outputs of the exit layer to the final prediction layer, e.g., LM Head in language models,
to obtain the final predictions (Equation 1). This is implemented based on the Transformer library,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Table 1: Zero-shot model performance of different methods on eight downstream tasks. ‘RB-L’,
‘EB-L’, and ‘T5-L’ refer to RoBERTa-Large, ElasticBERT-Large, and T5-Large, respectively.

Methods SST-2 SST-5 MR CR MPQA SUBJ TREC CoLA Avg
RB-L 83.60 34.98 80.80 79.55 67.60 51.45 32.40 2.03 54.05
EB-L 51.15 22.35 49.25 48.65 48.05 48.85 17.60 0.11 35.75
T5-L 49.31 23.12 50.40 50.90 45.40 52.75 27.60 -4.64 36.86
Llama-3-8B 62.84 26.06 59.65 72.90 51.75 52.80 8.40 0.00 41.80
Gemma-7B 49.08 28.64 50.05 50.10 50.00 48.05 14.40 -0.79 36.19

Backbone: RoBERTa-Large, ElasticBERT-Large
HashEE (EB-L) 49.08 14.16 49.95 50.05 50.00 50.00 27.00 0.00 36.28
DeeBERT (RB-L) 52.29 18.05 50.60 50.00 75.95 80.85 16.20 0.00 42.99
AdaInfer (RB-L) 50.92 24.48 50.00 50.00 60.90 50.85 22.60 -1.62 38.52
RAEE (RB-L) 84.63 33.57 81.55 68.05 78.55 84.05 62.40 14.48 63.41

Backbone: T5-Large
CALM (T5-L) 51.72 23.17 49.25 50.55 49.80 49.90 18.00 0.00 36.55
AdaInfer (T5-L) 50.11 28.14 50.35 49.80 46.30 49.95 26.00 5.22 38.23
RAEE (T5-L) 52.98 26.56 50.80 51.60 55.65 49.90 39.80 12.20 42.44

Backbone: Llama-3-8B
SLEB (Llama) 54.01 21.09 51.10 49.45 55.65 49.95 14.00 0.92 37.02
AdaInfer (Llama) 53.21 18.05 53.50 50.00 49.95 47.55 16.20 0.00 36.06
RAEE (Llama) 73.05 35.25 66.45 57.95 75.05 90.05 51.80 9.55 57.39

Backbone: Gemma-7B
SLEB (Gemma) 50.69 19.82 49.95 49.95 50.00 52.10 12.80 0.00 35.66
AdaInfer (Gemma) 50.92 12.62 50.00 50.00 50.00 50.60 22.60 0.00 35.84
RAEE (Gemma) 73.17 32.40 66.75 56.75 75.60 90.15 40.00 10.46 55.66

passing the exit layer as a parameter into the ‘forward()‘ function and stopping the inner iteration
based on the exit layer.

Algorithm 3.2 performs model inference with retrieval-augmented early exit. When the encoder E is
unavailable (Line 5), RAEE utilizes the hidden states from the backbone model M as embeddings for
querying. The specific layer from which the hidden states are extracted is treated as a hyperparameter.
The inference process (Lines 9-11) and the retrieving process (Lines 2-8) can be executed in parallel
for more efficient implementations.

4 EXPERIMENTS

In this section, we first introduce the dataset and the experimental setup. Then, we presented the main
results of different methods on eight downstream tasks. We also conducted analysis experiments and
ablation studies to show the impact of these factors on RAEE performance.

4.1 DATASET AND EXPERIMENTAL SETUP

Datasets We conducted comprehensive experiments across eight downstream tasks from GLUE
benchmark (Wang et al., 2019), covering sentiment analysis, opinion polarity analysis, grammatical
judgment, natural language inference, paraphrasing, etc.

Experimental Setup The proposed RAEE was implemented using the PyTorch framework and
Transformer. We evaluated methods based on the backbone models RoBERTa-Large (Liu et al., 2019)
and T5-Large (Raffel et al., 2020) on one NVIDIA GeForce RTX 4090 with 24GB GPU memory,
while Llama-3-8B (Dubey et al., 2024) and Gemma-7B (Mesnard et al., 2024) on one NVIDIA A100
GPU with 40GB GPU memory. The experiments were conducted in two settings, i.e., zero-shot
settings for training-free-based methods and fine-tuning settings only for semi-training-based methods.
The evaluation metric is accuracy, except for the Matthew correlation coefficient for the CoLA task.
The number of retrieved nearest neighbors of RAEE is set to 12 in the experiments. The threshold τ
of RAEE is set to 0.9.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

RB-L
EB-L

T5-L
Llama

Gemma
HashEE

CALM
SLEB

AdaInfer
DeeBERT

RAEE-Forwarding
RAEE-Retrieving

EB
-L

Hash
EERB-L

Dee
BER

T

Ad
aIn

fer
RA

EE T5
-L
CALM

Ad
aIn

fer
RA

EE

Lla
ma-3

-8BSLE
B

Ad
aIn

fer
RA

EE

Gem
ma-7

B
SLE

B

Ad
aIn

fer
RA

EE
0

20

40

60

80

100

120

140

160

180

In
fe

re
nc

e
la

te
nc

y
(m

s)

RoBERTa/
ElasticBERT

T5 Llama Gemma

(a) SST-2

EB
-L

Hash
EERB-L

Dee
BER

T

Ad
aIn

fer
RA

EE T5
-L
CALM

Ad
aIn

fer
RA

EE

Lla
ma-3

-8BSLE
B

Ad
aIn

fer
RA

EE

Gem
ma-7

B
SLE

B

Ad
aIn

fer
RA

EE
0

20

40

60

80

100

120

140

160

180

In
fe

re
nc

e
la

te
nc

y
(m

s)

