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Abstract

What do deep neural network (DNN) models actually tell us about the compu-
tational principles of visual information-processing in the biological brain? A
now common finding in visual neuroscience is that many different kinds of DNN
models — with different architectures, tasks, and training diets — are all comparably
performant predictors of image-evoked brain activity in the ventral visual cortex.
This relative parity of highly diverse models may at first seem to undermine the
common intuition that we can use these models to infer the computational prin-
ciples that govern the visual brain. In this work, we show to the contrary that
comparable brain-predictivity does not preclude the differentiation of these same
models in terms of the underlying manifold geometries that define them. To do
this, we assess 12 manifold geometry metrics computed across a diverse set of 117
DNN models, curated to include multiple tasks, architectures, and input diets. We
then use these metrics to predict how well each model aligns with occipitotemporal
cortex (OTC) activity from the human fMRI Natural Scenes Dataset. We find
that manifold signal-to-noise ratio (a metric previously associated with few-shot
learning) is a robust predictor of downstream brain-alignment and supersedes
both other manifold geometry metrics (i.e. manifold capacity) and downstream
task-performance (e.g. top-k recognition accuracy) across multiple different image
sets (e.g. ImageNet21K versus Places365) and controlled model comparisons (e.g.
assessments across ImageNet-1K trained architectural variants only). These results
add to a growing body of evidence that the ventral visual stream serves as a basis
set (or feature vocabulary) for object recognition rather than as the actual locus of
recognition per se.

1 Background

High-level ventral visual cortex is widely considered the primary substrate of object recognition
in the human brain [1} [2 3]. This notion has been further reinforced in recent years by the now-
seminal finding that deep neural network (DNN) models supporting image classification are the
most predictive models of ventral visual brain activity to date [4; 155 16]. One lingering issue with
this formulation, however, is the under-specification of what we mean by the word “recognition” as
implemented by the biological brain. What precise neural-computational mechanisms instantiate
this process? And how might we use deep neural network models to elucidate them? In models, the
computational mechanisms of ‘recognition’ are explicitly (i.e. algorithmically) defined. Canonical,
‘end-to-end’ image classification models (e.g. AlexNet [7]) ‘recognize’ images by the direct, nonlinear
mapping of a tensorized image onto one-hot-encodings (point indices) of human-defined category
labels. Self-supervised, contrastive-learning models (e.g. SimCLR [8]]) and masked decoding models
(e.g. DINO, [9]) also support recognition, but do so first by learning (without labels) the invariances
and selectivities that define the axes of an input image space more generally. ‘Zero-shot’- multimodal
classifiers (e.g. CLIP [10]]) ‘recognize‘ images by way of a top-k similarity score between the
language embeddings of category labels and the vision embeddings of candidate images.
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Identifying which of these (or many other) motifs is most brain-like has been a process somewhat
confounded by the fact that many (if not most) of these models often achieve roughly comparable
(often high) measures of ‘representational alignment’ [11]] to human visual cortex activity recorded
via neuroimaging and neurophysiology alike [|6; [12; [135[145[15]. One response to this relative parity,
inspired by the neuro-connectionist research programme [16]], has been the use of controlled model
comparisons designed to better parse the differences between models by grouping them in ways
empirically isolate the representational influence of broader computational design principles such
as sensory diet (training data), architecture, and task [17]]. In this work, we attempt to better parse
the differences between models more directly by sorting them along the scalar axes of representa-
tional structure defined by manifold geometry analysis [18;[19;20]. Where the neuro-connectionist
programme asks what (i.e. which design constraints predict brain-alignment), and representational
similarity analysis asks how much (i.e. to what degree do model and brain representations covary),
manifold geometry analysis asks how: specifically, how does the structure of a representation (its
separability, compactness, dimensionality) relate to the downstream computations (e.g. classification,
generalization) it supports? By linking structural properties to functional outcomes, manifold analysis
provides a mechanistic lens that representational alignment metrics alone do not directly afford. In so
doing, we attempt as well to more directly interrogate how this structure relates to the function of
object recognition, and what our neural networks may or may not be telling us about the nature of
this structure in the human ventral visual system.

