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ABSTRACT
Mapping optimization algorithms into neural networks, deep unfolding networks
(DUNs) have achieved impressive success in compressive sensing (CS). From the
perspective of optimization, DUNs inherit a well-defined and interpretable struc-
ture from iterative steps. However, from the viewpoint of neural network design,
most existing DUNs are inherently established based on traditional image-domain
unfolding, which takes single-channel images as inputs and outputs between adja-
cent stages, resulting in insufficient information transmission capability and the
inevitable loss of the image details. In this paper, to break the above bottleneck,
we propose a generalized dual-domain optimization framework, which is general
for inverse imaging problems and integrates the merits of both (1) image-domain
and (2) convolutional-coding-domain priors to constrain the feasible region of
the solution space. By unfolding the proposed optimization framework into deep
neural networks, we further design a novel Dual-Domain Deep Convolutional
Coding Network (D3C2-Net)1 for CS imaging with the ability of transmitting
high-capacity feature through all the unfolded stages. Experiments on multiple
natural and MR image datasets demonstrate that our D3C2-Net achieves higher
performance and better accuracy-complexity trade-offs than other state-of-the-art.

1 INTRODUCTION

As a new paradigm of signal acquisition, compressive sensing (CS) aims to recover the original signal
from a small number of measurements obtained by linear random projection (Candès et al., 2006;
Baraniuk, 2007), which has been successfully used in many applications, like single-pixel imag-
ing (Duarte et al., 2008; Rousset et al., 2016), accelerating magnetic resonance imaging (MRI) (Lustig
et al., 2007) and snapshot compressive imaging (SCI) (Wu et al., 2021a;b; Zhang et al., 2022).

Mathematically, given the original vectorized image x ∈ RN and a sampling matrix Φ ∈ RM×N , the
CS measurement of x, denoted by y ∈ RM is formulated as y = Φx+ n, where n is the additive
white Gaussian noise (AWGN) with standard deviation σ. The purpose of CS reconstruction is to
infer x from the obtained y. CS is a typical ill-posed inverse problem due to the common setup of
M ≪ N , and the CS ratio (or sampling rate) is defined as γ =M/N . Generally, the conventional
model-based methods reconstruct the latent clean x by solving the following optimization problem:

x̂ = argmin
x

1

2
∥Φx− y∥22 + λϕ(x), (1)

where ϕ(·) denotes a prior term with a regularization parameter λ. For traditional CS methods (Zhang
et al., 2014b;a; Kim et al., 2010; Zhao et al., 2018; Metzler et al., 2016), ϕ(·) is usually hand-
crafted with some pre-defined basis, like wavelet and discrete cosine transform (DCT) (Zhao et al.,
2014; 2016a). Although these model-based methods enjoy the advantages of interpretability and
convergence guarantees, they inevitably suffer from high computational complexity and the difficulty
of choosing optimal transforms and hyper-parameters (Zhao et al., 2016c;b).

With the recent vigorous development of deep learning, many network-based image CS methods have
been proposed, generally divided into deep non-unfolding networks (DNUNs) and deep unfolding
networks (DUNs). By treating the CS recovery as a de-aliasing problem, DNUNs directly learn the
inverse mapping from measurement y to image x through end-to-end “black-box” networks (Mousavi
et al., 2015; Iliadis et al., 2018; Hyun et al., 2018; Kulkarni et al., 2016; Sun et al., 2020; Shi et al.,

1For reproducible research, the source code with pre-trained models of our D3C2-Net will be made available.
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Figure 1: Illustration of the idea of convolutional coding. An image x is represented by the combina-
tion (sum) of multiple image-level convolution results, i.e., x =

∑C
i=1 dddi ∗αααi, where dddi ∈ Rk×k is

the ith dictionary filter, αααi ∈ Rh×w is the ith feature map, ∗ is the convolution operator and C is the
number of feature channels. The darker red (or blue) colors in each visualized filter correspond to the
positive (or negative) entries with larger absolute values. Compared with the trivial single-channel
image data, this type of feature-level representation naturally enjoys higher capacity and flexibility.

2019a;b), which highly depend on the careful tunings and lead to the extreme difficulty of analysis.
DUNs combine the merits of networks and optimization frameworks by training a truncated unfolding
inference (Zhang & Ghanem, 2018; Zhang et al., 2020a; You et al., 2021b; Song et al., 2021; You et al.,
2021a). They often consist of a fixed number of iterative stages in series. Due to the well-defined
structure and superior performance, DUNs have become the mainstream in the CS field.

However, most existing DUNs are designed based on trivial image-domain unfolding, where the
stage input and output are single-channel images with poor representation capacity. There are often
some operations of channel number reduction from multiple to one at the end of each unfolded stage,
leading to inevitable limited feature transmission and the information loss of image details (Zhang &
Ghanem, 2018; Zhang et al., 2020a; You et al., 2021a;b).

Recently, some convolutional coding methods have been successfully adapted to DUNs (Fu et al.,
2019; Wang et al., 2020; Zheng et al., 2021). As shown in Fig. 1, the main idea of convolutional
coding model is to represent an image x ∈ Rh×w as x = D ⊛ ααα =

∑C
i=1 dddi ∗ αααi, where ∗ is the

2D convolution operator and C is the feature channel number; D ∈ RC×k×k is the convolutional
dictionary and dddi is the ith dictionary filter; ααα ∈ RC×h×w is the feature map of x and αααi is the ith
channel ofααα. Taking the natural advantage ofααα being C-channel, these DUNs transmit high-capacity
features among all stages. But they focus on specific tasks like rain removal (Wang et al., 2020) and
image denoising (Zheng et al., 2021) without considering more general cases.