RoBERTa/
ElasticBERT

T5 Llama Gemma

(b) SUBJ

EB
-L

Hash
EERB-L

Dee
BER

T

Ad
aIn

fer
RA

EE T5
-L
CALM

Ad
aIn

fer
RA

EE

Lla
ma-3

-8BSLE
B

Ad
aIn

fer
RA

EE

Gem
ma-7

B
SLE

B

Ad
aIn

fer
RA

EE
0

20

40

60

80

100

120

140

160

180

In
fe

re
nc

e
la

te
nc

y
(m

s)

RoBERTa/
ElasticBERT

T5 Llama Gemma

(c) TREC

EB
-L

Hash
EERB-L

Dee
BER

T

Ad
aIn

fer
RA

EE T5
-L
CALM

Ad
aIn

fer
RA

EE

Lla
ma-3

-8BSLE
B

Ad
aIn

fer
RA

EE

Gem
ma-7

B
SLE

B

Ad
aIn

fer
RA

EE
0

20

40

60

80

100

120

140

160

180

In
fe

re
nc

e
la

te
nc

y
(m

s)

RoBERTa/
ElasticBERT

T5 Llama Gemma

(d) CoLA

Figure 3: Inference latency of RAEE compared with various methods on selected downstream
tasks. The backbone models used in the comparisons include RoBERTa-Large/ElasticBERT-Large,
T5-Large, Llama-3-8B, and Gemma-7B.

To validate the effectiveness, we compared RAEE with three types of methods. Pretrained Models:
1) RoBERTa-Large (Liu et al., 2019), a state-of-the-art encoder model, where the prompt-based
version (Gao et al., 2021) is used; 2) ElasticBERT (Liu et al., 2022), a pre-trained multi-exit
transformer model, where the large version is used in this paper; 3) T5-Large (Raffel et al., 2020),
a versatile transformer-based model for various NLP tasks; 4) Llama-3-8B (Dubey et al., 2024),
a pre-trained model with strength in specific language scenarios; 5) Gemma-7B (Mesnard et al.,
2024), a model with the potential for outstanding performance in specific settings. Training-Free
Methods: 1) HashEE (Sun et al., 2022), a hash-based early exit approach with ElasticBERT-Large
as its backbone model; 2) CALM (Schuster et al., 2022), a classical entropy-thresholding-based
early exit method with T5-Large as its backbone model, where the zero-shot setting is applied; 3)
SLEB (Song et al., 2024), a method that eliminates redundant transformer blocks. Semi-Training
Methods: 1) AdaInfer (Fan et al., 2024), an SVM-based early exiting method with our reproduced
version; 2) DeeBERT (Xin et al., 2020), a classical entropy-thresholding-based early exiting method
with RoBERTa-Large as its backbone model; The templates are listed in the Appendix A. More
details about the experimental setup can be found in Appendix C.

4.2 MAIN RESULTS

Table 1 presents the main results, comparing the performance of RAEE against different types
of methods across eight downstream tasks. Experimental results show that the proposed RAEE
can achieve the best zero-shot performance on average across all tasks, which is 63.41 with the
backbone model RoBERTa-Large. RAEE with Gemma-7B achieves the maximal improvements
over the baseline models, while RAEE with RoBERTa-Large achieves the maximal improvements
over comparison methods from 36.28 to 63.41. Across eight downstream tasks, RAEE consistently
improves the model performance compared to current state-of-the-art early exit frameworks.

Figure 3 shows the inference latency of RAEE and comparisons on eight downstream tasks. We
show the inference latency on the selected four tasks, which covers different task types. For million-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 2: Model performance and inference latency of RAEE and RAEE without true predictions in
the retrieval database. The backbone model is Llama-3-8B.

Models SST-2 SST-5 MR CR MPQA SubJ TREC CoLA Avg
Performance ↑

Llama 62.84 26.06 59.65 72.90 51.75 52.80 8.40 0.00 41.80
RAEE w/o 60.55 24.52 57.30 53.55 56.65 81.70 20.80 0.00 44.38
RAEE 73.05 35.25 66.45 57.95 75.05 90.05 51.80 9.55 57.39

Latency (ms) ↓
Llama 122.27 122.13 122.03 121.78 121.82 121.70 122.52 122.06 122.04
RAEE w/o 37.65 115.26 37.98 31.69 54.08 34.59 112.03 91.34 64.33
RAEE 52.33 65.47 53.83 34.65 55.02 33.25 81.74 84.34 57.58

Table 3: The impact of retrieval number k on the distribution approximation.

k SST-2 SST-5 MR CR MPQA SUBJ TREC CoLA Avg
2 79.82 32.99 76.40 68.40 77.55 81.75 61.00 7.89 60.73
4 82.22 33.17 79.20 68.05 78.65 83.60 63.60 14.74 62.90
8 84.52 34.12 80.70 68.05 78.90 84.20 63.20 12.19 63.24
12 84.63 33.57 81.55 68.05 78.55 84.05 62.40 14.48 63.41
16 84.98 32.17 82.05 69.00 77.90 84.00 62.60 13.00 63.21
20 85.44 32.26 81.80 68.95 78.05 83.50 62.40 12.40 63.10

level backbone models, such as RoBERTa-Large, ElasticBERT-Large, T5-Large, RAEE can achieve
comparable inference efficiency. This is due to that the inference speeds of those backbone models
are already fast enough, introducing too many components for early exit would degrade the inference
efficiency like HashEE and DeeBERT. However, for billion-level backbone models, the acceleration
of RAEE is significant. This benefits from the effectively predicted early exit layers. Although
Adainfer with the backbone Llama-3-8B and Gemma-7B is much faster than RAEE, it only achieves a
comparable performance of backbone models. RAEE significantly improves those backbone models’
performance and also reduces the inference latency by nearly half.

4.3 REASONS FOR SIGNIFICANT PERFORMANCE IMPROVEMENT

The main results demonstrate that the proposed RAEE can significantly outperform backbone models,
which is not an intuitive result compared to previous early exit methods. The reasons for this lie in
that the collected exit information guides the RAEE as an error corrector. This means that RAEE
can learn from the exit information of examples that are correctly predicted by intermediate layers,
but backbone models without early exit fail to predict.

