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Abstract

We introduce Separable Operator Networks (SepONet), a novel framework that
significantly enhances the efficiency of physics-informed operator learning. Se-
pONet uses independent trunk networks to learn basis functions separately for
different coordinate axes, enabling faster and more memory-efficient training
via forward-mode automatic differentiation. We provide a universal approx-
imation theorem for SepONet proving that it generalizes to arbitrary opera-
tor learning problems, and then validate its performance through comprehen-
sive benchmarking against physics-informed DeepONet. Our results demon-
strate SepONet’s superior performance across various nonlinear and insepara-
ble PDEs, with SepONet’s advantages increasing with problem complexity, di-
mension, and scale. Open source code is available at https://github.com/
HewlettPackard/separable-operator-networks.

1 Introduction

Operator learning, which aims to learn mappings between infinite-dimensional function spaces, has
emerged as a powerful tool in scientific machine learning for modeling complex physical systems (30;
25; 24; 26). This approach has been successfully applied to climate modeling (15; 36), multiphysics
simulation (29; 3; 33; 27; 20), inverse design (32; 9), and various other fields (14; 12; 42; 10). Deep
Operator Networks (DeepONets) (30) stand out due to their universal approximation guarantee (4)
and robustness (31). Physics-informed deep operator networks (PI-DeepONet) (43) further enhance
this approach by incorporating physics constraints, eliminating the need for ground-truth output
functions. However, PI-DeepONet training is memory-intensive and time-consuming, particularly
due to the computation of high-order derivatives across multiple PDE configurations.

To address these inefficiencies, we propose Separable Operator Networks (SepONet), inspired by the
separation of variables technique in solving PDEs and recent work on separable PINN (6). Our key
contributions are:

• We introduce SepONet, a physics-informed operator learning framework that significantly enhances
scaling efficiency in terms of training time and GPU memory usage, enabling extreme-scale learning
of continuous mappings between infinite-dimensional function spaces.

• We provide a theoretical foundation for SepONet through the universal approximation theorem,
proving its capability to approximate any nonlinear continuous operator with arbitrary accuracy.

• We validate our theoretical results through benchmarking SepONet against PI-DeepONet on a
range of 1D and 2D time-dependent PDEs, demonstrating SepONet’s efficiency in largr-scale
learning of nonlinear and inseparable PDEs.
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Figure 1: Separable operator network (SepONet) architecture for 2D problem instance. A coordinate
grid of collocation points (x(i), y(j)) can be evaluated efficiently by separating the coordinate axes,
feeding them through independent trunk networks, and combining the outputs by outer product to
obtain multiple basis function maps. Meanwhile, the branch network processes input functions and
outputs coefficients, which are then used to scale and combine the trunk network basis functions by
product and sum. Spatiotemporal derivatives of the output predictions are obtained efficiently by
forward automatic differentiation due to the independence of trunk networks.

Our results show up to 112× training speed-up for 1D time-dependent PDEs with minimal memory in-
crease. Notably, SepONet operates efficiently with less than 1GB of GPU memory in scenarios where
PI-DeepONet exhausts 80GB. Furthermore, SepONet scales efficiently with problem dimension,
enabling accurate prediction of 2D time-dependent PDEs at scales where PI-DeepONet fails.

2 Separable Operator Networks (SepONet)

In this work we propose separable operator networks (SepONet), which learns basis functions
separately for different coordinate axes as shown in Fig. 1. SepONet approximates the solution
operator of a PDE system parameterized by u for any given point y = (y1, . . . , yd) as:

Gθ(u)(y1, . . . , yd) =

r∑
k=1

βk

d∏
n=1

τn,k = bψ(E(u)) ·
(
t1ϕ1

(y1)⊙ t2ϕ2
(y2)⊙ · · · ⊙ tdϕd

(yd)
)
, (1)

where ⊙ is the Hadamard (element-wise) vector product and · is the vector dot product. Here, E is
the encoder mapping the input function u to its point-wise evaluations and βk = bψ(E(u))k is the
k-th output of the branch net, as in DeepONet. However, unlike DeepONet, which employs a single
trunk net that processes each collocation point y individually, SepONet uses d independent trunk
nets, tnϕn

: R → Rr for n = 1, . . . , d. In particular, τn,k = tnϕn
(yn)k denotes the k-th output of the

n-th trunk net. Importantly, the parameters of the n-th trunk net ϕn are independent of all other trunk
net parameter sets. This allows for efficient, parallelized computation of high-order derivatives via
forward-mode automatic differentiation. The parameters of SepONet, θ = (ψ, ϕ1, . . . . , ϕd), are then
updated using backpropagation. For detailed information on the operator learning problem definition
and SepONet implementation, please refer to Appendix A and Appendix B, respectively.

Universal Approximation Property of SepONet We present the universal approximation theorem
to show that proposed separable operator networks can approximate any nonlinear continuous
operators that map infinite-dimensional function spaces to others.

Theorem 1 (Universal Approximation Theorem for Separable Operator Networks). Suppose that σ
is a Tauber-Wiener function, g is a sinusoidal function, X is a Banach space, K ⊆ X , K1 ⊆ Rd1
and K2 ⊆ Rd2 are three compact sets in X , Rd1 and Rd2 , respectively, U is a compact set in C (K),
G is a nonlinear continuous operator, which maps U into a compact set S ⊆ C (K1 ×K2), then for
any ϵ > 0, there are positive integers n, r, m, constants cki , ζ1k , ζ2k , ξkij , θ

k
i ∈ R, points ω1

k ∈ Rd1 ,
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ω2
k ∈ Rd2 , xj ∈ K, i = 1, . . . , n, k = 1, . . . , r, j = 1, . . . ,m, such that∣∣∣∣∣∣∣∣∣∣

G(u)(y)−
r∑

k=1

n∑
i=1

cki σ

 m∑
j=1

ξkiju (xj) + θki


︸ ︷︷ ︸

branch

g
(
w1
k · y1 + ζ1k

)︸ ︷︷ ︸
trunk1

g
(
w2
k · y2 + ζ2k

)︸ ︷︷ ︸
trunk2

∣∣∣∣∣∣∣∣∣∣
< ϵ (2)

holds for all u ∈ U , y = (y1, y2) ∈ K1 ×K2.

Proof. The proof can be found in Appendix C.2.

Remark. Here we show the approximation property of a separable operator network with two trunk
nets. By repeatedly applying trigonometric angle addition formula, it is trivial to separate y as
(y1, y2, . . . , yd) ∈ K1 ×K2 × . . .×Kd and extend Eq. (2) to d trunk nets.

3 Numerical Results

This section presents comprehensive numerical studies demonstrating the expressive power and
effectiveness of SepONet compared to PI-DeepONet on various time-dependent PDEs: diffusion-
reaction, advection, Burgers’, and (2+1)-dimensional nonlinear diffusion equations. We set the
number of residual points Nr = Nd = Nc, for problem dimension d and integer N . Nc will be
referred to as the number of training points. The number of initial and boundary points per axis is
set to NI = Nb = N = d

√
Nc. We evaluate both models by varying the number of input functions

(Nf ) and training points (Nc) across four key perspectives: test accuracy, GPU memory usage,
training time, and large-scale learning capabilities. The main results are illustrated in Fig. 2 and
Fig. 3, with complete test results reported in Appendix D.4. PDE definitions, training details, and
problem-specific parameters are provided in Appendix D.1 and Appendix D.2.

Test Accuracy Both PI-DeepONet and SepONet demonstrate improved accuracy when increasing
either the number of training points (Nc) or the number of input functions (Nf ), while fixing the
other parameter. This trend is consistent across all four equations tested.