To address the above issues, in this paper, we propose a Dual-Domain Deep Convolutional Coding
Network, dubbed D3C2-Net, focusing on the general CS problems. Specifically, we design a
novel dual-domain unfolding framework, which resolves the lack of generalizability of existing
methods, allows our D3C2-Net to transmit high-throughput information, and inherits the advantages
of image and convolutional-coding domain constraints. The proposed D3C2-Net can be regarded as
an attempt to bridge the gap between the convolutional coding methods and neural networks for the
CS reconstruction problem, with the merits of interpretability and sufficient information throughput.

Our main contributions are three-fold: (1) We propose a novel general dual-domain optimization
framework, which integrates the merits of both image-domain and convolutional-coding-domain
priors to constrain the feasible solution space and can be easily applied to other inverse imaging
problems. (2) We design a new Dual-Domain Deep Convolutional Coding Network (D3C2-Net)
for general CS problems based on the proposed framework. Our D3C2-Net transmits high-capacity
feature-level image representation through all the unfolded stages to capture sufficient features
adaptively, thus recovering more details and textures. (3) Experiments on natural and MR image CS
tasks show that our D3C2-Net outperforms existing state-of-the-art networks by large margins.

2 RELATED WORK

Deep unfolding network. DUNs have been proposed to solve various inverse imaging prob-
lems (Chen & Pock, 2016; Lefkimmiatis, 2017; Metzler et al., 2017; Zheng et al., 2021; Kruse
et al., 2017; Kokkinos & Lefkimmiatis, 2018). For CS and compressive sensing MRI (CS-MRI)
tasks, DUNs usually combine convolutional neural network (CNN) denoisers with some optimization
algorithms, like alternating minimization (AM) (Schlemper et al., 2017; Sun et al., 2018; Zheng et al.,
2019), half quadratic splitting (HQS) (Zhang et al., 2017; Dong et al., 2018; Aggarwal et al., 2018),
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Figure 2: Illustration of the main ideas of dual-domain DUN design. (a) shows the architecture of
the image-domain-based DUN and (b) shows the architecture of the convolutional-coding-domain-
based DUN. Compared with (a) recovering the target image step-by-step ({x(t)}), our (b) transmits
high-dimensional features ({ααα(t)}) through all the unfolded stages. (c) further compares the converge
trajectories under single and our dual-domain constraints, where the latter achieves more accurate
recoveries than the former by employing the combination of learned dual-domain knowledge.

iterative shrinkage-thresholding algorithm (ISTA) (Gilton et al., 2019; Zhang & Ghanem, 2018;
Zhang et al., 2020a; Song et al., 2021), alternating direction method of multipliers (ADMM) (Yang
et al., 2018) and inertial proximal algorithm for nonconvex optimization (iPiano) (Su & Lian, 2020).
Although existing DUNs benefit from well-defined frameworks, their inherent design of image-
domain-based unfolding limits the feature transmission capability. Some DUNs take the previous
intermediate features as auxiliary information in all stages but keep the idea of image-domain-based
unfolding, which limits their further improvement (Chen et al., 2020; Song et al., 2021).

Deep convolutional coding. Convolutional coding has been widely studied in image restoration (Gu
et al., 2015; Deng & Dragotti, 2020; Li et al., 2018). Compared with other sparse coding methods, the
convolutional coding model is shift-invariant and flexible. Nevertheless, most existing convolutional
coding methods use hand-crafted sparsity priors (Fu et al., 2019; Xu et al., 2020; Sreter & Giryes,
2018; Gao et al., 2022), e.g., ℓ0- or ℓ1-regularization, instead of learning abundant priors from data.
Recently, the convolutional coding model has been integrated into deep unfolding methods. Wang
et al. (2020) design an interpretable deep network for rain removal. Zheng et al. (2021) propose a
deep convolutional dictionary learning framework for denoising. However, they only develop for the
special cases where the measurement (or degradation) matrix Φ in Eq. (1) is the identity, i.e., Φ = I.

3 PROPOSED D3C2-NET FOR COMPRESSIVE SENSING

3.1 CONVOLUTIONAL-CODING-INSPIRED DUAL-DOMAIN FORMULATION

Being different from the existing works based on image-domain DUNs, we draw inspiration from
convolutional coding methods to enhance the information transmission capability. Figs. 2 (a) and (b)
show the architectures of the image-domain-based and convolutional-coding-domain-based DUNs,
respectively. We can observe that in the inherent design of image-domain-based DUNs, the single-
channel image x in Eq. (1) is taken as the input and output of each stage and greatly hampers
the information transmission capability. By taking the natural advantage of feature maps ααα being
C-channel, convolutional-coding-based DUNs can transmit high-capacity informative features among
stages. Notably, the prior term in Eq. (1) plays an essential role in the reconstructing process as it
narrows the feasible region of the solution space. This idea leads to the model-level integration of
image-domain and convolutional-coding-domain priors as follows:

{D, z,ααα} = argmin
{D,z,ααα}

1

2
∥Φz− y∥22 +

µz

2
∥z−D⊛ααα∥22 + λψ(ααα) + τϕ(z), (2)

where z ∈ Rh×w is the image, ααα ∈ RC×h×w is the convolutional coefficients, ϕ(z) and ψ(ααα) are
the prior terms of image domain and convolutional-coding domain respectively, and µz, λ and τ are
the trade-off parameters. The advantages of dual-domain priors are illustrated in Fig. 2(c). One can
observe that the introduction of dual-domain priors constrains the solution feasible region, leading to
more accurate reconstruction results than single-domain-based models. Besides, compared with the
objective functions in (Wang et al., 2020) and (Zheng et al., 2021) where the measurement matrix Φ
in y = Φx+ n is specially the identity matrix I, our method is generalizable to other cases.
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3.2 DUAL-DOMAIN OPTIMIZATION FRAMEWORK

To simplify the overall optimization process, we collaboratively learn a universal D and the other
network components through end-to-end training and solve z and ααα in Eq. (2) iteratively as follows:

z(t) = argmin
z

1

2
∥Φz− y∥22 +

µz

2
∥z−D⊛ααα(t−1)∥22 + τϕ(z), (3a)

