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ABSTRACT

Deploying large language model inference remains challenging due to their high
computational overhead. Early exit optimizes model inference by adaptively re-
ducing the number of inference layers. Current methods typically train internal
classifiers to determine whether to exit at intermediate layers. However, such
classifier-based early exit frameworks require significant effort to train the clas-
sifiers while can only achieve comparable performance at best. To address these
limitations, this paper proposes RAEE, a robust Retrieval-Augmented Early Exit
framework for efficient inference. This paper first demonstrates that the early exit
problem can be effectively modeled as a distribution prediction problem, in which
the distribution is approximated through the exit information of similar data. Subse-
quently, it outlines the methodology for collecting exit information to construct the
retrieval database. Finally, leveraging the pre-constructed retrieval database, RAEE
utilizes the exit information from retrieved similar data to guide the backbone
model’s exit at the layer. Experimental results demonstrate that RAEE significantly
accelerates inference while achieving robust zero-shot performance across eight
downstream tasks.

1 INTRODUCTION

Large language models have been widely used in various application scenarios due to their excellent
performance (Thoppilan et al., 2022; Touvron et al., 2023; Scao et al., 2022). However, improving the
efficiency of model inference remains a critical and challenging task due to the high computational
overhead involved in the process (Dao et al., 2022; Liu et al., 2023). As an advanced technique,
model pruning provides a new direction for efficient inference (Valicenti et al., 2023; Ma et al., 2023).
It selectively removes less important weights or connections from the neural network to reduce
complexity and computational requirements without significantly degrading performance. One
popular model pruning method is the early exit technique, which speeds up inference by adaptively
reducing the number of inference layers.

Most early exit frameworks (Liu et al., 2020; Zhu, 2021; Xin et al., 2020; Fan et al., 2024) leverage
classifiers to predict the exit layer and stop the inference at the predicted exit layer. Those early exit
frameworks can be categorized into three branches according to the training strategy. The first one is
training-based early exit frameworks (Zhu, 2021; Zhou et al., 2020; Zhu et al., 2023; Bae et al.,
2023; Schuster et al., 2022), which requires training the classifiers along with the backbone models
and updating all parameters of backbone models as well as classifiers. These methods introduce
significant training overheads, particularly when applied to large language models. The second one
is semi-training-based early exit frameworks (Fan et al., 2024). The backbone models in those
works would not be updated, and only classifiers would be fitted to predict the exit layer. These
methods may not capture the patterns between inputs and exit layers well, requiring significant human
effort in feature engineering. The last one is training-free early exit frameworks (Sun et al., 2022),
which requires no parameter updates and uses heuristics to determine the exit layer. These methods
lack the generalization ability to predict the exit layer and often fail to achieve good performance.
Moreover, most early exit frameworks sacrifice the model performance for acceleration (Fan et al.,
2024; Sun et al., 2022; Schuster et al., 2022; Bae et al., 2023). This paper mainly focuses on improving
training-free early exit methods to avoid introducing too many training overheads.
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Figure 1: The overview of retrieval-augmented early exit framework. During the build phase, a
retrieval database is constructed from the collected exit features, including layer indexes and their
corresponding probabilities for correct predictions. During the inference phase, the framework
retrieves similar data’s exit information based on data embeddings to guide the model in selecting the
optimal exit layer.

To address the above limitations, this paper first demonstrates that the exit layer can be predicted
from an exit distribution, which can be approximated by similar data’s exit information. Based on
the observations, this paper proposes RAEE, a robust retrieval-augmented early exit framework for
efficient inference. First, RAEE collects exit information from data. Next, RAEE builds the indexing
and database to retrieve exit information from similar data. Finally, RAEE predicts the exit layer
based on the top-k nearest neighbors’ exit information during the inference and stops the model
inference at the predicted exit layer.

We conduct comprehensive experiments to evaluate the proposed RAEE and various comparison
methods on eight downstream tasks. Experimental results demonstrate that RAEE can accelerate the
model inference while achieving robust model performance. Codes are available at 1.

The main contributions of this paper are:

• We model the early exit problem as a distribution prediction problem and demonstrate that
the exit information of similar data can approximate the exit distribution;

• We propose a robust retrieval-augmented early exit framework, RAEE, which leverages an
external database to guide the early exit;

• Experimental results show that the proposed RAEE can accelerate the model inference and
achieve robust performance.

2 MOTIVATIONS

In this section, we demonstrate that using retrieval-based techniques is a simple yet effective way to
augment the early exit framework during the inference stage.

Problem Statement. Formally, early exit can be defined as follows: Given a backbone model M
with m layers and an input x, The early exit framework aims to design an exit function or classifier
l = f(x) to determine whether to exit at the layer l or which layer l to exit. The final prediction y is
then transformed from the intermediate output states hl of the l-th layer. And the final prediction

1https://anonymous.4open.science/r/RAEE-D724

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Layer index

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

test

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Layer index

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

test

(b)

Figure 2: Exit layer probabilities for two SST-2 test samples and their top-8 nearest neighbors
from the SST-2 training set. Each subfigure illustrates the probability distribution across different
exit layers for one test sample and its corresponding nearest neighbors. The two test samples show
different probability distribution phenomena. The results are collected with the backbone model
RoBERTa-Large.

probability can be formulated as,

P (y | x) = P (y | hf(x)), (1)

where f(x) is trained or built on the downstream tasks’ training data D.

