
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BANDIT LEARNING IN MATCHING MARKETS WITH IN-
DIFFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

A rich line of recent works studies how participants in matching markets learn
their unknown preferences through iterative interactions with each other. Two
sides of participants in the market can be respectively formulated as players and
arms in the bandit problem. To ensure market stability, the objective is to mini-
mize the stable regret of each player. Though existing works provide significant
theoretical upper bounds for players’ stable regret, the results heavily rely on the
assumption that each participant has a strict preference ranking. However, in real
applications, multiple candidates (e.g., workers in the labor market and students in
school admission) usually demonstrate comparable performance levels, making it
challenging for participants (e.g. employers and schools) to differentiate and rank
their preferences. To deal with the potential indifferent preferences, we propose an
adaptive exploration algorithm based on arm-guided Gale-Shapley (AE-AGS). We
show that its stable regret is of order O(NK log T/∆2), where N is the number
of players, K the number of arms, T the total time horizon, and ∆ the minimum
non-zero preference gap. To the best of our knowledge, this is the first polyno-
mial regret bound applicable to the more general indifference setting, and it is
only O(N) worse than the state-of-the-art result in the strict preference setting.
Extensive experiments demonstrate the algorithm’s effectiveness in handling such
complex situations and its consistent superiority over baselines.

1 INTRODUCTION

The two-sided matching market is a fundamental concept in economics and operations research
(Gale & Shapley, 1962; Roth, 1984; Roth & Sotomayor, 1992; Roth & Peranson, 1999; Fleiner,
2003). It provides a formal framework to model interactions between two distinct sides of agents
and has a wide range of applications such as labor markets (Kelso Jr & Crawford, 1982; Roth, 1984),
school admission (Roth, 2008), house allocation (Sönmez & Ünver, 2011), and so forth. Each agent
(e.g., employer) has his own preferences over the other side (e.g., workers in labor markets) and
seeks to form beneficial pairings. To keep the stability of the market and thus avoid dissatisfaction
of agents and future inefficiencies, a rich line of works study how to find a stable matching in the
market (Gale & Shapley, 1962; Roth, 1984; Roth & Sotomayor, 1992; Kelso Jr & Crawford, 1982),
among which the Gale-Shapley algorithm (Gale & Shapley, 1962) is one of the most classic one.
All these works assume that agents’ preferences are known as a prior.

However, prior knowledge of preferences may not always be fully certain in real-world applications.
For example, employers typically cannot precisely assess a worker’s abilities before they are hired.
A stable matching derived from temporal preference estimation may not ensure long-term stability.
With the rise of online marketplaces such as the online labor platform Upwork and the crowdsourc-
ing platform Amazon Mechanical Turk, employers are increasingly able to learn about uncertain
preferences through iterative matching processes driven by their released multiple tasks. The multi-
armed bandit (MAB) is a classic model that characterizes the learning process for agents towards
uncertain information (Auer et al., 2002; Lattimore & Szepesvári, 2020), also offering solutions for
agents in matching markets to learn their unknown preferences.

The classic MAB model contains one player and K arms. Each arm aj is associated with an un-
known reward µj . The player would learn this knowledge through iterative selections. The objective
of the player is to maximize the cumulative rewards, equivalent to minimizing the cumulative regret

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

defined as the cumulative distance between the optimal reward and received rewards. To achieve this
long-horizon objective, the player faces the dilemma of exploration and exploitation. The former
hopes to select the arm with fewer observed times to know the arm better, and the latter hopes to se-
lect the better-performed arms to accumulate as many rewards as possible. The explore-then-commit
(ETC) (Garivier et al., 2016), upper confidence bound (UCB) (Auer et al., 2002) and Thompson
sampling (TS) (Thompson, 1933) are common strategies to deal with the problem.

The bandit learning problem in matching markets recently attracted great interest in the literature,
where two sides of participants can be modeled as players and arms. Players can learn their unknown
preferences through interactions with arms. Das & Kamenica (2005) first introduces the framework
and proposes empirical solutions. Liu et al. (2020) further gives a formal theoretical formulation and
derives algorithms with theoretical guarantees on the stable regret, which is defined as the cumulative
distance between the reward in a stable matching and the reward received during the interactions.
In the matching market scenario, due to the interference among multiple agents, the selections of an
individual player can be easily blocked, making the trade-off between exploration and exploitation
more challenging. To avoid conflicts among players, Liu et al. (2020) consider the centralized setting
where a central platform collects information from participants and assigns partners for players. A
rich line of the following works try to improve their stable regret bound and generalize the model by
considering the decentralized setting (Liu et al., 2021; Sankararaman et al., 2021; Basu et al., 2021;
Maheshwari et al., 2022; Kong et al., 2022; Zhang et al., 2022; Kong & Li, 2023).

Despite the significance of the results, all existing works assume each market participant has a strict
preference ranking, i.e., the preference values towards different candidates are different. However,
this assumption may not be realistic. In many applications such as labor market and school admis-
sion, multiple candidates usually demonstrate similar performances, leading to ties of preference
rankings. Especially in large markets, maintaining a strict preference ranking over all candidates
can be extremely time-consuming and effort-intensive, while the marginal benefit of distinguishing
between closely ranked candidates may be minimal. To improve the practicality and robustness
of algorithms, it is crucial to deal with participants’ indifferent preferences (Erdil & Ergin, 2008;
Abdulkadiroğlu et al., 2009; Chen, 2012; Erdil & Ergin, 2017; Erdil & Kumano, 2019).

The state-of-the-art approaches in matching markets employ an explore-then-Gale-Shapley strategy
to address the exploration-exploitation trade-off (Zhang et al., 2022; Kong & Li, 2023). In these
methods, exploration continues until players have identified all preference gaps, after which the
algorithm transits to exploitation, applying the Gale-Shapley algorithm (Gale & Shapley, 1962) to
achieve stable matching. However, once two arms exhibit identical preferences, the exploration
process would never stop, leading the algorithm to incur an O(T) regret, where T represents the
total time horizon. With indifferent preferences, the algorithm faces new difficulties in balancing
exploration and exploitation. Prolonged exploration could incur additional regret, while prematurely
halting exploration may result in incorrect ranking estimates, leading to a non-stable matching.

In this work, we try to overcome the above challenge for the bandit learning problem in matching
markets with indifference. Though existing results all assume market participants have strict pref-
erence rankings, we try to extend them to the indifference setting. As summarized in Table 1, only
Liu et al. (2020) and Basu et al. (2021) can apply to indifference. However, their approaches either
require knowledge of ∆ or suffer exponential regret. We propose a more suitable policy to balance
exploration and exploitation - an arm-guided adaptive exploration algorithm where players only ex-
plore arms that propose to them and adaptively eliminate sub-optimal arms, for both the centralized
and decentralized setting. This design allows players to explore freely without the need to explic-
itly distinguish between exploration and exploitation processes. We show that such an algorithm
achieves the stable regret of order O(NK log T/∆2) where N is the number of players, K is the
number of arms, T is the total horizon and ∆ is the minimum non-zero gap1. To the best of our
knowledge, this result is the first polynomial regret guarantee under indifference without knowing
the value of ∆ and is only O(N) worse than the state-of-the-art guarantee for the strict preference
setting. Extensive experiments are conducted to show our algorithm’s effectiveness and consistent
advantage compared with available baselines.

1If all preference gaps are zero, we show our stable regret is 0 in the centralized setting and is O(log T) in
the decentralized setting.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: Comparisons of related results. N is the number of players, K is the number of arms, ∆
is the minimum preference gap among all players for different arms in existing works, and is the
minimum non-zero preference gap among all players for different arms if the result holds under
indifference. ρ, ϵ are hyper-parameters. C and D represent centralized and decentralized settings,
respectively. We use tiny font to annotate the parts of the original proof where it fails to hold under
indifference and provide more details in Appendix A.

References Stable regret bound Setting Holds under indifference?

