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ABSTRACT

Aligning Large Language Models (LLMs) to human preferences is essential for
their effective deployment in real-world applications. Traditional post-training
methods, such as Reinforcement Learning with Human Feedback (RLHF), are
resource-intensive and time-consuming, especially as model sizes continue to
grow. Recently, inference-time alignment methods have gained significant at-
tention, as they can steer the LLM output without direct fine-tuning, and can
be integrated with post-training techniques to further enhance performance. Ad-
ditionally, these methods enable personalization, allowing models to adapt dy-
namically to user preferences and specific task requirements. However, these ap-
proaches operate in a one-shot manner, limiting policy improvement to a single
round. To address this limitation, we introduce inference-time Successive Pol-
icy Iterations (SPI), a novel algorithm that enables successive policy improvement
at inference time. Specifically, inference-time SPI iteratively learns value func-
tions and leverages them to guide the LLM through a search-based optimization
process. Theoretically, our algorithm is equivalent to performing multi-iteration
policy optimization on the base model, effectively improving its behavior without
direct fine-tuning. Experimental results demonstrate that inference-time SPI sig-
nificantly improves length-control win rates on challenging instruction-following
benchmarks, such as AlpacaEval 2.0, achieving a substantial performance boost
(e.g., 30.71% — 43.80% for Llama—-3-8B—Instruct compare against GPT-
4 responses). Furthermore, inference-time SPI consistently outperforms existing
test-time alignment baselines such as Best-of-N (BoN), weak to strong search,
which is effective for inference time scaling on different tasks.

1 INTRODUCTION

As ChatGPT (Achiam et al.,|2023) and DeepSeek (Guo et al.,[2025) have taken the world by storm,
it is clear that Al systems will soon become ubiquitous in our lives. For instance, Large Language
Models (LLMs) have been used to solve hard problems including video gaming (Berner et al.,|2019),
and complex reasoning (Bai et al.| [2023). Traditionally, training-time alignment methods such as
Reinforcement Learning with Human Feedback (RLHF) (Ouyang et al., 2022}, and Direct Prefer-
ence Optimization (DPO) (Rafailov et al., |2024b) are used to align LLMs with human preferences.
While effective, these approaches require extensive computational resources and incur significant
costs, particularly for large-scale models. Furthermore, different tasks often require retraining or
fine-tuning models for optimal performance. However, in many real-world scenarios, such training-
based methods may be impractical due to limited computational resources, the inability to access
model weights like black box models, or restrictions on modifying large-scale proprietary models.
These limitations have driven significant interest in inference-time alignment methods, such as|Snell
et al.|(2024); Mudgal et al.| (2023)); Xu et al.|(2024b)), which keep the LLM frozen while steering its
behavior through external guidance without directly fine-tuning the model, further boost the perfor-
mance.
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The guidance in the inference time often uses one or several reward models. A simple yet effective
approach, called Best-of-N (BoN) (Nakano et al.| 2021} |Stiennon et al.| [2020), selects the highest-
ranking response from N samples using an outcome reward model (ORM). However, BoN operates
at the response level, limiting its granularity in guiding generation. To provide finer-grained con-
trol, alternative methods attempt to incorporate reward signals at the token or partial-response level.
For instance, ARGS (Khanov et al.,[2024) simply applies an RM trained on the complete sequence
to partially generated responses, introducing substantial estimation errors. Inspired by Rafailov
et al.[ (2024a), several works (Qiu et al., [2024; Zhou et al., 2024} [Liu et al., [2024)) use an implicit
reward, computed as the relative log probability between a base and a fine-tuned model, to pro-
vide token-level or partial-response guidance. However, this implicit reward is often inaccurate and
can underperform compared to the explicit reward-based method (Liu et al.l 2024). Other works
(Chakraborty et al., [2024; [Huang et al.| 2024a) improve reward accuracy by computing rewards on
fully generated responses, but this significantly increases inference costs. For complicated tasks,
such as mathematical reasoning (Bai et al.,[2023) and multi-step decision-making (Shao et al.,[2024;
Hao et al.| |2024)), step-level process guidance (Lightman et al., [2023) is important in reducing the
search space and improving the final quality.

Another research line (Mudgal et al.,2023; Han et al., 2024} Kong et al.,2024) explores training an
external value function to control frozen LLM. Since a value function estimates expected future re-
wards, it enables more informed and context-aware decision-making during inference. Additionally,
some approaches leverage step-level verifiers or process reward models (PRMs) (L1 & Li, |[2024) for
inference-time guidance. However, most of these inference-time alignment work operates in a one-
shot manner, allowing for only a single round of policy improvement. To address these limitations,
we revisit the constrained policy optimization problem proposed in TRPO (Schulman, 2015) and
build a partial Lagrangian reformulation of such a problem. By iteratively solving this optimization
problem, we propose incorporating value functions at inference time using a search-based method
to simulate training-time policy updates without fine-tuning. Unlike most existing inference-time
alignment approaches, which apply a one-shot improvement, our framework enables successive
policy improvement by alternating between value training and decoding steps without needing to
fine-tune the base model.