To better support the above claims, we also conducted an analysis experiment using the retrieval
database that only contains the exit information of data that Llama-3-8B correctly predicted without
early exit. As shown in Table 2, RAEE w/o refers to the one built on only correctly predicted
examples. As expected, RAEE w/o achieves comparable performance to baselines but accelerates
the inference process. This is because the test data that is correctly predicted by RAEE w/o can
also be correctly predicted by backbone models. However, due to a lack of exit information on
examples where backbone models fail to predict, RAEE w/o also fails to predict on the test data
where backbone models fail. Therefore, when providing the exit information based on examples
where backbone models fail to predict but intermediate outputs succeed in predicting, RAEE can
make correct predictions and exit earlier.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 4: The impact of retrieval database size on the distribution approximation. The percentage
refers to the amount of training data that is used to build the retrieval database.

Database Size SST-2 SST-5 MR CR MPQA SUBJ TREC CoLA Avg
20% 84.63 31.76 82.80 65.85 75.70 81.00 58.80 8.77 61.16
50% 83.37 32.85 80.65 66.95 77.90 83.60 61.20 11.73 62.28

100% 84.63 33.57 81.55 68.05 78.55 84.05 62.40 14.48 63.41

Table 5: The building cost of RAEE and different comparison methods. The results are collected
with the backbone model RoBERTa-Large (ElasticBERT for HashEE).

Model SST-2 SST-5 MR CR MPQA Subj TREC CoLA Avg
Time Cost (seconds)

RAEE 91.75 111.80 112.09 27.43 110.26 103.99 71.19 108.59 92.14
HashEE 5.85 14.13 14.68 2.82 10.40 13.84 7.50 5.81 9.38
AdaInfer 91.85 124.78 129.11 41.77 122.96 120.52 66.43 114.19 101.45

Storage Overheads (MB)
RAEE (Index) 3.4 3.7 3.8 2.0 3.8 3.6 3.1 3.7 3.4
RAEE (DB) 2.5 2.0 3.0 0.8 2.5 2.7 1.0 2.6 2.1

4.4 ABLATION STUDY

Impact of Top-k: Table 3 illustrates the impact of varying the number of retrievals on the distribution
approximation. As k increases, the proposed RAEE with the backbone model RoBERTa-Large
improves the overall performance from 60.73 to 63.41. This suggests that more retrieved exiting
information can help enhance the approximation performance. However, when k exceeds 12, the
overall performance degrades from 63.41 to 63.10. The reasoning behind this may be that providing
exit information from retrievals that are not quite related to the query introduces noise, misleading
the final predictions. This suggests that a limited amount of relevant exit information is sufficient to
approximate the exit distribution, thereby saving time in the retrieval process.

Retrieval Database Size: Table 4 shows the performance of RAEE with different sizes of retrieval
databases. The size of the retrieval databases implies how similar embeddings would be retrieved,
thus impacting the confidence of the provided exit information. As the database size increases, the
performance of RAEE with the backbone model RoBERTa-Large increases significantly from 61.16
to 63.41 on average. This demonstrates that collecting more data can improve the generalization of
RAEE, thus approximating the exit distribution more accurately.

4.5 BUILDING OVERHEADS

We present the building overheads in Table 5, including database size, index size, and building time
costs for different methods. Specifically, the building time cost for RAEE refers to the time required
to build the retriever, while the building time cost for AdaInfer pertains to the time needed for training
the classifier. In the case of HashEE, the building time cost corresponds to the time taken to build
the hashing buckets. For RAEE, the average time required to build the retrieval database is under 2
minutes on a single NVIDIA GeForce RTX 4090, which is considered an acceptable overhead in
comparison to the time involved in fine-tuning. The index and database sizes are relatively small and
can be considered negligible in comparison to the size of the backbone model.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

5 RELATED WORK

5.1 EARLY EXIT FRAMEWORK

Model inference with early exit has been a popular pruning method to reduce both computation and
memory overhead on text classification or generation tasks. Most current works (Bae et al., 2023;
Kong et al., 2022; Ji et al., 2023; Wolczyk et al., 2021; Hooper et al., 2023) introduce classifiers in
each layer to determine whether the inference should continue. (Xin et al., 2020; Liu et al., 2020;
Zhou et al., 2020; He et al., 2021) train the classifier by minimizing the differences between each
layer’s outputs and final outputs, then perform early-exit-based inference according to a threshold.
(Liao et al., 2021) incorporates the past and future information to predict the early exit layer. Instead
of training a neural network as classifiers, (Fan et al., 2024) only fit the machine learning classifiers on
the extracted features for the early exit. (Zhu, 2021; Zhu et al., 2021; 2023; Zhang et al., 2023a) focus
on designing novel loss functions for training a more robust classifier. (Li et al., 2021) incorporates
sentence-level features as well as token-level features to predict the early exit. Different from
those works, our method does not require training the classifier. (Sun et al., 2022) proposes a
hash-based early exit method that uses the hashing functions to map tokens to exit layers. (Bajpai &
Hanawal, 2024) introduces an online learning algorithm for early exits in BERT models, dynamically
determining exit points based on confidence thresholds. (Regol et al., 2023) proposes a jointly-learned
framework for early exiting and inference in dynamic neural networks, integrating gating mechanisms
and intermediate inference modules. (Balagansky & Gavrilov, 2022) introduces a deterministic
Q-exit criterion and revising the model architecture. Our method predicts exit layers using pre-built
databases, resulting in better generalization. Other works (Jazbec et al., 2023; Li et al., 2023; Huang
et al., 2018) focus on designing early exit frameworks for image classification tasks. They are
optimizations in the different domains compared to our works.