Liu et al. (2020) O
(

NK log T
∆2

)
C ✗(Corollary 9)

Liu et al. (2021) O
(

N5K2 log2 T

ρN4∆2

)
D ✗(Lemma 8)

Kong et al. (2022) O
(

N5K2 log2 T

ρN4∆2

)
D ✗(Lemma 1)

Zhang et al. (2022) O
(

K log T
∆2

)
D ✗(2nd paragraph in page 16)

Kong & Li (2023) O
(

K log T
∆2

)
D ✗(Lemma 4)

Liu et al. (2020) O
(

K log T
∆2

)
C (Known ∆) ✓

Basu et al. (2021) O
(
K log1+ϵ T + 2∆

−2/ϵ
)

D ✓

Ours O
(

NK log T
∆2

)
C & D ✓

2 RELATED WORK

The model of two-sided matching markets has been studied for many years (Gale & Shapley, 1962;
Roth, 1984; Roth & Sotomayor, 1992). The seminal work (Gale & Shapley, 1962) proposes the
Gale-Shapley algorithm to compute a stable matching in the one-to-one markets. Some research
has extended the algorithm to address more complex markets with different preference structures
(Kelso Jr & Crawford, 1982; Roth & Sotomayor, 1992). Most of these works analyze the algorithm
based on the assumption that all participants have a strict preference ranking. When participants
have indifferent preferences, Irving (1994) define different levels of stability and propose algorithms
to achieve them. Erdil & Ergin (2008) propose a method to improve satisfaction from a given
stable matching. Abdulkadiroğlu et al. (2009) consider the strategy-proofness of the mechanism
that whether participants have an incentive to deviate from the algorithm.

When market participants have uncertain preferences, Das & Kamenica (2005) first introduce the
bandit model into matching markets. They propose an ε-greedy type algorithm and demonstrate its
empirical performances. Liu et al. (2020) theoretically formulate this problem. They mainly study
the centralized setting with a central platform computing the matching in each time slot. Both an
ETC and UCB-type algorithm are proposed for this setting. The former achieves O(K log T/∆2)
regret with the knowledge of ∆ and the latter achieves O(NK log T/∆2). Liu et al. (2021) and
Kong et al. (2022) generalize the problem to the decentralized setting, where players need to coor-
dinate their selections to avoid invalid explorations due to conflicts. However, due to the interfer-
ence of multiple agents in the decentralized markets, their algorithm suffers an exponential order of
regret. To improve the learning efficiency, Sankararaman et al. (2021); Basu et al. (2021); Mahesh-
wari et al. (2022); Wang & Li (2024) consider the setting where participants’ preferences satisfy
special assumptions thus the interference becomes easier. For these special markets, they provide
an O(NK log T/∆2) or O(N log T/∆2) regret guarantee. Until recently, Zhang et al. (2022) and
Kong & Li (2023) independently propose an explore-then-Gale-Shapley procedure and show an
O(K log T/∆2) stable regret upper bound for general markets. In all of the above works, both
players and arms are assumed to have strict preference rankings and ∆ is defined as the minimum
preference gap among all players over different arms, which may be 0 under indifference. Our work
follows this line and considers the more general indifference setting.

There are also other works studying the uncertain preferences in matching markets. The variants
include the market where both sides of agents have unknown preferences (Pagare & Ghosh, 2023),
the contextual markets where the player’s preferences can be represented by the inner product be-
tween the preference vector and the arm feature (Li et al., 2022), the many-to-one markets where

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

one side of agents can match more than one partners (Wang et al., 2022; Kong & Li, 2024; Li et al.,
2024; Zhang & Fang, 2024), as well as the non-stationary markets where the preference of agents
vary over time (Ghosh et al., 2022; Muthirayan et al., 2022).

3 PROBLEM SETTING

This section introduces the problem setting of bandit learning in matching markets with indifference.
Denote N = {p1, p2, . . . , pN} as the player set and K = {a1, a2, . . . , aK} as the arm set, where N
and K represent the number of players and arms, respectively. To ensure each player has a chance
to be matched, we assume N ≤ K as existing works (Liu et al., 2020; 2021; Sankararaman et al.,
2021; Basu et al., 2021; Zhang et al., 2022; Kong & Li, 2023; Wang & Li, 2024).

Each market participant has a preference ranking over the other side. Specifically, the preference
value of player pi over arm aj can be portrayed by a real value µi,j ∈ (0, 1]. A higher value
represents more preferences, i.e., µi,j > µi,j′ implies pi prefers aj to aj′ . These preference values
are unknown and need to be learned through interactive interactions with arms. It is worth noting
that all existing works (Liu et al., 2020; 2021; Kong et al., 2022; Sankararaman et al., 2021; Basu
et al., 2021; Zhang et al., 2022; Kong & Li, 2023; Wang & Li, 2024) assume the preference values
over different arms are different, i.e., µi,j ̸= µi,j′ for any player pi and arms aj , aj′ . However,
this assumption is often unrealistic in practical applications, as multiple arms (e.g., workers in labor
markets or students in school admission scenarios) usually exhibit similar performances, making it
difficult for players to explicitly differentiate their preferences. We relax this assumption by allowing
indifferent preferences, i.e., the player can have the same preference values over different arms. On
the other side, each arm aj also has preferences over players. Denote πj,i as the position of pi in aj’s
preference rankings. Arms can also have indifferent preferences over players. We use πj,i ≺ πj,i′ to
denote that pi has a higher ranking so is more preferred than pi′ by aj . And πj,i = πj,i′ represents
aj can not distinguish the performances between pi and pi′ . Similar to the labor market scenario
where workers (arms) usually have an evaluation system based on the known characteristics of the
employers (players) such as the salary, location, and so forth, we assume each arm knows their own
preference ranking as existing works (Liu et al., 2020; 2021; Kong et al., 2022; Sankararaman et al.,
2021; Basu et al., 2021; Zhang et al., 2022; Kong & Li, 2023; Wang & Li, 2024).

The players would iteratively interact with the arms. At each time slot t = 1, 2, 3, . . . , each player pi
selects an arm Ai(t) ∈ K∪{−1}, where we use −1 to represent that pi does not select any arm in this
time slot. For the arm side, each arm aj receives the proposals from A−1

j (t) = {pi : Ai(t) = aj}.
Due to the capacity constraint, it only accepts the most preferred one, i.e., the player A−1

j (t) ∈
argmini∈A−1

j (t) πj,i with the highest preference ranking. When there are multiple choices, the arm
would randomly break the tie. For the player side, any player pi whose proposal is accepted would
successfully match with Ai(t). It would receive a reward Xi,Ai(t)(t) characterizing its satisfaction
over this matching experience, where we assume the reward is a 1-subgaussian random variable with
expectation µi,Ai(t) as existing bandit works (Lattimore & Szepesvári, 2020). And if pi’s proposal is
rejected, it only receives Xi,Ai(t)(t) = 0. For convenience, we use Ā(t) = (Āi(t))i∈[N] to represent
the final matching outcome in time slot t, where Āi(t) = Ai(t) if pi is successfully matched and
Āi(t) = −1 otherwise.

To ensure long-term equilibrium in the market, the players aim to find a stable matching. Given a
matching Ā := (Āi)i∈[N], if there exists a pair (pi, aj) such that pi prefers aj to its current partner
Āi and aj also prefers pi to its current partner Ā−1

j , i.e., µi,j > µi,Āi
and πj,i ≺ πj,Ā−1

j
, then pi

and aj has the incentive to deviate from their partners. In this case, the matching Ā is unstable,
and such a pair is called a blocking pair. A stable matching is a matching without any blocking
pair. It is worth noting that there may be more than one stable matching in the market. Denote
M :=

{
m := (mi)i∈[N] : m is stable

}
as the set of all stable matchings. Existing works study

the player-optimal stable matching (Liu et al., 2020; Zhang et al., 2022; Kong & Li, 2023) which
is defined as the stable matching in which all players are matched with their most preferred arm
among all stable matchings and the player-pessimal stable matching (Liu et al., 2020; 2021; Kong
et al., 2022) which is defined as the stable matching in which all players are matched with their least
preferred arm among all stable matchings. However, when the market participants have indifferent
preferences, such two stable matchings may not exist. Example 3.1 illustrates one possible case.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Example 3.1. The market contains 3 players and 3 arms with the preference rankings listed below:{
p1 : a1 = a2 ≻ a3 ,
p2 : a1 ≻ a2 = a3 ,
p3 : a1 ≻ a2 ≻ a3 ,

{
a1 : p1 ≻ p2 = p3 ,
a2 : p1 ≻ p2 ≻ p3 ,
a3 : p1 ≻ p2 ≻ p3 ,

where a2 ≻ a3 for p1 implies p1 prefers a2 over a3. In this market, both {(p1, a2), (p2, a1), (p3, a3)}
and {(p1, a2), (p2, a3), (p3, a1)} are stable matchings. But players p2 and p3 do not match with the
most preferred arm in a common stable matching.