Precedent + parallel work: The use of manifold geometry to understand representational structure
(brain-like or otherwise) is a technique steeped in the history of computational modeling and theo-
retical neuroscience [see e.g.21], as well as an actively developing area of interest. Recent work
in this domain has seen manifold geometry analysis applied to speech recognition in (biological
and artificial) auditory neural networks [22]; in theoretical work on the limits or underpinnings of
representational alignment more generally [23; 24]]; to the characterizing of task-optimized models
predicting activity in macaque visual cortex [25]]; and (most directly relevant to the current analysis)
to the characterizing of representational structure in human ventral visual system activity sourced
from the Natural Scenes Dataset [26}27]]. St-Yves et al. [26] in particular is notable for the use of the
same manifold signal-to-noise and dimensionality metrics [20]] we leverage in this analysis, deployed
in service of characterizing how geometry varies across brain region. Our work builds and extends on
these approaches by explicitly yoking the more distal, ecological insights of the neuro-connectionist,
many-model / controlled comparisons approach with the more proximate, structural insights of mani-
fold geometry - and in so doing, to get closer to unifying the goals of ‘prediction’ and ‘understanding’
that so often seem in tension in the application of DNN models to neuroscience data [28]].

2 Methods

Model & metric curation: Our general approach was to first curate N=12 metrics of manifold
geometry from two distinct lines of work: N=4 metrics from Chung et al. [18] (derived from replica
mean field theory) and N=8 metrics from Sorscher et al. [20] (derived from principal components
analysis). We then curated a set of N=117 candidate deep neural network models spanning different
visual diets, architectures, and tasks, based on the work of Conwell et al. [17].

Measuring brain-alignment: Model-to-brain predictivity scores (henceforth, brain-alignment) was
computed for each model first by computing the average voxelwise encoding score over a 50% train
split (N=500) of the ‘Shared NSD1000’ image set [29] for each individual layer with field-standard
regularized ridge regression. Models were then compared on the basis of the average encoding
scores over the test split (N=500) images for the most brain-like layer (as determined via nested
cross-validation on the train split).

Manifold geometry analysis: Manifold geometry metrics (from both Chung et al. [18] and Sorscher
et al. [20]) were computed using N=50 ‘concept manifolds’ (the representational matrices of 50
images from each of 50 category labels from ImageNet-1K/21K [30;31]], or Places365 [32]). This
5050 sampling scheme (2,500 total images) follows the protocol established in Stephenson et al.
[22] and provides sufficient statistical power to estimate manifold properties reliably; prior work
has shown these estimates to be stable under bootstrap resampling of both exemplars and categories
[18; 20]]. To ensure proper evaluation of these metrics on our candidate representations, we used the
exact GitHub source code associated with the defining works of each: schung039/neural-manifolds-
replicaMFT)| [[18;22] and bsorsch/geometry-fewshot-learning| [20].


https://github.com/schung039/neural_manifolds_replicaMFT
https://github.com/schung039/neural_manifolds_replicaMFT
https://github.com/bsorsch/geometry-fewshot-learning

Manifold metric descriptions: The N=4 metrics from Chung et al. [I8] characterize manifold
geometry via replica mean field theory: capacity measures the maximum number of linearly separable
dichotomies a linear classifier can implement; radius measures the average manifold extent relative
to centroid separation; dimensionality measures the effective number of dimensions each manifold
occupies; and correlation captures the average pairwise correlation between manifold centroids.
The N=8 metrics from Sorscher et al. [20] are derived from PCA: signal-to-noise ratio (SNR)
quantifies between-class variance relative to within-class variance in the principal subspace, directly
predicting few-shot learning performance; signal and bias decompose SNR into its numerator
and denominator components; effective/between-concept/within-concept dimensionality capture
the intrinsic dimensionality of the full space, between-class subspace, and within-class subspaces
respectively; within-concept radius measures average manifold compactness; and SNR overlap
measures the geometric overlap between signal and noise subspaces.
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Figure 1: An overview of our motivation, methodology, and primary analysis. An extend caption

with more details on each panel is available in the [paragraph below]