Contribution. In this paper, we propose inference-time Successive Policy Iterations (SPI), a novel
algorithm that iteratively improves the policy at inference time by learning value models and using
value models to guide policy generation. Our contributions can be summarized as follows:

1. We utilize the constrained policy optimization formulation proposed in [Peng et al.| (2019)
and propose an effective algorithm for solving such a problem in inference time. The pro-
posed algorithm successively improves the policy toward the optimal policy by leveraging
external guidance from additive value function models without changing the parameters of
the base policy. Such process is theoretically equivalent to improving the base policy by
policy iteratio

2. Empirically, we provide extensive evidence demonstrating that inference-time SPI offers a
significant improvement over existing inference-time alignment methods. In the summa-
rization dataset, our method achieves continuous performance improvements based on an
SFT model, surpassing both the (inference-time) BoN method and the (train-time) DPO ap-
proach. In 8b model experiment, we show that leveraging 7b model as value function can
significantly enhance the performance of the 8b base model on the instruction-following
benchmark. Additionally, we conduct a detailed ablation study to analyze the impact of
key factors, including chunk length, data size, and search strategies, on the performance of
inference-time SPI.

The proposed approach demonstrates the effectiveness of inference-time alignment, as a versatile
tool for enhancing model performance in the post-training stage.

'Our implemented algorithm is still different from the standard policy iteration to ensure efficiency. For
example, we did not calculate through the entire action space (i.e., the entire vocabulary) when outputting the
response from the reweighted policy model. See SectionE]for details of our implementation.
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2 PRELIMINARIES AND PROBLEM FORMULATION

The Finite-Horizon MDP Model. A Markov decision process (MDP) is defined by the tuple
(S, A, P, u,r,~v), which consists of the state space S, the action space A, the transition dynamics
P :SxAxS — |0, 1], the initial state distribution p(-), the reward function r : S x A — R and the
discounted factor v € (0,1). Under a transition dynamics model P and a policy 7 : S — A 4 where
A 4 is the probability simplex on the action space, further define the corresponding state visitation
measure as d.(s) := (1 —~) Z?:o Y'Pr(s¢ = s|so ~ n) for any state s € S. Here T is the horizon
size.

Token-level MDP Model of LLM. Denote the entire input prompt as = and output continuation as
y. The text generation process of LLM can be modeled as an MDP, where generation corresponds to
sampling from a learned policy. Specifically, each state at the time step ¢, denoted as s; = [z, y1.¢—1],
includes the prompt x and the sequences of tokens y1.;—1 generated up to that point. Each action
as = y; represents a token from the vocabulary. The transition kernel P is deterministic, i.e. given
tokens s; = [z,y1.+—1] and a4, S¢41 = P(s¢,at) = [st, a]. This corresponds to adding the newly
generated token a; to the existing sequence, thus forming the updated output.

Formulation of Successive Policy Iterations. Let us consider the most general case where the
horizon T' is co. We inspect the original policy optimization problem, which is:

oo
J(ﬂ') = ETNTI' lz ’Ytr(stvat)‘| ) (1)
t=0
where 7 := (sg,ao,S1,a1,...) denotes one trajectory, corresponding to one data point with

prompt(s) and continuation(s). Under a policy/LLM 7, we can define the corresponding value func-
tion V. and the Q-function (), as below:

Vi(s) :=Err

t _
;’Y T(Styat)|505] ) @)

Qnr(s,a) :=71(s,a) + VEgp(|s,a) [Va(s)].

We can further define the advantage function for each state action pair (s, a) as follows:

Ar(s,a) = Qr(s,a) — Vi(s). 3)
Then one can have the following meta algorithm that iteratively optimizes J ()
Th+1 = Tk + Nk Z P(Ar, (s, a)), 4)
(s,a)~Dy

where 7, is the learning rate; P(-) is a stochastic gradient estimate of .J(m), which is typically
a function of the advantage function; Dy, is a data set that contains trajectories. Of course, the
key ingredient in any policy optimization algorithm is to properly identify the stochastic gradient
direction P(-), which improves the objective function J (7).

The fundamental idea of policy improvement is that, suppose there is a reference policy 7/, we can
maximize the performance gap over the reference policy to achieve policy improvement:

N () = J(m) = J (). (5)

Therefore, the performance improvement of the policy m over the reference policy 7’ can be ex-
pressed by the advantage function A,/ (s, a).

