
Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

REINFORCEMENT LEARNING IN INFERENCE TIME: A
PERSPECTIVE FROM SUCCESSIVE POLICY ITERATIONS

Xinnan Zhang1, Chenliang Li2, Siliang Zeng1 , Jiaxiang Li1, Zhongruo Wang3,
Songtao Lu4, Alfredo Garcia2, Mingyi Hong1

1University of Minnesota, Twin Cities, 2Texas A&M University, College Station,
3Amazon, 4The Chinese University of Hong Kong

ABSTRACT

Aligning Large Language Models (LLMs) to human preferences is essential for
their effective deployment in real-world applications. Traditional post-training
methods, such as Reinforcement Learning with Human Feedback (RLHF), are
resource-intensive and time-consuming, especially as model sizes continue to
grow. Recently, inference-time alignment methods have gained significant at-
tention, as they can steer the LLM output without direct fine-tuning, and can
be integrated with post-training techniques to further enhance performance. Ad-
ditionally, these methods enable personalization, allowing models to adapt dy-
namically to user preferences and specific task requirements. However, these ap-
proaches operate in a one-shot manner, limiting policy improvement to a single
round. To address this limitation, we introduce inference-time Successive Pol-
icy Iterations (SPI), a novel algorithm that enables successive policy improvement
at inference time. Specifically, inference-time SPI iteratively learns value func-
tions and leverages them to guide the LLM through a search-based optimization
process. Theoretically, our algorithm is equivalent to performing multi-iteration
policy optimization on the base model, effectively improving its behavior without
direct fine-tuning. Experimental results demonstrate that inference-time SPI sig-
nificantly improves length-control win rates on challenging instruction-following
benchmarks, such as AlpacaEval 2.0, achieving a substantial performance boost
(e.g., 30.71% → 43.80% for Llama-3-8B-Instruct compare against GPT-
4 responses). Furthermore, inference-time SPI consistently outperforms existing
test-time alignment baselines such as Best-of-N (BoN), weak to strong search,
which is effective for inference time scaling on different tasks.

1 INTRODUCTION

As ChatGPT (Achiam et al., 2023) and DeepSeek (Guo et al., 2025) have taken the world by storm,
it is clear that AI systems will soon become ubiquitous in our lives. For instance, Large Language
Models (LLMs) have been used to solve hard problems including video gaming (Berner et al., 2019),
and complex reasoning (Bai et al., 2023). Traditionally, training-time alignment methods such as
Reinforcement Learning with Human Feedback (RLHF) (Ouyang et al., 2022), and Direct Prefer-
ence Optimization (DPO) (Rafailov et al., 2024b) are used to align LLMs with human preferences.
While effective, these approaches require extensive computational resources and incur significant
costs, particularly for large-scale models. Furthermore, different tasks often require retraining or
fine-tuning models for optimal performance. However, in many real-world scenarios, such training-
based methods may be impractical due to limited computational resources, the inability to access
model weights like black box models, or restrictions on modifying large-scale proprietary models.
These limitations have driven significant interest in inference-time alignment methods, such as Snell
et al. (2024); Mudgal et al. (2023); Xu et al. (2024b), which keep the LLM frozen while steering its
behavior through external guidance without directly fine-tuning the model, further boost the perfor-
mance.

1

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

The guidance in the inference time often uses one or several reward models. A simple yet effective
approach, called Best-of-N (BoN) (Nakano et al., 2021; Stiennon et al., 2020), selects the highest-
ranking response from N samples using an outcome reward model (ORM). However, BoN operates
at the response level, limiting its granularity in guiding generation. To provide finer-grained con-
trol, alternative methods attempt to incorporate reward signals at the token or partial-response level.
For instance, ARGS (Khanov et al., 2024) simply applies an RM trained on the complete sequence
to partially generated responses, introducing substantial estimation errors. Inspired by Rafailov
et al. (2024a), several works (Qiu et al., 2024; Zhou et al., 2024; Liu et al., 2024) use an implicit
reward, computed as the relative log probability between a base and a fine-tuned model, to pro-
vide token-level or partial-response guidance. However, this implicit reward is often inaccurate and
can underperform compared to the explicit reward-based method (Liu et al., 2024). Other works
(Chakraborty et al., 2024; Huang et al., 2024a) improve reward accuracy by computing rewards on
fully generated responses, but this significantly increases inference costs. For complicated tasks,
such as mathematical reasoning (Bai et al., 2023) and multi-step decision-making (Shao et al., 2024;
Hao et al., 2024), step-level process guidance (Lightman et al., 2023) is important in reducing the
search space and improving the final quality.

Another research line (Mudgal et al., 2023; Han et al., 2024; Kong et al., 2024) explores training an
external value function to control frozen LLM. Since a value function estimates expected future re-
wards, it enables more informed and context-aware decision-making during inference. Additionally,
some approaches leverage step-level verifiers or process reward models (PRMs) (Li & Li, 2024) for
inference-time guidance. However, most of these inference-time alignment work operates in a one-
shot manner, allowing for only a single round of policy improvement. To address these limitations,
we revisit the constrained policy optimization problem proposed in TRPO (Schulman, 2015) and
build a partial Lagrangian reformulation of such a problem. By iteratively solving this optimization
problem, we propose incorporating value functions at inference time using a search-based method
to simulate training-time policy updates without fine-tuning. Unlike most existing inference-time
alignment approaches, which apply a one-shot improvement, our framework enables successive
policy improvement by alternating between value training and decoding steps without needing to
fine-tune the base model.

Contribution. In this paper, we propose inference-time Successive Policy Iterations (SPI), a novel
algorithm that iteratively improves the policy at inference time by learning value models and using
value models to guide policy generation. Our contributions can be summarized as follows:

1. We utilize the constrained policy optimization formulation proposed in Peng et al. (2019)
and propose an effective algorithm for solving such a problem in inference time. The pro-
posed algorithm successively improves the policy toward the optimal policy by leveraging
external guidance from additive value function models without changing the parameters of
the base policy. Such process is theoretically equivalent to improving the base policy by
policy iteration1.

2. Empirically, we provide extensive evidence demonstrating that inference-time SPI offers a
significant improvement over existing inference-time alignment methods. In the summa-
rization dataset, our method achieves continuous performance improvements based on an
SFT model, surpassing both the (inference-time) BoN method and the (train-time) DPO ap-
proach. In 8b model experiment, we show that leveraging 7b model as value function can
significantly enhance the performance of the 8b base model on the instruction-following
benchmark. Additionally, we conduct a detailed ablation study to analyze the impact of
key factors, including chunk length, data size, and search strategies, on the performance of
inference-time SPI.

The proposed approach demonstrates the effectiveness of inference-time alignment, as a versatile
tool for enhancing model performance in the post-training stage.

1Our implemented algorithm is still different from the standard policy iteration to ensure efficiency. For
example, we did not calculate through the entire action space (i.e., the entire vocabulary) when outputting the
response from the reweighted policy model. See Section 3 for details of our implementation.

2

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

2 PRELIMINARIES AND PROBLEM FORMULATION

The Finite-Horizon MDP Model. A Markov decision process (MDP) is defined by the tuple
(S,A,P, µ, r, γ), which consists of the state space S, the action space A, the transition dynamics
P : S×A×S → [0, 1], the initial state distribution µ(·), the reward function r : S×A → R and the
discounted factor γ ∈ (0, 1). Under a transition dynamics model P and a policy π : S → ∆A where
∆A is the probability simplex on the action space, further define the corresponding state visitation
measure as dπ(s) := (1− γ)

∑T
t=0 γ

tPπ(st = s|s0 ∼ η) for any state s ∈ S. Here T is the horizon
size.

Token-level MDP Model of LLM. Denote the entire input prompt as x and output continuation as
y. The text generation process of LLM can be modeled as an MDP, where generation corresponds to
sampling from a learned policy. Specifically, each state at the time step t, denoted as st = [x, y1:t−1],
includes the prompt x and the sequences of tokens y1:t−1 generated up to that point. Each action
at = yt represents a token from the vocabulary. The transition kernel P is deterministic, i.e. given
tokens st = [x, y1:t−1] and at, st+1 = P (st, at) = [st, at]. This corresponds to adding the newly
generated token at to the existing sequence, thus forming the updated output.