Overview (Figure[T) extended caption: In A, we schematize the key factors that define and contrast
the two animating frameworks of our model-to-brain comparisons. With its focus on the influence of



input, architecture, and task, neuroconnectionist-style analysis [[16;[17] seeks to use models as proxies
of the design constraints (i.e. ‘pressures’) that could in principle have shaped the emergence of the
representational structure we observe in the biological brain. Neural manifold geometry [[19; [20]
seeks to use models as a direct empirical substrate for probing how the differences in the structure
of representation (both within and across models) contribute to differences in downstream behavior
(i.e. classification, or in this case, brain-alignment / predictivity). In B, we schematize our primary
method for using manifold geometry to interpret brain-alignment in high-level ventral visual stream
(occipitotemporal cortex, or OTC). We first rank models in terms of their brain-alignment scores by
computing average voxelwise encoding scores with field-standard cross-validated ridge-regressions
for the ‘Shared-NSD1000’ [29]. We then take these same models and rank them according to each
of our curated manifold geometry metrics computed over ‘concept manifolds’ (representational
matrices) composed from ImageNet categories. In C, we show the primary outcome of this analysis:
A rank-order comparison (Spearman’s p correlation) between the rank of each model according to
its brain-predictivity, and the rank of each model according to its associated manifold geometry
metrics. As shown, the trend in the brain-predictivity plot on the left (with brain-predictivity score
in units of Pearson’s r on the y axis, and brain-predictivity rank on the x axis) is better and worse
captured by the various metrics in the subplots on the right (with manifold metric rank in place of the
brain-predictivity on the x axis), which are sorted from top to bottom by Spearman’s p.

3 Results + Analysis

Primary analysis: Explaining Brain-Alignment with Manifold Geometry: How well do differ-
ences in underlying manifold geometries explain downstream brain-alignment? To answer this, we
compute the rank-order correlation (pspearman) between the models’ brain-predictivity (mean en-
coding) scores and each of our 12 manifold metrics (e.g. manifold capacity, effective dimensionality)
computed from the N=50 concept manifolds of ImageNet-21K used in [22]; results from this analysis
are shown in Figure [TIC and Table

Manifold Metric Tspearman = 95% CI  p

Chung CF QL. cveveeere e e
Capacity 0.643 [0.527, 0.796] <.001
Correlation -0.077 [-0.266, 0.107]  0.42
Dimensionality -0.594 [-0.747,-0.471] <.001
Radius -0.721 [-0.856, -0.62] <.001

SOFSCREE @F QL. ++++++veveeeeeeeeemat ettt e e e e e e ettt e e e s e s abbebeeeeeeeeeeaaaaes
Signal-to-Noise Ratio 0.774 [0.706, 0.873] <.001
Signal 0.569 [0.445, 0.724] <.001
Between-Concept Dimensionality  0.269 [0.103, 0.45] 0.003
Effective Dimensionality 0.154 [-0.018, 0.336] 0.097
Signal-to-Noise Overlap 0.133 [-0.04, 0.317] 0.153
Within-Concept Dimensionality 0.073 [-0.104, 0.26] 0.433
Within-Concept Radius -0.239 [-0.429, -0.068]  0.009
Bias -0.242 [-0.409, -0.088] 0.009

Table 1: Rank-order correlations between brain-predictivity and manifold geometry metrics, with
bootstrapped 95% confidence intervals shown in brackets; results from the Primary Analysis. Mani-
fold capacity and SNR (the main metrics we probe in our follow-up experiments) are in bold.