GPU Memory Usage The models’ GPU memory usage patterns differ significantly, particularly
evident in the advection equation case. When varying Nc from 82 to 1282 (fixing Nf = 100),
PI-DeepONet’s GPU memory consumption rises steeply from 0.967 GB to 59.806 GB. In contrast,
SepONet maintains a low, constant footprint between 0.713 GB and 0.719 GB. Similar patterns
emerge when varying Nf from 5 to 100 (fixing Nc = 1282): PI-DeepONet’s usage escalates from
3.021 GB to 59.806 GB, while SepONet remains stable.

Training Time Training time scaling mirrors GPU memory usage patterns. For the advection
equation, as Nc increases from 82 to 1282 (fixing Nf = 100), PI-DeepONet’s training time rises
from 0.0787 to 8.231 hours, while SepONet remains steady between 0.0730 and 0.0843 hours. When
varying Nf from 5 to 100 (fixing Nc = 1282), PI-DeepONet’s time increases from 0.3997 to 8.231
hours, whereas SepONet maintains times between 0.0730 and 0.0754 hours. This demonstrates
SepONet’s superior scalability in training time, a crucial advantage for large-scale applications.

Large-scale Learning The Burgers’ and nonlinear diffusion equations demonstrate SepONet’s
capabilities in extreme-scale scenarios. For the Burgers’ equation, PI-DeepONet reaches its limit
at Nc = 642 with a 13.72% relative ℓ2 error, while SepONet achieves 7.51% error at Nc = 1282

(Fig. 2(c)). The nonlinear diffusion equation further highlights this difference: PI-DeepONet fails due
to memory constraints, whereas SepONet efficiently handles Nc = 1283 and Nf = 100, achieving
a 6.44% error (Fig. 3(d)). Additional SepONet scaling results up to Nc = 5122 and Nf = 800 for
Burgers’ equation are provided in Appendix D.3.

4 Conclusion

In conclusion, Separable Operator Networks (SepONet) present a promising solution to the challenges
faced in operator learning. By balancing data efficiency and computational resource management,
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Figure 2: Performance comparison of PI-DeepONet and SepONet with varying number of training
points (Nc) and fixed number of input functions (Nf = 100).

Figure 3: Performance comparison of PI-DeepONet and SepONet with increasing number of input
functions (Nf ) and fixed number of training points (Nc = 128d, where d is the problem dimension).
Note: PI-DeepONet results for the (2+1)-dimensional diffusion equation are unavailable due to
memory constraints.

SepONet offers a novel approach that addresses the limitations of both DeepONets and PI-DeepONets.
Its basis function construction method, grounded in universal approximation theory, enables accurate
modeling of complex, nonlinear systems while maintaining computational efficiency through forward-
mode automatic differentiation. While SepONet demonstrates significant advantages, future research
directions include adapting the method for irregular geometries (23; 41; 8), exploring nonlinear
decoder implementations (40), and investigating neural scaling laws in physics-informed operator
learning. These advancements will further expand SepONet’s applicability and effectiveness across a
broader range of physical problems.
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A Preliminaries

A.1 Operator Learning for Solving Parametric Partial Differential Equations

Let X and Y be Banach spaces, with K ⊆ X and K1 ⊆ Y being compact sets. Consider a nonlinear
continuous operator G : U → S, mapping functions from one infinite-dimensional space to another,
where U ⊆ C(K) and S ⊆ C(K1). The goal of operator learning is to approximate the operator
G using a model parameterized by θ, denoted as Gθ. Here, U and S represent spaces of functions
where the input and output functions have dimensions du and ds, respectively. We focus on the scalar
case where du = ds = 1 throughout this paper without loss of generality, however, it should be noted
that the results apply to arbitrary du and ds.

In the context of solving parametric partial differential equations (PDEs), consider PDEs of the form:

N (u, s) = 0, I(u, s) = 0, B(u, s) = 0, (3)

where N is a nonlinear differential operator, I and B represent the initial and boundary conditions,
u ∈ U denotes the PDE configurations (source terms, coefficients, initial conditions, and etc.), and
s ∈ S denotes the corresponding PDE solution. Assuming that for any u ∈ U there exists a unique
solution s ∈ S, we can define the solution operator G : U → S as s = G(u).

A widely used framework for approximating such an operator G involves constructing Gθ through
three maps (22):

Gθ ≈ G := D ◦ A ◦ E . (4)
First, the encoder E : U → Rm maps an input function u ∈ U to a finite-dimensional feature
representation. Next, the approximator A : Rm → Rr transforms this encoded data within the finite-
dimensional space Rm to another finite-dimensional space Rr. Finally, the decoder D : Rr → S
produces the output function s(y) = G(u)(y) for y ∈ K1.
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A.2 Deep Operator Networks (DeepONet)

The original DeepONet formulation (30) can be analyzed through the 3-step approximation frame-
work Eq. (4). The encoder E : U → Rm maps the input function u to its point-wise evaluations
at m fixed sensors x1, x2, . . . , xm ∈ K, e.g., (u(x1), ..., u(xm)) = E(u). Two separate neural
networks (usually multilayer perceptrons), the branch net and the trunk net, serve as the approx-
imator and decoder, respectively. The branch net bψ : Rm → Rr parameterized by ψ processes
(u(x1), . . . , u(xm)) to produce a feature embedding (β1, β2, . . . , βr). The trunk net tϕ : Rd → Rr
with parameters ϕ, takes a continuous coordinate y = (y1, ..., yd) as input and outputs a feature
embedding (τ1, τ2, . . . , τr). The final DeepONet prediction of a function u for a query y is:

Gθ(u)(y) =

r∑
k=1

βkτk = bψ(E(u)) · tϕ(y), (5)

where · is the vector dot product and θ = (ψ, ϕ) represents all the trainable parameters in the branch
and trunk nets.

Despite DeepONet’s remarkable success across a range of applications in multiphysics simulation
(3; 33; 27), inverse design (32), and carbon storage (14), its supervised training process is highly
dependent on the availability of training data, which can be costly. Indeed, the generalization error of
DeepONets scales with the number of training input-output function pairs (30; 21; 28). Generating
a large number of high-quality training data is expensive or even impractical in some applications.
For example, in simulating high Reynolds number (Re) turbulent flow (37), accurate numerical
simulations require a fine mesh, leading to a computational cost scaling with Re3 (19), making the
generation of sufficiently large and diverse training datasets prohibitively expensive.

To address the need for costly data acquisition, physics-informed deep operator networks (PI-
DeepONet) (43), inspired by physics-informed neural networks (PINNs) (38), have been pro-
posed to learn operators without relying on observed input-output function pairs. Given a dataset
of Nf input training functions, Nr residual points, NI initial points, and Nb boundary points:

D =
{{
u(i)
}Nf

i=1
,
{
y
(j)
r

}Nr

j=1
,
{
y
(j)
I

}NI

j=1
,
{
y
(j)
b

}Nb

j=1

}
, PI-DeepONets are trained by minimizing an

unsupervised physics loss:
Lphysics(θ|D) = Lresidual(θ|D) + λILinitial(θ|D) + λbLboundary(θ|D), (6)

where

Lresidual(θ|D) =
1

NfNr

Nf∑
i=1

Nr∑
j=1

∣∣∣N (u(i), Gθ(u
(i))(y(j)r ))

∣∣∣2,
Linitial(θ|D) =

1

NfNI

Nf∑
i=1

NI∑
j=1

∣∣∣I(u(i), Gθ(u
(i))(y

(j)
I ))

∣∣∣2,
Lboundary(θ|D) =

1

NfNb

Nf∑
i=1

Nb∑
j=1

∣∣∣B(u(i), Gθ(u
(i))(y

(j)
b ))

∣∣∣2.
(7)

Here, λI and λb denote the weight coefficients for different loss terms. However, as noted in the
original PI-DeepONet paper (43), the training process can be both memory-intensive and time-
consuming. Similar to PINNs (38), this inefficiency arises because optimizing the physics loss
requires calculating high-order derivatives of the PDE solution with respect to numerous collocation
points, typically achieved via reverse-mode automatic differentiation (1). This process involves
backpropagating the physics loss through the unrolled computational graph to update the model
parameters. For PI-DeepONet, the inefficiency is even more pronounced, as the physics loss terms
(Eq. (7)) must be evaluated across multiple PDE configurations. Although various works (5; 11; 6)
have proposed different methods to improve the training efficiency of PINNs, little research has
focused on enhancing the training efficiency of PI-DeepONet. We propose to address this inefficiency
through a separation of input variables.