Formulation of Successive Policy Iterations. Let us consider the most general case where the
horizon T is ∞. We inspect the original policy optimization problem, which is:

J(π) := Eτ∼π

[∞∑

t=0

γtr(st, at)

]
, (1)

where τ := (s0, a0, s1, a1, . . .) denotes one trajectory, corresponding to one data point with
prompt(s) and continuation(s). Under a policy/LLM π, we can define the corresponding value func-
tion Vπ and the Q-function Qπ as below:

Vπ(s) := Eτ∼π

[∞∑

t=0

γtr(st, at) | s0 = s

]
,

Qπ(s, a) := r(s, a) + γEs′∼P (·|s,a) [Vπ(s
′)] .

(2)

We can further define the advantage function for each state action pair (s, a) as follows:

Aπ(s, a) = Qπ(s, a)− Vπ(s). (3)

Then one can have the following meta algorithm that iteratively optimizes J(π)

πk+1 = πk + ηk
∑

(s,a)∼Dk

P (Aπk
(s, a)), (4)

where ηk is the learning rate; P (·) is a stochastic gradient estimate of J(π), which is typically
a function of the advantage function; Dk is a data set that contains trajectories. Of course, the
key ingredient in any policy optimization algorithm is to properly identify the stochastic gradient
direction P (·), which improves the objective function J(π).

The fundamental idea of policy improvement is that, suppose there is a reference policy π′, we can
maximize the performance gap over the reference policy to achieve policy improvement:

ηπ′(π) := J(π)− J(π′). (5)

Therefore, the performance improvement of the policy π over the reference policy π′ can be ex-
pressed by the advantage function Aπ′(s, a).

Lemma 1 (Lemma 1.16 in Agarwal et al. (2019)) For any policy π and π′, the performance dif-
ference can be expressed as below:

ηπ′(π) =
1

1− γ
Es∼dπ(·),a∼π(·|s)

[
Aπ′(s, a)

]
(6)

where dπ(s) := (1− γ)
∑∞

t=0 γ
tPπ(st = s|s0 ∼ µ) denotes the state visitation measure.

3

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

In the context of LLM, this performance difference lemma indicates that to align the LLM with the
reward model, i.e. to maximize the objective of policy improvement in equation 5, one just needs
to seek a policy π that induces a positive expected advantage Es∼dπ(·),a∼π(·|s)

[
Aπ′(s, a)

]
> 0 over

the reference policy π′. Therefore, we focus on maximizing equation 6.

However, from a practical point of view, the dependency on sampling data from the visitation mea-
sure dπ(·) makes it difficult to optimize the performance difference defined in equation 6. Following
the trust region policy optimization (TRPO, see Schulman (2015)) framework, we instead consider
an approximation to ηπ′(π) by η̃π′(π):

η̃π′(π) =
1

1− γ
Es∼dπ′ (·),a∼π(·|s)

[
Aπ′(s, a)

]
(7)

where dπ′(·) denotes the state visitation measure under the reference policy π′. According to Theo-
rem 1 in Schulman (2015), η̃π′(π) serves as a good approximation to ηπ′(π) when the two policies
π and π′ are close in terms of the KL-divergence. Thus, when maximizing the surrogate objective
η̃π′(π) defined in equation 7 while penalizing the KL divergence between π and π′, we are able to
guarantee monotonic performance improvement at each policy iteration step.

The above discussions lead to the following optimization objective, which is also used in the TRPO:
at each policy iteration step and given the previous policy πold, one solves the constrained policy
optimization problem:

max
π

η̃πold(π) (8a)

s.t. Es∼dπold
(·)
[
DKL

(
π(·|s)||πold(·|s)

)]
≤ ϵ, (8b)∑

a∈A

π(a|s) = 1, ∀s ∈ S, (8c)

π(a|s) ≥ 0,∀s ∈ S, a ∈ A. (8d)

Proposition 1 Denote the optimal policy of the formulation equation 8a as πnew, then we show its
expression is given as below (Schulman, 2015; Zhang et al., 2024):

πnew(a|s) = πold(a|s) exp
(1

β

(
r(s, a) + γEs′∼P(·|s,a)Vπold

(s′))
)

(9)

where β := 1
(1−γ)α , α is the dual variables of the KL constraints, P is the transition kernel of the

environment, and Vπold
is the value function for the previous policy.

From equation 9, it is clear that the distribution of πnew is modified from the previous policy by in-
corporating an advantage-weighted adjustment. The parameter β serves as a critical hyperparameter
that regulates the trade-off between exploration and exploitation. When β is large, the updated pol-
icy remains closer to the previous policy, resulting in more conservative updates. Conversely, when
β is small, the updated policy places greater emphasis on the reward and value estimates, leading to
more aggressive adjustments.

Note that once we obtain the new policy as equation 9, we can plug it back to equation 2 to obtain
the corresponding new value functions, and compute the advantage, then follow the policy iteration
equation 4 to further improve the policy, which is known as a policy improvement iteration in the
literature (Agarwal et al., 2019).

Summarizing the above discussion, it is possible to design an iterative algorithm approximating the
policy iteration that solves, which iteratively enhances the policy without fine-tuning the parameters.
At each iteration, the policy πk is updated in inference time based on the previously improved policy
πk−1 by using the value function trained in the last iteration. According to the proposition 1, the
optimal solution at the kth iteration is given by:

πk(a|s) ∝ πk−1(a|s) exp
(1
β

(
r(s, a) + γEs′∼P(·|s,a)Vπk (s

′)
))

(10)

∝ πbase(a|s) exp
(k
β
r(s, a) +

k∑
i=1

γ

β
Es′∼P(·|s,a)Vπi(s

′)
)
, (11)

where πbase is the initial base policy. This formulation demonstrates that by iteratively incorporating
the base model, reward model, and previously trained value functions, we can achieve successive
policy improvement at inference time without directly fine-tuning the base model.

4

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Guided generation step Value training step

<latexit sha1_base64="rCCI4DRh7z/4+S6cwkLqWEe4znA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz00Et4v1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1bus1u5rlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwBSq43W</latexit>⇡
<latexit sha1_base64="mQ0470thVd9epm894GM9GhG+I+g=">AAAB+3icbVDLSsNAFJ3UV62vWJduBovgqiRS1GXRjcsK9gFNCJPppB06eTBzIy0hv+LGhSJu/RF3/o2TNgttPXDhcM69M/cePxFcgWV9G5WNza3tnepubW//4PDIPK73VJxKyro0FrEc+EQxwSPWBQ6CDRLJSOgL1vend4Xff2JS8Th6hHnC3JCMIx5wSkBLnlnHTsK9zAE2g6x4KM89s2E1rQXwOrFL0kAlOp755YximoYsAiqIUkPbSsDNiAROBctrTqpYQuiUjNlQ04iETLnZYvccn2tlhINY6ooAL9TfExkJlZqHvu4MCUzUqleI/3nDFIIbN+NRkgKL6PKjIBUYYlwEgUdcMgpirgmhkutdMZ0QSSjouGo6BHv15HXSu2zaV83WQ6vRvi3jqKJTdIYukI2uURvdow7qIopm6Bm9ojcjN16Md+Nj2VoxypkT9AfG5w+IiZTI</latexit>⇡base

Who is Larry?