6 / 12 metrics showed significant rank-order correlation with brain-predictivity at p < 0.01. 3 of
these metrics (manifold signal-to-noise ratio, capacity, and signal) showed significant, positive
correlations. 3 (manifold radius, dimensionality, and within-concept radius) showed significant,
negative correlations. The overall strongest predictor of downstream brain-predictivity was the
manifold signal-to-noise ratio from Sorscher et al. [20], with a strikingly high rank-order correlation
of pspearman [£95%BCIT] =0.798 [0.731, 0.895], p = 4.70e-27. Not far behind this, however, was the
negatively correlating manifold radius metric from Chung et al. [[18]], at p =-0.724 [-0.857, -0.623],
and the positively correlating manifold capacity metric from Chung et al. [18]], at p = 0.616 [0.493,
0.779]. In sum, the primary takeaway from this first analysis might simply be that manifold metrics



can indeed be the strong predictors of brain-alignment that theorists and empiricist alike have long
proposed they might be [20; 1335 235 124; 34]].

Querying manifold metric robustness & interpretability across experimental subconditions: The
strong, significant correlation of multiple manifold metrics with downstream brain-alignment does,
however, raise new questions. One of these is: When metrics describe otherwise divergent properties
of a manifold’s geometry (but both explain downstream brain-alignment to similar degrees), which
geometry should we take to be more brain-like? In our survey, two metrics in particular — manifold
capacity and manifold signal-to-noise ratio (henceforth SNR) — instantiate a rather palpable case of this
algorithmic ambiguity. In the extreme (as in the final output layer of an end-to-end trained category-
supervised DNNs), manifold capacity heralds the complete collapse of all category information
into fully separate, single point-estimates of category identity Chung et al. [18]]; Stephenson et al.
[22]; Chung and Abbott [19] — in other words, an optimal classifier. In a similar extreme, manifold
signal-to-noise ratio also collapses to perfect point-estimates of category identity (all signal, no noise).
As described by Sorscher et al. [20], however, mid-to-high range values of signal-to-noise ratio
better describe the conditions of better few-shot learning algorithms (something end-to-end category-
supervised neural classifiers tend notably not to be). Which of these metrics, then, better describes the
object-recognition-supporting representational motifs instantiated in our DNN models of the ventral
visual stream? To better resolve this ambiguity, we assessed the correlations of manifold capacity and
SNR to downstream brain-predictivity in a series of experimental sub-conditions designed both to test
the robustness of these correlations and to disambiguate the somewhat competing representational
hypotheses they entail. (Details from Experiments 1, 2 and 3 are shown in Tables[2]and 3])

Experiment 1: Measuring robustness across model (sub)sets: In our first experiment, we assessed
the correlations of manifold capacity and SNR in increasingly smaller, targeted subsets of our
otherwise diversely sampled model set. The first subset we assessed was a subset of models we call
the "high-performing" set: effectively all models above a notable visual elbow in brain-predictivity
first described in [17]], but seen also in our sample (see Figure [TIC-Left). Quantifying this elbow
with a segmented regression analysis yielding a breakpoint of ¢ = 84.1 [72.4, 94.9], we defined this
‘high-performing’ set as the N=84 models with average encoding scores of 7pearson = 0.336 or higher.
Here, already, manifold capacity begins to diverge from manifold SNR in its rank-order correlation
with brain-predictivity, with capacity diminishing to the point of non-significance at p = 0.14, p=0.222
and manifold SNR remaining substantial and significant at p = 0.50, p < .001. In an even smaller
subset of models varying only in architecture (the N=53 category-supervised ImageNet-1K-trained
models from the Torchvision model zoo [35]), the trend is similar, with p for manifold capacity
diminishing to 0.16, p = 0.262 and manifold SNR remaining high at 0.471, p < 0.001. In short,
manifold SNR persists as a predictor of downstream brain-alignment even in very restricted ranges;
manifold capacity does not.