5.2 RETRIEVAL-BASED AUGMENTATIONS

Retrieval-based augmentations (Li et al., 2022; Wang et al., 2023; Xiong et al., 2023; Cui et al., 2023;
Wu et al., 2024a;b) have been widely used in various natural language processing (NLP) tasks and
achieved remarkable performance. Current works mostly leverage external knowledge databases to
augment generator models on various text-generation tasks, such as language modeling (Khandelwal
et al., 2020; Lewis et al., 2020; Borgeaud et al., 2022), question-answering (Guu et al., 2020;
Izacard & Grave, 2021), machine translation (Khandelwal et al., 2021; Wang et al., 2022), dialogue
system (Cheng et al., 2023). Those works focus on improving the model’s generation quality, while
our work aims to use the retrieval knowledge to accelerate the model’s inference. Additionally, other
work like (Zhang et al., 2023b) aims to accelerate the inference process by retrieving precomputed
trajectories from a knowledge base, which is specifically designed for diffusion models that differ
from our target models. These works are out of the scope of the research problems in this paper.

6 LIMITATIONS

Although the proposed RAEE can improve both model performance and model efficiency, several
limitations warrant discussion. The effectiveness of RAEE depends on the pre-built in-domain
retrieval databases, which can well approximate the exit distribution for predictions. The framework
is primarily designed for in-domain training and testing scenarios, which represent the mainstream
tasks. Consequently, the out-of-domain performance of RAEE may be constrained; however, this
aspect is not the primary focus of this paper and will be the subject of future research.

7 CONCLUSION

This paper models the early exit problem as a distribution prediction problem and observes that similar
data’s exit information can be used to approximate the distribution. Based on the observations, this
paper proposes a retrieval-augmented early exit framework named RAEE. Experimental results show
that RAEE can accelerate the model inference while significantly improving the model performance.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Sangmin Bae, Jongwoo Ko, Hwanjun Song, and Se-Young Yun. Fast and robust early-exiting
framework for autoregressive language models with synchronized parallel decoding. In Proceedings
of the 2023 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp.
5910–5924, 2023.

Divya Jyoti Bajpai and Manjesh K. Hanawal. Ceebert: Cross-domain inference in early exit BERT.
In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Association for
Computational Linguistics, ACL 2024, Bangkok, Thailand and virtual meeting, August 11-16,
2024, pp. 1736–1748. Association for Computational Linguistics, 2024.

Nikita Balagansky and Daniil Gavrilov. PALBERT: teaching ALBERT to ponder. In Sanmi Koyejo,
S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems 35: Annual Conference on Neural Information Processing Systems
2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9, 2022, 2022.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Mil-
lican, George van den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, Diego
de Las Casas, Aurelia Guy, Jacob Menick, Roman Ring, Tom Hennigan, Saffron Huang, Loren
Maggiore, Chris Jones, Albin Cassirer, Andy Brock, Michela Paganini, Geoffrey Irving, Oriol
Vinyals, Simon Osindero, Karen Simonyan, Jack W. Rae, Erich Elsen, and Laurent Sifre. Improv-
ing language models by retrieving from trillions of tokens. In Proceedings of the 2022 International
Conference on Machine Learning (ICML), pp. 2206–2240, 2022.

Xin Cheng, Di Luo, Xiuying Chen, Lemao Liu, Dongyan Zhao, and Rui Yan. Lift yourself up:
Retrieval-augmented text generation with self-memory. In Proceedings of the Advances in Neural
Information Processing Systems 36: Annual Conference on Neural Information Processing Systems
(NeurIPS), 2023.

Yufei Cui, Ziquan Liu, Yixin Chen, Yuchen Lu, Xinyue Yu, Xue (Steve) Liu, Tei-Wei Kuo, Miguel
Rodrigues, Chun Jason Xue, and Antoni B. Chan. Retrieval-augmented multiple instance learning.
In Proceedings of the Advances in Neural Information Processing Systems 36: Annual Conference
on Neural Information Processing Systems 2023 (NeurIPS), 2023.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness. In Sanmi Koyejo, S. Mohamed, A. Agarwal,
Danielle Belgrave, K. Cho, and A. Oh (eds.), Proceedings of the Advances in Neural Information
Processing Systems 35: Annual Conference on Neural Information Processing Systems (NeurIPS),
2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (NAACL-HLT), pp. 4171–4186. Association for Computational Linguistics, 2019.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, and et al. The llama 3 herd of models, 2024. URL
https://arxiv.org/abs/2407.21783.

Siqi Fan, Xin Jiang, Xiang Li, Xuying Meng, Peng Han, Shuo Shang, Aixin Sun, Yequan Wang, and
Zhongyuan Wang. Not all layers of llms are necessary during inference. CoRR, abs/2403.02181,
2024.

Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguis-
tics and the 11th International Joint Conference on Natural Language Processing (ACL/IJCNLP),
pp. 3816–3830. Association for Computational Linguistics, 2021.

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang. Retrieval augmented
language model pre-training. In Proceedings of the 37th International Conference on Machine
Learning (ICML), pp. 3929–3938, 2020.

11

https://arxiv.org/abs/2407.21783

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Xuanli He, Iman Keivanloo, Yi Xu, Xiang He, Belinda Zeng, Santosh Rajagopalan, and Trishul
Chilimbi. Magic pyramid: Accelerating inference with early exiting and token pruning. CoRR,
abs/2111.00230, 2021.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Hasan Genc, Kurt Keutzer, Amir Gholami,
and Yakun Sophia Shao. SPEED: speculative pipelined execution for efficient decoding. CoRR,
abs/2310.12072, 2023.

Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens van der Maaten, and Kilian Q. Weinberger.
Multi-scale dense networks for resource efficient image classification. In 6th International Confer-
ence on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net, 2018.

Gautier Izacard and Edouard Grave. Leveraging passage retrieval with generative models for open
domain question answering. In Proceedings of the 16th Conference of the European Chapter of
the Association for Computational Linguistics (EACL): Main Volume, pp. 874–880, 2021.