<latexit sha1_base64="nLnH6dSU6ycTCl0CSsdUtK75jFk=">AAAB8XicbVBNS8NAEJ3Urxq/qh69LBbBU0lKUY8FLx4r2A9sQ9hsN+3S3U3Y3Qgl9F948aCIV/+NN/+N2zYHbX0w8Hhvhpl5UcqZNp737ZQ2Nre2d8q77t7+weFR5fiko5NMEdomCU9UL8KaciZp2zDDaS9VFIuI0240uZ373SeqNEvkg5mmNBB4JFnMCDZWenQ7YT5IWTiZhZWqV/MWQOvEL0gVCrTCytdgmJBMUGkIx1r3fS81QY6VYYTTmTvINE0xmeAR7VsqsaA6yBcXz9CFVYYoTpQtadBC/T2RY6H1VES2U2Az1qveXPzP62cmvglyJtPMUEmWi+KMI5Og+ftoyBQlhk8twUQxeysiY6wwMTYk14bgr768Tjr1mn9Va9w3qs16EUcZzuAcLsGHa2jCHbSgDQQkPMMrvDnaeXHenY9la8kpZk7hD5zPHyl5kI0=</latexit>

V⇡k

Prompt

<latexit sha1_base64="W/F64tfoYCwdXU5q8KyME5/9VoQ=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSK0UEpSirosuHFZwT6gCWUynbZDJw9mJtIQ8ituXCji1h9x5984bbPQ1gOXezjnXubO8SLOpLKsb2Nre2d3b79wUDw8Oj45Nc9KXRnGgtAOCXko+h6WlLOAdhRTnPYjQbHvcdrzZncLv/dEhWRh8KiSiLo+ngRszAhWWhqaJSetzGsoqSGhe1KtOtnQLFt1awm0SeyclCFHe2h+OaOQxD4NFOFYyoFtRcpNsVCMcJoVnVjSCJMZntCBpgH2qXTT5e0ZutLKCI1DoStQaKn+3kixL2Xie3rSx2oq172F+J83iNX41k1ZEMWKBmT10DjmSIVoEQQaMUGJ4okmmAimb0VkigUmSsdV1CHY61/eJN1G3b6uNx+a5VYjj6MAF3AJFbDhBlpwD23oAIE5PMMrvBmZ8WK8Gx+r0S0j3zmHPzA+fwB95pLC</latexit>{(x, y, r(x, y))}
<latexit sha1_base64="2xTKRz1SmbtPxFCR+ectY+Ti00c=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBahgpSkFPVY8OKxgv3AJpTNdtMu3WzC7kYMof/CiwdFvPpvvPlv3LY5aOuDgcd7M8zM82POlLbtb6uwtr6xuVXcLu3s7u0flA+POipKJKFtEvFI9nysKGeCtjXTnPZiSXHoc9r1Jzczv/tIpWKRuNdpTL0QjwQLGMHaSA9uVn26QOm5Ox2UK3bNngOtEicnFcjRGpS/3GFEkpAKTThWqu/YsfYyLDUjnE5LbqJojMkEj2jfUIFDqrxsfvEUnRlliIJImhIazdXfExkOlUpD33SGWI/VsjcT//P6iQ6uvYyJONFUkMWiIOFIR2j2PhoySYnmqSGYSGZuRWSMJSbahFQyITjLL6+STr3mXNYad41Ks57HUYQTOIUqOHAFTbiFFrSBgIBneIU3S1kv1rv1sWgtWPnMMfyB9fkDc4aQFQ==</latexit>{(x, y)}

<latexit sha1_base64="IrTq4lQR+/loxl4HzeFNTFWKXWE=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRahXspuKeqx4MVjBfsB3aVk02wbms2GJCuWpT/CiwdFvPp7vPlvTNs9aOuDgcd7M8zMCyVn2rjut1PY2Nza3inulvb2Dw6PyscnHZ2kitA2SXiieiHWlDNB24YZTntSURyHnHbDye3c7z5SpVkiHsxU0iDGI8EiRrCxUtfPqk+X/mxQrrg1dwG0TrycVCBHa1D+8ocJSWMqDOFY677nShNkWBlGOJ2V/FRTickEj2jfUoFjqoNsce4MXVhliKJE2RIGLdTfExmOtZ7Goe2MsRnrVW8u/uf1UxPdBBkTMjVUkOWiKOXIJGj+OxoyRYnhU0swUczeisgYK0yMTahkQ/BWX14nnXrNu6o17huVZj2PowhncA5V8OAamnAHLWgDgQk8wyu8OdJ5cd6dj2VrwclnTuEPnM8f0tKPMg==</latexit>{(x)}

<latexit sha1_base64="z53POQCcZ2mVEEHiDHiAdHv4huE=">AAACTHicbZDPaxNBFMdno7Yx/mhaj14eBqE9GHZDUC9CoAgeIyRpYXe7zE4m6ZCZ2WXmbSEM2//Piwdv/hVePLSI4GySg7Z+YeDL573Hm/fNSykshuH3oPXg4aO9/fbjzpOnz54fdA+PZraoDONTVsjCnOfUcik0n6JAyc9Lw6nKJT/LV6dN/eyKGysKPcF1yVNFl1osBKPoUdZliRI6c7MariFRFC/z3H2sM5cgrSCxQkFSimxVQ5KL5RJizyqVOfwQ1hdussUxzI5thifwBow3k5MNTS8G26E06/bCfrgR3DfRzvTITuOs+y2ZF6xSXCOT1No4CktMHTUomOR1J6ksLylb0SWPvdVUcZu6TRg1vPZkDovC+KcRNvTvCUeVtWuV+87mXnu31sD/1eIKF+9TJ3RZIddsu2hRScACmmRhLgxnKNfeUGaE/yuwS2ooQ59/x4cQ3T35vpkN+tHb/vDzsDca7OJok5fkFTkmEXlHRuQTGZMpYeQL+UFuyG3wNfgZ/Ap+b1tbwW7mBflHrb0/dDayMg==</latexit>

min
V

E⌧⇠⇡k

 TX

t=0

⇥
V (st) � r(sT)

⇤2
�

Previous Iteration Next Iteration
<latexit sha1_base64="+trFopYr4mlzQs+E5ryRKreL9NM=">AAAB/HicbVDLSsNAFL2pr1pf0S7dBIvgqiSlqMuCLlxWsA9oQphMJ+3QySTMTIQQ6q+4caGIWz/EnX/jpM1CWw8MHM65l3vmBAmjUtn2t1HZ2Nza3qnu1vb2Dw6PzOOTvoxTgUkPxywWwwBJwignPUUVI8NEEBQFjAyC2U3hDx6JkDTmDypLiBehCachxUhpyTfrboTUFCOW38793E2oP5v7ZsNu2gtY68QpSQNKdH3zyx3HOI0IV5ghKUeOnSgvR0JRzMi85qaSJAjP0ISMNOUoItLLF+Hn1rlWxlYYC/24shbq740cRVJmUaAni6hy1SvE/7xRqsJrL6c8SRXheHkoTJmlYqtowhpTQbBimSYIC6qzWniKBMJK91XTJTirX14n/VbTuWy279uNTqusowqncAYX4MAVdOAOutADDBk8wyu8GU/Gi/FufCxHK0a5U4c/MD5/AFDglSo=</latexit>D⇡k

Score

𝑎!,!

𝑎!,#

𝑎!,$

𝑎!,%

𝑎#,!

𝑎#,#

𝑎#,$

𝑎#,%

𝑎&,!

𝑎&,#

𝑎&,$

𝑎&,%
<latexit sha1_base64="oXSE3HpN/NJXn5K94BOFPxMmjwI=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF49V7Ae0oWy2k3bpZhN2N0Ip/QdePCji1X/kzX/jps1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4NvPbT6g0j+WjmSToR3QoecgZNVZ6UKV+ueJW3TnIKvFyUoEcjX75qzeIWRqhNExQrbuemxh/SpXhTOCs1Es1JpSN6RC7lkoaofan80tn5MwqAxLGypY0ZK7+npjSSOtJFNjOiJqRXvYy8T+vm5rw2p9ymaQGJVssClNBTEyyt8mAK2RGTCyhTHF7K2EjqigzNpwsBG/55VXSuqh6l9Xafa1Sv8njKMIJnMI5eHAFdbiDBjSBQQjP8Apvzth5cd6dj0VrwclnjuEPnM8fFJyNEw==</latexit>r