Manifold Capacity  Signal-to-Noise Ratio

PSpearman; P PSpearman; P
All Surveyed Models 0.62, p < 0.001 0.80, p < 0.001
High-Performing 0.14,p = 0.222 0.52, p < 0.001
ImageNet1K-Supervised 0.16, p = 0.262 0.47, p < 0.001

Table 2: A comparison of the rank-order correlations between the manifold capacity and manifold
signal-to-noise ratio (SNR) metrics across progressively smaller subsets of models; results from
Experiment|T]

Experiment 2: Layer-wise analysis of category-recognition models: To better understand the
difference between manifold capacity and manifold SNR we were observing in this smaller subset,
we next probed variation in the correlation of manifold metric and brain-predictivity in layers beyond
the most brain-predictive layer selected by our initial cross-validation, and in particular, the ‘last
hidden layer’ feeding into the one-hot, category-encoding output. In effect, in this smaller subset of
category-supervised models, this layer instantiates the representation most directly responsible for
the ‘recognition’ behavior the model will output for any given input, and by association, is the layer
we might presumably observe the highest covariance between manifold capacity and manifold SNR.
And indeed, what we observe here is that the correlations of both manifold capacity and manifold



SNR with downstream brain-predictivity change dramatically. Here, in this final hidden vector of
models trained to collapse category information onto the single points of the output layer, manifold
capacity and manifold SNR are shown to be strong, significant, negative predictors of downstream
brain-alignment, with p = -0.606, p < .001 and -0.663, respectively. This sign-reversal corresponds
to substantial increases in the scalar values of both metrics relative to the most brain-predictive
layers (with shifts in the max values of manifold capacity increasing 182.17% from .129 to .235 and
signal-to-noise ratio increasing 209.12% from 4.131 to 8.639.) What is happening, in effect, is that
the more the models are successful in collapsing category information to single point-estimates at
this final hidden layer, the less predictive of downstream brain-alignment they will be. Notably, the
trend is similar if as with our manifold metrics, we correlate the ImageNet-1K classification accuracy
of these models with downstream brain-predictivity, a trend we find (in line with recent work, e.g.
[36]) to be strongly negative across our 53 models (p = -0.63, p < .001).

Experiment 3: Differential, IID/OOD concept manifold sampling: In a final experiment, we
recomputed each of our manifold metrics with two new sets of N=50 concept manifolds (N=50
test set images each): one from the object categories of ImageNetl1K (versus the ImageNet21K
sample we use in our main analysis, following the protocol and codebase of Stephenson et al. [22]),
and another from the scene categories of Places365. The logic here is that these instantiate two
different levels of ‘generalization‘ for our category-supervised ImageNet-1K-trained models, one
nearer (in-distribution, IID), one farther (possibly out-of-distribution, OOD). Manifold capacity, in
this regime, should be higher for those concepts that are IID (i.e. the ImageNet1K sample) than OOD
(the Places365), again instantiating the progressive tightening of category information towards single
point-estimates. Manifold SNR, on the other hand, will also decrease. But supporting few-shot-
learning, as it nominally does, manifold SNR will also maintain information that bridges the gaps
between separable categories. Is this the kind of information that boosts manifold SNR’s explanatory
power for downstream brain-alignment? The results of this experiment suggest it might be: In the
most brain-predictive layers, for example, we observe that manifold SNR remains a significant,
positive predictor of downstream brain-alignment in both the new ImageNet1K concept manifold
sample and in the Places365 sample, with p = 0.457 p < .001 and 0.319, p = .002, respectively.
Manifold capacity (as in the ImageNet21K sample) is not significantly predictive of downstream
brain-alignment in either of these cases.