A.3 Separation of Variables

The method of separation of variables seeks solutions to PDEs of the form s(y) =
T (t)Y1(y1) · · ·Yd(yd) for an input point y = (t, y1, . . . , yd) and univariate functions T, Y1, . . . , Yd.

8



Suppose we have a linear PDE system

M[t]s(y) = L1[y1]s(y) + · · ·+ Ld[yd]s(y), (8)

where M[t] = d
dt + h(t) is a first order differential operator of t, and L1[y1], ...,Ld[yd] are linear

second order ordinary differential operators of their respective variables y1, ..., yd only. Furthermore,
assume we are provided Robin boundary conditions in each variable and separable initial condition
s(t = 0, y1, . . . , yd) =

∏d
n=1 ϕn(yn) for functions ϕn(yn) that satisfy the boundary conditions.

Then, leveraging Sturm-Liouville theory and some massaging, the solution to this problem can be
written

s(y) = s(t, y1, . . . , yd) =
∑
k

AkT
k(t)

d∏
n=1

Y kn (yn), (9)

where k is a lumped index that counts over infinite eigenfunctions of each Li operator (potentially
with repeats). For example, given n ∈ {1, ..., d}, LnY kn (yn) = λknY

k
n for eigenvalue λkn ∈ R. T k(t)

depends on all the eigenvalues λkn corresponding to index k. Ak ∈ R is a coefficient determined by
the initial condition. More details can be found in Appendix E. The method of separation of variables
applied to a heat equation example can be found in supplemental materials.

One may notice the resemblance between the form of the DeepONet prediction Eq. (5) with Eq. (9),
provided βk = Ak and τk = T k(t)

∏d
i=1 Y

k
i (yi), with appropriately ordered k. We leverage this

similarity explicitly in the construction of SepONet below.

B SepONet Implementation Details

Suppose we are provided a computation domainK1 = [0, 1]d of dimension d, and an input function u.
Let Nr = Nd for given integer N . To make predictions along Nd collocation points, PI-DeepONet
must directly sample all Nd points: {y(i)}Nd

i=1 = {y(i)1 , ..., y
(i)
d }Nd

i=1 where y(i) ∈ K1 for any i. By
contrast, to compute predictions at Nr = Nd collocation points, SepONet only needs to sample N
points along each coordinate axis, e.g. {{y(i)1 }Ni=1, ..., {y

(i)
d }Ni=1}, for a total of dN samples.

For shorthand and generality, we will denote the dataset of input points for SepONet as D =

{y(:)1 , . . . , y
(:)
d }. Each y(:)n = {y(i)n }Nn

i=1 represents an array of Nn samples along the n-th coordinate
axis for a total of

∑d
n=1Nn samples. The initial and boundary points may be separately sampled

from ∂K1; the number of samples (NI and Nb) and sampling strategy are equivalent for SepONet
and PI-DeepONet.

B.1 Forward Pass

The forward pass of SepONet, illustrated for d = 2 in Fig. 1, follows the formulation Eq. (1) except
generalized to the practical setting where predictions along a grid of collocation points are processed
in parallel. The formula can be expressed:

Gθ(u)(y
(:)
1 , . . . , y

(:)
d ) =

r∑
k=1

βk

d⊗
n=1

τ
(:)
n,k

=

r∑
k=1

bψ(E(u))k
(
t1ϕ1

(y
(:)
1 )k ⊗ t2ϕ2

(y
(:)
2 )k ⊗ · · · ⊗ tdϕd

(y
(:)
d )k

)
,

(10)

where ⊗ is the (outer) tensor product, which produces an output predictive array along a meshgrid of
N1 ×N2 × · · · ×Nd collocation points. Notably, τ (:)n,k = tnϕn

(y
(:)
n )k represents a vector of Nn values

produced by the n-th trunk net along the k-th output mode after feeding all y(:)n points. After taking
the outer product along each of n = 1, . . . , d dimensions for all r modes, the modes are sum-reduced
with the predictions of the branch net βk = bψ(E(u))k. While not shown here, our implementation
also batches over input functions {u(i)}Nf

i=1 for Nf functions. Thus, for only Nf +N1 + · · ·+Nd
inputs, SepONet produces a predictive array with shape Nf ×N1 × · · · ×Nd.
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B.2 Model Update

In evaluation of the physics loss Eq. (6), SepONet enables more efficient computation of high-order
derivatives in terms of both time and memory use compared to PI-DeepONet by leveraging forward-
mode automatic differentiation (AD) (16). This is fairly evident by the form of Eq. (10). For example,
to compute derivatives along all inputs of the m-th axis

∂Gθ(u)(y
(:)
1 , ..., y

(:)
d )

∂y
(:)
m

=

r∑
k=1

βk

⊗
n ̸=m

τ
(:)
n,k

⊗
[
∂τm,k
∂ym

](:)
(11)

[
∂τm,k
∂ym

](:)
:=

[
∂τ

(1)
m,k

∂y
(1)
m

, . . . ,
∂τ

(Nm)
m,k

∂y
(Nm)
m

]T
, (12)

where
[
∂τm,k

∂ym

](:)
is a vector of derivatives of the m-th trunk net’s k-th basis function evaluated along

all inputs to them-th coordinate axis. One may notice that Eq. (12) can be written as a Jacobian-vector
product of the “Jacobian” of the (m, k)-th trunk net outputs with respect to all y(:)m inputs with a

tangent vector of 1’s:
[
∂τm,k

∂ym

](:)
=

∂
(
τ
(1)
m,k,...,τ

(Nm)
m,k

)
∂
(
y
(1)
m ,...,y

(Nm)
m

) 1. This is equivalent to forward-mode AD.

Consequently, the derivatives along the m-th coordinate axis across the entire grid of predictions can
be obtained by pushing forward derivatives of the m-th trunk net, and then reusing the outputs of
all other n ̸= m trunk nets via outer product. By contrast, PI-DeepOnet must compute derivatives
∂tϕ(y1,...,yd)

∂ym
for each input-output pair individually, where there is no such advantage and it is more

prudent to use reverse-mode AD. Fundamentally, the advantage of SepONet for using forward-
mode AD can be attributed to the significantly smaller input-output relationship when evaluating
along coordinate grids RN1+···+Nd → RN1···Nd compared to PI-DeepONet RN1···Nd → RN1···Nd .
For a more detailed explanation of forward- and reverse-mode AD, we refer readers to (6; 34).
Once the physics loss is computed, reverse-mode AD is employed to update the model parameters
θ = (ψ, ϕ1, . . . , ϕd).

C Universal Approximation Theorem for Separable Operator Networks

Here we present the universal approximation theorem for the proposed separable operator networks,
originally written in Theorem 1 and repeated below in Theorem 8. We begin by reviewing established
theoretical results on approximating continuous functions and functionals. Following this review, we
introduce the preliminary lemmas and proofs necessary for understanding Theorem 8. We refer our
readers to (4; 44) for detailed proofs of Theorem 2, Theorem 3, Theorem 4. Main notations are listed
in Table 1.