<latexit sha1_base64="oXSE3HpN/NJXn5K94BOFPxMmjwI=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF49V7Ae0oWy2k3bpZhN2N0Ip/QdePCji1X/kzX/jps1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4NvPbT6g0j+WjmSToR3QoecgZNVZ6UKV+ueJW3TnIKvFyUoEcjX75qzeIWRqhNExQrbuemxh/SpXhTOCs1Es1JpSN6RC7lkoaofan80tn5MwqAxLGypY0ZK7+npjSSOtJFNjOiJqRXvYy8T+vm5rw2p9ymaQGJVssClNBTEyyt8mAK2RGTCyhTHF7K2EjqigzNpwsBG/55VXSuqh6l9Xafa1Sv8njKMIJnMI5eHAFdbiDBjSBQQjP8Apvzth5cd6dj0VrwclnjuEPnM8fFJyNEw==</latexit>r

<latexit sha1_base64="VYws/ATxE65YmnGT3qQNKpjuNnk=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF49V7Ae0oWy2m3bpZhN2J0Ip/QdePCji1X/kzX/jps1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7Gt5nffuLaiFg94iThfkSHSoSCUbTSQ6vUL1fcqjsHWSVeTiqQo9Evf/UGMUsjrpBJakzXcxP0p1SjYJLPSr3U8ISyMR3yrqWKRtz40/mlM3JmlQEJY21LIZmrvyemNDJmEgW2M6I4MsteJv7ndVMMr/2pUEmKXLHFojCVBGOSvU0GQnOGcmIJZVrYWwkbUU0Z2nCyELzll1dJ66LqXVZr97VK/SaPowgncArn4MEV1OEOGtAEBiE8wyu8OWPnxXl3PhatBSefOYY/cD5/AOoBjPc=</latexit>

V
<latexit sha1_base64="VYws/ATxE65YmnGT3qQNKpjuNnk=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF49V7Ae0oWy2m3bpZhN2J0Ip/QdePCji1X/kzX/jps1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7Gt5nffuLaiFg94iThfkSHSoSCUbTSQ6vUL1fcqjsHWSVeTiqQo9Evf/UGMUsjrpBJakzXcxP0p1SjYJLPSr3U8ISyMR3yrqWKRtz40/mlM3JmlQEJY21LIZmrvyemNDJmEgW2M6I4MsteJv7ndVMMr/2pUEmKXLHFojCVBGOSvU0GQnOGcmIJZVrYWwkbUU0Z2nCyELzll1dJ66LqXVZr97VK/SaPowgncArn4MEV1OEOGtAEBiE8wyu8OWPnxXl3PhatBSefOYY/cD5/AOoBjPc=</latexit>

V

<latexit sha1_base64="VYws/ATxE65YmnGT3qQNKpjuNnk=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF49V7Ae0oWy2m3bpZhN2J0Ip/QdePCji1X/kzX/jps1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7Gt5nffuLaiFg94iThfkSHSoSCUbTSQ6vUL1fcqjsHWSVeTiqQo9Evf/UGMUsjrpBJakzXcxP0p1SjYJLPSr3U8ISyMR3yrqWKRtz40/mlM3JmlQEJY21LIZmrvyemNDJmEgW2M6I4MsteJv7ndVMMr/2pUEmKXLHFojCVBGOSvU0GQnOGcmIJZVrYWwkbUU0Z2nCyELzll1dJ66LqXVZr97VK/SaPowgncArn4MEV1OEOGtAEBiE8wyu8OWPnxXl3PhatBSefOYY/cD5/AOoBjPc=</latexit>

V2.5

1.8

2.1

1.9

Prompt

1.8+…+1.6

2.0+…+1.8

1.6+…+1.5

2.2+…+1.9

<latexit sha1_base64="0KUil5Xk9zTPiIqCmo4JKb8MOns=">AAAB+3icbVBNS8NAEN3Ur1q/Yj16CRbBU01KUY8FLx4r2A9oQthsN+3SzSbsTsQS8le8eFDEq3/Em//GTZuDtj4YeLw3w8y8IOFMgW1/G5WNza3tnepubW//4PDIPK73VZxKQnsk5rEcBlhRzgTtAQNOh4mkOAo4HQSz28IfPFKpWCweYJ5QL8ITwUJGMGjJN+t9P3MT5tv5pRtQwL5d882G3bQXsNaJU5IGKtH1zS93HJM0ogIIx0qNHDsBL8MSGOE0r7mpogkmMzyhI00FjqjyssXtuXWulbEVxlKXAGuh/p7IcKTUPAp0Z4Rhqla9QvzPG6UQ3ngZE0kKVJDlojDlFsRWEYQ1ZpIS4HNNMJFM32qRKZaYgI6rCMFZfXmd9FtN56rZvm83Oq0yjio6RWfoAjnoGnXQHeqiHiLoCT2jV/Rm5MaL8W58LFsrRjlzgv7A+PwBtrCTiQ==</latexit>

V⇡0
/�0

<latexit sha1_base64="qHYIL1YwvURMTe8k77udvVlOj74=">AAACA3icbVDLSsNAFJ3UV62vqDvdBIvgxpqUoi4LblxWsA9oQphMJ+3QySTM3AglFNz4K25cKOLWn3Dn3zhps9DWAxfOnHMvc+8JEs4U2Pa3UVpZXVvfKG9WtrZ3dvfM/YOOilNJaJvEPJa9ACvKmaBtYMBpL5EURwGn3WB8k/vdByoVi8U9TBLqRXgoWMgIBi355lHHz9yE+dn43JlOL9yAAp4/Kr5ZtWv2DNYycQpSRQVavvnlDmKSRlQA4VipvmMn4GVYAiOcTituqmiCyRgPaV9TgSOqvGx2w9Q61crACmOpS4A1U39PZDhSahIFujPCMFKLXi7+5/VTCK+9jIkkBSrI/KMw5RbEVh6INWCSEuATTTCRTO9qkRGWmICOLQ/BWTx5mXTqNeey1rhrVJv1Io4yOkYn6Aw56Ao10S1qoTYi6BE9o1f0ZjwZL8a78TFvLRnFzCH6A+PzB+HNlvs=</latexit>

V⇡k�1
/�k�1

Figure 1: Illustration of our algorithm: Test-Time Successive Policy Iterations (SPI). The framework
consists of two stages: (1) a guided generation step that produces optimized policies based on current
value estimates and (2) a value training step that trains a new value function based on a current new
policy.

3 ALGORITHM DESIGN

In this section, we design the practical implementation for the proposed inference time SPI formu-
lation. While the theoretical formulation provides a framework for iterative policy improvement,
directly applying the previous algorithm is not feasible. Specifically, in language models, the action
space consists of an extensive vocabulary (for example, GPT-4 has a vocabulary size of 100256),
making it computationally infeasible to compute policy updates by evaluating all possible actions.
Therefore, we introduce a practical approach that addresses this challenge and ensures efficient im-
plementation. On a high level, the proposed algorithm alternates between two key steps: the value
training step and the guided generation step. In the value training step, the algorithm updates the
value function under a fixed policy π. In the guided generation step, a search-based method is
employed to optimize the generation process by leveraging the learned value function. Below, we
provide detailed descriptions of these components, which are also shown in Fig. 1.

Value training step. In the k-th iteration, given the continuations generated by the guided generation
step (in the first iteration, the base model generates the continuation directly), this step aims to train
a corresponding value function Vπk

, enabling a policy improvement step according to Proposition
1. Specifically, we leverage the set of previously trained value functions {Vπi}k−1

i=0 to approximate
the improved policy πk by equation 11. This updated policy is then used to generate continuations,
with a reward model providing scores to collect a new dataset Dk = {(x, y, r(x, y))} to train the
value function Vπk

for the next round of policy updates.