Motivations of Retrieval-Augmented Early Exit. This paper aims to leverage retrieval-based
techniques to guide the early exit, which behaves like training-free-based early exit frameworks
requiring no parameters to update. Existing retrieval databases use clustering and product quantization
to build the retrieval indexing over millions of embeddings, which can efficiently approximate nearest-
neighbor searching. The indexing building process is not resource-constrained and can run on either
GPUs or CPUs. Besides, since the retrieval database stores the original data, every retrieval in the
retrieval-augmented early exit can be regarded as a generalization over several semantically similar
data. In contrast, those original data may be used to train classifiers or build hashing functions in
other early exit frameworks. The retrieval-augmented techniques also exhibit strong adaptability to
new data. The index can retrieve up-to-date information by adding new data to the retrieval database.

To further demonstrate the efficacy of retrieval-augmented early exit, this paper conducts some
analysis experiments in Figure 2. It shows the distribution of probability values for predicting
the correct answers across all model layers during inference, including two SST-2 test samples
(represented by the blue line with dots) and their respective top-8 nearest neighbors (depicted as blue
box plots at each layer) retrieved from the SST-2 training dataset. The probability values in Figure 2
are calculated as the normalized logits of the answer label tokens. Note that the reason why we can
collect the probability values of SST-2 data for predicting the correct answers across all model layers
is because the SST-2 task has labels that allow us to extract the relevant probability data for predicting
the label token.

The experimental results in Figure 2 (a) and (b) indicate that the layer-wise probability trends for
correctly predicting the answers during inference exhibit a similar pattern between the test samples
and their respective nearest neighbors. At the same time, different inputs exhibit diverse behaviors
in these layer-wise predictive probabilities. Notably, as observed in Figure 2 (a), the probability
values for predicting the correct answers of the SST-2 test sample and its top-8 nearest neighbors
at the 24th layer are lower than those at layers 20 to 23. In such cases, leveraging the probability
distribution of the top-8 nearest neighbors to guide the determination of the test sample’s exit layer
can allow it to exit at a layer with higher probability values for correct predictions. Thus this
approach not only enhances inference speed by reducing the number of inference layers but also
improves the accuracy of predictions. Consequently, the experimental results demonstrate that the
probabilities of top-k nearest neighbors from the pre-collected database can approximate the
layer-wise exit probabilities of new input data. Additionally, different inputs exhibit distinct
probability distributions across the model’s all exit layers. These observations motivate us to propose
a retrieval-augmented early exit framework.
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Algorithm 3.1 Collect the exit features as keys and values for building the retrieval database.

Input: Training data D = {(xtrain
1 , ytrain

1 ), . . . , (xtrain
|D| , ytrain

|D| )}, backbone model M with m layers
{L1, . . . ,Lm}, encoder E (None value means no encoder is provided).

Output: Keys K and values V .
1: K = [],V = []
2: for i = 1, . . . , |D| do
3: vi = [];
4: h0 = Memb(x

train
i );

5: for j=1, . . . , m do
6: hj = Lj(hj−1); /* Compute the intermediate outputs of the layer j */
7: logits = Mlm_head(hj); /* Predict from the layer j */
8: ŷ = argmax logits, pji = max{softmax(logits)} ;
9: if ŷ is equal to ytrain

i then
10: Add (j, pji ) into vi; /* Store the possible exit layer */
11: end if
12: end for
13: Add vi into V;
14: if E is None then
15: Add h0 into K; /* Store the embeddings of backbone model when no encoder model */
16: end if
17: end for
18: if E is not None then
19: Add all E(xtrain

i ) into K; /* Store the embeddings of encoder */
20: end if
21: return K,V;

3 METHODOLOGY

This section presents the retrieval-augmented early exit framework in detail. First, this paper outlines
the process of collecting exit features and constructing the retrieval database to facilitate early exit.
Then, this paper introduces the retrieval-augmented early exit framework, denoted as RAEE.

3.1 COLLECTING THE EXIT FEATURES AND BUILDING THE RETRIEVAL DATABASE

This paper uses the collected exit features as the keys and values within the retrieval database. To
avoid introducing too much retrieving overheads, this paper only retrieves once at the beginning of
the backbone model. Consider the training data D = {(xtrain

1 , ytrain1 ), . . . , (xtrain
|D| , ytrain|D| )} and

a backbone model M with m layers {L1, . . . ,Lm}. In this context, as shown in the top part of
Figure 1, the keys K are input embeddings of training data, which can be obtained from an extra
encoder model E , such as BERT (Devlin et al., 2019), or the outputs of embedding layers in the
backbone model Memb,

K = {ei}|D|
i=1 = {E(xtrain

i )}|D|
i=1. (2)

For the values, this paper collects a set of possible exit layers li and corresponding probabilities pi for
each embedding ei, i.e., vi = {(lji , p

j
i )}

mi
j=1, where mi indicates the number of possible exit layers

for the embedding ei. The layer l chosen as the exit layer is determined by whether the outputs of
this layer hl can be used to make the right predictions ŷ compared to the training labels ytrain. Then,
the values V are all sets of possible exit layers,

V = {vi}|D|
i=1 =

{
{(lji , p

j
i )}

mi
j=1

}|D|

i=1
. (3)

Algorithm 3.1 shows the detailed steps of preparing keys and values. We follow the same dataset
splitting used in the LM-BFF (Gao et al., 2021), the collecting process requires no parameters to
update, only model inference is performed. When the encoder E is unavailable, RAEE can also
leverage the hidden states generated by the backbone model M as embeddings for indexing purposes
(Lines 14-16).