C.1 Preliminaries and Auxiliary Results

Definition (Tauber-Wiener (TW)). If a function g : R → R (continuous or discontinuous) satisfies
that all the linear combinations

∑N
i=1 cig (λix+ θi), λi ∈ R, θi ∈ R, ci ∈ R, i = 1, 2, . . . , N , are

dense in every C[a, b], then g is called a Tauber-Wiener (TW) function.
Remark (Density in C[a, b]). A set of functions is said to be dense in C[a, b] if every function in
the space of continuous functions on the interval [a, b] can be approximated arbitrarily closely by
functions from the set.
Definition (Compact Set). Suppose that X is a Banach space, V ⊆ X is called a compact set in X ,
if for every sequence {xn}∞n=1 with all xn ∈ V , there is a subsequence {xnk

}, which converges to
some element x ∈ V .
Theorem 2 ((4)). Suppose that K is a compact set in Rn, S is a compact set in C(K), g ∈ (TW),
then for any ϵ > 0, there exist a positive integer N , real numbers θi, vectors ωi ∈ Rn, i = 1, . . . , N ,
which are independent of f ∈ C(K) and constants ci(f), i = 1, . . . , N depending on f , such that∣∣∣∣∣f(x)−

N∑
i=1

ci(f)g (ωi · x+ θi)

∣∣∣∣∣ < ϵ (13)
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Table 1: Notations and Symbols

X some Banach space with norm ∥ · ∥X
Rd Euclidean space of dimension d
K some compact set in a Banach space
C(K) Banach space of all continuous functions defined on K, with norm ∥f∥C(K) = maxx∈K |f(x)|
C̃[a, b] the space of functions in C[a, b] satisfying f(a) = f(b)
V some compact set in C(K)
u(x) some input function
U the space of input functions
G some continuous operator
G(u)(y) or s(y) some output function that is mapped from the corresponding input function u by the operator G
S the space of output functions
(TW) all the Tauber-Wiener functions
σ and g activation function for branch net and trunk nets in Theorem 8
{x1, x2, . . . , xm} m sensor points for identifying input function u
r rank of some deep operator network or separable operator network
n,m operator network size hyperparameters in Theorem 8

holds for all x ∈ K and f ∈ S . Moreover, each ci(f) is a linear continuous functional defined on S .

Theorem 3 ((4)). Suppose that σ ∈ (TW), X is a Banach Space, K ⊆ X is a compact set, U is a
compact set in C(K), f is a continuous functional defined on U , then for any ϵ > 0, there are positive
integers N , m points x1, . . . , xm ∈ K, and real constants ci, θi, ξij , i = 1, . . . , N , j = 1, . . . ,m,
such that ∣∣∣∣∣∣f(u)−

N∑
i=1

ciσ

 m∑
j=1

ξiju (xj) + θi

∣∣∣∣∣∣ < ϵ (14)

holds for all u ∈ U .

Theorem 4 (Weierstrass Approximation Theorem (44)). Suppose f ∈ C[a, b], then for every ϵ > 0,
there exists a polynomial p such that for all x in [a, b], we have |f(x)− p(x)| < ϵ.

Corollary 4.1. Trigonometric polynomials are dense in the space of continuous and periodic functions
C̃[0, 2π] := {f ∈ C[0, 2π] | f(0) = f(2π)}.

Proof. For any f̃ ∈ C̃[0, 2π], extend it to a 2π-periodic and continuous function f defined on R. It
suffices to show that there exists a trigonometric polynomial that approximates f within any ϵ > 0.
We construct the continuous even functions of 2π period g and h as:

g(θ) =
f(θ) + f(−θ)

2
and h(θ) =

f(θ)− f(−θ)
2

sin(θ). (15)

Let ϕ(x) = g(arccosx) and ψ(x) = h(arccosx). Since ϕ, ψ are continuous functions on [−1, 1], by
the Weierstrass Approximation Theorem Theorem 4, for any ϵ > 0, there exist polynomials p and q
such that

|ϕ(x)− p(x)| < ϵ

4
and |ψ(x)− q(x)| < ϵ

4
(16)

holds for all x ∈ [−1, 1]. Let x = cos θ, it follows that

|g(θ)− p(cos θ)| < ϵ

4
and |h(θ)− q(cos θ)| < ϵ

4
(17)

for θ ∈ [0, π]. Because g, h and cosine are even and 2π-periodic, Eq. (17) holds for all θ ∈ R. From
the definitions of g and h, and the fact |sin θ| ≤ 1,

∣∣sin2 θ∣∣ ≤ 1, we have∣∣∣∣f(θ) + f(−θ)
2

sin2 θ − p(cos θ) sin2 θ

∣∣∣∣ < ϵ

4
and

∣∣∣∣f(θ)− f(−θ)
2

sin2 θ − q(cos θ) sin θ

∣∣∣∣ < ϵ

4
.

(18)
Using the triangle inequality, we obtain∣∣f(θ) sin2 θ − [p(cos θ) sin2 θ + q(cos θ) sin θ

]∣∣ < ϵ

2
. (19)
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Applying the same analysis to

g̃(θ) =
f(θ + π

2 ) + f(−θ + π
2 )

2
and h̃(θ) =

f(θ + π
2 )− f(−θ + π

2 )

2
sin(θ), (20)

we can find polynomials r and s such that∣∣∣f (θ + π

2

)
sin2 θ −

[
r(cos θ) sin2 θ + s(cos θ) sin θ

]∣∣∣ < ϵ

2
(21)

holds for all θ. Substituting θ with θ − π
2 gives∣∣f(θ) cos2 θ − [r(sin θ) cos2 θ − s(sin θ) cos θ

]∣∣ < ϵ

2
. (22)

By the triangle inequality, combining Eq. (22) and Eq. (19) gives∣∣f(θ)− [r(sin θ) cos2 θ − s(sin θ) cos θ + p(cos θ) sin2 θ + q(cos θ) sin θ
]∣∣ < ϵ (23)

holds for all θ. Thus, the trigonometric polynomial

r(sin θ) cos2 θ − s(sin θ) cos θ + p(cos θ) sin2 θ + q(cos θ) sin θ (24)

is an ϵ-approximation to f .

Remark. If p(x) is a polynomial, it is easy to verify that p(cos θ) is a trigonometric polynomial due

to the fact cosn θ =
∑n
k=0

(nk)
2n cos ((n− 2k)θ).

Prior to proving Theorem 1, we need to establish the following lemmas.
Lemma 5. Sine is a Tauber-Wiener function.

Proof. Assuming the interval to be [0, π] first. For every continuous function f on [0, π] and any
ϵ > 0, we can extend f to a continuous function F on [0, 2π] so that F (x) = f(x) on [0, π] and
F (2π) = F (0). By Corollary 4.1, there exists a trigonometric polynomial

p(x) = a0 +

N∑
n=1

an cos(nx) + bn sin(nx) (25)

such that
sup

x∈[0,π]

|f(x)− p(x)| ≤ sup
x∈[0,2π]

|F (x)− p(x)| < ϵ. (26)

Let c0 = a0, λ0 = 0, θ0 = π
2 , c2n−1 = bn, λ2n−1 = n, θ2n−1 = 0, c2n = an, λ2n = n, θ2n = π

2 ,
for n = 1, 2, . . . , N , p(x) is redefined as

p(x) =

2N∑
i=0

ci sin (λix+ θi) . (27)

Thus we have ∣∣∣∣∣f(x)−
2N∑
i=0

ci sin (λix+ θi)

∣∣∣∣∣ < ϵ (28)

for x ∈ [0, π]. Now consider a continuous function g on [a, b], define f(x) ∈ C[0, π] :=
g
(
b−a
π x+ a

)
, then by Eq. (28), we have∣∣∣∣∣g(x)−

2N∑
i=0

ci sin

(
πλi
b− a

x− πλia

b− a
+ θi

)∣∣∣∣∣ < ϵ (29)

holds for all x ∈ [a, b]. Thecrefore, it follows that for any continuous function g on [a, b] and any
ϵ > 0, we can approximate g within ϵ by choosing N sufficiently large and adjusting ci, λi, θi
accordingly. Hence, the set of all such linear combinations of sin(x) is dense in C[a, b], confirming
that sin(x) is a Tauber-Wiener function.