The objective of the value training step is to minimize the discrepancy between the predicted values
and the actual return values. There are several approaches to achieve this. For example, Schulman
et al. (2017) employs temporal difference learning and generalized advantage estimation (Schulman
et al., 2015) to learn the value function, while Farebrother et al. (2024) uses a cross-entropy loss.
In this work, we adopt a direct regression approach, where the predicted values are regressed to the
observed returns, following Yang & Klein (2021); Mudgal et al. (2023). We choose this method for
its simplicity and stability, and it is given by:

Vπ := argmin
V

Eτ∼π

[T∑

t=0

[
V (st)− r(sT)

]2
]
. (12)

Guided generation step. In this step, our objective is to sample the generation by the improved
policy. Specifically, during the inference stage at the k-th iteration, the log probability of generating
an action a given state s is determined by both the summation of previously trained value functions
and the base policy. This can be expressed as:

log πk(a|s) ∝ log πbase(a|s) +
k−1∑

i=0

1

βi
r(s, a) +

k−1∑

i=0

γ

βi
Es′∼P(·|s,a)Vπi

(s′), (13)

where π0 = πbase. In the standard RLHF training pipeline (Ouyang et al., 2022; Bai et al., 2022),
the outcome-based reward model is commonly adopted, which means that the rewards are sparse

5

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

and typically assigned only at the terminal state, e.g., the EOS token (Ouyang et al., 2022). In
addition, to ensure the policy satisfies the simplex constraint, we adopt a softmax to normalize the
distribution. As a result, this simplifies the equation 13 to:

log πk(a|s) ∝ Softmax

(
log πbase(a|s) +

k−2∑
i=0

γ

βi
Es′∼P(·|s,a)Vπi(s

′)

)
+

γ

βk−1
Es′∼P(·|s,a)Vπk−1(s

′).

(14)

In practice, exploring the entire action space (i.e., the full vocabulary) at each step is computationally
infeasible, especially in large-scale language models. On the other hand, Tree search methods like
Monte Carlo Tree Search offer thorough exploration but are prohibitively expensive for real-time or
large-scale applications (Browne et al., 2012)

To address this, we adopt a beam search variant inspired by Zhou et al. (2024), which offers a
more computationally efficient alternative. In this approach, multiple candidate nodes (tokens) are
expanded according to the original policy, and the top k nodes (tokens) are selected based on eval-
uations from the value function. In addition, following Zhou et al. (2024), we incorporate chunked
sampling, where multiple tokens are generated as a single node rather than expanding token-by-
token. This significantly reduces the number of value function queries, improving efficiency without
compromising the quality of generated sequences.

However, we observe that this method often results in redundant or identical chunks, which limits
the diversity of the search space and may hinder the exploration of potentially better sequences. To
mitigate this issue, we incorporate a diversity-first principle into our selection process. Specifically,
we prioritize maintaining a diverse set of candidate nodes by first clustering the same nodes and
ensuring that each cluster contributes at least one representative to the next beam. Finally, we use
the reward model to choose the best one. We summarize the proposed algorithm in Algorithm 1 and
2, corresponding to the value training and guided generation steps.

Remark 3.1 Although the continuations generated during the guided generation step follow the
same distribution as the explicit optimal policy, approximation errors may arise in equation 12.
Specifically, after collecting generations from the decoding step, solving equation 12 can be viewed
as a supervised learning problem that can be solved by stochastic gradient descent. From Vershynin
(2018), we know that the generalization error in such empirical risk minimization is bounded by the
bound O(

√
d/n) (d is the VC Dimension), which implies that Vπk

can be effectively approximated
given a sufficiently large dataset generated by πk. Further, as shown in Table 1, this approximation
error could be significantly reduced as the size of the sampled generation increases. In this case, the
proposed method becomes equivalent to multi-iteration policy optimization.

Remark 3.2 As the number of iterations increases, an increasing number of value functions are
required to guide the base policy in obtaining the latest policy. This can introduce a significant
external memory burden. A potential solution to mitigate this issue is to keep the backbone of the
value function fixed and fine-tune only the value head, reducing memory overhead while maintaining
adaptability. Additionally, another approach is to distill a single model to approximate the aggre-
gated scores from all previous value function models, effectively compressing the information and
reducing memory cost.

4 EXPERIMENT

In this section, we demonstrate the effectiveness of our proposed method on TL;DR summarization
dataset (Stiennon et al., 2020) in Section 4.1, and its use in UltraFeedback dataset in Section 4.2.

4.1 ALIGNING LLM WITH TL;DR DATASET

Model and Datasets. We use the SFT model based on EleutherAI/pythia family with size 1b
and 6.9b, fine-tuned on TL;DR text-summarization dataset following the methodology outlined in
Huang et al. (2024b). We utilize a public reward model2 trained from Pythia-6.9b with TL;DR

2see https://huggingface.co/vwxyzjn/EleutherAI_pythia-6.9b-deduped__reward__tldr

6

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Algorithm 1: Inference-time successive policy iterations

1: Input: Preference datasets P := {(x, yl, yw)}, prompt datasets D := {(x)}, a base policy πbase, reward
model r.

2: Output: Updated policy in the inference time.
3: Train a reward model r using preference datasets P := {(x, yl, yw)}.
4: Initialize π0 = πbase.
5: for k = 0 to K do
6: Roll out by using current policy πk on prompt dataset D to generate continuations y to collect a

dataset.
7: Using the trained reward model r to evaluate the prompt-continuation pairs to create

Dπk := {(x, y, r(x, y))}.
8: Train a value function Vπk by minimizing the loss (12) on Dπk .
9: Update policy πk+1 by using the guided generation step (Algorithm. 2) with {Vπi}ki=0.

10: end for
11: return πK+1

Algorithm 2: Guided generation step at the kth iteration
1: Input: Prompt x, beam width W , successors per state K, chunk length L, previous value function list

{Vi}ki=1, base policy πbase, reward model r
2: Output: Response y∗ with the highest reward.
3: Generate N partial responses with length L to initialize the candidate set C = {y1, y2, ..., yN}
4: while ∃y′ ∈ C such that y′ is incomplete do
5: Query the value function list {Vi}k−1

i=0 to compute the value scores vj for each candidate yj as
vj =

∑k
i=1

1
βi
Vi(x, yj).

6: Select the top K candidates following the diversity-first principle to form a parent set.
7: Generate the W child node with maximum length L for each parent node to update the candidate set C .
8: end while
9: return y∗ = argmaxy′∈C r(x, y′)

dataset as the evaluator and Pythia-1b reward model for the scorer. For training details of the
value function, we initialize the backbone with the parameters of the policy model and train it on a
scored dataset comprising 8192 samples per iteration.

Baselines. Our test-time alignment baselines include Best-of-N (BoN), which generates N = 16
candidate full responses, evaluates them using the outcome reward model, and selects the response
with the highest reward. Additionally, we compare against the training time alignment method DPO.

Generation and Evaluation. During generation, we use T = 0.7, top-k = 50, top-p = 1.0, with
a maximum length 53 and chunk length of L = 8. For evaluation, we sample a subset of 300
instances from the test dataset. We also record the win rate of the model generated summary against
the reference summary (human-written reference), evaluated by GPT-4o-mini (the GPT prompt can
be found in Appendix C). In our algorithm, we use γ = 1 and βk = 1 for all iterations.

Result. As shown in Fig. 2, our method outperforms both the BoN method and training time
method DPO, even in the first iteration when using 1b value functions to guide 1b policy. Addition-
ally, inference-time SPI demonstrates consistent improvements in both reward score and win rate
compared to the ground truth summary across multiple iterations. For the weak to strong guidance,
like 1b value functions guiding the 6.9b policy, we observe that our method is still better than the
BoN. While our method achieves comparable performance to the training-based DPO method on
reward scores, it shows a lower win rate against DPO. This discrepancy is likely attributable to the
size disparity between models - our method uses only a 1B model trained for test-time guidance,
whereas DPO directly trains the larger 6.9B model, allowing it to better internalize the preference
information.

7

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

0

10

20

30

40

50

W
in

 R
at

e
(%

)

1B Model Guiding 1B Model

0

10

20

30

40

50

W
in

 R
at

e
(%

)

1B Model Guiding 6.9B Model

5

4

3

2

1

0

1

2

3

Re
wa

rd
 S

co
re

Reward

5

4

3

2

1

0

1

2

3

Re
wa

rd
 S

co
re

Reward

SFT
Inference-time SPI Iter1

Inference-time SPI Iter2
Inference-time SPI Iter3

DPO
BoN 16

Figure 2: Reward score (line) and win rates (bar) evaluated by GPT-4o-mini across multiple itera-
tions on 300 samples from the test dataset. The decoding process maintains a beam width of 4 with
4 candidates preserved per state (following the methodology in Zhou et al. (2024)).