In this work, we focus on the stable regret of each player pi which is defined as the difference
between the least reward µi,mi = minm′∈M µi,m′

i
that can be obtained in any stable matching and

the reward accumulated during the interaction process, i.e.,

Regi(T) = E

[
T∑

t=1

(µi,mi
−Xi,Ai

(t))

]
, (1)

where the expectation is taken from the randomness of the reward and players’ policies.

4 ALGORITHM IN THE CENTRALIZED SETTING

In this section, we introduce our proposed Adaptive Exploration with Arm-guided GS (AE-AGS)
algorithm. To better convey the algorithm idea, we first present the centralized version (Algorithm 1)
where a central platform collects information from market participants and computes the matching.

Algorithm 1 Adaptive Exploration with Arm-guided GS (AE-AGS, centralized version, from the
view of the central platform)

1: for time slot t = 1, 2, . . . do
2: Collect the arms’ preference rankings (πj,i)i∈[N] from each arm aj ∈ K
3: Collect the matched times (Ti,j)j∈[K] and the comparison matrix (Better(i, j, j′))j,j′∈[K]

from each player pi ∈ N
4: Compute A(t) = Subroutine-of-AE-AGS(πj,i, Ti,j ,Better(i, j, j

′))i∈[N],j,j′∈[K]

5: Assign the arm Ai(t) to each player pi ∈ N
6: end for

Specifically, in each time slot t, each arm aj would submit its preference ranking (πj,i)i∈[N] to the
central platform (Line 2). If multiple players share the same preferences, the arm can randomly
break the tie. And each player pi maintains a counter Ti,j representing the number of times that
pi is matched with arm aj . It also maintains a comparison matrix Better among each arm pair.
Better(i, j, j′) = 1 means pi estimate that it prefers aj over aj′ . And Better(i, j, j′) = 0 means pi
still cannot distinguish the performances between aj and aj′ , or estimates that it prefers aj′ over aj .
The player would submit the counter and comparison matrix to the central platform (Line 3).

Then, the central platform would compute a matching A(t) based on the collected information (Line
4) and assign the target arm Ai(t) to player pi (Line 5). The detailed procedure to compute A(t)
is summarized in the Subroutine-of-AE-AGS algorithm (Algorithm 2). In general, Algorithm 2 can
be regarded as an adaptive exploration algorithm based on GS with the arm side as the proposing
side. Arms would propose to their most preferred players based on their submitted preference rank-
ing (Line 3). Among the received proposals, players would first compute the estimated sub-optimal
arms, i.e., an arm aj can be regarded as sub-optimal if there exists a player aj′ such that pi deter-
mines it prefers aj′ over aj (Line 5). Each player pi would accept the proposal from the potential
optimal arm with the least matched times (Line 6). If the arm is not accepted by its proposed player,
it proposes to the next preferred player (Line 8). Until all arms are matched or have proposed all of
the N players (Line 2), the algorithm stops and outputs the final matching. It is worth noting that
Algorithm 2 ensures that all players are assigned different arms when stopping since N ≤ K.

The operation of players is summarized in Algorithm 3. Each player pi maintains µ̂i,j and Ti,j to
record the estimated preference value and the matched time with arm aj (Line 1). In each time
slot t, the player pi first computes the upper confidence bound UCBi,j and lower confidence bound

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 2 Subroutine-of-AE-AGS
Input: Arms’ preference rankings (πj,i)j∈[K],i∈[N], player-arm matched times (Ti,j)i∈[N],j∈[K],

comparison matrix (Better(i, j, j′))i∈[N],j,j′∈[K]

1: Initialize: ∀pi ∈ N , its available arm set Ai = ∅, temporarily matched arm mi = −1;
∀aj ∈ K, its current proposing ranking sj = 1, temporarily matched player m−1

j = −1

2: while ∃aj : m−1
j = −1 and sj ≤ N do

3: Denote pi as the player who ranked at the position sj , i.e., pi := πj,sj
4: Update the available arm set: Ai = Ai ∪ {aj}
5: Compute the estimated sub-optimal arm set in Ai:

Di = {aj ∈ Ai : ∃j′ ∈ Ai s.t. Better(i, j′, j) = 1}
6: Update the temporarily matched arm of pi as mi ∈ argminj∈Ai\Di

Ti,j

Suppose ak is the temporarily matched arm of pi, i.e., ak = mi, update m−1
k = pi

7: for aj′ ∈ Ai and aj′ ̸= mi do
8: sj′ = sj′ + 1, m−1

j′ = −1
9: end for

10: end while
Output: Matching outcome m = (mi)i∈[N]

LCBi,j as Line 3. It can be shown in the analysis that the real preference value µi,j can be upper
bounded by UCBi,j and lower bounded by LCBi,j with high probability. So once an arm aj’s lower
bound is better than the other arm aj′ ’s upper bound, pi can regard it prefers aj over aj′ and update
Better(i, j, j′) = 1 (Line 4). Each player would then submit the information of matched times and
comparison matrix to the central platform (Line 5) and receive the assigned target arm Ai(t) (Line
6). It then selects this arm and updates the estimated preference values and matched times based on
the received rewards (Line 7-9).

Algorithm 3 AE-AGS (centralized version, from the view of player pi)
1: Initialize: ∀j ∈ [K], µ̂i,j = 0, Ti,j = 0

∀j, j′ ∈ [K], Better(i, j, j′) = 0 // Better(i, j, j′) = 1 implies that pi considers that aj is better
than aj′ , Better(i, j, j′) = 0 otherwise

2: for time slot t = 1, 2, . . . do
3: Compute the upper and lower confidence bounds for each arm aj ∈ K as

UCBi,j = µ̂i,j +
√

6 log T/Ti,j ,LCBi,j = µ̂i,j −
√

6 log T/Ti,j

// If Ti,j = 0, then UCBi,j = ∞, LCBi,j = −∞
4: Update Better for any j, j′ ∈ [K]: Better(i, j, j′) = 1 if LCBi,j(t) > UCBi,j′(t)
5: Submit (Ti,j)j∈[K], (Better(i, j, j

′))j,j′∈[K] to the central platform
6: Receive Ai(t) from the central platform and select this arm, receive reward Xi,Ai(t)(t)
7: if pi is successfully accepted by Ai(t) then
8: µ̂i,Ai(t) = (Xi,Ai(t)(t) + µ̂i,Ai(t) · Ti,Ai(t))/(Ti,Ai(t) + 1) , Ti,Ai(t) = Ti,Ai(t) + 1
9: end if

10: end for

4.1 THEORETICAL RESULTS

This section provides the theoretical results for the centralized AE-AGS algorithm. To characterize
the hardness of the learning process, we first define the preference gap ∆ as follows.
Definition 4.1. For any player pi and arm aj , aj′ , define ∆i,j,j′ = |µi,j − µi,j′ | as the preference
gap of pi between aj and aj′ . Further, define ∆ = mini,j,j′,∆i,j,j′ ̸=0 ∆i,j,j′ as the minimum non-
zero gap if mini,j,j′,∆i,j,j′ ̸=0 ∆i,j,j′ ̸= 0. Otherwise, define ∆ = 0.