Remark. It is straightforward to conclude that all sinusoidal functions are Tauber-Wiener functions.
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Lemma 6. Suppose that V1 ⊆ X1, V2 ⊆ X2 are two compact sets in Banach spaces X1 and X2,
respectively, then their Cartesian product V1 × V2 is also compact.

Proof. For every sequence
{
x1n, x

2
n

}
in V1×V2, since V1 is compact,

{
x1n
}

has a subsequence
{
x1nk

}
that converges to some element x1 ∈ V1. As well, since V2 is compact, there exists a subsequence{
x2nk

}
that converges to x2 ∈ V2. It follows that

{
x1n, x

2
n

}
converges to

(
x1, x2

)
∈ V1 × V2, thus

V1 × V2 is compact.

Lemma 7. Suppose that X is a Banach space, K1 ⊆ X1, K2 ⊆ X2 are two compact sets in X1 and
X2, respectively. U is a compact set in C(K1), then the range G(U) of the continuous operator G
from U to C(K2) is compact in C(K2).

Proof. For every sequence {fn} in U , since U is compact, there exists a subsequence {fnk
} that

converges to some function f ∈ U . Since G is continuous, the convergence fnk
→ f in C(K1)

implies
G(fnk

) → G(f) in C(K2). (30)

Thus, for every sequence {G(fn)} in G(U), there exists a subsequence {G(fnk
)} that converges to

G(f) ∈ G(U). Thecrefore, the range G(U) of the continuous operator G is compact in C(K2).

C.2 Universal Approximation Theorem for SepONet

Theorem 8 (Universal Approximation Theorem for Separable Operator Networks). Suppose that
σ ∈ (TW), g is a sinusoidal function, X is a Banach Space, K ⊆ X , K1 ⊆ Rd1 and K2 ⊆ Rd2 are
three compact sets in X , Rd1 and Rd2 , respectively, U is a compact set in C (K), G is a nonlinear
continuous operator, which maps U into a compact set S ⊆ C (K1 ×K2), then for any ϵ > 0, there
are positive integers n, r, m, constants cki , ζ1k , ζ2k , ξkij , θ

k
i ∈ R, points ω1

k ∈ Rd1 , ω2
k ∈ Rd2 , xj ∈ K1,

i = 1, . . . , n, k = 1, . . . , r, j = 1, . . . ,m, such that∣∣∣∣∣∣G(u)(y)−
r∑

k=1

n∑
i=1

cki σ

 m∑
j=1

ξkiju (xj) + θki

 g
(
w1
k · y1 + ζ1k

)
g
(
w2
k · y2 + ζ2k

)∣∣∣∣∣∣ < ϵ (31)

holds for all u ∈ U , y = (y1, y2) ∈ K1 ×K2.

Proof. Without loss of generality, we can assume that g is sine function, by Lemma 5, we have
g ∈ (TW ); From the assumption that K1 and K2 are compact, by Lemma 6, K1 ×K2 is compact;
Since G is a continuous operator that maps U into C(K1 ×K2), it follows that the range G(U) =
{G(u) : u ∈ U} is compact in C(K1 ×K2) due to Lemma 7; Thus by Theorem 2, for any ϵ > 0,
there exists a positive integerN , real numbers ck(G(u)) and ζk, vectors ωk ∈ Rd1+d2 , k = 1, . . . , N ,
such that ∣∣∣∣∣G(u)(y)−

N∑
k=1

ck(G(u))g (ωk · y + ζk)

∣∣∣∣∣ < ϵ

2
(32)

holds for all y ∈ K1 × K2 and u ∈ C(K). Let (ω1
k, ω

2
k) = ωk, where ω1

k ∈ Rd1 and ω2
k ∈ Rd2 .

Utilizing the trigonometric angle addition formula, we have

g (ωk · y + ζk) = g
(
ω1
k · y1 + ζk

)
g
(
ω2
k · y2 +

π

2

)
+ g

(
ω1
k · y1 + ζk +

π

2

)
g
(
ω2
k · y2

)
. (33)

Let r = 2N , cN+k(G(u)) = ck(G(u)), ω1
N+k = ω1

k, ω2
N+k = ω2

k, ζ1k = ζk, ζ2k = π
2 for k =

1, . . . , N , and let ζ1k = ζk +
π
2 , ζ2k = 0 for k = N + 1, . . . , r, Eq. (32) can be expressed as:∣∣∣∣∣G(u)(y)−
r∑

k=1

ck(G(u))g
(
ω1
k · y1 + ζ1k

)
g
(
ω2
k · y2 + ζ2k

)∣∣∣∣∣ < ϵ

2
. (34)

Since G is a continuous operator, according to the last proposition of Theorem 2, we conclude that
for each k = 1, . . . , 2N , ck(G(u)) is a continuous functional defined on U . Repeatedly applying
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Theorem 3, for each k = 1, . . . , 2N , ck(G(u)), we can find positive integers nk,mk, constants cki ,
ξkij , θ

k
i ∈ R and xj ∈ K1, i = 1, . . . , nk, j = 1, . . . ,mk, such that∣∣∣∣∣∣ck(G(u))−

nk∑
i=1

cki σ

mk∑
j=1

ξkiju(xj) + θki

∣∣∣∣∣∣ < ϵ

2L
(35)

holds for all k = 1, . . . , r and u ∈ U , where

L =

r∑
k=1

sup
y1∈K2,y2∈K3

∣∣g (ω1
k · y1 + ζ1k

)
g
(
ω2
k · y2 + ζ2k

)∣∣ . (36)

Substituting Eq. (35) into Eq. (34), we obtain that∣∣∣∣∣∣G(u)(y)−
r∑

k=1

nk∑
i=1

cki σ

mk∑
j=1

ξkiju (xj) + θki

 g
(
w1
k · y1 + ζ1k

)
g
(
w2
k · y2 + ζ2k

)∣∣∣∣∣∣ < ϵ (37)

holds for all u ∈ U , y1 ∈ K1 and y2 ∈ K2. Let n = maxk nk, m = maxkmk. For all nk < i ≤ n,
let cki = 0. For all mk < j ≤ m, let ξkij = 0. Then Eq. (37) can be rewritten as:∣∣∣∣∣∣G(u)(y)−

r∑
k=1

n∑
i=1

cki σ

 m∑
j=1

ξkiju (xj) + θki

 g
(
w1
k · y1 + ζ1k

)
g
(
w2
k · y2 + ζ2k

)∣∣∣∣∣∣ < ϵ, (38)

which holds for all u ∈ U , y1 ∈ K1 and y2 ∈ K2. This completes the proof of Theorem 1.

D PDE Problem Definitions, Training details, and Complete Test Results

D.1 PDE Problem Definitions

All PDE test problems exhibited in Section 3 are described in the subsections below.