After collecting keys and values for the retrieval databases, this paper uses state-of-the-art approximate
nearest neighbor search indexing, such as FAISS (Johnson et al., 2019), and efficient key-value stores
to build the retrieval database.
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Algorithm 3.2 Model inference with the synchronized retrieval-augmented early exit.
Input: Input x, backbone model M with m layers {L1, . . . ,Lm}, encoder E , indexing I, top-k, the exit layer

determination function f(·).
Output: Final prediction ŷ.

1: h0 = Memb(x);
2: if E is not None then
3: equery = E(x); /* Encode the inputs when the encoder is available */
4: else
5: equery = h0; /* Use the embeddings of backbone model */
6: end if
7: {(vi, disi)}ki=1 = I(equery, k); /* Retrieve the possible exit layers */
8: l = f ({(v1, dis1), . . . , (vk, disk)}); /* Obtain the exit layer */
9: for i = 1, . . . , l do

10: hi = Li(hi−1); /* Perform model inference with early exit */
11: end for
12: logits = Mlm_head(hl); /* Predict based on the layer hl outputs */
13: ŷ = argmax logits;
14: return ŷ;

3.2 THE RETRIEVAL-AUGMENTED EARLY EXIT FRAMEWORK

In this section, this paper then presents a retrieval-augmented early exit framework named RAEE to
optimize the model inference. RAEE regards the exit layer as a random variable z, taking values in the
set of {1, . . . ,m}, where m is the total number of layers in the backbone model M. The probability
mass function P (z = l) represents the probability of the case that the backbone model exits at the
layer l. With the gold label, we can observe that the random variable z follows an unknown discrete
distribution F . Then, this paper shows how to leverage the retrieval database to approximate the
distribution F .

Given an input x, RAEE first retrieves top-k nearest neighbors {v1, . . . , vk}, where each neighbor
vi has mi possible exit layers. Naturally, we can approximate the distribution F by estimating the
probability function P (z = l),

P (z = l | x) =
k∑

i=1

P (vi | x) ·
mi∑
j

1

(
any(lji = l && pji ≥ τ)

)
· pji , (4)

where 1 is the indicator function that returns 1 if the condition is true and 0 otherwise, any(·) is the
function that returns true if one condition is true and false otherwise, τ is the threshold for filtering
the layers, the inner loop only count once since there is at most one possible exit layer of neighbor i
that is equalt to l. Since different neighbors should have different contributions to the probability
function P (z = l), RAEE uses the reciprocal of the scaled distance between each neighbor and the
query to estimate the contribution,

P (vi | x) =
min

(
{distance(vj , x)}kj=1

)
distance(vi, x)

. (5)

Then, RAEE designs a function f(x) to determine the exit layer, which selects the layer that
maximizes the probability function P (z = l),

f(x) = argmax
l

P (z = l | x). (6)

Notably, when multiple exit layers have the same maximal probability, RAEE selects the earliest one.

The bottom part of Figure 1 shows the inference workflow of RAEE. Specifically, RAEE first
simultaneously feeds the inputs into both the backbone model for the label predictions and the
same encoder used in the building process for the query embeddings. Then, the retriever in RAEE
retrieves the top-k nearest neighbors in the retrieval databases based on the query embeddings. After
obtaining all possible exit layers of k nearest neighbors, RAEE computes the exit layers based on
the Equations 4-6. Finally, RAEE stops the forwarding at the calculated exit layer and passes the
intermediate outputs of the exit layer to the final prediction layer, e.g., LM Head in language models,
to obtain the final predictions (Equation 1). This is implemented based on the Transformer library,
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Table 1: Zero-shot model performance of different methods on eight downstream tasks. ‘RB-L’,
‘EB-L’, and ‘T5-L’ refer to RoBERTa-Large, ElasticBERT-Large, and T5-Large, respectively.

Methods SST-2 SST-5 MR CR MPQA SUBJ TREC CoLA Avg
RB-L 83.60 34.98 80.80 79.55 67.60 51.45 32.40 2.03 54.05
EB-L 51.15 22.35 49.25 48.65 48.05 48.85 17.60 0.11 35.75
T5-L 49.31 23.12 50.40 50.90 45.40 52.75 27.60 -4.64 36.86
Llama-3-8B 62.84 26.06 59.65 72.90 51.75 52.80 8.40 0.00 41.80
Gemma-7B 49.08 28.64 50.05 50.10 50.00 48.05 14.40 -0.79 36.19

Backbone: RoBERTa-Large, ElasticBERT-Large
HashEE (EB-L) 49.08 14.16 49.95 50.05 50.00 50.00 27.00 0.00 36.28
DeeBERT (RB-L) 52.29 18.05 50.60 50.00 75.95 80.85 16.20 0.00 42.99
AdaInfer (RB-L) 50.92 24.48 50.00 50.00 60.90 50.85 22.60 -1.62 38.52
RAEE (RB-L) 84.63 33.57 81.55 68.05 78.55 84.05 62.40 14.48 63.41