The stable regret by following the centralized AE-AGS algorithm can be bounded as follows.
Theorem 4.1. Following Algorithm 1 and 3, if ∆ > 0, the stable regret of each player pi satisfies

Regi(T) ≤ O(NK log T/∆2) .

If ∆ = 0, the stable regret of each player pi is Regi(T) = 0.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Due to the space limit, the detailed proof is deferred to Appendix B. The algorithm can also be
extended to the decentralized setting. We provide more discussions regarding its implementation,
problem challenge, and the corresponding theoretical results in the next section.

5 DECENTRALIZED SETTING

In real applications, the central platform may not be always available. For generality, we also extend
the AE-AGS algorithm to the decentralized setting. In this case, we follow existing decentralized
works (Liu et al., 2021; Kong et al., 2022; Kong & Li, 2023) and assume that each player can observe
the successfully matched pairs in each time slot. This is also common in real applications such as
the workers usually updating their online profile in the market and the schools usually publishing the
admission list. The decentralized version of the algorithm is presented in Algorithm 4. Due to that
the algorithm proceeds in several phases, we use τ as the local time slot index during each phase.

Algorithm 4 AE-AGS (decentralized version, from the view of player pi)
1: Initialize: Better(i, j, j′) = 0, Ti,j = 0,∀i ∈ [N], j, j′ ∈ [K]; µ̂i,j = 0,∀j ∈ [K]

Update Flag(0) = False // Update Flag = False means no player updates the Better matrix,
Update Flag = True otherwise

2: Initialize: πj,i = −1, Indexi = −1,∀j ∈ [K], i ∈ [N]
3: for j ∈ [K] do
4: Arm = aj
5: for round τ = 1, 2, · · · , N do
6: Ai(τ) = Arm
7: Set Arm = −1 and Indexi = τ if accepted by Ai(τ)
8: Update πj,Ā−1

j (τ) = τ

9: end for
10: end for
11: ℓ0 = 2 // The length of the phase
12: for phase s = 1, 2, · · · do
13: ℓs = 2ℓs−1 if Update Flag(s− 1) = False and ℓs = 2 otherwise
14: for round τ = 1, 2, · · · , ℓs do
15: m = Subroutine-of-AE-AGS(πj,i, Ti,j ,Better(i, j, j

′))i∈[N],j,j′∈[K]

16: Select arm Ai(τ) = mi

17: Update the empirical mean (µ̂i,j)j∈[K] as Line 7-9 in Algorithm 3
18: For each arm aj , observe its matched player Ā−1

j (τ) and update TĀ−1
j (τ),j+ = 1

19: end for
20: Update Flagi(s) = False,Update Pairsi(s) = {}
21: for j, j′ ∈ [K] and Better(i, j, j′) = 0 and UCBi,j′ < LCBi,j do
22: Update Flagi(s) = True
23: Update Pairsi(s).add((j, j

′))
24: end for
25: Update Flag(s),Better = Communication(Update Flagi(s),Update Pairsi(s),Better)
26: end for

To avoid conflicts among players when selecting arms, Algorithm 4 starts from an index estimation
phase where each player learns a unique index that guides the following selections. The players
can simultaneously learn arms’ preference rankings during this phase (Line 3-10). Specifically, the
phase contains NK rounds and each arm corresponds to a N -round block. At the first round in arm
aj’s N -round block, all players would first select arm aj . The successfully accepted player can be
regarded as ranked in the first position in aj’s ranking and receives an index of 1. In each of the
following time τ , the previously accepted players would not select arms and only the previously
rejected players select arm aj . The accepted one is regarded as ranked in the τ -th position and
receives an index τ . Then after NK rounds, each player knows all arms’ preference rankings and
gets a unique index.

The algorithm then enters the main exploration part. The total horizon can be further divided into
several phases (Line 12) with the phase length growing exponentially if no player breaks the process

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(Line 13). Within the phase, each player locally runs the Subroutine-of-AE-AGS (Algorithm 2)
with its local knowledge of all arms’ preferences, player-arm matched times, and the comparison
matrix (Line 15). The player then selects the computed target arm (Line 16), receives the reward,
and updates its estimated preference value (Line 17). The player also updates its local counter Ti,j

for the observed matched player-arm pair (pi, aj).

When the phase ends, players will update their comparison information based on the previous reward
observations (Line 20-24). Specifically, pi uses Update Flagi(s) to indicate whether it has updated
the comparison information in the phase s, and uses Update Pairsi(s) to restore the updated pairs,
where a pair (j, j′) is included in Update Pairsi(s) if pi identifies that LCBi,j > UCBi,j′ at
the end of phase s. Then players communicate the updated information with each other through
the Communication procedure (Line 25). After communicating with others, players get the
Update Flag(s) that represents whether a player has updated his comparison information and the
updated Better matrix. If Update Flag(s) is true, the players may need to explore some new arms,
so the phase length must be restarted to avoid additional exploration cost (Line 13).

Algorithm 5 Communication

Input: Update Flagi, Update Pairsi, Better
1: Initialize: Flag = False, τ = 1
2: if Update Flagi = True then
3: Select arm Ai(τ) = aIndexi
4: end if
5: p = 1 // the player index who transmit information currently
6: while p ≤ N do
7: if ap is not matched at time slot τ = 1 then
8: p = p+ 1
9: else if ap is matched at time slot τ = 1 and p = Indexi then

10: Flag = True
11: for (j, j′) ∈ Update Pairsi do
12: τ = τ + 1, Ai(τ) = aj
13: τ = τ + 1, Ai(τ) = aj′
14: Update Better(i, j, j′) = 1
15: end for
16: τ = τ + 1, Ai(τ) = ∅
17: p = p+ 1
18: else
19: Flag = True
20: Denote pi′ as the player with index p
21: τ = τ + 1
22: while Āi′(τ) ̸= −1 do
23: j := Āi′(τ), τ = τ + 1
24: j′ := Āi′(τ), τ = τ + 1
25: Update Better(i′, j, j′) = 1
26: end while
27: p = p+ 1
28: end if
29: end while
Output: Flag, Better

The detailed Communication description is presented in Algorithm 5. Generally speaking, players
would transmit their information one by one based on their unique index. In the first round, each
player would select the arm with its own index if its Update Flag is true and select nothing oth-
erwise (Line 2-4). So for other players, if they observe that an arm aj is matched in this round,
they can infer that the player with index j has updated its comparison information in this phase and
would transmit the updated pairs in the following. The following rounds can then be divided into
N blocks where the p-th block is used for player with index p to transmit information and others to
receive the information from this player (Line 6). If the player has no information to update, then
the block can be regarded as having 0 round (Line 7-8). Otherwise, the player would select the
arm in its Update Pairsi one by one (Line 9-15) with a round selecting nothing indicating the end

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

of the transmission (Line 16). And other players would receive the updated pairs by observing the
successfully matched arms in the corresponding block (Line 19-26). After the communication, the
player gets Flag that represents whether a player updates its comparison information in this phase
as well as the updated Better matrix. The communication procedure ensures that all players locally
maintain the up-to-date comparison information of all players.

5.1 THEORETICAL RESULTS AND DISCUSSIONS

Algorithm 4 is a decentralized version of Algorithm 1. Compared with that in the centralized version,
the algorithm only pays additional regret for index estimation and communication, which only costs
a constant number of time slots and does not influence the regret order.

Theorem 5.1. Following Algoirthm 4, if ∆ > 0, the stable regret of each player pi satisfies

Regi(T) ≤ O(NK log T/∆2) .

If ∆ = 0, the stable regret of each player pi satisfies Regi(T) = O(log T).