Manifold Capacity Signal-to-Noise Ratio

Range T'Pearson; P Range T'Pearsony P

ImageNet1K
Best Layer 0.049-0.129 -0.070,p = 0.637 2.038-4.131 0.457,p < 0.001
Last Layer 0.098 - 0.235 -0.606, p < 0.001 1.622-8.639 -0.663, p < 0.001

ImageNet21K
Best Layer 0.052-0.125 -0.132,p=0.373 2.092-4.062 0.468, p < 0.001
Last Layer 0.095-0.160 -0.515,p < 0.001 1.833-4.467 -0.294,p = 0.032

Places365 (Scenes)
Best Layer 0.047-0.095 -0.145,p =0.327 1.677-3.446 0.319,p = 0.02
Last Layer 0.070-0.108 -0.515,p < 0.001 1.305-2.956 -0.158, p = 0.259

Table 3: Comparisons of manifold capacity and signal-to-noise ratio between the peak (i.e. most
brain-predictive) layer and the last layer in 3 different probe datasets. rpegrson 1S the correlation
between the manifold metric value and brain-predictivity (mean encoding score) of each layer; results
from Experiments [2]and 3]

4 Discussion

What factors make for a ‘good’ neural network model of the visual brain? Since the adoption in
visual neuroscience of the task-optimized deep convolutional neural network model more than a
decade ago [37]], the dominant — and in some ways most empirically defensible answer — has largely
been ‘prediction’: Better models of the visual brain are those models whose internal representations
most accurately predict the activity patterns of the biological brain. For those seeking downstream



control or causal perturbation of biological systems [38}[39], this answer may be sufficient. For those
seeking ‘understanding’, the search remains for other forms of explanatory variables that supplement
raw prediction with the parsimony of theories articulable in formal or natural language [40; [16; 34].

In this work, we attempt to instrumentalize the emergent framework of neural manifold geometry
[19] to better understand the underlying structural factors that make certain models of ventral
visual cortex ‘better’ (i.e. more predictive of brain activity) than others — in effect, by using the
metric scalars of manifold geometry to more directly link representation to function. Through this
lens, we return to the seminal question of how the representation in ventral visual cortex relates
to the function of object recognition (i.e. the ‘readout’ of a category label). First validating the
second-order predictive power of manifold geometry metrics (i.e. the strength of their rank-order
correlation with downstream brain-alignment), we find multiple candidate metrics that nevertheless
instantiate divergent hypotheses about the object-recognition-supporting representations of the ventral
stream. Testing these hypotheses in a series of experimental subconditions, we find that a metric
(manifold capacity) whose value scales with representational convergence toward separable, single
point-estimates of category identity is less robust in predicting downstream brain-alignment than a
metric (manifold SNR) that accounts for more graded forms of invariance and separability that still
subserve recognition, but equally subserve the few-shot learning of new categories.

On the interpretation of OTC as “feature bank” versus “optimal classifier”’: We frame our
findings in terms of this contrast not because we believe anyone expects occipitotemporal cortex
(OTC) to literally function as an end-to-end classifier in the manner of a softmax output layer
— indeed, even neurons in prefrontal regions associated with perceptual decision-making do not
resemble classifier outputs [41]]. Rather, the “optimal classifier” framing serves as a useful limiting
case against which to interpret manifold geometry: if OTC representations were optimized primarily
for categorical discriminability (maximizing capacity), we would expect a different pattern of results
than if they were optimized for flexible, generalizable feature extraction (maximizing SNR) with
variance that suggests a more limited tolerance of inter- and intra-class variation. Our results favor
the latter interpretation, but we emphasize that this is a relative, not absolute, claim. The ventral
stream likely serves multiple computational functions simultaneously, and our evidence does not
preclude other interpretations (e.g., that OTC representations are optimized for some combination
of recognition, scene understanding, action affordance, and memory encoding alike). What we can
say with greater confidence is that the representational geometry of brain-predictive model layers
diverges systematically from the geometry of layers optimized purely for classification.