Backbone: T5-Large
CALM (T5-L) 51.72 23.17 49.25 50.55 49.80 49.90 18.00 0.00 36.55
AdaInfer (T5-L) 50.11 28.14 50.35 49.80 46.30 49.95 26.00 5.22 38.23
RAEE (T5-L) 52.98 26.56 50.80 51.60 55.65 49.90 39.80 12.20 42.44

Backbone: Llama-3-8B
SLEB (Llama) 54.01 21.09 51.10 49.45 55.65 49.95 14.00 0.92 37.02
AdaInfer (Llama) 53.21 18.05 53.50 50.00 49.95 47.55 16.20 0.00 36.06
RAEE (Llama) 73.05 35.25 66.45 57.95 75.05 90.05 51.80 9.55 57.39

Backbone: Gemma-7B
SLEB (Gemma) 50.69 19.82 49.95 49.95 50.00 52.10 12.80 0.00 35.66
AdaInfer (Gemma) 50.92 12.62 50.00 50.00 50.00 50.60 22.60 0.00 35.84
RAEE (Gemma) 73.17 32.40 66.75 56.75 75.60 90.15 40.00 10.46 55.66

passing the exit layer as a parameter into the ‘forward()‘ function and stopping the inner iteration
based on the exit layer.

Algorithm 3.2 performs model inference with retrieval-augmented early exit. When the encoder E is
unavailable (Line 5), RAEE utilizes the hidden states from the backbone model M as embeddings for
querying. The specific layer from which the hidden states are extracted is treated as a hyperparameter.
The inference process (Lines 9-11) and the retrieving process (Lines 2-8) can be executed in parallel
for more efficient implementations.

4 EXPERIMENTS

In this section, we first introduce the dataset and the experimental setup. Then, we presented the main
results of different methods on eight downstream tasks. We also conducted analysis experiments and
ablation studies to show the impact of these factors on RAEE performance.

4.1 DATASET AND EXPERIMENTAL SETUP

Datasets We conducted comprehensive experiments across eight downstream tasks from GLUE
benchmark (Wang et al., 2019), covering sentiment analysis, opinion polarity analysis, grammatical
judgment, natural language inference, paraphrasing, etc.

Experimental Setup The proposed RAEE was implemented using the PyTorch framework and
Transformer. We evaluated methods based on the backbone models RoBERTa-Large (Liu et al., 2019)
and T5-Large (Raffel et al., 2020) on one NVIDIA GeForce RTX 4090 with 24GB GPU memory,
while Llama-3-8B (Dubey et al., 2024) and Gemma-7B (Mesnard et al., 2024) on one NVIDIA A100
GPU with 40GB GPU memory. The experiments were conducted in two settings, i.e., zero-shot
settings for training-free-based methods and fine-tuning settings only for semi-training-based methods.
The evaluation metric is accuracy, except for the Matthew correlation coefficient for the CoLA task.
The number of retrieved nearest neighbors of RAEE is set to 12 in the experiments. The threshold τ
of RAEE is set to 0.9.
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Figure 3: Inference latency of RAEE compared with various methods on selected downstream
tasks. The backbone models used in the comparisons include RoBERTa-Large/ElasticBERT-Large,
T5-Large, Llama-3-8B, and Gemma-7B.

To validate the effectiveness, we compared RAEE with three types of methods. Pretrained Models:
1) RoBERTa-Large (Liu et al., 2019), a state-of-the-art encoder model, where the prompt-based
version (Gao et al., 2021) is used; 2) ElasticBERT (Liu et al., 2022), a pre-trained multi-exit
transformer model, where the large version is used in this paper; 3) T5-Large (Raffel et al., 2020),
a versatile transformer-based model for various NLP tasks; 4) Llama-3-8B (Dubey et al., 2024),
a pre-trained model with strength in specific language scenarios; 5) Gemma-7B (Mesnard et al.,
2024), a model with the potential for outstanding performance in specific settings. Training-Free
Methods: 1) HashEE (Sun et al., 2022), a hash-based early exit approach with ElasticBERT-Large
as its backbone model; 2) CALM (Schuster et al., 2022), a classical entropy-thresholding-based
early exit method with T5-Large as its backbone model, where the zero-shot setting is applied; 3)
SLEB (Song et al., 2024), a method that eliminates redundant transformer blocks. Semi-Training
Methods: 1) AdaInfer (Fan et al., 2024), an SVM-based early exiting method with our reproduced
version; 2) DeeBERT (Xin et al., 2020), a classical entropy-thresholding-based early exiting method
with RoBERTa-Large as its backbone model; The templates are listed in the Appendix A. More
details about the experimental setup can be found in Appendix C.

4.2 MAIN RESULTS

Table 1 presents the main results, comparing the performance of RAEE against different types
of methods across eight downstream tasks. Experimental results show that the proposed RAEE
can achieve the best zero-shot performance on average across all tasks, which is 63.41 with the
backbone model RoBERTa-Large. RAEE with Gemma-7B achieves the maximal improvements
over the baseline models, while RAEE with RoBERTa-Large achieves the maximal improvements
over comparison methods from 36.28 to 63.41. Across eight downstream tasks, RAEE consistently
improves the model performance compared to current state-of-the-art early exit frameworks.