D.1.1 Diffusion-Reaction Systems

Consider the following nonlinear diffusion-reaction system with a source term u(x):

∂s

∂t
= D

∂2s

∂x2
+ ks2 + u(x), (x, t) ∈ (0, 1)× (0, 1] (39)

with zero initial and boundary conditions, where D = 0.01 is the diffusion coefficient and k = 0.01
is the reaction rate. The input training source terms are sampled from a mean-zero Gaussian random
field (GRF) (39) with a length scale 0.2. To generate the test dataset, we sample 100 different source
terms from the same GRF and apply a second-order implicit finite difference method (13) to obtain
the reference solutions on a uniform 128× 128 grid.

D.1.2 Advection equation

Consider the following linear advection equation parameterized by the variable coefficients u(x):

∂s

∂t
+ u(x)

∂s

∂x
= 0, (x, t) ∈ (0, 1)× (0, 1) (40)

with the initial and boundary condition

s(x, 0) = sin(πx), x ∈ (0, 1),

s(0, t) = sin
(π
2
t
)
, t ∈ (0, 1).

(41)

The input training variable coefficients are strictly positive by defining u(x) = v(x)−minx v(x)+1,
where v is sampled from a GRF with length scale 0.2. To create the test dataset, we generate 100 new
coefficients in the same manner that are not used in training and apply the Lax–Wendroff scheme (13)
to solve the advection equation on a uniform 128× 128 grid.
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D.1.3 Burgers’ Equation

Consider the nonlinear Burgers’ equation:

∂s

∂t
+ s

∂s

∂x
− ν

∂2s

∂x2
= 0, (x, t) ∈ (0, 1)× (0, 1],

s(x, 0) = u(x), x ∈ (0, 1)

(42)

with periodic boundary conditions:

s(0, t) = s(1, t),

∂s

∂x
(0, t) =

∂s

∂x
(1, t),

(43)

where t ∈ (0, 1) and ν = 0.01 is the viscosity. The input training initial conditions are sampled from a
GRF ∼ N

(
0, 252

(
−∆+ 52I

)−4
)

using the Chebfun package (7), satisfying the periodic boundary
conditions. Synthetic test dataset consists of 100 unseen initial functions and their corresponding
solutions, which are generated from the same GRF and are solved by spectral method on a 101× 101
uniform grid using the spinOp library (35), respectively.

D.1.4 2D Nonlinear diffusion equation

Consider the 2D nonlinear diffusion equation which was used in (6):

∂s

∂t
= α∇ · (s∇s) , (x, t) ∈ Ω× [0, 1],

s(x, 0) = u(x), x ∈ Ω,

s(x, t) = 0, (x, t) ∈ ∂Ω× [0, 1],

(44)

where x = (x, y) denotes 2D spatial variables, Ω = [0, 1]2 is the spatial domain and α = 0.05 is
the diffusivity. The input training initial conditions are generated as a sum of Gaussian functions,
parameterized as:

u(x, y) =

3∑
i=1

Ai exp[−wi{(x− xi)
2 + (y − yi)

2}], (45)

where Ai ∼ U(0.2, 0.5) are amplitudes, wi ∼ U(10, 20) are width parameters, and (xi, yi) ∼
U(−0.5, 0.5)2 are center coordinates. We also generate 100 unseen test initial conditions using this
method. The nonlinear diffusion equation is then solved using explicit Adams method to obtain
reference solutions on a uniform 101× 101 spatial grid with 101 time points.

D.2 Training details and hyperparameters

Both PI-DeepONet and SepONet were trained by minimizing the physics loss (Eq. (6)) using gradient
descent with the Adam optimizer (18). The initial learning rate is 1× 10−3 and decays by a factor
of 0.9 every 1,000 iterations. Additionally, we resample input training functions and training points
(including residual, initial, and boundary points) every 100 iterations.

Across all benchmarks and on both models (SepONet and PI-DeepONet), we apply Tanh activation
for the branch net and Sine activation for the trunk net. We note that no extensive hyperparameter
tuning was performed for either PI-DeepONet or SepONet. The code in this study is implemented
using JAX and Equinox libraries (2; 17), and all training was performed on a single NVIDIA A100
GPU with 80 GB of memory. Training hyperparameters are provided in Table 2.

D.3 Additional SepONet results for Burgers’ equation

SepONet’s capabilities extend even further, as shown in Table 3. For the Burgers’ equation, it
achieves a 4.12% error with Nc = 5122 and Nf = 800, while maintaining reasonable memory usage
(10.485 GB) and training time (0.478 hours). These results underscore SepONet’s ability to handle
extreme-scale learning problems beyond PI-DeepONet’s computational limits, making it valuable for
complex, large-scale physical simulations.
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Table 2: Training hyperparameters for different PDE benchmarks

Hyperparameters \ PDEs Diffusion-reaction Advection Burgers’ 2D Nonlinear diffusion
# of sensors 128 128 101 10201 (101 × 101)

Network depth 5 6 7 7
Network width 50 100 100 128

# of training iterations 50k 120k 80k 80k
Weight coefficients (λI / λb) 1 / 1 100 / 100 20 / 1 20 / 1

Table 3: Additional SepONet results for Burgers’ equation, demonstrating that larger Nc and Nf can
be used to enhance accuracy with minimal cost increase.

Metrics \ Nc & Nf 1282 & 400 1282 & 800 2562 & 400 2562 & 800 5122 & 400 5122 & 800

Relative ℓ2 error (%) 6.60 6.21 5.68 4.46 5.38 4.12
Memory (GB) 0.966 1.466 2.466 4.466 5.593 10.485

Training time (hours) 0.0771 0.0957 0.1238 0.1717 0.2751 0.478

D.4 Complete test results

We report the relative ℓ2 error, root mean squared error (RMSE), GPU memory usage and total
training time as metrics to assess the performance of PI-DeepONet and SepONet. Specifically, the
mean and standard deviation of the relative ℓ2 error and RMSE are calculated over all functions in
the test dataset. The complete test results are shown in Table 4 and Table 5.

Table 4: Performance comparison of PI-DeepONet and SepONet with varying number of training
points (Nc) and fixed number of input training functions (Nf = 100). The ’-’ symbol indicates that
results are not available due to out-of-memory issues.

Equations Metrics Models 8d 16d 32d 64d 128d

Diffusion-Reaction
d = 2

Relative ℓ2 error (%) PI-DeepONet 1.39 ± 0.71 1.11 ± 0.59 0.87 ± 0.41 0.83 ± 0.35 0.73 ± 0.34
SepONet 1.49 ± 0.82 0.79 ± 0.35 0.70 ± 0.33 0.62 ± 0.28 0.62 ± 0.26

RMSE (×10−2) PI-DeepONet 0.58 ± 0.29 0.46 ± 0.22 0.37 ± 0.20 0.36 ± 0.20 0.32 ± 0.18
SepONet 0.62 ± 0.28 0.35 ± 0.22 0.32 ± 0.23 0.28 ± 0.20 0.29 ± 0.21

Memory (GB) PI-DeepONet 0.729 1.227 3.023 9.175 35.371
SepONet 0.715 0.717 0.715 0.717 0.719

Training time (hours) PI-DeepONet 0.0433 0.0641 0.1497 0.7252 2.8025
SepONet 0.0403 0.0418 0.0430 0.0427 0.0326

Advection
d = 2

Relative ℓ2 error (%) PI-DeepONet 9.27 ± 1.94 7.55 ± 1.86 6.79 ± 1.84 6.69 ± 1.95 5.72 ± 1.57
SepONet 14.29 ± 2.65 11.96 ± 2.17 6.14 ± 1.58 5.80 ± 1.57 4.99 ± 1.40

RMSE (×10−2) PI-DeepONet 5.88 ± 1.34 4.79 ± 1.27 4.31 ± 1.23 4.24 ± 1.29 3.63 ± 1.05
SepONet 9.06 ± 1.88 7.58 ± 1.55 3.90 ± 1.09 3.69 ± 1.07 3.17 ± 0.95