Metod Jazbec, James Urquhart Allingham, Dan Zhang, and Eric T. Nalisnick. Towards anytime
classification in early-exit architectures by enforcing conditional monotonicity. In Proceedings
of the Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems (NeurIPS), 2023.

Yixin Ji, Jikai Wang, Juntao Li, Qiang Chen, Wenliang Chen, and Min Zhang. Early exit with
disentangled representation and equiangular tight frame. In Findings of the Association for
Computational Linguistics (ACL), pp. 14128–14142, 2023.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547, 2019.

Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Generalization
through memorization: Nearest neighbor language models. In Proceedings of the 8th International
Conference on Learning Representations (ICLR), 2020.

Urvashi Khandelwal, Angela Fan, Dan Jurafsky, Luke Zettlemoyer, and Mike Lewis. Nearest
neighbor machine translation. In Proceedings of the 9th International Conference on Learning
Representations (ICLR), 2021.

Jun Kong, Jin Wang, Liang-Chih Yu, and Xuejie Zhang. Accelerating inference for pretrained
language models by unified multi-perspective early exiting. In Proceedings of the 29th International
Conference on Computational Linguistics (COLING), pp. 4677–4686, 2022.

Patrick S. H. Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman
Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe
Kiela. Retrieval-augmented generation for knowledge-intensive NLP tasks. In Proceedings of the
Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information
Processing Systems (NeurIPS), 2020.

Xiaonan Li, Yunfan Shao, Tianxiang Sun, Hang Yan, Xipeng Qiu, and Xuanjing Huang. Accelerating
BERT inference for sequence labeling via early-exit. In Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing (ACL/IJCNLP), pp. 189–199, 2021.

Yuhang Li, Tamar Geller, Youngeun Kim, and Priyadarshini Panda. SEENN: towards temporal spiking
early exit neural networks. In Proceedings of the Advances in Neural Information Processing
Systems 36: Annual Conference on Neural Information Processing Systems (NeurIPS), 2023.

Zonglin Li, Ruiqi Guo, and Sanjiv Kumar. Decoupled context processing for context augmented
language modeling. In Proceedings of the Advances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Processing Systems (NeurIPS), 2022.

Kaiyuan Liao, Yi Zhang, Xuancheng Ren, Qi Su, Xu Sun, and Bin He. A global past-future early
exit method for accelerating inference of pre-trained language models. In Proceedings of the
2021 Conference of the North American Chapter of the Association for Computational Linguistics
(NAACL-HLT): Human Language Technologies, pp. 2013–2023, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Weijie Liu, Peng Zhou, Zhiruo Wang, Zhe Zhao, Haotang Deng, and Qi Ju. Fastbert: a self-distilling
BERT with adaptive inference time. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics (ACL), pp. 6035–6044, 2020.

Xiangyang Liu, Tianxiang Sun, Junliang He, Jiawen Wu, Lingling Wu, Xinyu Zhang, Hao Jiang,
Zhao Cao, Xuanjing Huang, and Xipeng Qiu. Towards efficient NLP: A standard evaluation
and A strong baseline. In Proceedings of the 2022 Conference of the North American Chapter
of the Association for Computational Linguistics (NAACL): Human Language Technologies, pp.
3288–3303, 2022.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692, 2019.

Zichang Liu, Jue Wang, Tri Dao, Tianyi Zhou, Binhang Yuan, Zhao Song, Anshumali Shrivastava,
Ce Zhang, Yuandong Tian, Christopher Ré, and Beidi Chen. Deja vu: Contextual sparsity for
efficient llms at inference time. In Proceedings of the 2023 International Conference on Machine
Learning (ICML), pp. 22137–22176, 2023.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt,
and Sergey Levine (eds.), Proceedings of the Advances in Neural Information Processing Systems
36: Annual Conference on Neural Information Processing Systems (NeurIPS), 2023.

Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak, Laurent Sifre,
Morgane Rivière, Mihir Sanjay Kale, Juliette Love, Pouya Tafti, Léonard Hussenot, Aakanksha
Chowdhery, Adam Roberts, Aditya Barua, Alex Botev, Alex Castro-Ros, Ambrose Slone, Amélie
Héliou, Andrea Tacchetti, Anna Bulanova, Antonia Paterson, Beth Tsai, Bobak Shahriari, Char-
line Le Lan, Christopher A. Choquette-Choo, Clément Crepy, Daniel Cer, Daphne Ippolito, David
Reid, Elena Buchatskaya, Eric Ni, Eric Noland, Geng Yan, George Tucker, George-Cristian Mu-
raru, Grigory Rozhdestvenskiy, Henryk Michalewski, Ian Tenney, Ivan Grishchenko, Jacob Austin,
James Keeling, Jane Labanowski, Jean-Baptiste Lespiau, Jeff Stanway, Jenny Brennan, Jeremy
Chen, Johan Ferret, Justin Chiu, and et al. Gemma: Open models based on gemini research and
technology. CoRR, abs/2403.08295, 2024.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21:140:1–140:67, 2020.

Florence Regol, Joud Chataoui, and Mark Coates. Jointly-learned exit and inference for a dynamic
neural network : JEI-DNN. CoRR, abs/2310.09163, 2023.