ααα(t) = argmin
ααα

µz

2
∥D⊛ααα− z(t)∥22 + λψ(ααα). (3b)

Image-level optimization. The image-domain optimization and the convolutional-coding-domain
optimization are decoupled into Eqs. (3a) and (3b), respectively. The z-subproblem in Eq. (3a) can
be solved through proximal gradient descent (PGD) by iterating between the following two steps:

r(t) = GGDM

(
ααα(t−1), z(t−1),D, ρ, µz

)
(4a)

= z(t−1) − ρ
(
Φ⊤

(
Φz(t−1) − y

)
+ µz

(
z(t−1) −D⊛ααα(t−1)

))
,

z(t) = GPMN(r
(t)) = proxτϕ(r

(t)) = argmin
z∗

1

2
∥z∗ − r(t)∥22 + τϕ(z∗), (4b)

where GGDM and GPMN denote the gradient descent module (GDM) and proximal mapping network
(PMN), respectively. Their structural details will be elaborated on in the next subsection.

Feature-level optimization. For the ααα-subproblem in Eq. (3b), where µz

2 ∥D⊛ααα− z(t)∥22 is the data
term, ψ(ααα) is the prior term, and λ is a trade-off parameter. To separate the data term and the prior
term, we apply the HQS algorithm, which tackles Eq. (3b) by introducing an auxiliary variable α̃αα,
leading to the following objective function:

{ααα, α̃αα} = argmin
ααα,α̃αα

µz

2
∥D⊛ α̃αα− z(t)∥22 + λψ(ααα) +

µααα
2
∥ααα− α̃αα∥22, (5)

where µααα is the penalty parameter for the distance between ααα and α̃αα. The above Eq. (5) can be also
solved iteratively as follows:

α̃αα(t) = argmin
ααα∗

1

2
∥D⊛ααα∗ − z(t)∥22 +

η

2
∥ααα∗ −ααα(t−1)∥22, (6a)

ααα(t) = argmin
ααα∗

1

2
∥ααα∗ − α̃αα(t)∥22 + βψ(ααα∗), (6b)

where η = µααα/µz and β = λ/µααα. For solving the Eq. (6a), the Fast Fourier Transform (FFT)
can be utilized by assuming the convolution is carried out with circular boundary conditions. Let
D = F(D), Z(t) = F(z(t)), and A(t−1) = F(ααα(t−1)), where F(·) denotes the 2D FFT. Following
(Zheng et al., 2021), we apply the data-term solving module (DTSM), leading to the following
closed-form solution:

α̃αα(t) = GDTSM

(
ααα(t−1), z(t),D, η

)
=

1

η
F−1

(
H(t) −D ◦

( (
D̄ ⊙H(t)

)
η +

(
D̄ ⊙D

) ↑C

))
, (7)

where ◦ is the Hadamard product, X⊙Y =
∑C

i=1 Xi ◦Yi, X ↑C expands the channel dimension
of X to C, ÷ is the Hadamard division, F−1(·) denotes the inverse of FFT, D̄ denotes the complex
conjugate of D, and H(t) is defined as H(t) = D ◦

(
Z(t) ↑C

)
+ ηA(t−1).

For solving the Eq. (6b), we apply a prior-term solving network (PTSN) to estimate ααα(t) as follows:

ααα(t) = GPTSN

(
α̃αα(t), β̄ββ

)
, (8)

and the structural design of PTSN will be presented in the following.

3.3 D3C2-NET UNFOLDING ARCHITECTURE DESIGN

As discussed above, the unfolding optimization consists of an image-domain optimization subproblem
(i.e., Eq. (3a)) and a convolutional-coding-domain optimization subproblem (i.e., Eq. (3b)). Mapping
the unfolding process into a deep neural network, we propose our D3C2-Net, which alternates
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Figure 3: The overall architecture of our proposed D3C2-Net with T stages. Each stage consists
of an image domain block (IDB) and a convolutional coding domain block (CCDB). x denotes the
full-sampled image, y is the under-sampled data, and x̂ denotes the output of the D3C2-Net. D is the
convolutional dictionary, and ααα is the feature map. k denotes the filter size of D, h and w denote the
height and width of x and ααα, and C is the number of channels.

between the image domain block (IDB) and the convolutional coding domain block (CCDB). Fig. 3
illustrates the overall architecture of D3C2-Net with T stages, whereby the recovered result x̂ is
obtained by x̂ = D ⊛ ααα(T ). It can be seen that the proposed D3C2-Net can transmit C-channel
high-throughput information between each two adjacent stages. Fig. 4(a) gives more details about
each stage. As shown in Fig. 4(a), each IDB is composed of a gradient descent module (GDM in
Eq. (4a)) and a proximal mapping network (PMN in Eq. (4b)), while each CCDB is composed of a
data-term solving module (DTSM in Eq. (7)) and a prior-term solving network (PTSN in Eq. (8)).
Besides, for hyper-parameters {ρ, µz, η, β}, inspired by (Zhang et al., 2020b) and (Zheng et al.,
2021), we adopt a hyper-parameter network (HPN) to predict them for each stage. Fig. 4(b) illustrates
the architectures of the sub-networks, including InitNet, PMN, PTSN and HPN. More details are
shown below.