Lemma 1 (Lemma 1.16 in|Agarwal et al.| (2019)) For any policy w and ', the performance dif-
ference can be expressed as below:

1

777r/(77) = EES'\/dW('),aNﬂ'CIS) [Aﬂ" (57 a)] (6)

where d(s) :== (1 — ) Y720 V' Pr (st = s|so ~ p) denotes the state visitation measure.
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In the context of LLM, this performance difference lemma indicates that to align the LLM with the
reward model, i.e. to maximize the objective of policy improvement in equation [5} one just needs
to seek a policy  that induces a positive expected advantage Koy () a~r(-|s) [AW/ (s, a)} > 0 over
the reference policy 7’. Therefore, we focus on maximizing equation

However, from a practical point of view, the dependency on sampling data from the visitation mea-
sure d (-) makes it difficult to optimize the performance difference defined in equation@ Following
the trust region policy optimization (TRPO, see [Schulman| (2015)) framework, we instead consider
an approximation to 1),/ (7) by 7 (m):

Nr! (7T) = %Eswdﬂ_/(),awﬂ(ﬂs) [A'rr/(sa a)} (7N
where d, () denotes the state visitation measure under the reference policy 7’. According to Theo-
rem 1 in[Schulman| (2015)), 71,/ () serves as a good approximation to 7, () when the two policies
7 and 7’ are close in terms of the KL-divergence. Thus, when maximizing the surrogate objective
7. () defined in equation [7| while penalizing the KL divergence between 7 and 7', we are able to
guarantee monotonic performance improvement at each policy iteration step.

The above discussions lead to the following optimization objective, which is also used in the TRPO:
at each policy iteration step and given the previous policy 714, one solves the constrained policy
optimization problem:

M iy () (80
st Esvar () [Dx (7 (:|s)||mo1a(-]s))] <, (8b)
Z w(a|s) =1,Vs € S, (8¢c)

acA
w(a|s) > 0,Vs € S,a € A. (8d)

Proposition 1 Denote the optimal policy of the formulation equation[8d| as Tyew, then we show its
expression is given as below (Schulman| 2015} |[Zhang et al.| |2024)):

1
Thew(@]8) = Toa(als) exp (B (r(s, a) +YEgp(s,0) Vo (5/))) 9)

where 3 1= ﬁ, « is the dual variables of the KL constraints, P is the transition kernel of the
environment, and Vy_, is the value function for the previous policy.

From equation [9] it is clear that the distribution of 7y, is modified from the previous policy by in-
corporating an advantage-weighted adjustment. The parameter (3 serves as a critical hyperparameter
that regulates the trade-off between exploration and exploitation. When 3 is large, the updated pol-
icy remains closer to the previous policy, resulting in more conservative updates. Conversely, when
£ is small, the updated policy places greater emphasis on the reward and value estimates, leading to
more aggressive adjustments.

Note that once we obtain the new policy as equation [0 we can plug it back to equation [2] to obtain
the corresponding new value functions, and compute the advantage, then follow the policy iteration
equation [4{ to further improve the policy, which is known as a policy improvement iteration in the
literature (Agarwal et al., [2019)).

Summarizing the above discussion, it is possible to design an iterative algorithm approximating the
policy iteration that solves, which iteratively enhances the policy without fine-tuning the parameters.
At each iteration, the policy 7y is updated in inference time based on the previously improved policy
mi—1 by using the value function trained in the last iteration. According to the proposition |1} the
optimal solution at the kth iteration is given by:

1 /
7 (als) x mr—1(als) exp <B (r(s,a) + VEsmp(s,0) Ve (5)) ) (10)
k
X Trbase(als) exp (%r(s, a) + zzzl %]ES/NpMS’a)Vm (5’))7 (11)

where 7,5 18 the initial base policy. This formulation demonstrates that by iteratively incorporating
the base model, reward model, and previously trained value functions, we can achieve successive
policy improvement at inference time without directly fine-tuning the base model.
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Figure 1: [llustration of our algorithm: Test-Time Successive Policy Iterations (SPI). The framework
consists of two stages: (1) a guided generation step that produces optimized policies based on current
value estimates and (2) a value training step that trains a new value function based on a current new
policy.

n..,.

3 ALGORITHM DESIGN

In this section, we design the practical implementation for the proposed inference time SPI formu-
lation. While the theoretical formulation provides a framework for iterative policy improvement,
directly applying the previous algorithm is not feasible. Specifically, in language models, the action
space consists of an extensive vocabulary (for example, GPT-4 has a vocabulary size of 100256),
making it computationally infeasible to compute policy updates by evaluating all possible actions.
Therefore, we introduce a practical approach that addresses this challenge and ensures efficient im-
plementation. On a high level, the proposed algorithm alternates between two key steps: the value
training step and the guided generation step. In the value training step, the algorithm updates the
value function under a fixed policy 7. In the guided generation step, a search-based method is
employed to optimize the generation process by leveraging the learned value function. Below, we
provide detailed descriptions of these components, which are also shown in Fig. [T}

Value training step. In the k-th iteration, given the continuations generated by the guided generation
step (in the first iteration, the base model generates the continuation directly), this step aims to train
a corresponding value function V, , enabling a policy improvement step according to Proposition
I Specifically, we leverage the set of previously trained value functions { Vm} o to approximate
the improved policy 7, by equation[TT] This updated policy is then used to generate continuations,
with a reward model providing scores to collect a new dataset D, = {(x,y,r(z,y))} to train the
value function V7, for the next round of policy updates.