4.2 ALIGNING LLM WITH ULTRAFEEDBACK DATASET

In this section, we evaluate the effectiveness of our method in the weak-to-strong guidance setting,
where a value function trained on smaller, weaker LLM is used to guide larger, more capable base
LLM.

Model and Datasets. We use Meta-Llama-3-8B-Instruct3 as our base policy. To get one
explicit reward model, we initialize the reward model from mistralai/Mistral-7B-v0.1,
and then train it on the UltraFeedback dataset (Cui et al., 2023)4. The value function is initialized
from the reward model and further trained through using the model’s rollouts / generations.

Baseline. We consider the following baselines: Best-of-N with explicit reward (BoN-E) and implicit
reward (BoN-I), and weak-to-strong search (Zhou et al., 2024). For the implicit reward, we use
the relative log probability between zephyr-7b-beta and mistral-7b-sft-beta, where
zephyr-7b-beta is fine-tuned based on the mistral-7b-sft-beta using DPO loss. For
fairness, all models are trained on the UltraFeedback dataset, ensuring a consistent comparison
across methods.

Generation and Evaluation. For generation, we use the T = 0.6, top-k = 50 and top-p = 0.9
with a maximum length 2048. We evaluate the performance on a standard single-turn instruction-
following benchmark, AlpacaEval 2.0 (Li et al., 2023), which consists of 805 prompts from various
open-source datasets. Our evaluation reports both the raw win rate and the length-controlled (LC)
win rate (Dubois et al., 2024), the latter being a metric specifically designed to mitigate biases arising
from model verbosity. We also conduct an ablation study on a 200-sample subset of the AlpacaE-
val 2.0 dataset (see Section 4.2.1). We also use a held-out 8B reward model (Xiong et al., 2024;
Dong et al., 2023), sfairXC/FsfairX-LLaMA3-RM-v0.15 as the ground-truth reference for
evaluating with the formula win rate + 1

2 tie rate to measure generation quality compared against the
BoN.

Result. The evaluation result is shown in Table 2. Inference-time SPI demonstrates consistent
and substantial improvements over the baseline compared against the response generated by GPT-4.
Notably, BoN-E significantly outperforms other baseline algorithms, implying that BoN with an ex-
plicit reward serves as an efficient and effective inference-time alignment method. Furthermore, by
leveraging the value function to conduct a fine-grained search during decoding in multiple iterations,
our method achieves successive performance gains that substantially exceed those of BoN-E. This
confirms our intuition that rather than requiring additional computational resources to fine-tune the
model during training, significant improvements can be achieved successively through value-guided
exploration at inference time. Here, we adopt an increasing parameter β as iterations proceed. This

3https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
4https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized
5https://huggingface.co/sfairXC/FsfairX-LLaMA3-RM-v0.1

8

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

25

30

35

40

45

W
in

 R
at

e
(%

)

Compared Against GPT-4
LC Win Rate
Win Rate

35

40

45

50

55

60

W
in

 R
at

e
(%

)

Compared Against BoN-E
LC Win Rate
Win Rate

Meta-Llama-3-8B-Instruct
BoN-I 16

BoN-E 16
Weak to Strong Search

Inference-time SPI Iter1
Inference-time SPI Iter2

Inference-time SPI Iter3

Figure 3: AlpacaEval 2 length-controlled win rate and raw win rate compared against GPT-4 (left)
and BoN-E (right), evaluated by GPT-4. We use β1 = 1, β2 = 2, β3 = 2.5 while neglecting
the log π(a|s), which places more emphasis on the learned value function during generation. The
decoding process maintains a beam width of 4 with 4 candidates preserved per state, and L = 16
tokens as a state. For fairness, we use N = 16 for BoN. The numerical result is shown in Appendix
D.

more conservative strategy becomes necessary to ensure stability and prevent excessive deviation
from the previous policy.

4.2.1 ABLATION STUDY

Explore different sampling strategies for inference-time SPI. We investigate the impact of dif-
ferent sampling strategies during the guided generation step on the performance. We compare four
sampling approaches: beam search variants (Zhou et al., 2024), with and without the diversity-first
principle, and two stochastic sampling methods. For stochastic sampling, we sample the next text
chunks using a softmax distribution weighted by the value function, i.e., a ∼ exp(Vi/T)∑

j expVj/T
with

different temperature T .

Beam Search
(Guided generation)

Beam Search
Diversity-First

Stochastic
(T=0.7)

Stochastic
(T=0.5)

30

35

40

45

50

55

60

65

70

RM
 W

in
 +

 1
/2

 T
ie

 (%
)

56.0%

64.0%

54.5%

63.0%

Figure 4: Comparison of different sampling
strategies against BoN method under differ-
ent sampling strategies during guided gener-
ation step on the 200 sub dataset.

As shown in Figure 4, incorporating the diversity-first
principle into beam search significantly improves perfor-
mance, making the search more effective. While stochas-
tic sampling methods also perform well, their effective-
ness is highly sensitive to the temperature parameter T .

Explore different chunk lengths for inference-time
SPI. We further explore the effect of chunk length on the
performance of our method compared against the BoN
method with N = 16 (see Figure 5). We can see that the
performance of inference-time SPI increases and then de-
creases as the chunk length increases. Intuitively, when
the number of provided tokens is very small, the value
function is insufficient to distinguish the quality of differ-
ent candidates. As the token length increases to a certain
extent, the value function can make more accurate judg-
ments between different candidates. As the chunk length
increases toward the max length, the algorithm gradually
converges to the BoN method, causing the win rate rela-
tive to BoN to approach 50%.

Explore different data sizes on training a value function for inference-time SPI. Table 1 shows
the impact of data size for training a value function on the performance under different chunk length
settings. When the data size is small (e.g., 1024 or 2048), larger chunk lengths (L = 32, 64) yield
better results. This is likely because the value function, trained on limited data, lacks the precision
to provide accurate estimates for smaller token sequences. In contrast, as data size increases (e.g.,

9

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

4 8 16 32 64 128 256 512
L

50

55

60

65

70

Pe
rc

en
ta

ge
 (

%
)

RM and GPT-4 Evaluation
RM Win + 1/2 Tie (%)
GPT-4 LC Win (%)
GPT-4 Win (%)

4 8 16 32 64 128 256 512
L

38

39

40

41

42

43

Pe
rc

en
ta

ge
 (

%
)

Comparison against GPT-4
LC Win (%)
Win (%)

Figure 5: The effect of the chunk length on inference-time SPI compared against BoN with N = 16
on a 200-sample sub-dataset. Left: The reward and GPT-4 evaluation on the inference-time SPI
compared against BoN. Right: The comparison against GPT-4. Numerical result are in Appendix D

4096 or 8192), smaller chunks (L = 16) perform better, suggesting that finer-grained search leads to
a more accurate inference-time policy update.

Chunk Length Data Size RM Win + 1
2Tie (%) GPT-4 Evaluation (%)

LC Win Win

16

1024 49.75% 48.61% 46.66%
2048 49% 51.26% 49.68%
4096 60% 56.45% 53.25%
8192 73% 59.9% 57%

32

1024 55% 48.52% 45.51%
2048 57.75% 50.92% 51.85%
4096 63% 48.96% 48.75%
8192 66% 58.04% 56%

64

1024 51% 53.64% 50.24%
2048 48% 54.63% 54.5%
4096 61.25% 53.52% 51.73%
8192 64% 56.21% 54.25%

Table 1: Comparison of inference-time SPI and BoN-16, evaluated by the reward model and GPT-4,
across different chunk lengths and data sizes used for training the value function.

5 CONCLUSION

We introduced Inference-Time Successive Policy Iterations (SPI), a novel algorithm that enables
multi-round policy improvement at inference time and is theoretically equivalent to fine-tuning
the policy model through reinforcement learning. Empirically, our method outperforms existing
inference-time alignment approaches, demonstrating the ability to successively enhance LLM’s per-
formance in reasoning and planning without requiring direct fine-tuning.