Due to the space limit, the proof of Theorem 5.1 is deferred to Appendix C. How to balance ex-
ploration and exploitation is important to achieving lower stable regret. The state-of-the-art works
(Zhang et al., 2022; Kong & Li, 2023) in matching markets distinctly separate exploration from
exploitation, where players only shift to exploitation once the preferences for all arms have been
clearly differentiated. Assuming all preference values are distinct, players can keep exploring until
all gaps are identified. However, under indifference, when a player cannot differentiate between two
arms, it becomes challenging to discern whether further exploration is necessary. Continuous explo-
ration may bring higher regret when preferences are the same; while discontinuing exploration may
result in insufficient observations to identify preference differences and further exploiting a non-
stable matching. The key to learning under indifference, therefore, is to allow players to explore
without the burden of suffering additional regret. Though Liu et al. (2020) and Basu et al. (2021)
can be extended to handle indifference, they either use the value of ∆ to control the exploration
budget (Liu et al., 2020), or adopt exponential time as the trial-and-error cost to avoid prematurely
exploiting a non-stable matching (Basu et al., 2021). This results in their algorithms requiring strong
assumptions and suffering from exponential regret.

Our approach provides a more adaptive perspective to balance exploration and exploitation under
indifference. Players only need to explore arms that propose to them. If these arms share the same
preferences, all become potential partners in a stable matching, making exploration cost-free and
preserving the opportunity to exploit the stable outcome. If the arms have different preferences, the
player will eventually eliminate suboptimal options after collecting sufficient observations. Such a
design prevents players from deciding when to stop exploring and naturally addresses the learning
challenge under indifference. To the best of our knowledge, it is the first polynomial result in
matching markets that address this more general setting.

6 EXPERIMENTS

In this section, we conduct a series of experiments to validate the convergence of our AE-AGS
(decentralized version) in markets with indifference and compare its performance with that of cen-
tralized ETC (abbreviated as C-ETC) (Liu et al., 2020) and phased ETC (abbreviated as P-ETC)
(Basu et al., 2021), both of which can also be extended to handle indifference. In each experiment,
we run all algorithms for T = 100k rounds and report the averaged results over 20 independent
runs. The standard errors calculated as the standard deviation divided by

√
20 are plotted.

To present the stable regret of each player, we first test the algorithms’ performances in a small
market with 3 players and 3 arms. The position of each arm in a player’s preference ranking is a
random number in {1, 2, . . . ,K}, similar to how the arms rank the players. Arms sharing the same
position in a ranking have the same preference values, and the preference gap between two arms
ranked in adjacent positions is set to ∆ = 0.1. The feedback Xi,j(t) for player pi on arm aj at
time t is drawn independently from the Gaussian distribution with mean µi,j and variance 1. We
report the stable regret of each player in Figure 1 (a)(b)(c) and the cumulative market unstability
(the cumulative number of unstable matchings) in Figure 1 (d).

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 20k 40k 60k 80k 100k
Round t

-500

0

500

1k

1.5k

Cu
m

ul
at

iv
e

St
ab

le
 R

eg
re

t

(a) Player p1

AE-AGS, Player p1
C-ETC, Player p1
P-ETC, Player p1

0 20k 40k 60k 80k 100k
Round t

-500

0

500

1k

1.5k

2k

Cu
m

ul
at

iv
e

St
ab

le
 R

eg
re

t

(b) Player p2

AE-AGS, Player p2
C-ETC, Player p2
P-ETC, Player p2

0 20k 40k 60k 80k 100k
Round t

-500

-250

0

250

500

750

1k

1.2k

1.5k

Cu
m

ul
at

iv
e

St
ab

le
 R

eg
re

t

(c) Player p3

AE-AGS, Player p3
C-ETC, Player p3
P-ETC, Player p3

0 20k 40k 60k 80k 100k
Round t

0

5k

10k

15k

20k

25k

30k

35k

Cu
m

ul
at

iv
e

M
ar

ke
t U

ns
ta

bi
lit

y (d) Cumulative market unstability
AE-AGS
C-ETC
P-ETC

Figure 1: Experimental comparison of AE-AGS and baselines in a market with 3 players and 3 arms.

For generality, we also vary the market size N = K ∈ {3, 6, 9, 12} and the value of ∆ ∈
{0.1, 0.15, 0.2, 0.25} to show the performances of algorithms. Since calculating stable regret re-
quires enumerating all stable matchings, which involves an exponential complexity of O(NN), we
only report market unstability in experiments with varying market sizes in Figure 2 (a). For experi-
ments with varying preference gaps, we report both market unstability and the maximum cumulative
stable regret among all players in Figure 2 (b) and (c), respectively.

0 20k 40k 60k 80k 100k
Round t

0

20k

40k

60k

80k

100k

Cu
m

ul
at

iv
e

M
ar

ke
t U

ns
ta

bi
lit

y

AE-AGS, N=3
AE-AGS, N=6
AE-AGS, N=9
AE-AGS, N=12
C-ETC, N=3
C-ETC, N=6
C-ETC, N=9
C-ETC, N=12
P-ETC, N=3
P-ETC, N=6
P-ETC, N=9
P-ETC, N=12

(a) Different market sizes,
 random preferences, Δ=0.1

0 20k 40k 60k 80k 100k
Round t

0

20k

40k

60k

80k

Cu
m

ul
at

iv
e

M
ar

ke
t U

ns
ta

bi
lit

y

AE-AGS, Δ = 0.25
AE-AGS, Δ = 0.2
AE-AGS, Δ = 0.15
AE-AGS, Δ = 0.1
C-ETC, Δ = 0.25
C-ETC, Δ = 0.2
C-ETC, Δ = 0.15
C-ETC, Δ = 0.1
P-ETC, Δ = 0.25
P-ETC, Δ = 0.2
P-ETC, Δ = 0.15
P-ETC, Δ = 0.1

(b) Different preference gaps,
 random preferences, N=5, K=5

0 20k 40k 60k 80k 100k
Round t

0

5k

10k

15k

20k

25k

Cu
m

ul
at

iv
e

St
ab

le
 R

eg
re

t AE-AGS, Δ = 0.25
AE-AGS, Δ = 0.2
AE-AGS, Δ = 0.15
AE-AGS, Δ = 0.1
C-ETC, Δ = 0.25
C-ETC, Δ = 0.2
C-ETC, Δ = 0.15
C-ETC, Δ = 0.1
P-ETC, Δ = 0.25
P-ETC, Δ = 0.2
P-ETC, Δ = 0.15
P-ETC, Δ = 0.1

(c) Different preference gaps,
 random preferences, N=5, K=5

Figure 2: Experimental comparison of AE-AGS and baselines in markets with different market sizes
and values of ∆.

In all tested markets, our AE-AGS consistently outperforms the two baseline algorithms. This ob-
servation aligns with the theoretical results, where the performance of C-ETC is sensitive to the
value of ∆, performing well in markets where ∆ is appropriate but worse in others. The baseline
P-ETC suffers from exponential regret and has not converged within the reported horizon. The de-
pendency of the algorithm’s performance on the parameters ∆ and N , K is also consistent with the
theoretical results. Specifically, as ∆ decreases and N or K increases, the algorithm needs to pay
more exploration costs, leading to higher regret.

7 CONCLUSION

In this work, we study the bandit learning problem in more general matching markets with indif-
ference. Under this setting, the exploration-exploitation strategies employed by existing algorithms
become ineffective. To enable players to explore unknown arms without incurring significant costs,
we propose a novel adaptive exploration strategy based on the arm-guided GS algorithm. This ap-
proach allows players to freely explore arms with indistinguishable preferences while ensuring ef-
ficient exploitation of stable matchings. We prove that the algorithm achieves a stable regret bound
of O(NK log T/∆2), which, to the best of our knowledge, is the first polynomial bound in the
indifference setting. We also analyze existing algorithms and demonstrate their limitations when
extended to handle indifference. Compared with the two existing algorithms that can be extended to
indifference, our method shows a significant improvement with respect to not only the assumptions
but also the regret order. The convergence and effectiveness of our algorithm are further validated
through a series of experiments.

One future direction is to investigate the optimality of the results under indifference. Sankararaman
et al. (2021) derive an Ω(N log T/∆2) lower bound for the bandit problem in matching markets.
However, their result is based on that all participants have strict preference rankings, which may not
apply to this more general setting. Determining the hardness of the problem under indifference is an
important open problem.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Atila Abdulkadiroğlu, Parag A Pathak, and Alvin E Roth. Strategy-proofness versus efficiency
in matching with indifferences: Redesigning the nyc high school match. American Economic
Review, 99(5):1954–1978, 2009.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit
problem. Machine learning, 47(2):235–256, 2002.