The objective of the value training step is to minimize the discrepancy between the predicted values
and the actual return values. There are several approaches to achieve this. For example, Schulman
et al.|(2017) employs temporal difference learning and generalized advantage estimation (Schulman
et al., |2015) to learn the value function, while [Farebrother et al| (2024) uses a cross-entropy loss.
In this work, we adopt a direct regression approach, where the predicted values are regressed to the
observed returns, following|Yang & Klein|(2021);|Mudgal et al.[(2023)). We choose this method for
its simplicity and stability, and it is given by:

T

V= arg m‘;n E,r {Z [V(st) — r(sT)]Q , (12)
=0

Guided generation step. In this step, our objective is to sample the generation by the improved
policy. Specifically, during the inference stage at the k-th iteration, the log probability of generating
an action a given state s is determined by both the summation of previously trained value functions
and the base policy. This can be expressed as:

k—1
1
log 7. (a|s) o< log Tpase (als) —|—Zﬂ s, a +Z,8 QNP(‘M)VE(S’), (13)

where g = Tpage. In the standard RLHF training pipeline (Ouyang et al [2022; Bai et al., [2022),
the outcome-based reward model is commonly adopted, which means that the rewards are sparse
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and typically assigned only at the terminal state, e.g., the EOS token (Ouyang et al.| 2022). In
addition, to ensure the policy satisfies the simplex constraint, we adopt a softmax to normalize the
distribution. As a result, this simplifies the equation [I3]to:

k—2
log 7k (als) o Softmax (log Thase (@) + Z %Esprus,a)vm (5’)) + %ES/NP(<|5@)VM71 (s').

=0

(14)

In practice, exploring the entire action space (i.e., the full vocabulary) at each step is computationally
infeasible, especially in large-scale language models. On the other hand, Tree search methods like
Monte Carlo Tree Search offer thorough exploration but are prohibitively expensive for real-time or
large-scale applications (Browne et al., 2012)

To address this, we adopt a beam search variant inspired by [Zhou et al.| (2024), which offers a
more computationally efficient alternative. In this approach, multiple candidate nodes (tokens) are
expanded according to the original policy, and the top & nodes (tokens) are selected based on eval-
uations from the value function. In addition, following [Zhou et al.[(2024), we incorporate chunked
sampling, where multiple tokens are generated as a single node rather than expanding token-by-
token. This significantly reduces the number of value function queries, improving efficiency without
compromising the quality of generated sequences.

However, we observe that this method often results in redundant or identical chunks, which limits
the diversity of the search space and may hinder the exploration of potentially better sequences. To
mitigate this issue, we incorporate a diversity-first principle into our selection process. Specifically,
we prioritize maintaining a diverse set of candidate nodes by first clustering the same nodes and
ensuring that each cluster contributes at least one representative to the next beam. Finally, we use
the reward model to choose the best one. We summarize the proposed algorithm in Algorithm[T]and
[ corresponding to the value training and guided generation steps.

Remark 3.1 Although the continuations generated during the guided generation step follow the
same distribution as the explicit optimal policy, approximation errors may arise in equation [I12}
Specifically, after collecting generations from the decoding step, solving equation[I2|can be viewed
as a supervised learning problem that can be solved by stochastic gradient descent. From|Vershynin
(2018), we know that the generalization error in such empirical risk minimization is bounded by the
bound O(\/d/n) (d is the VC Dimension), which implies that V., can be effectively approximated
given a sufficiently large dataset generated by Ty,. Further, as shown in Table[l} this approximation
error could be significantly reduced as the size of the sampled generation increases. In this case, the
proposed method becomes equivalent to multi-iteration policy optimization.

Remark 3.2 As the number of iterations increases, an increasing number of value functions are
required to guide the base policy in obtaining the latest policy. This can introduce a significant
external memory burden. A potential solution to mitigate this issue is to keep the backbone of the
value function fixed and fine-tune only the value head, reducing memory overhead while maintaining
adaptability. Additionally, another approach is to distill a single model to approximate the aggre-
gated scores from all previous value function models, effectively compressing the information and
reducing memory cost.