Figure 3 shows the inference latency of RAEE and comparisons on eight downstream tasks. We
show the inference latency on the selected four tasks, which covers different task types. For million-
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Table 2: Model performance and inference latency of RAEE and RAEE without true predictions in
the retrieval database. The backbone model is Llama-3-8B.

Models SST-2 SST-5 MR CR MPQA SubJ TREC CoLA Avg
Performance ↑

Llama 62.84 26.06 59.65 72.90 51.75 52.80 8.40 0.00 41.80
RAEE w/o 60.55 24.52 57.30 53.55 56.65 81.70 20.80 0.00 44.38
RAEE 73.05 35.25 66.45 57.95 75.05 90.05 51.80 9.55 57.39

Latency (ms) ↓
Llama 122.27 122.13 122.03 121.78 121.82 121.70 122.52 122.06 122.04
RAEE w/o 37.65 115.26 37.98 31.69 54.08 34.59 112.03 91.34 64.33
RAEE 52.33 65.47 53.83 34.65 55.02 33.25 81.74 84.34 57.58

Table 3: The impact of retrieval number k on the distribution approximation.

k SST-2 SST-5 MR CR MPQA SUBJ TREC CoLA Avg
2 79.82 32.99 76.40 68.40 77.55 81.75 61.00 7.89 60.73
4 82.22 33.17 79.20 68.05 78.65 83.60 63.60 14.74 62.90
8 84.52 34.12 80.70 68.05 78.90 84.20 63.20 12.19 63.24
12 84.63 33.57 81.55 68.05 78.55 84.05 62.40 14.48 63.41
16 84.98 32.17 82.05 69.00 77.90 84.00 62.60 13.00 63.21
20 85.44 32.26 81.80 68.95 78.05 83.50 62.40 12.40 63.10

level backbone models, such as RoBERTa-Large, ElasticBERT-Large, T5-Large, RAEE can achieve
comparable inference efficiency. This is due to that the inference speeds of those backbone models
are already fast enough, introducing too many components for early exit would degrade the inference
efficiency like HashEE and DeeBERT. However, for billion-level backbone models, the acceleration
of RAEE is significant. This benefits from the effectively predicted early exit layers. Although
Adainfer with the backbone Llama-3-8B and Gemma-7B is much faster than RAEE, it only achieves a
comparable performance of backbone models. RAEE significantly improves those backbone models’
performance and also reduces the inference latency by nearly half.

4.3 REASONS FOR SIGNIFICANT PERFORMANCE IMPROVEMENT

The main results demonstrate that the proposed RAEE can significantly outperform backbone models,
which is not an intuitive result compared to previous early exit methods. The reasons for this lie in
that the collected exit information guides the RAEE as an error corrector. This means that RAEE
can learn from the exit information of examples that are correctly predicted by intermediate layers,
but backbone models without early exit fail to predict.

To better support the above claims, we also conducted an analysis experiment using the retrieval
database that only contains the exit information of data that Llama-3-8B correctly predicted without
early exit. As shown in Table 2, RAEE w/o refers to the one built on only correctly predicted
examples. As expected, RAEE w/o achieves comparable performance to baselines but accelerates
the inference process. This is because the test data that is correctly predicted by RAEE w/o can
also be correctly predicted by backbone models. However, due to a lack of exit information on
examples where backbone models fail to predict, RAEE w/o also fails to predict on the test data
where backbone models fail. Therefore, when providing the exit information based on examples
where backbone models fail to predict but intermediate outputs succeed in predicting, RAEE can
make correct predictions and exit earlier.
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Table 4: The impact of retrieval database size on the distribution approximation. The percentage
refers to the amount of training data that is used to build the retrieval database.

Database Size SST-2 SST-5 MR CR MPQA SUBJ TREC CoLA Avg
20% 84.63 31.76 82.80 65.85 75.70 81.00 58.80 8.77 61.16
50% 83.37 32.85 80.65 66.95 77.90 83.60 61.20 11.73 62.28

100% 84.63 33.57 81.55 68.05 78.55 84.05 62.40 14.48 63.41

Table 5: The building cost of RAEE and different comparison methods. The results are collected
with the backbone model RoBERTa-Large (ElasticBERT for HashEE).

Model SST-2 SST-5 MR CR MPQA Subj TREC CoLA Avg
Time Cost (seconds)

RAEE 91.75 111.80 112.09 27.43 110.26 103.99 71.19 108.59 92.14
HashEE 5.85 14.13 14.68 2.82 10.40 13.84 7.50 5.81 9.38
AdaInfer 91.85 124.78 129.11 41.77 122.96 120.52 66.43 114.19 101.45

Storage Overheads (MB)
RAEE (Index) 3.4 3.7 3.8 2.0 3.8 3.6 3.1 3.7 3.4
RAEE (DB) 2.5 2.0 3.0 0.8 2.5 2.7 1.0 2.6 2.1

4.4 ABLATION STUDY

Impact of Top-k: Table 3 illustrates the impact of varying the number of retrievals on the distribution
approximation. As k increases, the proposed RAEE with the backbone model RoBERTa-Large
improves the overall performance from 60.73 to 63.41. This suggests that more retrieved exiting
information can help enhance the approximation performance. However, when k exceeds 12, the
overall performance degrades from 63.41 to 63.10. The reasoning behind this may be that providing
exit information from retrievals that are not quite related to the query introduces noise, misleading
the final predictions. This suggests that a limited amount of relevant exit information is sufficient to
approximate the exit distribution, thereby saving time in the retrieval process.