Soumya Basu, Karthik Abinav Sankararaman, and Abishek Sankararaman. Beyond log2(t) regret
for decentralized bandits in matching markets. In International Conference on Machine Learning,
pp. 705–715, 2021.

Ning Chen. On computing pareto stable assignments. In International Symposium on Theoretical
Aspects of Computer Science, 2012.

Sanmay Das and Emir Kamenica. Two-sided bandits and the dating market. In International Joint
Conference on Artificial Intelligence, pp. 947–952, 2005.

Aytek Erdil and Haluk Ergin. What’s the matter with tie-breaking? improving efficiency in school
choice. American Economic Review, 98(3):669–689, 2008.

Aytek Erdil and Haluk Ergin. Two-sided matching with indifferences. Journal of Economic Theory,
171:268–292, 2017.

Aytek Erdil and Taro Kumano. Efficiency and stability under substitutable priorities with ties. Jour-
nal of Economic Theory, 184:104950, 2019.

Tamás Fleiner. A fixed-point approach to stable matchings and some applications. Mathematics of
Operations Research, 28(1):103–126, 2003.

David Gale and Lloyd S Shapley. College admissions and the stability of marriage. The American
Mathematical Monthly, 69(1):9–15, 1962.

Aurélien Garivier, Tor Lattimore, and Emilie Kaufmann. On explore-then-commit strategies. In
Advances in Neural Information Processing Systems, volume 29, pp. 784–792, 2016.

Avishek Ghosh, Abishek Sankararaman, Kannan Ramchandran, Tara Javidi, and Arya Mazum-
dar. Decentralized competing bandits in non-stationary matching markets. arXiv preprint
arXiv:2206.00120, 2022.

Robert W Irving. Stable marriage and indifference. Discrete Applied Mathematics, 48(3):261–272,
1994.

Alexander S Kelso Jr and Vincent P Crawford. Job matching, coalition formation, and gross substi-
tutes. Econometrica: Journal of the Econometric Society, pp. 1483–1504, 1982.

Fang Kong and Shuai Li. Player-optimal stable regret for bandit learning in matching markets. In
Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM, 2023.

Fang Kong and Shuai Li. Improved bandits in many-to-one matching markets with incentive com-
patibility. In AAAI Conference on Artificial Intelligence, pp. 13256–13264, 2024.

Fang Kong, Junming Yin, and Shuai Li. Thompson sampling for bandit learning in matching mar-
kets. In International Joint Conference on Artificial Intelligence, 2022.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Yuantong Li, Chi-hua Wang, Guang Cheng, and Will Wei Sun. Rate-optimal contextual online
matching bandit. arXiv preprint arXiv:2205.03699, 2022.

Yuantong Li, Guang Cheng, and Xiaowu Dai. Two-sided competing matching recommendation
markets with quota and complementary preferences constraints. In International Conference on
Machine Learning, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Lydia T Liu, Horia Mania, and Michael Jordan. Competing bandits in matching markets. In Inter-
national Conference on Artificial Intelligence and Statistics, pp. 1618–1628. PMLR, 2020.

Lydia T Liu, Feng Ruan, Horia Mania, and Michael I Jordan. Bandit learning in decentralized
matching markets. Journal of Machine Learning Research, 22(211):1–34, 2021.

Chinmay Maheshwari, Eric Mazumdar, and Shankar Sastry. Decentralized, communication-and
coordination-free learning in structured matching markets. In Advances in Neural Information
Processing Systems, 2022.

Deepan Muthirayan, Chinmay Maheshwari, Pramod P Khargonekar, and Shankar Sastry. Competing
bandits in time varying matching markets. arXiv preprint arXiv:2210.11692, 2022.

Tejas Pagare and Avishek Ghosh. Two-sided bandit learning in fully-decentralized matching mar-
kets. In ICML 2023 Workshop The Many Facets of Preference-Based Learning, 2023.

Alvin E Roth. The evolution of the labor market for medical interns and residents: a case study in
game theory. Journal of political Economy, 92(6):991–1016, 1984.

Alvin E Roth. What have we learned from market design? The economic journal, 118(527):285–
310, 2008.

Alvin E Roth and Elliott Peranson. The redesign of the matching market for american physicians:
Some engineering aspects of economic design. American economic review, 89(4):748–780, 1999.

Alvin E Roth and Marilda Sotomayor. Two-sided matching. Handbook of game theory with eco-
nomic applications, 1:485–541, 1992.

Abishek Sankararaman, Soumya Basu, and Karthik Abinav Sankararaman. Dominate or delete:
Decentralized competing bandits in serial dictatorship. In International Conference on Artificial
Intelligence and Statistics, pp. 1252–1260. PMLR, 2021.

Tayfun Sönmez and M Utku Ünver. Matching, allocation, and exchange of discrete resources. In
Handbook of social Economics, volume 1, pp. 781–852. Elsevier, 2011.

William R Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

Zilong Wang and Shuai Li. Optimal analysis for bandit learning in matching markets with serial
dictatorship. Theoretical Computer Science, pp. 114703, 2024.

Zilong Wang, Liya Guo, Junming Yin, and Shuai Li. Bandit learning in many-to-one matching
markets. In ACM International Conference on Information & Knowledge Management, pp. 2088–
2097, 2022.

Yirui Zhang and Zhixuan Fang. Decentralized competing bandits in many-to-one matching mar-
kets. In International Conference on Autonomous Agents and Multiagent Systems, pp. 2603–2605,
2024.

Yirui Zhang, Siwei Wang, and Zhixuan Fang. Matching in multi-arm bandit with collision. In
Advances in Neural Information Processing Systems, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A DISCUSSION ON THE SUCCESS OR FAILURE OF EXISTING ALGORITHMS
WHEN DEALING WITH INDIFFERENCE

In this section, we try to extend existing algorithms for general one-to-one markets (Liu et al., 2020;
2021; Basu et al., 2021; Zhang et al., 2022; Kong & Li, 2023) to the indifference setting. We specify
the failure parts of the original proof if it cannot work under indifference and a sketched reason for
Liu et al. (2020) and Basu et al. (2021) to deal with indifference.

For the centralized UCB algorithm in Liu et al. (2020), Corollary 9 does not hold as when players
have indifferent preferences,

∑
j′:µi,j′<µi,j

≤
∑K

ℓ=1 1/(ℓ
2∆2) does not hold.

For the CA-UCB algorithm in Liu et al. (2021), Lemma 8 does not hold. We can provide a coun-
terexample that mt is stable and Et+1 holds, but mt+1 /∈ M∗. For example, there are 3 players and
3 arms with preference rankings list below:{

p1 : a1 ≻ a2 = a3 ,
p2 : a2 = a1 ≻ a3 ,
p3 : a1 = a3 ≻ a2 ,

{
a1 : p2 ≻ p3 ≻ p1 ,
a2 : p1 ≻ p2 ≻ p3 ,
a3 : p1 ≻ p2 ≻ p3 .

At t, the matching mt = {(p1, a3), (p2, a2), (p3, a1)} is stable. And at time t+ 1, the matching can
be {(p1, a2), (p2, a1), (p3,−1)}, which is unstable. The same example can illustrate the failure of
Lemma 1 in Kong et al. (2022).

For the ML-ETC algorithm in Zhang et al. (2022), the second paragraph in page 16 does not hold as
when players have indifferent preferences, there always exists a pair of arms such that the stopping
condition is never satisfied (the last paragraph in page 6). Similarly, for the ETGS algorithm in Kong
& Li (2023), Lemma 4 does not hold as it may never happen that a pair of arms with the LCB of
one is better than the UCB of the other when their preference values are the same.

The proof of the centralized ETC algorithm in Liu et al. (2020) and Basu et al. (2021) goes through
under indifference with ∆ defined as the minimum non-zero preference gap among all players. The
reason is that when the matched time of players over arms is enough to identify the minimum non-
zero gap ∆, the matching process in these two algorithms can be regarded as running the offline GS
algorithm by randomly breaking the tie, resulting in the stable matching.