4 EXPERIMENT

In this section, we demonstrate the effectiveness of our proposed method on TL;DR summarization
dataset (Stiennon et al.|[2020) in Section[4.1] and its use in UltraFeedback dataset in Section 4.2}

4.1 ALIGNING LLM WITH TL;DR DATASET

Model and Datasets. We use the SFT model based on EleutherAI/pythia family with size 1b
and 6.9b, fine-tuned on TL;DR text-summarization dataset following the methodology outlined in
Huang et al.|(2024b). We utilize a public reward modeﬂ trained from Pythia-6.9b with TL; DR

%see https:/huggingface.co/vwxyzjn/EleutherAl_pythia-6.9b-deduped__reward__tldr
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Algorithm 1: Inference-time successive policy iterations

1: Input: Preference datasets P := {(z, yi, yw) }, prompt datasets D := {(z)}, a base policy mpase, reward
model 7.
: Output: Updated policy in the inference time.
: Train a reward model r using preference datasets P := {(z, yi, yw) }-
: Initialize 7o = Tpase-
: for k=0to K do
Roll out by using current policy 75 on prompt dataset D to generate continuations y to collect a
dataset.
7:  Using the trained reward model r to evaluate the prompt-continuation pairs to create
Dﬂ'k = {(1’, Y, T(ZIJ, y))}
8: Train a value function V;, by minimizing the loss on D, .
9:  Update policy 711 by using the guided generation step (Algorithm. [2) with {Vx, }f:o.
10: end for
11: return mx 41

oA RS S O]

Algorithm 2: Guided generation step at the kth iteration

1: Input: Prompt x, beam width W, successors per state K, chunk length L, previous value function list
{Vi}f:l, base policy 7pase, reward model r

: Output: Response y* with the highest reward.

: Generate N partial responses with length L to initialize the candidate set C = {y1,y2, ..., yn }

: while 3y’ € C such that y’ is incomplete do

Query the value function list {V; f;ol to compute the value scores v; for each candidate y; as

v = iy 5 Vilz, ;).

Select the top K candidates following the diversity-first principle to form a parent set.

Generate the W child node with maximum length L for each parent node to update the candidate set C .

: end while

: return y* = argmax, cc r(z,y’)

SANE I N

dataset as the evaluator and Pythia-1b reward model for the scorer. For training details of the
value function, we initialize the backbone with the parameters of the policy model and train it on a
scored dataset comprising 8192 samples per iteration.

Baselines. Our test-time alignment baselines include Best-of-N (BoN), which generates N = 16
candidate full responses, evaluates them using the outcome reward model, and selects the response
with the highest reward. Additionally, we compare against the training time alignment method DPO.

Generation and Evaluation. During generation, we use 7' = 0.7, top-k = 50, top-p = 1.0, with
a maximum length 53 and chunk length of L = 8. For evaluation, we sample a subset of 300
instances from the test dataset. We also record the win rate of the model generated summary against
the reference summary (human-written reference), evaluated by GPT-40-mini (the GPT prompt can
be found in Appendix [C). In our algorithm, we use v = 1 and 3, = 1 for all iterations.

Result. As shown in Fig. our method outperforms both the BoN method and training time
method DPO, even in the first iteration when using 1b value functions to guide 1b policy. Addition-
ally, inference-time SPI demonstrates consistent improvements in both reward score and win rate
compared to the ground truth summary across multiple iterations. For the weak to strong guidance,
like 1b value functions guiding the 6.9b policy, we observe that our method is still better than the
BoN. While our method achieves comparable performance to the training-based DPO method on
reward scores, it shows a lower win rate against DPO. This discrepancy is likely attributable to the
size disparity between models - our method uses only a 1B model trained for test-time guidance,
whereas DPO directly trains the larger 6.9B model, allowing it to better internalize the preference
information.
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Figure 2: Reward score (line) and win rates (bar) evaluated by GPT-40-mini across multiple itera-
tions on 300 samples from the test dataset. The decoding process maintains a beam width of 4 with
4 candidates preserved per state (following the methodology in (2024)).

4.2 ALIGNING LLM WITH ULTRAFEEDBACK DATASET

In this section, we evaluate the effectiveness of our method in the weak-to-strong guidance setting,
where a value function trained on smaller, weaker LLM is used to guide larger, more capable base
LLM.

Model and Datasets. We use Meta—-Llama—-3-8B-Inst ructﬂ as our base policy. To get one
explicit reward model, we initialize the reward model from mistralai/Mistral-7B-v0.1,
and then train it on the UltraFeedback dataset ( m The value function is 1n1t1ahzed
from the reward model and further trained through using the model’s rollouts / generations.