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilic, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, Jonathan Tow, Alexander M.
Rush, Stella Biderman, Albert Webson, Pawan Sasanka Ammanamanchi, Thomas Wang, Benoît
Sagot, Niklas Muennighoff, Albert Villanova del Moral, Olatunji Ruwase, Rachel Bawden, Stas
Bekman, Angelina McMillan-Major, Iz Beltagy, Huu Nguyen, Lucile Saulnier, Samson Tan,
Pedro Ortiz Suarez, Victor Sanh, Hugo Laurençon, Yacine Jernite, Julien Launay, Margaret
Mitchell, Colin Raffel, Aaron Gokaslan, Adi Simhi, Aitor Soroa, Alham Fikri Aji, Amit Alfassy,
Anna Rogers, Ariel Kreisberg Nitzav, Canwen Xu, Chenghao Mou, Chris Emezue, Christopher
Klamm, Colin Leong, Daniel van Strien, David Ifeoluwa Adelani, and et al. BLOOM: A 176b-
parameter open-access multilingual language model. CoRR, abs/2211.05100, 2022.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani, Dara Bahri, Vinh Tran, Yi Tay, and Donald
Metzler. Confident adaptive language modeling. In Advances in Neural Information Processing
Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022,
New Orleans, LA, USA, November 28 - December 9, 2022, 2022.

Jiwon Song, Kyungseok Oh, Taesu Kim, Hyungjun Kim, Yulhwa Kim, and Jae-Joon Kim. SLEB:
streamlining llms through redundancy verification and elimination of transformer blocks. In
Forty-first International Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27,
2024. OpenReview.net, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Tianxiang Sun, Xiangyang Liu, Wei Zhu, Zhichao Geng, Lingling Wu, Yilong He, Yuan Ni, Guotong
Xie, Xuanjing Huang, and Xipeng Qiu. A simple hash-based early exiting approach for language
understanding and generation. In Findings of the Association for Computational Linguistics (ACL),
pp. 2409–2421, 2022.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, YaGuang Li, Hongrae Lee, Huaixiu Steven
Zheng, Amin Ghafouri, Marcelo Menegali, Yanping Huang, Maxim Krikun, Dmitry Lepikhin,
James Qin, Dehao Chen, Yuanzhong Xu, Zhifeng Chen, Adam Roberts, Maarten Bosma, Yanqi
Zhou, Chung-Ching Chang, Igor Krivokon, Will Rusch, Marc Pickett, Kathleen S. Meier-Hellstern,
Meredith Ringel Morris, Tulsee Doshi, Renelito Delos Santos, Toju Duke, Johnny Soraker,
Ben Zevenbergen, Vinodkumar Prabhakaran, Mark Diaz, Ben Hutchinson, Kristen Olson, Ale-
jandra Molina, Erin Hoffman-John, Josh Lee, Lora Aroyo, Ravi Rajakumar, Alena Butryna,
Matthew Lamm, Viktoriya Kuzmina, Joe Fenton, Aaron Cohen, Rachel Bernstein, Ray Kurzweil,
Blaise Agüera y Arcas, Claire Cui, Marian Croak, Ed H. Chi, and Quoc Le. Lamda: Language
models for dialog applications. CoRR, abs/2201.08239, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation language
models. CoRR, abs/2302.13971, 2023.

Tim Valicenti, Justice Vidal, and Ritik Patnaik. Mini-gpts: Efficient large language models through
contextual pruning. CoRR, abs/2312.12682, 2023.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman.
GLUE: A multi-task benchmark and analysis platform for natural language understanding. In
Proceedings of the 7th International Conference on Learning Representations (ICLR), 2019.

Shuohang Wang, Yichong Xu, Yuwei Fang, Yang Liu, Siqi Sun, Ruochen Xu, Chenguang Zhu, and
Michael Zeng. Training data is more valuable than you think: A simple and effective method by
retrieving from training data. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (ACL), pp. 3170–3179, 2022.

Weizhi Wang, Li Dong, Hao Cheng, Xiaodong Liu, Xifeng Yan, Jianfeng Gao, and Furu Wei.
Augmenting language models with long-term memory. In Proceedings of the Advances in Neural
Information Processing Systems 36: Annual Conference on Neural Information Processing Systems
(NeurIPS), 2023.

Maciej Wolczyk, Bartosz Wójcik, Klaudia Balazy, Igor T. Podolak, Jacek Tabor, Marek Smieja,
and Tomasz Trzcinski. Zero time waste: Recycling predictions in early exit neural networks. In
Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems 34: Annual Conference on
Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp.
2516–2528, 2021.

Shangyu Wu, Ying Xiong, Yufei Cui, Xue Liu, Buzhou Tang, Tei-Wei Kuo, and Chun Jason Xue.
Improving natural language understanding with computation-efficient retrieval representation
fusion. CoRR, abs/2401.02993, 2024a.

Shangyu Wu, Ying Xiong, Yufei Cui, Haolun Wu, Can Chen, Ye Yuan, Lianming Huang, Xue
Liu, Tei-Wei Kuo, Nan Guan, and Chun Jason Xue. Retrieval-augmented generation for natural
language processing: A survey. CoRR, abs/2407.13193, 2024b.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin. Deebert: Dynamic early exiting for
accelerating BERT inference. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics (ACL), pp. 2246–2251, 2020.

Ying Xiong, Xin Yang, Linjing Liu, Ka-Chun Wong, Qingcai Chen, Yang Xiang, and Buzhou
Tang. EARA: improving biomedical semantic textual similarity with entity-aligned attention and
retrieval augmentation. In Findings of the Association for Computational Linguistics (EMNLP),
pp. 8760–8771, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Jingfan Zhang, Ming Tan, Pengyu Dai, and Wei Zhu. LECO: improving early exiting via learned
exits and comparison-based exiting mechanism. In Proceedings of the 61st Annual Meeting of
the Association for Computational Linguistics (ACL): Student Research Workshop, pp. 298–309,
2023a.

Kexun Zhang, Xianjun Yang, William Yang Wang, and Lei Li. Redi: Efficient learning-free diffusion
inference via trajectory retrieval. In Proceedings of the 2023 International Conference on Machine
Learning (ICML), pp. 41770–41785, 2023b.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian J. McAuley, Ke Xu, and Furu Wei. BERT loses
patience: Fast and robust inference with early exit. In Proceedings of the Advances in Neural
Information Processing Systems 33: Annual Conference on Neural Information Processing Systems
(NeurIPS), 2020.