InitNet takes the concatenation of xinit and γ̄γγ as input to obtain a feature map initialization ααα(0),
where xinit = Φ⊤y, and γ̄γγ is the CS ratio map generated from γ with a same dimension as x. It
consists of two convolutional layers (Conv1(·) and Conv2(·)). The former one receives 2-channel
inputs and generates C-channel outputs with ReLU activation. InitNet is formulated as:

ααα(0) = GInitNet

(
xinit, γ̄γγ

)
= Conv2(ReLU(Conv1(Concat(x

init, γ̄γγ)))). (9)

PMN solves the proximal mapping problem proxτϕ(r
(t)). It consists of two convolutional layers

(Conv1(·) and Conv2(·)) and two residual blocks (RB1(·) and RB2(·)), which generate residual
outputs by the structure of Conv-ReLU-Conv. Specifically, Conv1(·) takes single-channel r(t) as
input and generates C-channel outputs. Then two RB(·)s are used to extract deep representation.
Finally, Conv2(·) outputs the result by feature conversions from C-channel to single-channel under a
residual learning strategy. Accordingly, PMN can be formulated as:

z(t) = G(t)
PMN

(
r(t)
)
= r(t) +Conv2(RB2(RB1(Conv1(r

(t))))). (10)

PTSN takes the concatenation of α̃αα(t) and β̄ββ
(t)

as input to learn the implicit prior on feature map ααα,
where β̄ββ

(t)
is generated from β(t) as γ̄γγ does. It consists of one convolutional layer (Conv1(·)) and

two residual blocks (RB1(·) and RB2(·)). The convolutional layer receives (C + 1)-channel inputs
and generates C-channel outputs. A residual learning strategy is applied. PTSN is formulated as:

ααα(t) = G(t)
PTSN

(
α̃αα(t), β̄ββ

(t)
)
= α̃αα(t) +RB2(RB1(Conv1(Concat(α̃αα

(t), β̄ββ
(t)
)))). (11)

HPN takes CS ratio map γ̄γγ as input and predicts hyper-parameters for each stage. It consists of
two 1× 1 convolutional layers with Sigmoid as the first activation function and Softplus as the last,
ensuring all hyper-parameters are positive. HPN can be formulated as:(

ρ(t), µ(t)
z , η(t), β(t)

)
= G(t)

HPN (γ̄γγ) = Softplus(Conv2(Sigmoid(Conv1(γ̄γγ)))). (12)

To sum up, with jointly taking the sampling matrix Φ and the recovery network as combined learnable
parts, the collection of all parameters incorporated in D3C2-Net, denoted by Θ, can be collaboratively
learned and expressed as Θ = {Φ,D,GInitNet(·)} ∪ {G(t)

PMN(·),G
(t)
PTSN(·),G

(t)
HPN(·)}Tt=1.
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Figure 4: Illustration of the structural design of the unfolded stage and its components. (a) is the
structure of t-th stage in D3C2-Net. An image domain block (IDB) consists of a gradient descent
module (GDM) and a proximal mapping network (PMN). A convolutional coding domain block
(CCDB) consists of a data-term solving module (DTSM) and a prior-term solving network (PTSN).
(b) shows the architectures of four sub-networks in each D3C2-Net stage.

3.4 RELATIONSHIP TO OTHER WORKS

Compared with most existing DUNs, our framework minimizes the original objective function by
decoupling it into image-level and feature-level optimizations. Specifically, ISTA-Net+ (Zhang &
Ghanem, 2018) and ISTA-Net++ (You et al., 2021a) are two special cases of our method when
optimizing only in the image domain. DCDicL (Zheng et al., 2021) is the special case of our method
applied to the image denoising task (the sampling matrix is the identity I) and optimized only in the
convolutional-coding domain. Our framework integrates their strengths to some extent so that it can be
easily generalized to other image inverse problems and allow our D3C2-Net to transmit high-capacity
features. Besides, we employ a universal dictionary instead of the adaptive one (Zheng et al., 2021),
which avoids training-time instability and collapse, improves training speed and convergence, and
follows the original definition of dictionary learning better.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Loss function. For each batch of full-sampled images {xj}Nb
j=1 and CS ratio γ, the measurement

is obtained by yj = Φxj . Our D3C2-Net takes yj as the input of its recovery network and outputs
the reconstruction x̂j with the parameter-free initialization xinit

j = Φ⊤yj . Following (Zhang
et al., 2020a; You et al., 2021a), we adopt the block-based CS sampling setup, where a high-
dimensional image is divided into non-overlapping blocks and sampled independently, i.e., xj ,
xinit
j and x̂j are tensors of size 1×

√
N×

√
N . More details about sampling and initialization are

provided in the appendix A. To reduce the discrepancy between xj and x̂j , an ℓ2 discrepancy
loss is defined by the mean square error (MSE), i.e., Ldisc = 1

NNb

∑Nb

j=1 ∥x̂j − xj∥2F , where Nb

and N represent the number of each training batch and the size of each image, respectively. For
the orthogonal constraint of the jointly learned sampling matrix Φ, the orthogonal loss term is
designed as Lorth = 1

M2 ∥ΦΦ⊤ − I∥2F . Therefore, the end-to-end loss for D3C2-Net is defined as
L(Θ) = Ldisc + ξLorth, where ξ is the regularization parameter, which is set to 0.01 in experiments.

Training. We use the combination of BSD400 (Martin et al., 2001; Chen & Pock, 2016), DIV2K
training set (Timofte et al., 2017), and WED (Ma et al., 2016) for training. Training data samples
are obtained by extracting the luminance component of each image block of size 32×32, i.e.,
N = 1024. The data augmentation technique is applied to increase the data diversity. Our D3C2-Net
is implemented in PyTorch (Paszke et al., 2019). All the experiments are performed on one NVIDIA
GeForce RTX 3090. The Adam optimizer is used for updating the learnable parameters. The batch
size is set to 32, and we train the network for 2.8×105 iterations. The learning rate starts from
1×10−4 and decays a factor by 0.1 after 1.6×105 and 2.4×105 iterations. The default filter size k of
each dictionary filter is set to 5, the number of feature maps C is set to 64, and the stage number T is
set to 8. The number of filters in D is determined by the number of feature maps (i.e., same as C).
The selection of k, C and T is discussed in Section 4.2.