Baseline. We consider the following baselines: Best-of-N with explicit reward (BoN-E) and implicit
reward (BoN-I), and weak-to-strong search (Zhou et al.l [2024). For the implicit reward, we use
the relative log probability between zephyr—7b-beta and mistral-7b-sft-beta, where
zephyr—-7Tb-beta is fine-tuned based on the mistral-7b-sft-beta using DPO loss. For
fairness, all models are trained on the UltraFeedback dataset, ensuring a consistent comparison
across methods.

Generation and Evaluation. For generation, we use the 7' = 0.6, top-k = 50 and top-p = 0.9
with a maximum length 2048. We evaluate the performance on a standard single-turn instruction-
following benchmark, AlpacaEval 2.0 2023), which consists of 805 prompts from various
open-source datasets. Our evaluation reports both the raw win rate and the length-controlled (LC)
win rate (Dubois et al.,[2024), the latter being a metric specifically designed to mitigate biases arising
from model verbosity. We also conduct an ablation study on a 200-sample subset of the AlpacaE-
val 2. 0 dataset see Section f.2.1). We also use a held-out 8B reward model (Xiong et al., 2024}
2023), sfairXC /stal rX-LLaMA3-RM-vO0. 1E| as the ground-truth reference for
evaluatlng w1th the formula win rate + 5 t1e rate to measure generation quality compared against the
BoN.

Result. The evaluation result is shown in Table Inference-time SPI demonstrates consistent
and substantial improvements over the baseline compared against the response generated by GPT-4.
Notably, BoN-E significantly outperforms other baseline algorithms, implying that BoN with an ex-
plicit reward serves as an efficient and effective inference-time alignment method. Furthermore, by
leveraging the value function to conduct a fine-grained search during decoding in multiple iterations,
our method achieves successive performance gains that substantially exceed those of BoN-E. This
confirms our intuition that rather than requiring additional computational resources to fine-tune the
model during training, significant improvements can be achieved successively through value-guided
exploration at inference time. Here, we adopt an increasing parameter 3 as iterations proceed. This

3https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
*https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized
Shttps://huggingface.co/sfairXC/FsfairX-LLaMA3-RM-v0.1
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Figure 3: AlpacaEval 2 length-controlled win rate and raw win rate compared against GPT-4 (left)
and BoN-E (right), evaluated by GPT-4. We use 51 = 1,8 = 2,83 = 2.5 while neglecting
the log 7(a|s), which places more emphasis on the learned value function during generation. The
decoding process maintains a beam width of 4 with 4 candidates preserved per state, and L = 16
tokens as a state. For fairness, we use N = 16 for BoN. The numerical result is shown in Appendix

more conservative strategy becomes necessary to ensure stability and prevent excessive deviation
from the previous policy.

4.2.1 ABLATION STUDY

Explore different sampling strategies for inference-time SPI. We investigate the impact of dif-
ferent sampling strategies during the guided generation step on the performance. We compare four
sampling approaches: beam search variants 2024), with and without the diversity-first
principle, and two stochastic sampling methods. For stochastic sampling, we sample the next text

chunks using a softmax distribution weighted by the value function, i.e., a ~ % with

different temperature 7.

As shown in Figure [} incorporating the diversity-first
principle into beam search significantly improves perfor-
mance, making the search more effective. While stochas-
tic sampling methods also perform well, their effective-

ness is highly sensitive to the temperature parameter 7'. o1 B
56.0%

65 64.0%

63.0%

Explore different chunk lengths for inference-time
SPI. We further explore the effect of chunk length on the
performance of our method compared against the BoN
method with N = 16 (see Figure[3). We can see that the
performance of inference-time SPI increases and then de-

RM Win + 1/2 Tie (%)
w
S

creases as the chunk length increases. Intuitively, when »
the number of provided tokens is very small, the value ol N Wme W =
function is insufficient to distinguish the quality of differ- (Guided generation) Bluersitefiest - (=o7 o

ent candidates. As the token length increases to a certain
extent, the value function can make more accurate judg- strategies against BoN method under differ-
ments between different candidates. As the chunk length et sampling strategies during guided gener-
increases toward the max length, the algorithm gradually ation step on the 200 sub dataset.
converges to the BoN method, causing the win rate rela-

tive to BoN to approach 50%.

Figure 4: Comparison of different sampling

Explore different data sizes on training a value function for inference-time SPI. Table[T]shows
the impact of data size for training a value function on the performance under different chunk length
settings. When the data size is small (e.g., 1024 or 2048), larger chunk lengths (L = 32, 64) yield
better results. This is likely because the value function, trained on limited data, lacks the precision
to provide accurate estimates for smaller token sequences. In contrast, as data size increases (e.g.,
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RM and GPT-4 Evaluation Comparison against GPT-4
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Figure 5: The effect of the chunk length on inference-time SPI compared against BoN with N = 16
on a 200-sample sub-dataset. Left: The reward and GPT-4 evaluation on the inference-time SPI
compared against BoN. Right: The comparison against GPT-4. Numerical result are in Appendix D]

4096 or 8192), smaller chunks (L = 16) perform better, suggesting that finer-grained search leads to
a more accurate inference-time policy update.