Wei Zhu. Leebert: Learned early exit for BERT with cross-level optimization. In Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing (ACL/IJCNLP), pp. 2968–2980, 2021.

Wei Zhu, Xiaoling Wang, Yuan Ni, and Guotong Xie. GAML-BERT: improving BERT early exiting
by gradient aligned mutual learning. In Proceedings of the 2021 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pp. 3033–3044, 2021.

Wei Zhu, Peng Wang, Yuan Ni, Guotong Xie, and Xiaoling Wang. BADGE: speeding up BERT
inference after deployment via block-wise bypasses and divergence-based early exiting. In
Proceedings of the The 61st Annual Meeting of the Association for Computational Linguistics
(ACL): Industry Track, pp. 500–509, 2023.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

A TEMPLATES ON ALL TASKS

Table 6 provides an overview of the manual templates and selected label words used for each dataset
with the backbone model RoBERTa-Large (Liu et al., 2019) in this paper. These templates and label
words were created following LM-BFF (Gao et al., 2021).

Table 6: Templates and label words with the backbone model RoBERTa-Large.

Task Prompts Label word
SST-2 [CLS] x It was [MASK]. [SEP] “0”:“terrible”, “1”:“great”
SST-5 [CLS] x It was [MASK]. [SEP] “0”:“terrible”,“1”: “bad”,

“2”: “okay”,“3”: “good”,“4”: “great”
MR [CLS] x It was [MASK]. [SEP] “0”:“terrible”, “1”:“great”
CR [CLS] x It was [MASK]. [SEP] “0”:“terrible”, “1”:“great”
MPQA [CLS] x It was [MASK]. [SEP] “0”:“terrible”, “1”:“great”
SUBJ [CLS] x This is [MASK]. [SEP] “0”:“subjective”, “1”:“objective”
TREC [CLS] [MASK] x [SEP] “0”:“Description”,“1”:“Entity”,“2”:“Expression”,

“3”:“Human”,“4”:“Location”,“5”:“Number”
CoLA [CLS] x It was [MASK]. [SEP] “0”:“incorrect”, “1”:“correct”

Table 7 provides an overview of the manual templates and selected label words used for each dataset
with the backbone model T5-Large (Raffel et al., 2020), Llama-3-8B (Dubey et al., 2024) and
Gemma-7B (Mesnard et al., 2024) in this paper.

Table 7: Templates and label words with the backbone model T5-Large, Llama-3-8B and Gemma-7B.

Task Prompts Label word
SST-2 What is the sentiment of the sentence x ? “0”:“negative”, “1”:“positive”

Print negative or positive. The answer is
SST-5 What is the sentiment of the sentence x ’? “0”:“terrible”,“1”: “bad”,

Print terrible, bad, okay, good or great. “2”: “okay”,“3”: “good”,
The answer is “4”: “great”

MR What is the sentiment of the sentence x ? “0”:“negative”, “1”:“positive”
Print negative or positive. The answer is

CR What is the sentiment of the sentence x ? “0”:“negative”, “1”:“positive”
Print negative or positive. The answer is

MPQA What is the sentiment of the sentence x ? “0”:“negative”, “1”:“positive”
Print negative or positive. The answer is

SUBJ What is the subjectivity of the sentence x ? “0”:“subjective”, “1”:“objective”
Print subjective or objective. The answer is

TREC Print the category for the sentence x : “0”:“description”,“1”:“entity”,
description, entity, expression, person, “2”:“expression”,“3”:“person”,
location or quantity. The answer is “4”:“location”,“5”:“quantity”

CoLA Is the sentence x grammatically acceptable? “0”:“no”, “1”:“yes”
Print no or yes. The answer is

B EXIT LAYERS

Table 8 compares the average exit layers of the RAEE method against two other method types across
eight downstream tasks. Experimental results show that the RAEE method can exit earlier, thus
reducing computational overhead during model inference. This result also aligns with the expectations
in the motivation example. This suggests that the RAEE method can accurately approximate the gold
exit layer distribution by using the retrieval database. Although AdaInfer exits earlier than the RAEE

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Table 8: Exit layers of RAEE and different types of methods on 8 downstream tasks. The sum of the
number of layers in the encoder and the decoder counts the number of layers for T5-large (Raffel
et al., 2020).

Model SST-2 SST-5 MR CR MPQA Subj TREC CoLA Avg
RB-L 24 24 24 24 24 24 24 24 24
EB-L 24 24 24 24 24 24 24 24 24
T5-L 48 48 48 48 48 48 48 48 48
Llama-3-8B 32 32 32 32 32 32 32 32 32
Gemma-7B 28 28 28 28 28 28 28 28 28

Backbone: RoBERTa-Large, ElasticBERT-Large
DeeBERT 22.95 24.00 23.33 8.98 15.90 10.36 24.00 18.31 18.48
AdaInfer (RB-L) 1.00 0.00 1.46 1.00 18.00 1.10 0.00 4.00 3.32
RAEE (RB-L) 18.55 13.93 18.71 15.35 17.20 13.59 12.82 12.48 15.33

Backbone: T5-L
AdaInfer (T5-L) 6.34 0.00 7.72 0.00 1.00 1.00 0.00 1.00 2.13
RAEE (T5-L) 22.27 18.74 21.88 26.84 18.05 19.06 27.29 18.55 21.59

Backbone: Llama-3-8B
SLEB (Llama) 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00
AdaInfer (Llama) 4.00 0.00 3.18 3.00 1.00 4.71 0.00 2.00 2.24
RAEE (Llama) 11.77 15.70 12.43 7.04 12.83 6.58 20.06 21.04 13.43

Backbone: Gemma-7B
SLEB (Gemma) 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00
AdaInfer (Gemma) 1.00 0.00 1.04 1.00 3.00 1.00 0.00 2.00 1.13
RAEE (Gemma) 11.00 17.62 11.70 3.29 14.72 0.51 9.50 20.06 11.05

method, it exhibits quite poor performance, as shown in Table 1. The reason may be that during the
zero-shot inference scenario, the collected features can only provide limited information for the SVM,
thus resulting in unstable prediction performance.