Memory (GB) PI-DeepONet 0.967 1.741 5.103 17.995 59.806
SepONet 0.713 0.715 0.715 0.715 0.719

Training time (hours) PI-DeepONet 0.0787 0.1411 0.4836 2.3987 8.231
SepONet 0.0843 0.0815 0.0844 0.0726 0.0730

Burgers’
d = 2

Relative ℓ2 error (%) PI-DeepONet 29.33 ± 3.85 20.31 ± 4.31 14.17 ± 5.25 13.72 ± 5.59 -
SepONet 29.42 ± 3.79 31.53 ± 3.44 28.74 ± 4.11 11.85 ± 4.06 7.51 ± 4.04

RMSE (×10−2) PI-DeepONet 4.19 ± 2.79 2.82 ± 1.86 2.23 ± 2.10 2.20 ± 2.13 -
SepONet 4.18 ± 2.74 4.44 ± 2.81 4.11 ± 2.76 1.80 ± 1.60 1.23 ± 1.44

Memory (GB) PI-DeepONet 1.253 2.781 5.087 18.001 -
SepONet 0.603 0.605 0.603 0.605 0.716

Training time (hours) PI-DeepONet 0.1497 0.2375 0.6431 3.2162 -
SepONet 0.0706 0.0719 0.0716 0.0718 0.0605

Nonlinear diffusion
d = 3

Relative ℓ2 error (%) PI-DeepONet 17.38 ± 5.56 9.90 ± 2.91 - - -
SepONet 16.10 ± 4.46 12.11 ± 3.89 6.81 ± 1.98 6.73 ± 1.96 6.44 ± 1.69

RMSE (×10−2) PI-DeepONet 1.86 ± 0.62 1.04 ± 0.23 - - -
SepONet 1.72 ± 0.49 1.29 ± 0.37 0.72 ± 0.19 0.71 ± 0.17 0.68 ± 0.15

Memory (GB) PI-DeepONet 6.993 37.715 - - -
SepONet 3.471 2.897 2.899 2.897 13.139

Training time (hours) PI-DeepONet 0.5836 6.6399 - - -
SepONet 0.1044 0.1069 0.1056 0.1456 0.5575
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Table 5: Performance comparison of PI-DeepONet and SepONet with varying number of input
training functions (Nf ) and fixed number of training points (Nc = 128d, d indicated by problem
instance). The ’-’ symbol indicates that results are not available due to out-of-memory issues.

Equations Metrics Models 5 10 20 50 100

Diffusion-Reaction
d = 2

Relative ℓ2 error (%) PI-DeepONet 34.54 ± 27.83 4.23 ± 2.52 1.72 ± 1.00 0.91 ± 0.46 0.73 ± 0.34
SepONet 22.40 ± 12.30 3.11 ± 1.89 1.19 ± 0.74 0.73 ± 0.32 0.62 ± 0.26

RMSE (×10−2) PI-DeepONet 14.50 ± 9.04 1.75 ± 0.90 0.71 ± 0.37 0.40 ± 0.28 0.32 ± 0.18
SepONet 9.34 ± 5.37 1.36 ± 1.07 0.50 ± 0.29 0.34 ± 0.25 0.29 ± 0.21

Memory (GB) PI-DeepONet 2.767 5.105 9.239 17.951 35.371
SepONet 0.719 0.719 0.717 0.717 0.719

Training time (hours) PI-DeepONet 0.1268 0.2218 0.5864 1.4018 2.8025
SepONet 0.0375 0.0390 0.0370 0.0317 0.0326

Advection
d = 2

Relative ℓ2 error (%) PI-DeepONet 9.64 ± 2.91 8.77 ± 2.23 7.57 ± 1.98 6.69 ± 1.93 5.72 ± 1.57
SepONet 7.62 ± 2.06 6.59 ± 1.71 5.47 ± 1.57 5.18 ± 1.51 4.99 ± 1.40

RMSE (×10−2) PI-DeepONet 6.11 ± 1.90 5.55 ± 1.51 4.80 ± 1.33 4.24 ± 1.28 3.63 ± 1.05
SepONet 4.83 ± 1.38 4.18 ± 1.17 3.47 ± 1.06 3.29 ± 1.02 3.17 ± 0.95

Memory (GB) PI-DeepONet 3.021 5.611 9.707 34.511 59.806
SepONet 0.713 0.715 0.719 0.719 0.719

Training time (hours) PI-DeepONet 0.3997 1.0766 1.9765 4.411 8.231
SepONet 0.0754 0.0715 0.0736 0.0720 0.0730

Burgers’
d = 2

Relative ℓ2 error (%) PI-DeepONet 28.48 ± 4.17 28.63 ± 4.10 28.26 ± 4.38 12.33 ± 5.14 -
SepONet 27.79 ± 4.40 28.16 ± 4.24 22.78 ± 6.47 10.25 ± 4.44 7.51 ± 4.04

RMSE (×10−2) PI-DeepONet 4.09 ± 2.77 4.11 ± 2.78 4.07 ± 2.78 1.96 ± 1.92 -
SepONet 4.01 ± 2.75 4.05 ± 2.76 3.30 ± 2.55 1.65 ± 1.64 1.23 ± 1.44

Memory (GB) PI-DeepONet 5.085 9.695 17.913 35.433 -
SepONet 0.605 0.607 0.607 0.609 0.716

Training time (hours) PI-DeepONet 0.5135 1.3896 2.6904 5.923 -
SepONet 0.0725 0.0707 0.0703 0.0612 0.0605

Nonlinear diffusion
d = 3

Relative ℓ2 error (%) PI-DeepONet - - - - -
SepONet 31.94 ± 9.18 25.48 ± 8.95 21.16 ± 7.82 10.21 ± 3.31 6.44 ± 1.69

RMSE (×10−2) PI-DeepONet - - - - -
SepONet 3.44 ± 1.13 2.73 ± 0.99 2.27 ± 0.91 1.09 ± 0.32 0.68 ± 0.15

Memory (GB) PI-DeepONet - - - - -
SepONet 2.923 3.139 4.947 6.995 13.139

Training time (hours) PI-DeepONet - - - - -
SepONet 0.1175 0.1408 0.1849 0.3262 0.5575

E Complete solution to separation of variables example Eq. (9)

Recall the linear PDE system treated in Appendix A.3:

M[t]s(y) = L1[y1]s(y) + · · ·+ Ld[yd]s(y), (46)

where M[t] = d
dt + h(t) is a first order differential operator of t, and L1[y1], ...,Ld[yd] are linear

second order ordinary differential operators of their respective variables y1, ..., yd only. Furthermore,
assume we are provided Robin boundary conditions in each variable and separable initial condition
s(t = 0, y1, . . . , yd) =

∏d
n=1 ϕn(yn) for functions ϕn(yn) that satisfy the boundary conditions.

Assuming a separable solution exists, s(y) = T (t)Y1(y1) · · ·Yd(yd), the PDE can be decomposed in
the following form:

MT (t)

T (t)
=

L1Y1(y1)

Y1(y1)
+ · · ·+ LdYd(yd)

Yd(yd)
, (47)

where it is apparent that each term in the sequence is a constant, since they are each only functions
of a single variable. Consequently, we may solve each of the Ln terms independently using Sturm-
Liouville theory. After we have found the associated eigenfunctions (Y knn ) and eigenvalues (λknn ), we
may manually integrate the left-hand side. Finally, we may decompose the separable initial condition
into a product of sums of the orthonormal basis functions (eigenfunctions) of each variable. The
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resulting solution is given by

s(y) = s(t, y1, . . . , yd) =
∑

k=(k1,...,kd)

BkT
k(t)

d∏
n=1

Y knn (yn),

T k(t) := T (k1,...,kd)(t) = exp

(
−
∫ t

0

h(τ)dτ + t

d∑
n=1

λknn

)
,

Bk := B(k1,...,kd) =

d∏
n=1

⟨Y knn (yn), ϕn(yn)⟩n
⟨Y knn (yn), Y

kn
n (yn)⟩n

, λknn =
LnY knn (yn)

Y knn (yn)
,

n = 1, ..., d, kn = 1, 2, . . . ,∞.