4.2 ABLATION STUDY

In this section, we first discuss the selection of filter size k of D, the number of feature maps C, and
the number of stages T . Then we investigate the contribution of each domain in our dual-domain
network. All the experiments are performed with CS ratio γ = 30%.
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Figure 5: Ablation studies on (a) filter size k, (b) feature number C, (c) stage number T and (d) effect
of each domain. The experiments of (a), (b) and (c) are performed on the Set11 benchmark.

Dictionary filter size k. We first explore the effects of dictionary filter size k ∈ {3, 5, 7}. As shown
in Fig. 5(a), the recovery performance is improved with a larger k while the inference time increases.
To balance the performance and efficiency, we choose k = 5 in our default D3C2-Net setting.

Number of feature maps C. We analyze the effect of C ∈ {32, 64, 128}. Fig. 5(b) provides the
experimental comparison of PSNR and parameter number with different Cs. With the increase of C,
on the one hand, the throughput of D3C2-Net improves, leading to better reconstruction performance.
On the other hand, feature maps become redundant, resulting in huge network parameters and being
hard to be sufficiently trained. To get a better trade-off between reconstruction performance and the
network computational complexity, we choose C = 64 by default in D3C2-Net.

Number of unfolded stages T . Since each D3C2-Net stage corresponds to one iteration in our
dual-domain unfolding framework, it is expected that a larger T will lead to a higher reconstruction
accuracy. Fig. 5(c) investigates the performances of five D3C2-Net variants with T ∈ {2, 4, 6, 8, 10}.
We observe that PSNR rises as T increases, but the improvement becomes minor when T ≥ 8.
Considering the recovery accuracy-efficiency trade-offs, we employ T = 8 in D3C2-Net by default.

Effect of dual-domain constraints. To analyze the effectiveness of dual-domain priors, we compare
our D3C2-Net with two single-domain-based networks. A representative image-domain-only network
OPINE-Net+ (Zhang et al., 2020a) is adopted for evaluation, each stage of which is similar to our
IDB composed of a GDM and a PMN. To conduct a convolutional-coding-domain-only network, we
remove the image-domain prior ϕ(z) in Eq. (3a), leading to the removal of PMN in D3C2-Net for
comparison. Fig. 5(d) shows the recovery performances of three different networks. It is clear to
see that due to the enhancement of information transmission capability, the convolutional-coding-
domain-only network boosts performance by 1.27dB on Set11 and 1.95dB on Urban100 over the
image-domain-only network. Moreover, the combination of image and convolutional-coding domain
priors (i.e., our default D3C2-Net design) further improves the performance by about 0.15dB on both
benchmarks, which demonstrates the effectiveness of dual-domain constraints.

4.3 COMPARISON WITH STATE-OF-THE-ART METHODS

We compare our D3C2-Net with five advanced CS methods, including CSNet+ (Shi et al., 2019a),
SCSNet (Shi et al., 2019b), OPINE-Net+ (Zhang et al., 2020a), AMP-Net (Zhang et al., 2020c),
and MADUN (Song et al., 2021). The average PSNR and SSIM reconstruction performance on
Set11 (Kulkarni et al., 2016) and Urban100 (Huang et al., 2015) datasets with respect to five CS ratios
are summarized in Table 2. It can be observed that our D3C2-Net outperforms all the other competing
methods both in PSNR and SSIM under all given CS ratios, especially for lower ones. Fig. 6
further shows the visual comparison of two challenging images from Set11 and Urban100 datasets,
respectively. As we can see, our D3C2-Net recovers richer textures and details than all other methods.

Table 1: Parameter number (Millions)
and recovery PSNR (dB) comparisons
between MADUN and our D3C2-Net
on Urban100 dataset with γ = 10%.

Methods #Param. PSNR

MADUN 3.13 26.23
D3C2-Net (Ours) 2.72 27.54

Furthermore, we verify that the parameters in D3C2-Net are
used more rationally than MADUN (Song et al., 2021), which
directly introduces intermediate results as auxiliary informa-
tion to transmit between stages without changing the idea of
image-domain-based unfolding. As shown in Table 1, com-
pared with MADUN, D3C2-Net uses fewer parameters while
improving PSNR by 1.31dB on Urban100 with γ = 10%,
which validates the stronger learning capability of D3C2-Net
from our dual-domain unfolding principle.

4.4 APPLICATION TO COMPRESSIVE SENSING MRI

To demonstrate the generality of D3C2-Net, we directly extend it to the practical problem of CS-MRI
reconstruction, which aims at restoring MR images from a small number of under-sampled data in
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Table 2: Average PSNR (dB) and SSIM performance comparisons on Set11 and Urban100 datasets
with five different levels of CS ratios (or sampling rates). We compare our D3C2-Net with five prior
arts. The best and second best results are highlighted in red and blue colors, respectively.

Dataset Methods
CS Ratio γ

10% 20% 30% 40% 50%

Set11

CSNet+ 28.34/0.8580 31.66/0.9203 34.30/0.9490 36.48/0.9644 38.52/0.9749
SCSNet 28.52/0.8616 31.82/0.9215 34.64/0.9511 36.92/0.9666 39.01/0.9769
OPINE-Net+ 29.81/0.8904 33.43/0.9392 35.99/0.9596 38.24/0.9718 40.19/0.9800
AMP-Net 29.40/0.8779 33.33/0.9345 36.03/0.9586 38.28/0.9715 40.34/0.9804
MADUN 29.89/0.8982 34.09/0.9478 36.90/0.9671 39.14/0.9769 40.75/0.9831