Taken together, these results add to a growing body of evidence from across multiple experimental
modalities suggesting that the ventral visual stream may be less like an optimal classifier (i.e. the locus
of recognition itself) and more like a feature bank (i.e. the vocabulary of whatever compositional
process the active act of recognition involves downstream). Whether it be the finding that the
biological ventral stream in macaques may be more ‘texture-like’ than previously assumed on the
basis of shape-based behavioral biases [42]; the greater impairment to object recognition from damage
to medial temporal lobe than ventral stream in double dissociation neuropsychology experiments
[43 144]); the demonstration of emergent category-like topographic structure from self-organized
maps learned over self-supervised natural image models [45]; or even more simply the now robustly
reproduced finding (inherent to these results as well) that the later layers of category-recognizing
deep neural network models are less brain-predictive than more intermediate layers [[17]], the ventral
stream seems in many cases to be preserving information in ways that diverge from the strict motif of
category invariance and separability that one might assume were one to assume the function of this
region is the kind of classification subserved by the models that best predict its activity.

Limitations and future directions: Several limitations of the current work warrant acknowledgment.
First, our operationalization of brain-alignment relies on encoding model predictivity (voxel-wise
ridge regression); other alignment metrics such as representational similarity analysis (RSA), centered
kernel alignment (CKA), or canonical correlation analysis (CCA) may yield different patterns of
results [17, .c.f.], and investigating this is an important direction for future work. Second, the
inferences we make about the manifold geometry of the brain are inferences we make by proxy of
the brain-predictive models that are the actual targets of our analysis — future work should apply
manifold geometry analysis directly to neural data where feasible [26]]. Third, our model set, while
diverse, does not include models trained on more ecologically valid datasets such as Ecoset [460],
which better approximate the statistical structure of natural visual experience; including such models
could strengthen claims about the ecological constraints shaping ventral stream representations.



Increasingly, however, we have seen that however much ‘proxy’ the inferences we make from models
may be, these inferences are often directly convertible into the kinds of causal / perturbational
empiricism that are the gold standard of scientific understanding for a target biological system.
Concurrent work is already applying manifold geometry analysis and similar approaches towards the
goal of robustifying brain-predictive models through explicit, manifold metric-guided representational
alignment and neural control [27;47]. Future work should continue to leverage the structural grip
of manifold analysis with the high-throughput development of ever-more competent task-optimized
models to accelerate the incisive style of this empiricism even further.
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Appendix + Supplementary Information

Model Selection

Following the method of Conwell et al. [[17], we curated a set of 117 deep neural network (DNN)
models spanning different visual input diets (training data), architectures, and tasks. These models

were sourced from the following repositories:

the Torchvision model zoo [35];

the VISSL model zoo [48];

the DINO collection [9];

the OpenAl CLIP collection [10];
the OpenCLIP model zoo [49];

the VicReg(-L) collections [50; [51]];
the Salesforce-LAVIS model zoo [52];
the Open-IPCL collection [53];

the Taskonomy model zoo [54];

the SLIP model collection [? ];

and YOLOVS [? ]

The complete list of 117 models (organized by source) is shown below

Torchvision (53)

AlexNet-ImageNet1k-v1, ConvNext-Base-
ImageNetlk-v1, ConvNext-Large-ImageNet1k-

v1, ConvNext-Small-ImageNet1k-v1, ConvNext-
Tiny-ImageNetlk-v1, DenseNet121-ImageNet1k-
v1, EfficientNet-B1-ImageNet1k-v2, GoogleNet-
ImageNetlk-v1, Inception-V3-ImageNetlk-v1,
MobileNet-V2-ImageNet1k-v2, MobileNet-V3-
Large-ImageNet1k-v1, MobileNet-V3-Large-
ImageNetlk-v2, RegNet-X-1-6gf-ImageNet1k-v1,
RegNet-X-3-2¢gf-ImageNet1k-v1, RegNet-X-3-2¢f-
ImageNetlk-v2, RegNet-X-400mf-ImageNet1k-

