MonoNav: MAV Navigation via Monocular
Depth Estimation and Reconstruction

Nathaniel Simon(®) and Anirudha Majumdar

Department of Mechanical and Aerospace Engineering
Princeton University, Princeton NJ 08544, USA
nsimon@princeton.edu *

Abstract. A major challenge in deploying the smallest of Micro Aerial
Vehicle (MAV) platforms (< 100 g) is their inability to carry sensors that
provide high-resolution metric depth information (e.g., LIDAR or stereo
cameras). Current systems rely on end-to-end learning or heuristic ap-
proaches that directly map images to control inputs, and struggle to fly
fast in unknown environments. In this work, we ask the following question:
using only a monocular camera, optical odometry, and offboard compu-
tation, can we create metrically accurate maps to leverage the powerful
path planning and navigation approaches employed by larger state-of-
the-art robotic systems to achieve robust autonomy in unknown environ-
ments? We present MonoNav: a fast 3D reconstruction and navigation
stack for MAVs that leverages recent advances in depth prediction neural
networks to enable metrically accurate 3D scene reconstruction from a
stream of monocular images and poses. MonoNav uses off-the-shelf pre-
trained monocular depth estimation and fusion techniques to construct a
map, then searches over motion primitives to plan a collision-free trajec-
tory to the goal. In extensive hardware experiments, we demonstrate how
MonoNav enables the Crazyflie (a 37 g MAV) to navigate fast (0.5 m/s) in
cluttered indoor environments. We evaluate MonoNav against a state-of-
the-art end-to-end approach, and find that the collision rate in navigation
is significantly reduced (by a factor of 4). This increased safety comes at
the cost of conservatism in terms of a 22% reduction in goal completion.

Keywords: MAV, monocular depth estimation, 3D reconstruction, col-
lision avoidance

1 Introduction and Related Work

The smallest class of unmanned aerial vehicles (UAVs), referred to as micro
aerial vehicles (or MAVs, < 100 g), are well-suited for constrained indoor applica-
tions such as inspection, exploration, and mapping. However, their small size and
weight restricts their ability to carry sensors that provide high-resolution metric
depth information (e.g., LIDAR or stereo cameras). While there have been ad-
vances in sensor and computer miniaturization towards fully onboard systems,
such as a 2.28 g Time of Flight depth sensor [I] or 4.4 ¢ GAP8 embedded pro-
cessor [2], the low sensor resolution and limited compute result in low levels of
autonomy (e.g., object avoidance within highly structured settings).

* Project Website: natesimon.github.io/mononav. As seen at ISER 2023.

https://natesimon.github.io/mononav/
https://iser2023.org/

MonoNav 2

Instead, our system assumes fully onboard sensing, but offboard computa-
tion — either in the form of a nearby desktop, trailing ground vehicle, or cloud.
We assume our MAV has access to the typical instrumentation: a forward-facing
monocular camera, an inertial measurement unit (IMU) for orientation and ac-
celeration, and an optical flow camera and height sensor for position and velocity
estimation.

For such a setup, the prevailing approach to monocular, vision-based explo-
ration is to train an end-to-end model which takes as input a color image and
outputs a velocity setpoint or trajectory of waypoints. In [3/4], a learned mapper
model infers spatial relationships from an RGB image to construct a 2D overhead
view for SLAM. This approach performs well in simulated environments, but lacks
validation in the real world. In [5], a deep convolutional neural network trained
entirely in simulation navigates a MAV through hallways in the real world. Such
approaches, however, may overfit to the robots and environments seen in training.

To enable monocular navigation across diverse real-world environments, [0]
proposes a general-purpose, goal-image-based policy trained and deployed across
a wide range of environments and robot embodiments. In addition to requir-
ing sub-goal images, [6] requires a topological graph of the environment, which
must be demonstrated (through teleoperation) or generated through cautious
robot exploration [7]. To overcome this and enable efficient exploration, VINT [§]
proposes sub-goal generation through image diffusion; the sub-goal images are
spatially grounded and scored by a heuristic (e.g., goal position). More recently,
NoMabD [9] trains a diffusion policy [I0], which takes a series of images and out-
puts normalized action candidates. These action candidates are un-normalized
into position trajectories using a robot-specific range. In a variety of environ-
ments, NoMaD outperforms ViNT by 25% in terms of both efficiency and collision
avoidance, making it the state-of-the-art approach to monocular navigation.