Retrieval Database Size: Table 4 shows the performance of RAEE with different sizes of retrieval
databases. The size of the retrieval databases implies how similar embeddings would be retrieved,
thus impacting the confidence of the provided exit information. As the database size increases, the
performance of RAEE with the backbone model RoBERTa-Large increases significantly from 61.16
to 63.41 on average. This demonstrates that collecting more data can improve the generalization of
RAEE, thus approximating the exit distribution more accurately.

4.5 BUILDING OVERHEADS

We present the building overheads in Table 5, including database size, index size, and building time
costs for different methods. Specifically, the building time cost for RAEE refers to the time required
to build the retriever, while the building time cost for AdaInfer pertains to the time needed for training
the classifier. In the case of HashEE, the building time cost corresponds to the time taken to build
the hashing buckets. For RAEE, the average time required to build the retrieval database is under 2
minutes on a single NVIDIA GeForce RTX 4090, which is considered an acceptable overhead in
comparison to the time involved in fine-tuning. The index and database sizes are relatively small and
can be considered negligible in comparison to the size of the backbone model.
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5 RELATED WORK

5.1 EARLY EXIT FRAMEWORK

Model inference with early exit has been a popular pruning method to reduce both computation and
memory overhead on text classification or generation tasks. Most current works (Bae et al., 2023;
Kong et al., 2022; Ji et al., 2023; Wolczyk et al., 2021; Hooper et al., 2023) introduce classifiers in
each layer to determine whether the inference should continue. (Xin et al., 2020; Liu et al., 2020;
Zhou et al., 2020; He et al., 2021) train the classifier by minimizing the differences between each
layer’s outputs and final outputs, then perform early-exit-based inference according to a threshold.
(Liao et al., 2021) incorporates the past and future information to predict the early exit layer. Instead
of training a neural network as classifiers, (Fan et al., 2024) only fit the machine learning classifiers on
the extracted features for the early exit. (Zhu, 2021; Zhu et al., 2021; 2023; Zhang et al., 2023a) focus
on designing novel loss functions for training a more robust classifier. (Li et al., 2021) incorporates
sentence-level features as well as token-level features to predict the early exit. Different from
those works, our method does not require training the classifier. (Sun et al., 2022) proposes a
hash-based early exit method that uses the hashing functions to map tokens to exit layers. (Bajpai &
Hanawal, 2024) introduces an online learning algorithm for early exits in BERT models, dynamically
determining exit points based on confidence thresholds. (Regol et al., 2023) proposes a jointly-learned
framework for early exiting and inference in dynamic neural networks, integrating gating mechanisms
and intermediate inference modules. (Balagansky & Gavrilov, 2022) introduces a deterministic
Q-exit criterion and revising the model architecture. Our method predicts exit layers using pre-built
databases, resulting in better generalization. Other works (Jazbec et al., 2023; Li et al., 2023; Huang
et al., 2018) focus on designing early exit frameworks for image classification tasks. They are
optimizations in the different domains compared to our works.

5.2 RETRIEVAL-BASED AUGMENTATIONS

Retrieval-based augmentations (Li et al., 2022; Wang et al., 2023; Xiong et al., 2023; Cui et al., 2023;
Wu et al., 2024a;b) have been widely used in various natural language processing (NLP) tasks and
achieved remarkable performance. Current works mostly leverage external knowledge databases to
augment generator models on various text-generation tasks, such as language modeling (Khandelwal
et al., 2020; Lewis et al., 2020; Borgeaud et al., 2022), question-answering (Guu et al., 2020;
Izacard & Grave, 2021), machine translation (Khandelwal et al., 2021; Wang et al., 2022), dialogue
system (Cheng et al., 2023). Those works focus on improving the model’s generation quality, while
our work aims to use the retrieval knowledge to accelerate the model’s inference. Additionally, other
work like (Zhang et al., 2023b) aims to accelerate the inference process by retrieving precomputed
trajectories from a knowledge base, which is specifically designed for diffusion models that differ
from our target models. These works are out of the scope of the research problems in this paper.

6 LIMITATIONS

Although the proposed RAEE can improve both model performance and model efficiency, several
limitations warrant discussion. The effectiveness of RAEE depends on the pre-built in-domain
retrieval databases, which can well approximate the exit distribution for predictions. The framework
is primarily designed for in-domain training and testing scenarios, which represent the mainstream
tasks. Consequently, the out-of-domain performance of RAEE may be constrained; however, this
aspect is not the primary focus of this paper and will be the subject of future research.

7 CONCLUSION

This paper models the early exit problem as a distribution prediction problem and observes that similar
data’s exit information can be used to approximate the distribution. Based on the observations, this
paper proposes a retrieval-augmented early exit framework named RAEE. Experimental results show
that RAEE can accelerate the model inference while significantly improving the model performance.
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A TEMPLATES ON ALL TASKS

Table 6 provides an overview of the manual templates and selected label words used for each dataset
with the backbone model RoBERTa-Large (Liu et al., 2019) in this paper. These templates and label
words were created following LM-BFF (Gao et al., 2021).