D3C2-Net (Ours) 30.80/0.9061 34.64/0.9512 37.41/0.9684 39.49/0.9773 41.29/0.9836

Urban100

CSNet+ 23.96/0.7309 26.95/0.8449 29.12/0.8974 30.98/0.9273 32.76/0.9484
SCSNet 24.22/0.7394 27.09/0.8485 29.41/0.9016 31.38/0.9321 33.31/0.9534
OPINE-Net+ 25.90/0.7979 29.38/0.8902 31.97/0.9309 34.27/0.9548 36.28/0.9697
AMP-Net 25.32/0.7747 29.01/0.8799 31.63/0.9248 33.88/0.9511 35.91/0.9673
MADUN 26.23/0.8250 30.24/0.9108 33.00/0.9457 35.10/0.9639 36.69/0.9746

D3C2-Net (Ours) 27.54/0.8464 30.98/0.9161 34.06/0.9522 36.11/0.9676 37.89/0.9771

Ground Truth CSNet+ SCSNet OPINE-Net+ AMP-Net MADUN D3C2-Net

PSNR (dB) 31.22 31.43 32.92 33.53 35.02 37.04

PSNR (dB) 17.91 19.05 23.54 20.16 20.86 28.27

Figure 6: Visual comparisons on recovering an image named “Barbara” from Set11 dataset with CS
ratio γ = 30% (top) and an image from Urban100 dataset with CS ratio γ = 10% (bottom).

k-space. We follow the common practices in this application, setting the sampling matrix Φ in Eq. (1)
to Φ = BF, where B is an under-sampling matrix and F is the discrete Fourier transform. We follow
MADUN (Song et al., 2021) to use the same 100 fully sampled brain MR images as the training set.
To avoid overfitting on this small data collection, we reduce the width and increase the depth of the
network, yielding D3C2-Net for MRI with C = 32 and T = 20, whose parameter number (1.72M)
is fewer than D3C2-Net for natural images (2.72M). The geometric data augmentation technique
is also applied to increase the data diversity. As shown in Table 3, our D3C2-Net outperforms the
state-of-the-art methods on the brain dataset under all given ratios. It is worth emphasizing that the
PSNR is already high under a big ratio, thus making PSNR improvement more difficult. What is more,
due to the introduction of CS ratio information in InitNet and HPN, our D3C2-Net for MRI is scalable
for different ratios, i.e., it can handle five ratios by a single model, which significantly reduces the
overall parameter number. Compared with MADUN (3.13M for each ratio), our D3C2-Net leverages
only about × 1

9 parameters while achieving better reconstruction performance on the CS-MRI task.

4.5 ANALYSIS OF THE LEARNED DICTIONARY D AND FEATURE MAP ααα

To further analyze the image representation capability of our D3C2-Net, we visualize the learned
convolutional dictionary D of the model and the final estimated feature maps on Set11 in the case
of γ = 30%. Figs. 7(a) and (b) show some randomly picked dictionary filters dddi and feature
maps αααi, respectively. It can be seen that our feature maps are not so sparse compared with
those in convolutional sparse coding methods (Fu et al., 2019; Gao et al., 2022) that explicitly
impose sparsity priors. Interestingly, we observe that there is always one channel to preserve low-
frequency information in our learned feature maps across the unfolded stage-by-stage inferences,
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Table 3: Average PSNR/SSIM performance comparisons on testing brain MR images with eight
recent methods. The best and second best results are highlighted in red and blue colors, respectively.

Methods
CS Ratio

10% 20% 30% 40% 50%

Hyun et al. 32.78/0.8385 36.36/0.9070 38.85/0.9383 40.65/0.9539 42.35/0.9662
Schlemper et al. 34.23/0.8921 38.47/0.9457 40.85/0.9628 42.63/0.9724 44.19/0.9794
ADMM-Net 34.42/0.8971 38.60/0.9478 40.87/0.9633 42.58/0.9726 44.19/0.9796
RDN 34.59/0.8968 38.58/0.9470 40.82/0.9625 42.64/0.9723 44.18/0.9793
CDDN 34.63/0.9002 38.59/0.9474 40.89/0.9633 42.59/0.9725 44.15/0.9795
ISTA-Net+ 34.65/0.9038 38.67/0.9480 40.91/0.9631 42.65/0.9727 44.24/0.9798
MoDL 35.18/0.9091 38.51/0.9457 40.97/0.9636 42.38/0.9705 44.20/0.9776
MADUN 36.15/0.9237 39.44/0.9542 41.48/0.9666 43.06/0.9746 44.60/0.9810

D3C2-Net (Ours) 36.48/0.9289 39.66/0.9558 41.59/0.9671 43.14/0.9748 44.63/0.9811

(a) (b) (c) (d)

Figure 7: Visualizations for analyzing the learned dictionary D and feature maps ααα, including
(a) learned global dictionary filters dddi in every four channels, whose values are distributed in
[−0.17, 0.23], (b) feature maps ααα9, ααα25, ααα41 and ααα57, (c) low-frequency information ddd25 ∗ ααα25

and the complementary (d) high-frequency information
∑

i ̸=25 dddi ∗αααi, with applying D3C2-Net to
the image named “Cameraman” from Set11 with γ = 30%. D3C2-Net learns diverse dictionary
filters through end-to-end optimization with the recovery network trunk and obtains better image
representations than prior arts by clearly separating the (c) low- and (d) high-frequency components.

e.g., the 25th-channel shown in Fig. 7(b) with a red border. We thus visualize ddd25 ∗ ααα25 and its
complementary

∑64
i=1,i̸=25 dddi ∗αααi in Figs. 7(c) and (d), respectively. (Please refer to Appendix D for

more visualizations.) It is clear to see that our D3C2-Net represents the image as the sum of one-layer
low-frequency information and multi-layer high-frequency information through convolutional coding,
which may make D3C2-Net easier to keep and transmit high-frequency information among different
stages in such a long trunk, thus achieving better reconstruction accuracies compared with prior arts.