While NoMaD is able to learn and demonstrate impressive navigation and
exploration behaviors across diverse settings, its primary limitation is that the
system does not reason explicitly about the environment scale. The action candi-
dates from NoMaD’s diffusion policy are not metric; while a scaling factor can be
tuned for a specific robot/camera pair, the policy is not guaranteed to produce
spatially sensible actions. This can lead to collisions on robots and in environ-
ments outside of the training distribution, as seen in our evaluation (Sec. |4} Fig.
, where we discuss the advantages and limitations of NoMaD. It should be
noted that all of the aforementioned methods are too computationally heavy to
run onboard a 37 g MAV and thus require offboard computation.

In this work, we ask the following question: using only a monocular camera
for sensing obstacles, can we obtain depth maps with sufficient metric accuracy to
enable 3D reconstruction of the MAV’s environment? This would enable the use of
motion planning and navigation techniques used by larger state-of-the-art UAVs
[I1IT2]. We hypothesize that a modular pipeline consisting of depth estimation,
local mapping via fusion, and planning will enable significantly faster flight and
more robust generalization to unseen environments [I3]. In addition, a modular
approach allows one to directly leverage improvements in depth estimation and
motion planning without having to retrain an end-to-end policy from scratch.
Finally, such an approach affords the ability to easily incorporate new objectives

MonoNav 3

Crazyflie MAV (37 g)
~—= — - L

S\ =

Crazyflie Frame — Transformed Frame — Depth Estimation (0.16 s)

1

Frame 8

Fly Selected . Frame Integration 0— 60
Motion Primitive MonoNav Reconstruction (0.02 s per frame)
(Offline) Motion :
Primitive

Generation

Primitive Selection
(0.01s)

Ground Truth Reconstruction

Fig. 1. MonoNav converts a series of RGB images into depth estimates (top row, left
to right), then fuses them into a 3D reconstruction (bottom middle). MonoNav then
selects from collision-free motion primitives (bottom left) to navigate to a goal position.

into the navigation stack (e.g., tracking a target object or constraining the drone’s
camera angle for cinematic applications).

1.1 Statement of Contributions

Our primary contribution in this work is to demonstrate that, surprisingly, a
monocular system combined with state-of-the-art depth estimation techniques
can perform local 3D reconstruction with sufficient quality to enable fast MAV
navigation in unknown environments. We present MonoNav: a navigation stack
that leverages pre-trained transformer-based models for monocular depth estima-
tion [T4JT5IT6] in combination with off-the-shelf fusion and planning techniques.
To enable the use of pre-trained models without any fine-tuning, we propose an
image processing pipeline that minimizes domain shift by performing lightweight
image transformations. We perform experiments demonstrating that our frame-
work enables the Crazyflie (a 37 g MAV) to navigate fast (0.5 m/s) in cluttered
indoor environments with fully onboard sensing and offboard computation. To
our knowledge, MonoNav is the first monocular navigation stack that creates a
3D metric reconstruction for navigation, with validation in hardware.

2 Technical Approach

MonoNav is composed of simultaneous reconstruction and planning processes
(Fig. , which we describe below. Due to the limited compute onboard a MAV,
MonoNav (and all state-of-the-art approaches) require offboard compute.

2.1 Monocular depth estimation and mapping

The monocular mapping process is broken into two stages: metric depth esti-
mation and fusion. We leverage recent advances in monocular depth estimation

MonoNav 4

[14] that produce metric depth estimates from a single image. One of the key
requirements of our navigation stack to demonstrate generalization is to use only
pre-trained models for depth estimation without any fine-tuning. Due to the do-
main shift that arises from the difference between the MAV’s fish-eye camera
and the camera used for training the depth estimation models, we propose a
lightweight image pre-processing step (Fig. |1 - top center) that transforms a
source image from the MAV’s camera to a target image that appears as though
it was taken with the camera used to train the pre-trained models. This can be
achieved with a standard image processing library since both cameras’ intrinsics
are known. We then pass the transformed image to a pre-trained model which
performs monocular depth estimation.

In contrast to prior techniques that only produce depth images up to an
unknown scaling factor, recent approaches [I4JT5] produce absolute estimates of
depth for every pixel. MonoNav uses ZoeDepth [14] (specifically, ZoeD_N) for per-
frame metric depth estimation. Combined with the drone’s pose estimates from
optical flow odometry, MonoNav uses off-the-shelf depth fusion [I7] to create a
Truncated Signed Distance Function (TSDF) representation of the environment.
We represent the 3D map using Open3D’s VoxelBlockGrid representation [18],
which discretizes the world into voxels (each with a TSDF value and weight). We
perform TSDF fusion on each collected depth image to construct a local map.
This fusion process corrects for per-frame errors in depth estimation and also
provides a memory of previously seen portions of the environment.