C IMPLEMENTATION DETAILS

This section lists the implementation details.

• For DeeBERT(Xin et al., 2020), we use RoBERTa-Large as its backbone model. Since
DeeBERT(Xin et al., 2020) is a classical entropy-thresholding-based early-exit method, it
requires first fine-tuning the backbone model on the downstream task and then updating
all but the last off-ramp, for a fair comparison, we only update the off-ramp in DeeBERT
on each downstream task. We also use RoBERTa-large as the backbone model and train
all off-ramps for 50 epochs (much larger than the default setting of 10 epochs). Other
experimental settings for DeeBERT(Xin et al., 2020) remain as default.

• For CALM (Schuster et al., 2022), we use T5-Large (Raffel et al., 2020) as its backbone
model. CALM (Schuster et al., 2022) is also a classical entropy-thresholding-based early-
exit method, and we evaluate it under the zero-shot setting.

• For SLEB(Song et al., 2024), we use Llama-3-8b (Dubey et al., 2024) and Gemma-7B (Mes-
nard et al., 2024) as its backbone model. SLEB(Song et al., 2024) tackles the limitation
of early exit methods by eliminating redundant transformer blocks. Since the proposed
RAEE exits at about 40% layers, for a fair comparison, we also set the hyper-parameter
num_remove_blocks of SLEB(Song et al., 2024) as int(60% · num_layers) for compa-
rable efficiency.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

D RETRIEVED EXAMPLES OF RAEE

We show two examples from the SST-2 task and their retrieved top-k data samples. As shown
in Table 9 and Table 10, the retrieved samples are semantically similar to the query sentence,
demonstrating the proposed RAEE’s efficacy.

Table 9: Examples of data and corresponding retrieved data.

Query/Top-K Sentence Label
Query although laced with humor and a few fanciful touches, the film

is a refreshingly serious look at young women.
1

Top-1 the film is hard to dismiss – moody, thoughtful, and lit by flashes
of mordant humor.

1

Top-2 the movie enters a realm where few non-porn films venture, and
comes across as darkly funny, energetic, and surprisingly gentle.

1

Top-3 the movie, despite its rough edges and a tendency to sag in
certain places, is wry and engrossing.

1

Top-4 metaphors abound, but it is easy to take this film at face value
and enjoy its slightly humorous and tender story.

1

Top-5 it may not be particularly innovative, but the film’s crisp, un-
affected style and air of gentle longing make it unexpectedly
rewarding.

1

Top-6 it has its faults, but it is a kind, unapologetic, sweetheart of a
movie, and mandy moore leaves a positive impression.

1

Top-7 although frailty fits into a classic genre, in its script and execu-
tion it is a remarkably original work.

1

Top-8 unlike lots of hollywood fluff, this has layered, well-developed
characters and some surprises.

1

Top-9 as broad and cartoonish as the screenplay is, there is an accuracy
of observation in the work of the director, frank novak, that
keeps the film grounded in an undeniable social realism.

1

Top-10 though its rather routine script is loaded with familiar situations,
the movie has a cinematic fluidity and sense of intelligence that
makes it work more than it probably should.

1

Top-11 it tends to remind one of a really solid woody allen film, with its
excellent use of new york locales and sharp writing.

1

Top-12 though a touch too arthouse 101 in its poetic symbolism, heaven
proves to be a good match of the sensibilities of two directors.

1

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Table 10: Examples of data and corresponding retrieved data (Cond).

Query/Top-K Sentence Label
Query ... a boring parade of talking heads and technical gibberish that

will do little to advance the linux cause.
0

Top-1 a vile, incoherent mess... a scummy ripoff of david cronenberg’s
brilliant ‘videodrome.

0

Top-2 completely creatively stillborn and executed in a manner that
i’m not sure could be a single iota worse... a soulless hunk of
exploitative garbage.

0

Top-3 contrived, maudlin and cliche-ridden... if this sappy script was
the best the contest received, those rejected must have been
astronomically bad.

0

Top-4 could as easily have been called ‘ under siege 3: in alcatraz ’... a
cinematic corpse that never springs to life.

0

Top-5 little more than a stylish exercise in revisionism whose point...is
no doubt true, but serves as a rather thin moral to such a knowing
fable.

0

Top-6 a thoroughly awful movie – dumb, narratively chaotic, visually
sloppy...a weird amalgam of ‘the thing’ and a geriatric scream.

0

Top-7 on a cutting room floor somewhere lies...footage that might have
made no such thing a trenchant, ironic cultural satire instead of
a frustrating misfire.

0

Top-8 ...while certainly clever in spots, this too-long, spoofy update of
shakespeare’s macbeth does n’t sustain a high enough level of
invention.

0

Top-9 worthless, from its pseudo-rock-video opening to the idiocy of
its last frames.

0

Top-10 comes across as a relic from a bygone era, and its convolutions...
feel silly rather than plausible.

0

Top-11 a tired, unnecessary retread...a stale copy of a picture that was
n’t all that great to begin with.

0

Top-12 (less a movie than) an appalling, odoriferous thing...so rotten in
almost every single facet of production that you’ll want to crawl
up your own in embarrassment.

0

19

	Introduction
	Motivations
	Methodology
	Collecting the Exit Features and Building the Retrieval Database
	The Retrieval-Augmented Early Exit Framework

	Experiments
	Dataset and Experimental Setup
	Main Results
	Reasons for Significant Performance Improvement
	Ablation Study
	Building Overheads

	Related Work
	Early Exit Framework
	Retrieval-based Augmentations

	Limitations
	Conclusion
	Templates on All Tasks
	Exit Layers
	Implementation Details
	Retrieved Examples of RAEE