Chunk Length  Data Size RM Win +1Tie (%) OF 1+ Evaluation (%)
LC Win Win
1024 49.75% 4861%  46.66%
6 2048 49% 51.26%  49.68%
4096 60% 56.45%  53.25%
8192 73% 59.9% 57%
1024 55% 48.52%  4551%
0 2048 57.75% 50.92%  51.85%
4096 63% 48.96%  48.75%
8192 66% 58.04%  56%
1024 51% 53.64%  50.24%
o 2048 48% 54.63%  54.5%
4096 61.25% 53.52%  51.73%
8192 64% 5621%  54.25%

Table 1: Comparison of inference-time SPI and BoN-16, evaluated by the reward model and GPT-4,
across different chunk lengths and data sizes used for training the value function.

5 CONCLUSION

We introduced Inference-Time Successive Policy Iterations (SPI), a novel algorithm that enables
multi-round policy improvement at inference time and is theoretically equivalent to fine-tuning
the policy model through reinforcement learning. Empirically, our method outperforms existing
inference-time alignment approaches, demonstrating the ability to successively enhance LLM’s per-
formance in reasoning and planning without requiring direct fine-tuning.

10
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A RELATED WORK

A.1 REINFORCEMENT LEARNING WITH HUMAN FEEDBACK

Reinforcement learning from human feedback (RLHF) (Stiennon et al., 2020; Ouyang et al., [2022)
is a widely adopted technique for fine-tuning Al systems to align with human preferences and val-
ues. Current RLHF approaches typically involve training a reward model using human preference
feedback and then fine-tuning the language model via proximal policy optimization (PPO) (Schul-
man et al., 2017)). In addition to PPO, other reinforcement learning solvers such as RLOO (Ahma-
dian et al., [2024) and GRPO (Shao et al., 2024) have also demonstrated effectiveness in advanced
foundation language models. However, optimizing these algorithms for peak performance requires
substantial effort and resources, which are often beyond the reach of the open-source community.

A.2 TRAINING-TIME ALIGNMENT

In an effort to reduce computational overhead in reinforcement learning, alternative alignment strate-
gies such as Direct Preference Optimization (DPO) (Rafailov et al., 2024b) and Inverse Preference
Learning (IPL) (Hejna & Sadigh| [2024) remove the need for explicit reward modeling by extracting
policies directly from preference data. While this substantially lowers training complexity, these
algorithms can be unstable during training (Azar et al 2023} Xu et al.|[2024a), and once the prefer-
ence dataset is fixed, they offer limited opportunities for further policy improvement.

13
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A.3 INFERENCE-TIME ALIGNMENT

Although training-time alignment methods are effective, they demand substantial computational and
engineering resources. To mitigate these costs, decoding-time alignment approaches typically freeze
pre-trained models and adjust their outputs during a decoding phase, which is handled by smaller,
specialized models (Zhou et al., [2024} |Liu et al.| [2024)).

The conceptual framework for aligning language models at decoding time is rooted in the use of
value function (Mudgal et al., [2023) or reward function (Khanov et al., 2024)). [Khanov et al.| (2024)
treat alignment as a Reward-Guided framework that integrates alignment into the decoding process
without considering a long-term return in token-level MDP. |Liu et al.|(2024) and Mudgal et al.|(2023)
proposed methods leveraging explicit and implicit value functions trained via a KL-regularized re-
inforcement learning objective. However, these approaches rely solely on the value function derived
from the pre-trained model for guided generation, which can result in limited policy improvements.

Informed by these insights, we propose a method that integrates sequentially trained value functions
to enhance alignment with human preferences during the model’s decoding phase. Our empirical
findings, presented in Section ] demonstrate that the proposed method captures richer contextual
understanding and yields superior results.

B PROOF

In this section, we show the solution to the constrained policy optimization problem defined in
equation [Safequation [8d}

B.1 PROOF OF THEOREM[I]

In this proof, we will first write down the partial Lagrangian function, which only considers the
constraints equation [8bfequation After solving the partial Lagrangian function, we will show
that the constraint equation [8d]is satisfied.

Let o and ¢ := {(s|s € S} denote the dual variables of the constraints equation and equation
respectively. Then the partial Lagrangian function can be expressed as below:

1

T Bandr,, (vl [Amae (5,0)] + 0‘(6 ~Bad,,, ([ Prr (”('|S)||7Tbasc('\5))])

+ Z G(1— Z (als)).

seS acA

L(m, e, () =

Through taking partial derivative of L(, c, () w.r.t. (al|s), we can obtain the following equation:

0 1
Frals) S0 = T s (A (5,0) = i (5) (= 108 o (als) + logmlals) +1) = .