v1, RegNet-X-400mf-ImageNet1k-v2, RegNet-
X-800mf-ImageNetlk-v1, RegNet-X-800mf-
ImageNetlk-v2, RegNet-X-8gf-ImageNetlk-v1,
RegNet-X-8gf-ImageNet1k-v2, RegNet-Y-1-6gf-
ImageNetlk-v1, RegNet-Y-16gf-ImageNet1k-v2,
RegNet-Y-3-2gf-ImageNet1k-v1, RegNet-Y-3-2gf-
ImageNetlk-v2, RegNet-Y-400mf-ImageNet1k-

v1, RegNet-Y-800mf-ImageNet1k-v2, RegNet-Y-
8gf-ImageNetlk-v1, RegNet-Y-8gf-ImageNet1k-
v2, ResNet101-ImageNetlk-v1, ResNetl152-
ImageNetlk-v1, ResNetl152-ImageNet1k-v2,
ResNet18-ImageNetlk-v1, ResNet50-ImageNet1k-
vl, ResNet50-ImageNet1k-v2, ResNext101-64x4d-
ImageNetlk-v1, ResNext50-32x4d-ImageNet1k-v1,
ShuffleNet-V2-X1-0-ImageNet1k-v1, ShuffleNet-V2-
X2-0-ImageNetlk-v1, SqueezeNet1-0-ImageNet1k-
v1, SSDLite320-MobileNet-V3-Large-Coco-v1,
Swin-B-ImageNetlk-v1l, VGG11-ImageNetlk-v1,
VGG13-ImageNetlk-vl, VGG19-ImageNetlk-v1,
ViT-B-16-ImageNet1k-v1, ViT-B-32-ImageNet1k-v1,
ViT-L-16-ImageNet1k-v1, ViT-L-32-ImageNet1k-
v1, Wide-ResNet101-2-ImageNet1k-v1, Wide-
ResNet101-2-ImageNet1k-v2, Wide-ResNet50-2-
ImageNetlk-v1, Wide-ResNet50-2-ImageNet1k-v2

VISSL (7)
ResNet50-Clusterfit, ResNet50-Deepclusterv2,
ResNet50-Jigsaw-P100, ResNet5S0-MOCOV2,
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ResNet50-PIRL, ResNet50-SimCLR, ResNet50-
SWAV

DINO (1)
ViT-B-16

CLIP (5)
RN50, RN101, ViT-B-16, ViT-B-32, ViT-L-14

OpenCLIP (8)

RN50-CC12m, RN50-YFCC15m, RN101-
YFCC15m, Roberta-ViT-B-32-LAION2b-S12b-
B32k, ViT-B-16-LAION400m-E32, ViT-B-32-
LAION2b-S34b-B79k, ViT-B-32-LAION400m-E32,
ViT-L-14-LAION2b-S32b-B82k

VicReg (2)
ResNet50, ResNet50-AlphaOp9

LAVIS (2)
ALBEF-Feature-Extractor-Base, Blip-Feature-
Extractor-Base

VisionLab (5)

AlexNet-GN-IPCL-ImageNet1k, AlexNet-GN-
IPCL-Mixedx3, AlexNet-GN-IPCL-Openlmagesvo,
AlexNet-GN-IPCL-Places2, AlexNet-GN-IPCL-
VGGface2

Taskonomy (22)

Class-Object, Class-Scene, Curvature, Denoising,
Depth-Euclidean, Depth-Z-Bufter, Edge-Occlusion,
Edge-Texture, Egomotion, Fixated-Pose, Inpainting,
Jigsaw, Keypoints2d, Keypoints3d, Nonfixated-Pose,
Normal, Point-Matching, Random-Weights, Room-
Layout, Segment-Semantic, Segment-Unsup25d,
Segment-Unsup2d, Vanishing-Point

SLIP (10)
ViT-B-CC12m, ViT-B-CLIP-CC12m, ViT-B-CLIP-
YFCC15m, ViT-B-SimCLR-YFCC15m, ViT-B-



YFCC15m, ViT-S-CLIP-YFCC15m, ViT-S-SimCLR- YOLOVS (3)
YFCC15m, ViT-S-YFCC15m YOLOvVSL, YOLOv5Sm, YOLOvSs
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