5 CONCLUSION

Inspired by convolutional coding methods, we propose a generalized dual-domain unfolding frame-
work that combines the merits of both image-domain and convolutional-coding-domain priors to
constrain the feasible region of the solution space. Compared with most existing convolutional coding
methods, on the one hand, our framework adopts deep priors rather than the traditional sparsity (Fu
et al., 2019; Xu et al., 2020; Sreter & Giryes, 2018; Gao et al., 2022) to better leverage the learning
capability of deep neural networks. On the other hand, our framework is more general, while existing
deep convolutional coding methods for image restoration are exceptional cases where the degradation
matrix Φ is the identity I (Wang et al., 2020; Zheng et al., 2021). Based on our proposed framework,
we further design a novel Dual-Domain Deep Convolutional Coding Network for compressive sens-
ing (CS) imaging, dubbed D3C2-Net. Compared with most existing CS DUNs (Zhang & Ghanem,
2018; Zhang et al., 2020a; You et al., 2021b;a), our D3C2-Net transmits high-capacity feature-level
representation through all stages and captures sufficient features adaptively. Extensive CS exper-
iments on both natural and MR images demonstrate that D3C2-Net outperforms state-of-the-art
network-based CS methods with large accuracy margins and lower complexities. In the future, we
will extend our generalizable unfolding framework and D3C2-Net to more inverse imaging tasks and
video applications.
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A IMPLEMENTATION DETAILS

In this section, we show our simulations of CS sampling and D3C2-Net initialization and more
implementation details of D3C2-Net components.

A.1 SAMPLING AND INITIALIZATION SIMULATIONS

In our experiments, we follow Zhang et al. (2020a); You et al. (2021a) to adopt the block-based CS
sampling-initialization setup and mimic the CS sampling and initialization processes using bias-free
convolution operators, i.e., we use the whole image x ∈ R1×h×w instead of one vectorized image
block x ∈ RN in our D3C2-Net implementations, where h and w are multiples of

√
N . Specifically,

N is set to 1024. For CS sampling, we reshape the learned sampling matrix Φ ∈ RM×1024 into M
filters with the kernel size of 32×32, mimic the block-wise sampling process y = Φx equivalently by
adopting the convolutional layer with a stride of 32 and extend it to the whole image, i.e., each image
x ∈ R1×h×w can be considered as (h/32)×(w/32) non-overlapped image blocks of size 1×32×32,
and measurement y is a tensor of size M × (h/32) × (w/32) after sampling. Correspondingly,
the block-wise initialization xinit = Φ⊤y is implemented by the bias-free transposed convolution
operation with the same kernel weights as Φ. Hence, xinit is an image-domain tensor of the same
size 1 × h × w as x. In the learning process of D3C2-Net, patches of size 96 × 96 are randomly
cropped and served as training samples, i.e., h and w are set to 96 for network training.

A.2 STRUCTURAL DESIGN DETAILS OF D3C2-NET

InitNet takes the concatenation of xinit and γ̄γγ as input to obtain a feature map initialization ααα(0), as

ααα(0) = GInitNet

(
xinit, γ̄γγ

)
= Conv2(ReLU(Conv1(Concat(x

init, γ̄γγ)))). (13)

Specifically:

• γ̄γγ is the CS ratio map generated from γ with a same dimension as x, all entries of which is filled
by the value of γ and implemented by the torch.repeat API of PyTorch (Paszke et al., 2019)
framework.

• Conv1(·) takes a 2-channel input (i.e., the channel-wise concatenation of xinit ∈ R1×h×w and
γ̄γγ ∈ R1×h×w) and generates a C-channel output with a ReLU activation.

• Conv2(·) takes a C-channel input and generates a C-channel output (
{
ααα(0)

}
).

PMN solves the proximal mapping problem proxτϕ(r
(t)), as

z(t) = G(t)
PMN

(
r(t)
)
= r(t) +Conv2(RB2(RB1(Conv1(r

(t))))). (14)

Specifically:

• Conv1(·) takes an 1-channel r(t) as input and generates a C-channel output.
• RB1(·) and RB2(·) are two residual blocks. Each residual block takes a C-channel input and

generates a C-channel residual output by the structure of Conv-ReLU-Conv, i.e., RB(x) =
x+Conv(ReLU(Conv(x))).

• Conv2(·) converts a C-channel input to an single-channel output z(t) under a residual learning
strategy.

PTSN takes the concatenation of α̃αα(t) and β̄ββ
(t)

as input to learn the implicit prior on feature mapααα, as

ααα(t) = G(t)
PTSN

(
α̃αα(t), β̄ββ

(t)
)
= α̃αα(t) +RB2(RB1(Conv1(Concat(α̃αα

(t), β̄ββ
(t)
)))). (15)

• β̄ββ
(t)

is generated from β(t) as similar to the γ̄γγ generation.

• Conv1(·) takes a (C + 1)-channel input (i.e., the concatenation of α̃αα(t) ∈ RC×h×w and β̄ββ
(t) ∈

R1×h×w) and generates a C-channel output.
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Hyun et al. Schlemper et al. ADMM-Net RDN CDDN ISTA-Net+ MoDL MADUN D3C2-Net

31.68 dB 33.08 dB 33.09 dB 33.39 dB 33.44 dB 33.36 dB 34.03 dB 35.13 dB 35.66 dB

Figure 8: Visual comparisons on reconstructed images (top) and residual error to ground truth
(bottom) of nine CS-MRI reconstruction methods when being applied to an image named “brain-test-
13.png” from testing brain dataset Zhang & Ghanem (2018) in the case of CS ratio γ = 10%.

Hyun et al. Schlemper et al. ADMM-Net RDN CDDN ISTA-Net+ MoDL MADUN D3C2-Net

30.20 dB 32.28 dB 32.20 dB 32.47 dB 31.91 dB 32.31 dB 32.66dB 32.85 dB 33.41 dB

Figure 9: Visual comparisons on reconstructed images and error images of nine CS-MRI reconstruc-
tion methods when being applied to “brain-test-49.png” from testing brain dataset (Zhang & Ghanem,
2018) with γ = 20%.