(48)

Here, k = (k1, . . . , kd), where kn ∈ {1, 2, ...,∞},∀n ∈ {1, ..., d}, is a lumped index that counts over
all possible products of eigenfunctions Y knn with associated eigenvalues λknn . ⟨·⟩n is an appropriate
inner product associated with the separated Hilbert space of the Ln-th operator. To obtain Eq. (9)
in the main manuscript, one only need to break up the sum over all kn indices into a single ordered
index.

F Linear Heat Equation Example

SepONet is motivated by the classical method of separation of variables, which is often employed
to solve linear partial differential equations (PDEs). To illustrate the connection between these
approaches, consider the linear heat equation:

∂s

∂t
=

1

π2

∂2s

∂x2
, (x, t) ∈ (0, 1)× (0, 1],

s(x, 0) = u(x), x ∈ (0, 1),

s(0, t) = s(1, t) = 0, t ∈ (0, 1).

(49)

The goal is to solve this equation for various initial conditions u(x) using both the separation of
variables technique and the SepONet method, allowing for an intuitive comparison between the two.

F.1 Separation of Variables Technique

We seek a solution in the form:
s(x, t) = X(x)T (t) (50)

for functions X , T to be determined. Substituting Eq. (50) into Eq. (49) yields:

X
′′

X
= −λ and

π2T
′

T
= −λ (51)

for some constant λ. To satisfy the boundary condition, X must solve the following eigenvalue
problem:

X
′′
(x) + λX(x) = 0, x ∈ (0, 1),

X(0) = X(1) = 0,
(52)

and T must solve the ODE problem:

T
′
(t) = − λ

π2
T (t). (53)

The eigenvalue problem Eq. (52) has a sequence of solutions:

λk = (kπ)2, Xk(x) = sin(kπx), for k = 1, 2, . . . (54)

For any λ, the ODE solution for T is T (t) = Ae−
λ
π2 t for some constant A. Thus, for each

eigenfunction Xk with corresponding eigenvalue λk, we have a solution Tk such that the function

sk(x, t) = Xk(x)Tk(t) (55)
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will be a solution of Eq. (51). In fact, an infinite series of the form

s(x, t) =

∞∑
k=1

Xk(x)Tk(t) =

∞∑
k=1

Ake
−k2t sin(kπx) (56)

will also be a solution satisfying the differential operator and boundary condition of the heat equation
Eq. (49) subject to appropriate convergence assumptions of this series. Now let s(x, 0) = u(x), we
can find coefficients:

Ak = 2

∫ 1

0

sin (kπx)u(x)dx (57)

such that Eq. (56) is the exact solution of the heat equation Eq. (49).

F.2 SepONet Method

In this section, we apply the SepONet framework to solve the linear heat equation Eq. (49) and
compare the basis functions it learns with those derived from the classical separation of variables
method. Recall that a SepONet, parameterized by θ, approximates the solution operator of Eq. (49)
as follows:

Gθ(u)(x, t) =

r∑
k=1

βk(u(x1), u(x2), . . . , u(x128))τk(t)ζk(x), (58)

where x1, x2, . . . , x128 are 128 equi-spaced sensors in [0, 1], βk is the k-th output of the branch net,
and the basis functions τk(t) and ζk(x) are the k-th outputs of two independent trunk nets.

Training settings The branch and trunk networks each have a width of 5 and a depth of 50. To
determine the parameters θ, we trained SepONet for 80,000 iterations, minimizing the physics
loss. Specifically, we set λI = 20, λb = 1, Nf = 100, and Nc = 1282 in the physics loss. The
training functions (initial conditions)

{
u(i)
}Nf

i=1
were generated from a Gaussian random field (GRF)

∼ N
(
0, 252

(
−∆+ 52I

)−4
)

using the Chebfun package (7), ensuring zero Dirichlet boundary
conditions. Additional training settings are detailed in Appendix B.2 of the main text.

Evaluation We evaluated the model on 100 unseen initial conditions sampled from the same GRF,
using the forward Euler method to obtain reference solutions on a 128× 128 uniform spatio-temporal
grid.

Impact of the rank r Since τk(t) and ζk(x) are independent of the initial condition u, learning
an expressive and rich set of basis functions is crucial for SepONet to generalize to unseen initial
conditions. To investigate the impact of the rank r on the generalization error, we trained SepONet
with ranks ranging from 1 to 50. The mean RMSE between SepONet’s predictions and the reference
solutions over 100 unseen test initial conditions was reported. For comparison, we also computed
the mean RMSE of the truncated analytical solution at rank r for r from 1 to 15. The results are
presented in Fig. 4.

As r increases, the truncated analytical solution quickly converges to the reference solution. The
nonzero RMSE arises due to numerical errors in computing the coefficients Ak and the inherent
inaccuracies of the forward Euler method used to generate the reference solution. For SepONet,
we observed that when r = 1, 2, the mean RMSE aligns closely with that of the truncated solution.
However, as r increases beyond that point, the error decreases more gradually, stabilizing around
r = 50. This indicates that SepONet may not necessarily learn the exact same basis functions as
those from the truncated analytical solution. Instead, a higher rank r allows SepONet to develop its
own set of basis functions, achieving similar accuracy to the truncated solution.

SepONet basis functions The learned basis functions for different ranks r are visualized in Fig. 5
to Fig. 9.

At r = 1, SepONet learns basis functions that closely resemble the first term of the truncated solution.
For r = 2, the learned functions are quite similar to the first two terms of the truncated series.
However, when r = 5, the basis functions diverge from the truncated solution series, although
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some spatial components still resemble sinusoidal functions and the temporal components remain
monotonic. As r increases further, SepONet continues to improve in accuracy, though the learned basis
functions increasingly differ from the truncated series, confirming SepONet’s ability to accurately
approximate the solution using its own learned basis functions.

Figure 4: Comparison of RMSE between the truncated analytical solution and SepONet predictions
for varying rank r. The truncated analytical solution quickly converges, while SepONet shows a
slower decay in error, converging around r = 50.

Figure 5: Learned basis functions τk(t) and ζk(x) for r = 1. SepONet learns the same basis functions
as the first term of the truncated solution.

Figure 6: Learned basis functions τk(t) and ζk(x) for r = 2. SepONet learns very similar basis
functions as the first two terms of the truncated solution.

G Visualization of SepONet Predictions

In this section, we showcase the performance of trained SepONets in predicting solutions for PDEs
under previously unseen configurations. The SepONets were trained usingNf = 100 andNc = 128d,
where d denotes the dimensionality of the PDE problem. The prediction results are presented in
Figs. 10 to 13.
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Figure 7: Learned basis functions τk(t) and ζk(x) for r = 5.

Figure 8: Learned basis functions τk(t) and ζk(x) for r = 10.
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Figure 9: Learned basis functions τk(t) and ζk(x) for r = 50.
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Figure 10: (1+1)-d Diffusion-reaction equation.

Figure 11: (1+1)-d Advection equation.
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Figure 12: (1+1)-d Burgers’ equation.

24



Figure 13: (2+1)-d Nonlinear diffusion equation. Two snapshots at t = 0.5 and t = 1 are presented.
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