B PROOF OF THEOREM 4.1

For convenience, for any time slot t, define µ̂i,j(t), Ti,j(t),LCBi,j(t),UCBi,j(t) as the value of
µ̂i,j , Ti,j ,LCBi,j ,UCBi,j in the AE-AGS algorithm at the start of t. Define the failure event

F =

{
∃i ∈ [N], j ∈ [K], t ∈ [T] : |µ̂i,j(t)− µi,j | >

√
6 log T

Ti,j(t)

}
(2)

to represent that some estimated preference value is far from the real preference value at some round
t. When ∆ > 0, the stable regret of Algorithm 1 and Algorithm 3 can be decomposed as

Regi(T) = E

[
T∑

t=1

(
µi,mi

−Xi,Ai(t)(t)
)]

≤ E

[
T∑

t=1

1
{
Ā(t) /∈ M

}]

= E

[
T∑

t=1

1{A(t) /∈ M}

]
(3)

≤ E

[
T∑

t=1

1{A(t) /∈ M} |⌝F

]
+ E

[
T∑

t=1

1{F}

]

≤ 96NK log T

∆2
+ 2NK , (4)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

where equation 3 holds since all players select different arms in the centralized setting and thus no
rejection happens, equation 4 is because of Lemma B.1 and Lemma B.2.

When ∆ = 0, all players have the same preferences over all arms. So any matching that each player
is matched with an arm is a stable matching since no blocking pair exists. Since Algorithm 1 assigns
different arms to different players, the matching A(t) in each time slot is a stable matching. So the
stable regret of all players is 0 as equation 3 is 0.

Lemma B.1.

E

[
T∑

t=1

1{F}

]
≤ 2NK . (5)

Proof. Recall that F is defined as equation 2. Then,

E

[
T∑

t=1

1{F}

]
= E

[
T∑

t=1

1

{
∃i ∈ [N], j ∈ [K], t ∈ [T] : |µ̂i,j(t)− µi,j | >

√
6 log T

Ti,j(t)

}]

≤ T ·
∑
i∈[N]

∑
j∈[K]

E

[
T∑

t=1

1

{
|µ̂i,j(t)− µi,j | >

√
6 log T

Ti,j(t)

}]

= T ·
∑
i∈[N]

∑
j∈[K]

T∑
t=1

t∑
ω=1

P

(
Ti,j(t) = ω, |µ̂i,j(t)− µi,j | >

√
6 log T

Ti,j(t)

)

= T ·
∑
i∈[N]

∑
j∈[K]

T∑
t=1

t∑
ω=1

P

(
|µ̂i,j,ω − µi,j | >

√
6 log T

ω

)

≤ T ·
∑
i∈[N]

∑
j∈[K]

T∑
t=1

t∑
ω=1

2 exp(−3 log T) (6)

≤ 2NK .

Here equation 6 is due to Lemma D.1.

Lemma B.2. Following Algorithm 1 and Algorithm 3, when ∆ > 0, it holds that

E

[
T∑

t=1

1{A(t) /∈ M} |⌝F

]
≤ 96NK log T

∆2
. (7)

Proof. For convenience, denote Ai(t) as the set of available arms of player i at the end of Algorithm
2 when running it at round t. According to the definition of stable matching, we can first decompose

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

the above regret as

E

[
T∑

t=1

1{A(t) /∈ M} |⌝F

]

≤E

[
T∑

t=1

1
{
∃i ∈ [N], j ∈ [K] : µi,j > µi,Ai(t) and πj,i ≺ πj,A−1

j (t)

}
|⌝F

]

≤E

[
T∑

t=1

1
{
∃i ∈ [N], j ∈ Ai(t) : µi,j > µi,Ai(t)}

}
|⌝F

]
(8)

≤E

 T∑
t=1

∑
i∈[N]

1{∃j, j′ ∈ Ai(t) : µi,j > µi,j′ , aj′ = Ai(t)} |⌝F

≤E

 T∑
t=1

∑
i∈[N]

∑
j′∈Ai(t)

1{Ai(t) = aj′ , j
′ is not the best arm in Ai(t)} |⌝F

≤E

∑
i∈[N]

∑
j′∈[K]

T∑
t=1

1{j′ ∈ Ai(t), j
′ is not the best arm in Ai(t), Ai(t) = aj′} |⌝F

 (9)

≤96NK log T

∆2
,

where equation 8 holds since arm aj prefers aj to its matched arm A−1
j (t), then aj must first propose

to arm pi in Algorithm 2 and thus aj ∈ Ai(t). And equation 9 can be proved by contradiction.
Suppose the matched time of pi and aj′ is larger than 96 log T/∆2, i.e., Ti,j′(t) > 96 log T/∆2,
then pi would not select aj′ to match at time t. This is because for other better arms aj ∈ Ai(t) with
µi,j > µi,j′ , if the matched time Ti,j(t) is smaller than 96 log T/∆2, then pi would select those with
fewer match times (Line 6 of Algorithm 2). And otherwise, due to Lemma B.3, pi would estimate
aj′ as sub-optimal arms and does not select it (Line 5 of Algorithm 2).

Lemma B.3. At any time slot t, for any player pi and arm aj , aj′ with µi,j > µi,j′ , if
min {Ti,j(t), Ti,j′(t)} > 96 log T/∆2, then UCBi,j′(t) < LCBi,j(t) conditional on ⌝F .

Proof. By contradiction, suppose UCBi,j′(t) ≥ LCBi,j(t). Based on the definition of ⌝F (equa-
tion 2) and LCB,UCB (Line 3 of Algorithm 3), it holds that

µi,j − 2

√
6 log T

Ti,j(t)
≤ LCBi,j(t) ≤ UCBi,j′(t) ≤ µi,j′ + 2

√
6 log T

Ti,j′(t)
. (10)

we can conclude

∆i,j,j′ := µi,j − µi,j′ ≤ 4

√
6 log T

min {Ti,j(t), Ti,j′(t)}
.

This implies min {Ti,j(t), Ti,j′(t)} ≤ 96 log T/∆2
i,j,j′ ≤ 96 log T/∆2, which contradicts the fact

that min {Ti,j(t), Ti,j′(t)} > 96 log T/∆2. The lemma can thus be proved.

C PROOF OF THEOREM 5.1

Denote smax as the total number of phases of Algorithm 4 when the interaction ends. For each
phase s, denote ts(Communication) as the number of time slots when running the Communication

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

algorithm (Algorithm 5). Then when ∆ > 0, the regret of Algorithm 4 can be decomposed as

Regi(T) = E

[
T∑

t=1

(
µi,mi

−Xi,Ai(t)(t)
)]

≤ E

[
T∑

t=1

1
{
Ā(t) /∈ M

}]

≤ NK + E

[
smax∑
s=1

(
ℓs∑

τ=1

1
{
Ā(τ) /∈ M

}
+ ts(Communication)

)]

≤ NK + E

[
smax∑
s=1

ℓs∑
τ=1

1{A(τ) /∈ M} |⌝F

]
+ E

[
smax∑
s=1

ts(Communication)

]
+ E

[
T∑

t=1

F

]

≤ NK +
672NK log T

∆2
+NK2 log T + 3NK2 + 2NK .

where the second last inequality is due to Lemma C.1, the last inequality is due to Lemma C.2,
Lemma C.3, and Lemma B.1.

If ∆ = 0, recall that any matching without conflicts is a stable matching as no blocking pair exists.
So Algorithm 4 would only suffer regret in the index estimation phase and the Communication
phase as running Subroutine-of-AE-AGS does not suffer stable regret (Lemma C.1). The regret can
thus be decomposed as

Regi(T) = E

[
T∑

t=1

(
µi,mi −Xi,Ai(t)(t)

)]

≤ E

[
T∑

t=1

1
{
Ā(t) /∈ M

}]

≤ NK + E

[
smax∑
s=1

(
ℓs∑

τ=1

1
{
Ā(τ) /∈ M

}
+ ts(Communication)

)]

≤ NK + E

[
smax∑
s=1

ts(Communication)

]
≤ NK + log T ,

where the last inequality is due to Lemma C.2.
Lemma C.1. In Algorithm 4, no collision happens, i.e., Āi(t) = Ai(t) when players select arms
based on the Subroutine-of-AE-AGS (Line 15).