10

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. Reinforcement learning: Theory and
algorithms. CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep, 32, 2019.

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce style optimization for learn-
ing from human feedback in llms. arXiv preprint arXiv:2402.14740, 2024.

Mohammad Gheshlaghi Azar, Mark Rowland, Bilal Piot, Daniel Guo, Daniele Calandriello, Michal
Valko, and Rémi Munos. A general theoretical paradigm to understand learning from human
preferences. arXiv preprint arXiv:2310.12036, 2023.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harm-
lessness from ai feedback. arXiv preprint arXiv:2212.08073, 2022.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large
scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A survey
of monte carlo tree search methods. IEEE Transactions on Computational Intelligence and AI in
games, 4(1):1–43, 2012.

Souradip Chakraborty, Soumya Suvra Ghosal, Ming Yin, Dinesh Manocha, Mengdi Wang, Am-
rit Singh Bedi, and Furong Huang. Transfer q star: Principled decoding for llm alignment. arXiv
preprint arXiv:2405.20495, 2024.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu,
and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback. 2023.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan Zhang, Winnie Chow, Rui Pan, Shizhe Diao,
Jipeng Zhang, Kashun Shum, and Tong Zhang. Raft: Reward ranked finetuning for generative
foundation model alignment. arXiv preprint arXiv:2304.06767, 2023.

Yann Dubois, Balázs Galambosi, Percy Liang, and Tatsunori B Hashimoto. Length-controlled al-
pacaeval: A simple way to debias automatic evaluators. arXiv preprint arXiv:2404.04475, 2024.

Jesse Farebrother, Jordi Orbay, Quan Vuong, Adrien Ali Taïga, Yevgen Chebotar, Ted Xiao, Alex
Irpan, Sergey Levine, Pablo Samuel Castro, Aleksandra Faust, et al. Stop regressing: Training
value functions via classification for scalable deep rl. arXiv preprint arXiv:2403.03950, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Seungwook Han, Idan Shenfeld, Akash Srivastava, Yoon Kim, and Pulkit Agrawal. Value
augmented sampling for language model alignment and personalization. arXiv preprint
arXiv:2405.06639, 2024.

Shibo Hao, Yi Gu, Haotian Luo, Tianyang Liu, Xiyan Shao, Xinyuan Wang, Shuhua Xie, Haodi
Ma, Adithya Samavedhi, Qiyue Gao, et al. Llm reasoners: New evaluation, library, and analysis
of step-by-step reasoning with large language models. arXiv preprint arXiv:2404.05221, 2024.

11

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Joey Hejna and Dorsa Sadigh. Inverse preference learning: Preference-based rl without a reward
function. Advances in Neural Information Processing Systems, 36, 2024.

James Y Huang, Sailik Sengupta, Daniele Bonadiman, Yi-an Lai, Arshit Gupta, Nikolaos Pappas,
Saab Mansour, Katrin Kirchhoff, and Dan Roth. Deal: Decoding-time alignment for large lan-
guage models. arXiv preprint arXiv:2402.06147, 2024a.

Shengyi Huang, Michael Noukhovitch, Arian Hosseini, Kashif Rasul, Weixun Wang, and Lewis
Tunstall. The n+ implementation details of rlhf with ppo: A case study on tl; dr summarization.
arXiv preprint arXiv:2403.17031, 2024b.

Maxim Khanov, Jirayu Burapacheep, and Yixuan Li. Args: Alignment as reward-guided search.
arXiv preprint arXiv:2402.01694, 2024.

Lingkai Kong, Haorui Wang, Wenhao Mu, Yuanqi Du, Yuchen Zhuang, Yifei Zhou, Yue Song,
Rongzhi Zhang, Kai Wang, and Chao Zhang. Aligning large language models with representation
editing: A control perspective. arXiv preprint arXiv:2406.05954, 2024.

Wendi Li and Yixuan Li. Process reward model with q-value rankings. arXiv preprint
arXiv:2410.11287, 2024.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Alpacaeval: An automatic evaluator of instruction-following
models, 2023.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Zhixuan Liu, Zhanhui Zhou, Yuanfu Wang, Chao Yang, and Yu Qiao. Inference-time language
model alignment via integrated value guidance. arXiv preprint arXiv:2409.17819, 2024.

Sidharth Mudgal, Jong Lee, Harish Ganapathy, YaGuang Li, Tao Wang, Yanping Huang, Zhifeng
Chen, Heng-Tze Cheng, Michael Collins, Trevor Strohman, et al. Controlled decoding from
language models. arXiv preprint arXiv:2310.17022, 2023.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Jiahao Qiu, Yifu Lu, Yifan Zeng, Jiacheng Guo, Jiayi Geng, Huazheng Wang, Kaixuan Huang, Yue
Wu, and Mengdi Wang. Treebon: Enhancing inference-time alignment with speculative tree-
search and best-of-n sampling. arXiv preprint arXiv:2410.16033, 2024.

Rafael Rafailov, Joey Hejna, Ryan Park, and Chelsea Finn. From r to q∗: Your language model is
secretly a q-function. arXiv preprint arXiv:2404.12358, 2024a.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024b.

John Schulman. Trust region policy optimization. arXiv preprint arXiv:1502.05477, 2015.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015.

12

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. arXiv preprint arXiv:2408.03314, 2024.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances
in Neural Information Processing Systems, 33:3008–3021, 2020.

Roman Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press, 2018.

Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang, Han Zhong, Heng Ji, Nan Jiang, and Tong Zhang.
Iterative preference learning from human feedback: Bridging theory and practice for rlhf under
kl-constraint. In Forty-first International Conference on Machine Learning, 2024.

Shusheng Xu, Wei Fu, Jiaxuan Gao, Wenjie Ye, Weilin Liu, Zhiyu Mei, Guangju Wang, Chao Yu,
and Yi Wu. Is dpo superior to ppo for llm alignment? a comprehensive study. arXiv preprint
arXiv:2404.10719, 2024a.

Yuancheng Xu, Udari Madhushani Sehwag, Alec Koppel, Sicheng Zhu, Bang An, Furong Huang,
and Sumitra Ganesh. Genarm: Reward guided generation with autoregressive reward model for
test-time alignment. arXiv preprint arXiv:2410.08193, 2024b.

Kevin Yang and Dan Klein. Fudge: Controlled text generation with future discriminators. arXiv
preprint arXiv:2104.05218, 2021.

Xinnan Zhang, Siliang Zeng, Jiaxiang Li, Kaixiang Lin, and Mingyi Hong. Llm alignment through
successive policy re-weighting (spr). In NeurIPS 2024 Workshop on Fine-Tuning in Modern
Machine Learning: Principles and Scalability, 2024.

Zhanhui Zhou, Zhixuan Liu, Jie Liu, Zhichen Dong, Chao Yang, and Yu Qiao. Weak-to-strong
search: Align large language models via searching over small language models. arXiv preprint
arXiv:2405.19262, 2024.

A RELATED WORK

A.1 REINFORCEMENT LEARNING WITH HUMAN FEEDBACK

Reinforcement learning from human feedback (RLHF) (Stiennon et al., 2020; Ouyang et al., 2022)
is a widely adopted technique for fine-tuning AI systems to align with human preferences and val-
ues. Current RLHF approaches typically involve training a reward model using human preference
feedback and then fine-tuning the language model via proximal policy optimization (PPO) (Schul-
man et al., 2017). In addition to PPO, other reinforcement learning solvers such as RLOO (Ahma-
dian et al., 2024) and GRPO (Shao et al., 2024) have also demonstrated effectiveness in advanced
foundation language models. However, optimizing these algorithms for peak performance requires
substantial effort and resources, which are often beyond the reach of the open-source community.

A.2 TRAINING-TIME ALIGNMENT

In an effort to reduce computational overhead in reinforcement learning, alternative alignment strate-
gies such as Direct Preference Optimization (DPO) (Rafailov et al., 2024b) and Inverse Preference
Learning (IPL) (Hejna & Sadigh, 2024) remove the need for explicit reward modeling by extracting
policies directly from preference data. While this substantially lowers training complexity, these
algorithms can be unstable during training (Azar et al., 2023; Xu et al., 2024a), and once the prefer-
ence dataset is fixed, they offer limited opportunities for further policy improvement.