Through setting the partial derivative (%(‘Z B L(7,a, ) to 0, we obtain

1
L=y
Then we obtain the closed-form expression of the optimal policy 7* as below:

Gs

A (5) A (5, @) = 0l (5) (= 108 Troasolals) + log m(als) +1) = ¢, = 0.

Ao (8,0)

10g ﬂ*(a‘s) = (1 — ’y)a + logﬂbase(a\s) -1 m, (153.)
* — A‘ﬂ'base (S’ (I) Cs
™ (a|5) = 7T'batse(a|5) exp (W> exp ( —1- m) (15b)

Here we can denote 3 := (1 — y)a. Then according to the expression of 7(a|s) in equation|15b] we
obtain the following relation:

1
m(als) X Tpase(als) exp (BA,rbase(s,a)). (16)

14



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

Based on the constraint equation[8c| we know that 7(-|s) is a distribution so that 3, , 7(als) = 1.
Therefore, according to the expressions in equation[I5b]and equation[I6] we can obtain the following

expression of the optimal policy 7* as below:

Thase (a|5) exp (%Aﬂbase (Sa a))

7 (als) = .
S wren Toasel@15) exp (3 An. (5,0))

Recall that Ar,.__(s,a) := Qnr,...(s,a) — Vr,...(s) has been defined in equation |3| then we can

rewrite the expression of 7*(als):

Trase(]3) XD (3 (@ (5:0) = Vi (5)))
S e Toasel@15) 5D (3 (Qrpn (5,0) = Viyona ()

Thase (al3) exD (1 Qr (5,)

m*(als) =

= . a7

Y areA Thase(a@'[s) exp (%Qmme (s, a’))

Thase(a]3) exp (3 (B mp (o) Vi (1) 4 7(5. )

= : (18)

S et Toase(@'15) 5 (5 (VBur (5.0 Vi (1) + (s, )

C GPT AS A JUDGE IN TL; DR TASK

System Prompt in TL;DR

Which of the following summaries does a better job of summarizing the most important
points in the given forum post, without including unimportant or irrelevant details? Judge
based on accuracy, coverage, and coherence.

Post:

<post>

Summary A:

<Summary A>

Summary B:

<Summary B>

FIRST provide a one-sentence comparison of the two summaries, explaining which you
prefer and why. SECOND, on a new line, state only "A" or "B" to indicate your choice.
Your response should use the format:

Comparison: <one-sentence comparison and explanation>

Preferred: <"A" or "B">

15



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

D EXTENDED EXPERIMENTAL RESULTS

Method Compared Against GPT-4 Compared Against BoN-E

LC Win Rate Win Rate LC Win Rate  Win Rate
Meta-Llama-3-8B-Instruct 30.71 29.63 38.77 38.32
BoN-116 35.25 32.67 43.52 40.68
BoN-E 16 39.61 38.14 50.00 50.00
weak to strong search 36.20 35.90 44.13 42.92
Inference-time SPI Iterl 41.06 37.32 55.42 53.60
Inference-time SPI Iter2 42.20 40.00 55.75 55.65
Inference-time SPI Iter3 43.11 41.00 57.00 56.46

Table 2: AlpacaEval 2 length-controlled win rate and raw win rate compared against GPT-4. We
use B1 = 1,82 = 2, B3 = 2.5, which places more emphasis on the learned value function during
generation. The decoding process maintains a beam width of 4 with 4 candidates preserved per state,
and [ = 16 tokens as a state. For fairness, we use N = 4 * 4 for BoN.

D.1 CHUNK LENGTH ABLATION STUDY

L RM Win (%) RM Tie (%) RM Win + %Tie (%) GPT-4 Evaluation (%) Compared with GPT-4
LC Win Win LC Win Win

4 67.5% 2.5% 68.75% 60.12% 55.25% 41.84% 38.25%
8 69% 4.5% 71.25 % 54.66% 52.0% 43.23% 38.75%
16 70.5% 5% 73% 59.9% 57.00% 43.2 % 40.25%
32 63.5% 5% 65.75% 58.04% 56.00% 42.39 % 39.25%
64 61% 6% 64% 56.21% 54.25% 42.48% 39.75%
128 56.5% 4.5% 58.75% 52.42% 49.5% 41.03% 37.75%
256 57% 5% 59.5% 51.0% 53.00% 40.35% 38.25%
512 49% 6% 52% 49.05% 48.75% 42.89% 41.25%

Table 3: The effect of the chunk length on value guided compared against BoN with N = 16 on a
200-sample sub-dataset. GPT-4 LC Win means that two responses are judged by the GPT-4. The
last column means the LC win rate compared with the result generated by GPT-4.
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