Proof. We first prove that all players maintain the same values of πj,i, Ti,j , and Better(i, j, j′) for
each j, j′ ∈ [K]. In Algorithm 4, π := (πj,i)j∈[K],i∈[N] is determined based on which player is
matched with arm aj in the corresponding time slot (Line 3-10). Since all players have the same
observation, different players have the same knowledge over π. Similarly, all players have the
same value of (Ti,j)i∈[N],j∈[K] since they update this knowledge only when they observe that aj is
matched with pi within the phase (Line 18). The comparison matrix Better is only updated during
the Communication based on the selection of players in the corresponding slot (Line 14, 25 in
Algorithm 5), so the value of Better among different players is also the same.

Above all, the computed matching m in each time slot (Line of Algorithm 15) is the same for all
players. Further based on the procedure of Subroutine-of-AE-AGS (Algorithm 2), all players are
assigned with different arms. So no collision happens, i.e., Āi(t) = Ai(t) for each player pi, when
players select arms based on Subroutine-of-AE-AGS in Algorithm 4 (Line 15).

Lemma C.2. When ∆ > 0,

E

[
smax∑
s=1

ts (communication)

]
≤ NK2 log T + 3NK2 .

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

When ∆ = 0,

E

[
smax∑
s=1

ts (communication)

]
≤ log T .

Proof. We first prove the first inequality. Recall that the phase length grows exponentially until a
player pi finds that an arm aj is better than aj′ and updates its comparison flag Update Flag as
True. Based on Line 21 in Algorithm 4, the comparison information of each arm pair can only be
updated once. Above all, N players can update the comparison information in at most NK2 phases.
We can divide the total phases into several super phases where only the start phase of the super phase
has length 2 and the length of all of the following phases grows. Then each super phase contains
at most log T phases and there are at most NK2 super phases. So the Communication procedure
runs in at most NK2 log T times.

When running Communication, one time slot would be first used for all players to transmit the
Update Flag information (Line 2-4). So the total time complexity to transmit the update flag is
NK2 log T . Then players would transmit their updated pairs, with each pair costing 2 time slots and
an ending slot to select nothing. Since at most NK2 pairs are updated, the total time complexity to
transmit the updated pairs is 3NK2. Thus the lemma can be proved.

When ∆ = 0, all players have the same preference values over all arms. Based on the definition
of UCB and LCB in Line 3 of Algorithm 3, it would never happen that LCBi,j < UCBi,j′ for
some player pi and arms aj , aj′ . So the comparison information of any player would not updated
in all phases. The phase length would never restart and there is only one super phase. So the total
number of phases is log T . And during each Communication procedure, all players only spend
one time slot to transmit the Update Flag and have no update pair to transmit. Above all, the total
communication time complexity is log T .

Lemma C.3. In Algorithm 4,

E

[
smax∑
s=1

ℓs∑
τ=1

1{A(τ) /∈ M} |⌝F

]
≤ 672NK log T

∆2
.

Proof. Recall that the phase length grows exponentially if Update Flag = False and restart if
Update Flag = True at the last phase. Divide the total smax phases into several super-phases
based on whether Update Flag = True. And denote sr as the number of phases contained in the
super-phase r. Use rmax to represent the number of super-phases. For convenience, denote Ai(t) as
the set of available arms of player i at the end of Algorithm 2 when running it at round t. The above
regret can be decomposed as

E

[
smax∑
s=1

ℓs∑
τ=1

1{A(τ) /∈ M} |⌝F

]

≤E

[
rmax∑
r=1

sr∑
s=1

ℓs∑
τ=1

1{A(τ) /∈ M} |⌝F

]

≤E

[
rmax∑
r=1

sr∑
s=1

ℓs∑
τ=1

1
{
∃i ∈ [N], j ∈ [K] : µi,j > µi,Ai(τ) and πj,i ≺ πj,A−1

j (τ)

}
|⌝F

]

≤E

[
rmax∑
r=1

sr∑
s=1

ℓs∑
τ=1

1
{
∃i ∈ [N], j ∈ Ai(τ) : µi,j > µi,Ai(τ)

}
|⌝F

]

≤E

[
rmax∑
r=1

sr∑
s=1

ℓs∑
τ=1

1{∃i ∈ [N], j′ ∈ Ai(τ) : Ai(τ) = aj′ , j
′ is not the best arm in Ai} |⌝F

]

≤
∑
i∈[N]

∑
j′∈[K]

E

[
rmax∑
r=1

sr∑
s=1

ℓs∑
τ=1

1{Ai(τ) = aj′ , j
′ is not the best arm in Ai(τ)} |⌝F

]

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

With a little abuse of notation, denote s′ as the first phase at the end of which Ti,j′ > 96 log T/∆2.
Denote t′ as the first round in s′ at the end of which Ti,j′ > 96 log T/∆2. Further, denote r′ as the
super-phase that contains phase s′ and s(r′) as the global phase index of the first phase in r′.

Then at any round τ that after phase s′, if exists better arm aj such that Ti,j > 96 log T/∆2, pi would
update Better(i, j, j′) = 1 based on ⌝F and Lemma B.3. Subroutine-of-AE-AGS (Algorithm 2)
would thus not assign aj′ to player pi. And if all of the other better arms aj have Ti,j < 96 log T/∆2,
pi may still select arm aj′ in the next phase. But recall that Subroutine-of-AE-AGS would always
select the arm with the fewest selection times for pi (Line 6 of Algorithm 2), at time t′, the difference
between Ti,j and Ti,j′ should be no more than 1. So pi would not select arm aj′ after the phase s′+1.
Above all, the formula can be bounded as∑

i∈[N]

∑
j′∈[K]

E

[
rmax∑
r=1

sr∑
s=1

ℓs∑
τ=1

1{Ai(τ) = aj′ , j
′ is not the best arm in Ai(τ)} |⌝F

]

≤
∑
i∈[N]

∑
j′∈[K]

96 log T

∆2
+ E

 ℓs′∑
τ=t′

1{Ai(τ) = aj′ , j
′ is not the best arm in Ai(τ)} |⌝F

+E

ℓs′+1∑
τ=1

1{Ai(τ) = aj′ , j
′ is not the best arm in Ai(τ)} |⌝F

≤
∑
i∈[N]

∑
j′∈[K]

96 log T

∆2
+ E

(2 + 4) ·
s′−1∑

s=s(r′)

ℓs∑
τ=1

1{Ai(τ) = aj′ , j
′ is not the best arm in Ai(τ)} |⌝F

(11)

≤
∑
i∈[N]

∑
j′∈[K]

(
96 log T

∆2
+ 6 · 96 log T

∆2

)

≤ 672NK log T

∆2
,

where equation 11 is due to the exponentially increasing phase length.

D TECHNICAL LEMMAS

Lemma D.1. (Corollary 5.5 in Lattimore & Szepesvári (2020)) Assume that X1, X2, . . . , Xn are
independent, σ-subgaussian random variables centered around µ. Then for any ε > 0,

P

(
1

n

n∑
i=1

Xi ≥ µ+ ε

)
≤ exp

(
−nε2

2σ2

)
, P

(
1

n

n∑
i=1

Xi ≤ µ− ε

)
≤ exp

(
−nε2

2σ2

)
.

18

	Introduction
	Related Work
	Problem Setting
	Algorithm in The Centralized Setting
	Theoretical Results

	Decentralized Setting
	Theoretical Results and Discussions

	Experiments
	Conclusion
	Discussion on the success or failure of existing algorithms when dealing with indifference
	Proof of Theorem 4.1
	Proof of Theorem 5.1
	Technical Lemmas