Table 6: Templates and label words with the backbone model RoBERTa-Large.

Task Prompts Label word
SST-2 [CLS] x It was [MASK]. [SEP] “0”:“terrible”, “1”:“great”
SST-5 [CLS] x It was [MASK]. [SEP] “0”:“terrible”,“1”: “bad”,

“2”: “okay”,“3”: “good”,“4”: “great”
MR [CLS] x It was [MASK]. [SEP] “0”:“terrible”, “1”:“great”
CR [CLS] x It was [MASK]. [SEP] “0”:“terrible”, “1”:“great”
MPQA [CLS] x It was [MASK]. [SEP] “0”:“terrible”, “1”:“great”
SUBJ [CLS] x This is [MASK]. [SEP] “0”:“subjective”, “1”:“objective”
TREC [CLS] [MASK] x [SEP] “0”:“Description”,“1”:“Entity”,“2”:“Expression”,

“3”:“Human”,“4”:“Location”,“5”:“Number”
CoLA [CLS] x It was [MASK]. [SEP] “0”:“incorrect”, “1”:“correct”

Table 7 provides an overview of the manual templates and selected label words used for each dataset
with the backbone model T5-Large (Raffel et al., 2020), Llama-3-8B (Dubey et al., 2024) and
Gemma-7B (Mesnard et al., 2024) in this paper.

Table 7: Templates and label words with the backbone model T5-Large, Llama-3-8B and Gemma-7B.

Task Prompts Label word
SST-2 What is the sentiment of the sentence x ? “0”:“negative”, “1”:“positive”

Print negative or positive. The answer is
SST-5 What is the sentiment of the sentence x ’? “0”:“terrible”,“1”: “bad”,

Print terrible, bad, okay, good or great. “2”: “okay”,“3”: “good”,
The answer is “4”: “great”

MR What is the sentiment of the sentence x ? “0”:“negative”, “1”:“positive”
Print negative or positive. The answer is

CR What is the sentiment of the sentence x ? “0”:“negative”, “1”:“positive”
Print negative or positive. The answer is

MPQA What is the sentiment of the sentence x ? “0”:“negative”, “1”:“positive”
Print negative or positive. The answer is

SUBJ What is the subjectivity of the sentence x ? “0”:“subjective”, “1”:“objective”
Print subjective or objective. The answer is

TREC Print the category for the sentence x : “0”:“description”,“1”:“entity”,
description, entity, expression, person, “2”:“expression”,“3”:“person”,
location or quantity. The answer is “4”:“location”,“5”:“quantity”

CoLA Is the sentence x grammatically acceptable? “0”:“no”, “1”:“yes”
Print no or yes. The answer is

B EXIT LAYERS

Table 8 compares the average exit layers of the RAEE method against two other method types across
eight downstream tasks. Experimental results show that the RAEE method can exit earlier, thus
reducing computational overhead during model inference. This result also aligns with the expectations
in the motivation example. This suggests that the RAEE method can accurately approximate the gold
exit layer distribution by using the retrieval database. Although AdaInfer exits earlier than the RAEE
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Table 8: Exit layers of RAEE and different types of methods on 8 downstream tasks. The sum of the
number of layers in the encoder and the decoder counts the number of layers for T5-large (Raffel
et al., 2020).

Model SST-2 SST-5 MR CR MPQA Subj TREC CoLA Avg
RB-L 24 24 24 24 24 24 24 24 24
EB-L 24 24 24 24 24 24 24 24 24
T5-L 48 48 48 48 48 48 48 48 48
Llama-3-8B 32 32 32 32 32 32 32 32 32
Gemma-7B 28 28 28 28 28 28 28 28 28

Backbone: RoBERTa-Large, ElasticBERT-Large
DeeBERT 22.95 24.00 23.33 8.98 15.90 10.36 24.00 18.31 18.48
AdaInfer (RB-L) 1.00 0.00 1.46 1.00 18.00 1.10 0.00 4.00 3.32
RAEE (RB-L) 18.55 13.93 18.71 15.35 17.20 13.59 12.82 12.48 15.33

Backbone: T5-L
AdaInfer (T5-L) 6.34 0.00 7.72 0.00 1.00 1.00 0.00 1.00 2.13
RAEE (T5-L) 22.27 18.74 21.88 26.84 18.05 19.06 27.29 18.55 21.59

Backbone: Llama-3-8B
SLEB (Llama) 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00 13.00
AdaInfer (Llama) 4.00 0.00 3.18 3.00 1.00 4.71 0.00 2.00 2.24
RAEE (Llama) 11.77 15.70 12.43 7.04 12.83 6.58 20.06 21.04 13.43

Backbone: Gemma-7B
SLEB (Gemma) 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00 11.00
AdaInfer (Gemma) 1.00 0.00 1.04 1.00 3.00 1.00 0.00 2.00 1.13
RAEE (Gemma) 11.00 17.62 11.70 3.29 14.72 0.51 9.50 20.06 11.05

method, it exhibits quite poor performance, as shown in Table 1. The reason may be that during the
zero-shot inference scenario, the collected features can only provide limited information for the SVM,
thus resulting in unstable prediction performance.