• Two residual blocks RB1(·) and RB2(·) are used to extract deep representations as those in PMN.

• The residual learning strategy is also applied in PTSN.

HPN takes CS ratio map γ̄γγ as input and predicts hyper-parameters for each stage, as(
ρ(t), µ(t)

z , η(t), β(t)
)
= G(t)

HPN (γ̄γγ) = Softplus(Conv2(Sigmoid(Conv1(γ̄γγ)))), (16)

• Conv1(·) takes the CS ratio map γ̄γγ as input and generates a 256-channel output with Sigmoid
activation (with a kennel size of 1).

• Conv2(·) takes a 256-channel input and generates four hyper-parameters with Softplus activation,
ensuring all output elements are positive (with a kernel size of 1).

B VISUAL COMPARISONS ON MR IMAGES

The visual comparison results on two MR images and their error images compared with ground
truth are shown in Figs. 8 and 9. One can see that our D3C2-Net can produce high-accuracy
reconstructions with smaller overall errors and clearer brain tissue details than other competing
methods, thus verifying the superiority and generalizability of the proposed method.

C MORE VISUAL COMPARISONS ON NATURAL IMAGES

More visual comparison results on four natural images are exhibited in Figs. 10, 11, 12, and 13. From
Fig. 10, we observe that D3C2-Net recovers more reliable texture details (e.g., patterns of walls and
bricks) which are not captured in other methods. From Figs. 11, 12, and 13, one can see that our
D3C2-Net recovers with better lines and stripes, fewer visible artifacts and less blurry effect than
other competing methods.
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Ground Truth CSNet+ SCSNet OPINE-Net+ AMP-Net MADUN D3C2-Net

PSNR (dB) 32.60 32.69 34.03 34.09 34.13 35.43

Figure 10: Visual comparisons on an image named “house” from Set11 (Kulkarni et al., 2016) with
γ = 10%.

Ground Truth CSNet+ SCSNet OPINE-Net+ AMP-Net MADUN D3C2-Net

PSNR (dB) 18.12 18.31 19.42 20.16 21.72 26.08

Figure 11: Visual comparisons on an image named “img 024” from Urban100 (Huang et al., 2015)
with γ = 10%.

Ground Truth CSNet+ SCSNet OPINE-Net+ AMP-Net MADUN D3C2-Net

PSNR (dB) 19.19 19.93 23.55 21.26 23.46 27.58

Figure 12: Visual comparisons on an image named “img 092” from Urban100 (Huang et al., 2015)
with γ = 30%.

Ground Truth CSNet+ SCSNet OPINE-Net+ AMP-Net MADUN D3C2-Net

PSNR (dB) 21.65 22.68 25.71 24.93 27.03 31.35

Figure 13: Visual comparisons on an image named “img 059” from Urban100 (Huang et al., 2015)
with γ = 50%.

D MORE VISUALIZATIONS OF LEARNED DICTIONARY D AND FEATURE MAP ααα

More visualizations of the learned convolutional dictionary filters with different CS ratios and the
corresponding distributions of their weights are shown in Figs 14, 15 and 16. It can be seen that the
learned kernel weights are sparse. Moreover, one can observe that different filters exhibit diverse and
anisotropic spatial distributions, which allows them to extract the gradients in different directions
according to their learned patterns. More visualizations of the final estimated feature maps with
different CS ratios are shown in Figs 17, 18 and 19. One can observe that there is always one
channel to hold low-frequency information in our feature maps, e.g., the 2th-channel in Fig. 17, the
25th-channel in Fig. 18 and the 8th-channel in Fig. 19. More visualizations of the low-frequency
information and their complementary high-frequency (sparse) information are shown in Figs 20, 21
and 22. It is clear to see that our D3C2-Net represents the image as the sum of one-layer low-
frequency and multi-layer high-frequency information through convolutional coding, which may
make D3C2-Net easier to keep and transmit high-frequency information among different stages in
such a long trunk, thus achieving better reconstruction accuracies compare with prior arts.
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(a) (b)

Figure 14: Visualizations of (a) learned global dictionary filters (γ = 0.1) and (b) the distribution of
their weights with the range of [−0.06, 0.14].

(a) (b)

Figure 15: Visualizations of (a) learned global dictionary filters (γ = 0.3) and (b) the distribution of
their weights with the range of [−0.17, 0.23].
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(a) (b)

Figure 16: Visualizations of (a) learned global dictionary filters (γ = 0.5) and (b) the distribution of
their weights with the range of [−0.13, 0.19].

Figure 17: All feature maps αααi of an image named “monarch” from Set11 (Kulkarni et al., 2016)
with γ = 10%.
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Figure 18: All feature maps αααi of an image named “cameraman” from Set11 (Kulkarni et al., 2016)
with γ = 30%.
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Figure 19: All feature maps αααi of an image named “house” from Set11 (Kulkarni et al., 2016) with
γ = 50%.

flinstones lena

fingerprint peppers

Figure 20: Low-frequency information ddd2 ∗ααα2 (left) and the complementary high-frequency informa-
tion

∑
i ̸=2 dddi ∗αααi (right), with applying D3C2-Net to four images from Set11 (Kulkarni et al., 2016)

with γ = 10%.
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house boats

foreman barbara

Figure 21: Low-frequency information ddd25∗ααα25 (left) and the complementary high-frequency infor-
mation

∑
i̸=25 dddi ∗αααi (right), with applying D3C2-Net to four images from Set11 (Kulkarni et al.,

2016) with γ=30%.

cameraman parrots

monarch boats

Figure 22: Low-frequency information ddd8 ∗ααα8 (left) and the complementary high-frequency informa-
tion

∑
i ̸=8 dddi ∗αααi (right), with applying D3C2-Net to four images from Set11 (Kulkarni et al., 2016)

with γ = 50%.
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