13

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

A.3 INFERENCE-TIME ALIGNMENT

Although training-time alignment methods are effective, they demand substantial computational and
engineering resources. To mitigate these costs, decoding-time alignment approaches typically freeze
pre-trained models and adjust their outputs during a decoding phase, which is handled by smaller,
specialized models (Zhou et al., 2024; Liu et al., 2024).

The conceptual framework for aligning language models at decoding time is rooted in the use of
value function (Mudgal et al., 2023) or reward function (Khanov et al., 2024). Khanov et al. (2024)
treat alignment as a Reward-Guided framework that integrates alignment into the decoding process
without considering a long-term return in token-level MDP. Liu et al. (2024) and Mudgal et al. (2023)
proposed methods leveraging explicit and implicit value functions trained via a KL-regularized re-
inforcement learning objective. However, these approaches rely solely on the value function derived
from the pre-trained model for guided generation, which can result in limited policy improvements.

Informed by these insights, we propose a method that integrates sequentially trained value functions
to enhance alignment with human preferences during the model’s decoding phase. Our empirical
findings, presented in Section 4, demonstrate that the proposed method captures richer contextual
understanding and yields superior results.

B PROOF

In this section, we show the solution to the constrained policy optimization problem defined in
equation 8a-equation 8d.

B.1 PROOF OF THEOREM 1

In this proof, we will first write down the partial Lagrangian function, which only considers the
constraints equation 8b-equation 8c. After solving the partial Lagrangian function, we will show
that the constraint equation 8d is satisfied.

Let α and ζ := {ζs|s ∈ S} denote the dual variables of the constraints equation 8b and equation 8c,
respectively. Then the partial Lagrangian function can be expressed as below:

L(π, α, ζ) := 1

1− γ
Es∼dπbase

(·),a∼π(·|s)
[
Aπbase

(s, a)
]
+ α

(
ϵ− Es∼dπbase

(·)
[
DKL

(
π(·|s)||πbase(·|s)

)])

+
∑

s∈S
ζs
(
1−

∑

a∈A
π(a|s)

)
.

Through taking partial derivative of L(π, α, ζ) w.r.t. π(a|s), we can obtain the following equation:

∂

∂π(a|s)L(π, α, ζ) =
1

1− γ
dπbase

(s)Aπbase
(s, a)− αdπbase

(s)
(
− log πbase(a|s) + log π(a|s) + 1

)
− ζs.

Through setting the partial derivative ∂
∂π(a|s)L(π, α, ζ) to 0, we obtain

1

1− γ
dπbase

(s)Aπbase
(s, a)− αdπbase

(s)
(
− log πbase(a|s) + log π(a|s) + 1

)
− ζs = 0.

Then we obtain the closed-form expression of the optimal policy π∗ as below:

log π∗(a|s) = Aπbase
(s, a)

(1− γ)α
+ log πbase(a|s)− 1− ζs

αdπbase
(s)

, (15a)

π∗(a|s) = πbase(a|s) exp
(Aπbase

(s, a)

(1− γ)α

)
exp

(
− 1− ζs

αdπbase
(s)

)
. (15b)

Here we can denote β := (1− γ)α. Then according to the expression of π(a|s) in equation 15b, we
obtain the following relation:

π(a|s) ∝ πbase(a|s) exp
(1

β
Aπbase

(s, a)
)
. (16)

14

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Based on the constraint equation 8c, we know that π(·|s) is a distribution so that
∑

a∈A π(a|s) = 1.
Therefore, according to the expressions in equation 15b and equation 16, we can obtain the following
expression of the optimal policy π∗ as below:

π∗(a|s) =
πbase(a|s) exp

(
1
βAπbase

(s, a)
)

∑
a′∈A πbase(a′|s) exp

(
1
βAπbase

(s, a′)
) .

Recall that Aπbase
(s, a) := Qπbase

(s, a) − Vπbase
(s) has been defined in equation 3, then we can

rewrite the expression of π∗(a|s):

π∗(a|s) =
πbase(a|s) exp

(
1
β

(
Qπbase

(s, a)− Vπbase
(s)

))

∑
a′∈A πbase(a′|s) exp

(
1
β

(
Qπbase

(s, a′)− Vπbase
(s)

))

=
πbase(a|s) exp

(
1
βQπbase

(s, a)
)

∑
a′∈A πbase(a′|s) exp

(
1
βQπbase

(s, a′)
) . (17)

=
πbase(a|s) exp

(
1
β (γEs′∼P(·|s,a)Vπbase

(s′) + r(s, a))
)

∑
a′∈A πbase(a′|s) exp

(
1
β (γEs′∼P(·|s,a′)Vπbase

(s′) + r(s, a′))
) . (18)

C GPT AS A JUDGE IN TL;DR TASK

System Prompt in TL;DR

Which of the following summaries does a better job of summarizing the most important
points in the given forum post, without including unimportant or irrelevant details? Judge
based on accuracy, coverage, and coherence.
Post:
<post>
Summary A:
<Summary A>
Summary B:
<Summary B>
FIRST provide a one-sentence comparison of the two summaries, explaining which you
prefer and why. SECOND, on a new line, state only "A" or "B" to indicate your choice.
Your response should use the format:
Comparison: <one-sentence comparison and explanation>
Preferred: <"A" or "B">

15

Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

D EXTENDED EXPERIMENTAL RESULTS

Method Compared Against GPT-4 Compared Against BoN-E
LC Win Rate Win Rate LC Win Rate Win Rate

Meta-Llama-3-8B-Instruct 30.71 29.63 38.77 38.32
BoN-I 16 35.25 32.67 43.52 40.68
BoN-E 16 39.61 38.14 50.00 50.00

weak to strong search 36.20 35.90 44.13 42.92
Inference-time SPI Iter1 41.06 37.32 55.42 53.60
Inference-time SPI Iter2 42.20 40.00 55.75 55.65
Inference-time SPI Iter3 43.11 41.00 57.00 56.46

Table 2: AlpacaEval 2 length-controlled win rate and raw win rate compared against GPT-4. We
use β1 = 1, β2 = 2, β3 = 2.5, which places more emphasis on the learned value function during
generation. The decoding process maintains a beam width of 4 with 4 candidates preserved per state,
and l = 16 tokens as a state. For fairness, we use N = 4 ∗ 4 for BoN.

D.1 CHUNK LENGTH ABLATION STUDY

L RM Win (%) RM Tie (%) RM Win + 1
2Tie (%) GPT-4 Evaluation (%) Compared with GPT-4

LC Win Win LC Win Win

4 67.5% 2.5% 68.75% 60.12% 55.25% 41.84% 38.25%
8 69% 4.5% 71.25 % 54.66% 52.0% 43.23% 38.75%
16 70.5% 5% 73% 59.9% 57.00% 43.2 % 40.25%
32 63.5% 5% 65.75% 58.04% 56.00% 42.39 % 39.25%
64 61% 6% 64% 56.21% 54.25% 42.48% 39.75%
128 56.5% 4.5% 58.75% 52.42% 49.5% 41.03% 37.75%
256 57% 5% 59.5% 51.0% 53.00% 40.35% 38.25%
512 49% 6% 52% 49.05% 48.75% 42.89% 41.25%

Table 3: The effect of the chunk length on value guided compared against BoN with N = 16 on a
200-sample sub-dataset. GPT-4 LC Win means that two responses are judged by the GPT-4. The
last column means the LC win rate compared with the result generated by GPT-4.

16

	Introduction
	Preliminaries and problem formulation
	Algorithm Design
	Experiment
	Aligning LLM with TL;DR Dataset
	Aligning LLM with UltraFeedback Dataset
	Ablation study

	Conclusion
	Related work
	Reinforcement learning with Human Feedback
	Training-time Alignment
	Inference-time Alignment

	Proof
	Proof of Theorem 1

	GPT as a judge in TL;DR task
	Extended Experimental Results
	Chunk length ablation study