C IMPLEMENTATION DETAILS

This section lists the implementation details.

• For DeeBERT(Xin et al., 2020), we use RoBERTa-Large as its backbone model. Since
DeeBERT(Xin et al., 2020) is a classical entropy-thresholding-based early-exit method, it
requires first fine-tuning the backbone model on the downstream task and then updating
all but the last off-ramp, for a fair comparison, we only update the off-ramp in DeeBERT
on each downstream task. We also use RoBERTa-large as the backbone model and train
all off-ramps for 50 epochs (much larger than the default setting of 10 epochs). Other
experimental settings for DeeBERT(Xin et al., 2020) remain as default.

• For CALM (Schuster et al., 2022), we use T5-Large (Raffel et al., 2020) as its backbone
model. CALM (Schuster et al., 2022) is also a classical entropy-thresholding-based early-
exit method, and we evaluate it under the zero-shot setting.

• For SLEB(Song et al., 2024), we use Llama-3-8b (Dubey et al., 2024) and Gemma-7B (Mes-
nard et al., 2024) as its backbone model. SLEB(Song et al., 2024) tackles the limitation
of early exit methods by eliminating redundant transformer blocks. Since the proposed
RAEE exits at about 40% layers, for a fair comparison, we also set the hyper-parameter
num_remove_blocks of SLEB(Song et al., 2024) as int(60% · num_layers) for compa-
rable efficiency.
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D RETRIEVED EXAMPLES OF RAEE

We show two examples from the SST-2 task and their retrieved top-k data samples. As shown
in Table 9 and Table 10, the retrieved samples are semantically similar to the query sentence,
demonstrating the proposed RAEE’s efficacy.

Table 9: Examples of data and corresponding retrieved data.

Query/Top-K Sentence Label
Query although laced with humor and a few fanciful touches, the film

is a refreshingly serious look at young women.
1

Top-1 the film is hard to dismiss – moody, thoughtful, and lit by flashes
of mordant humor.

1

Top-2 the movie enters a realm where few non-porn films venture, and
comes across as darkly funny, energetic, and surprisingly gentle.

1

Top-3 the movie, despite its rough edges and a tendency to sag in
certain places, is wry and engrossing.

1

Top-4 metaphors abound, but it is easy to take this film at face value
and enjoy its slightly humorous and tender story.

1

Top-5 it may not be particularly innovative, but the film’s crisp, un-
affected style and air of gentle longing make it unexpectedly
rewarding.

1

Top-6 it has its faults, but it is a kind, unapologetic, sweetheart of a
movie, and mandy moore leaves a positive impression.

1

Top-7 although frailty fits into a classic genre, in its script and execu-
tion it is a remarkably original work.

1

Top-8 unlike lots of hollywood fluff, this has layered, well-developed
characters and some surprises.

1

Top-9 as broad and cartoonish as the screenplay is, there is an accuracy
of observation in the work of the director, frank novak, that
keeps the film grounded in an undeniable social realism.

1

Top-10 though its rather routine script is loaded with familiar situations,
the movie has a cinematic fluidity and sense of intelligence that
makes it work more than it probably should.

1

Top-11 it tends to remind one of a really solid woody allen film, with its
excellent use of new york locales and sharp writing.

1

Top-12 though a touch too arthouse 101 in its poetic symbolism, heaven
proves to be a good match of the sensibilities of two directors.

1
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Table 10: Examples of data and corresponding retrieved data (Cond).

Query/Top-K Sentence Label
Query ... a boring parade of talking heads and technical gibberish that

will do little to advance the linux cause.
0

Top-1 a vile, incoherent mess... a scummy ripoff of david cronenberg’s
brilliant ‘videodrome.

0

Top-2 completely creatively stillborn and executed in a manner that
i’m not sure could be a single iota worse... a soulless hunk of
exploitative garbage.

0

Top-3 contrived, maudlin and cliche-ridden... if this sappy script was
the best the contest received, those rejected must have been
astronomically bad.

0

Top-4 could as easily have been called ‘ under siege 3: in alcatraz ’... a
cinematic corpse that never springs to life.

0

Top-5 little more than a stylish exercise in revisionism whose point...is
no doubt true, but serves as a rather thin moral to such a knowing
fable.

0

Top-6 a thoroughly awful movie – dumb, narratively chaotic, visually
sloppy...a weird amalgam of ‘the thing’ and a geriatric scream.

0

Top-7 on a cutting room floor somewhere lies...footage that might have
made no such thing a trenchant, ironic cultural satire instead of
a frustrating misfire.

0

Top-8 ...while certainly clever in spots, this too-long, spoofy update of
shakespeare’s macbeth does n’t sustain a high enough level of
invention.

0

Top-9 worthless, from its pseudo-rock-video opening to the idiocy of
its last frames.

0

Top-10 comes across as a relic from a bygone era, and its convolutions...
feel silly rather than plausible.

0

Top-11 a tired, unnecessary retread...a stale copy of a picture that was
n’t all that great to begin with.

0

Top-12 (less a movie than) an appalling, odoriferous thing...so rotten in
almost every single facet of production that you’ll want to crawl
up your own in embarrassment.

0
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