2.2 Navigation

At each timestep, the robot has access to the map in the form of a VoxelBlockGrid.
For collision-free navigation towards a goal, we use motion primitives; in principle,
other planning approaches (e.g., A*, RRT*) could work.

The motion primitives and open-loop velocity setpoints are generated in a
single offline step and stored in a trajectory library. From a desired constant speed
V', maximum yaw rate A, and horizon T, we define our motion primitives from
a Dubins’ car dynamics model, with forward velocity @s,(t) = V and yaw rate
1ep(t) = Asin (7t/T). This ensures that yaw rates are zero at the beginning and
end of each primitive for smooth transitions between primitives. We integrate the
inputs to determine the spatial trajectory used in primitive selection. By varying
A, we generate our library of primitives.

At runtime, the robot considers the set 7 of available trajectories 7 € R™*3,
each consisting of n position waypoints. We also define the set V, of occupied
voxel coordinates v, € R? in the VoxelBlockGrid, as well as the minimum distance
D(7,z) from any point along the trajectory 7 to a coordinate x € R?:

D(r,z) = min ||7; — z||o. 1
(o) = min |7 ~ all2 1)
At each navigation step, we select the motion primitive 7* that brings us closest to

the goal position z, € R® while maintaining a tunable minimal distance ¢ € R
from any obstacle:

" = arg migD(T,xq) subject to D(T,v,) > ¢, Y, € V,. (2)
TE ’

MonoNav 5

In practice, we determine the set V, by filtering all voxels in the VoxelBlockGrid
by thresholds for weight, height, and TSDF value. We exhaustively compute the
distances from all trajectory points to the goal position and to every occupied
voxel. If no motion primitive satisfies the distance threshold criterion (i.e., Eq.
is infeasible), the MAV is instructed to stop and land. The parameter ¢ can
be decreased to increase feasibility, though the MAV may fly closer to obstacles.
In this way, ¢ can be used to tune how conservatively MonoNav behaves. This
self-arresting capability distinguishes MonoNav from state-of-the-art approaches
like NoMaD, whose termination conditions are “reach goal” or “crash”.

3 Hardware Evaluations

We implement MonoNav on the Crazyflie 2.1, a MAV configured as in [19J20].
The Crazyflie is outfitted with a Flow deck v2 for position and velocity estimation
and a Wolfwhoop WT05 RGB camera. Our offboard computer, which has a
GeForce RTX 4090 GPU, communicates with the MAV and receives the analog
video stream over radio. The Wolfwhoop camera suffers from significant ‘barrel
distortion’ due to its fish-eye lens; we transform this image to the desired camera
intrinics using OpenCV’s undistortion and warp affine functions.

3.1 Depth Estimation Evaluation

For per-frame depth estimation evaluation, we rigidly connected the Crazyflie’s
Wolfwhoop and Microsoft Kinect (ground truth) cameras and maneuver them
along typical trajectories in indoor hallway scenes. We follow the typical approach
of pixel-wise comparison [21I]; to address the differing camera intrinsics, we re-
project the points to match as closely as possible. It is important to note that
despite calibration, undistortion, and finding homographies to align features, the
pixels do not match perfectly (see Fig. [2)), which increases the pixel-wise error. To
address this, we also compare the distance between ground truth and estimated
point clouds.

We follow the evaluation from [I4] and determine the absolute relative er-
ror (REL) = & S°M |d; — d;|/d;, the root mean squared error (RMSE) =
[ﬁ M. \di — cii|2]%, the average log,, error = ﬁ S M llogygdi — logyg cii|,
and the threshold accuracy d, = % of pixels s.t. max (d;/d;,d;/d;) < 1.25"
for n = 1,2,3 (i.e., the fraction of pixels within a scale factor of 1.25"). The
quantities d; and d; refer respectively to the ground truth and predicted depth at
pixel 7, and M is the total number of pixels in the image. In addition, to address
any pixel-wise overestimation of error, we also determine the point cloud distance
(PCD) = |—Cl;‘ > geqMineer ||g — el[2; Le., for each point g in the ground-truth
point cloud G, we calculate its distance to the closest point in the estimated
point cloud E. See Fig. [2| for sample images of both processes, and Table [I] for
the quantitative results.

ZoeDepth’s performance in the MonoNav pipeline against Kinect Azure ground
truth depth is shown in Table [I] The errors are averaged over 77 frames from a
typical navigation sequence. Due to pixel mismatch between the different cam-
eras, point cloud distance (PCD) is bolded as the fairest metric. With RMSE error

MonoNav 6

Azure as Kinect

Crazyflie as Kinect

Point cloud distance

) o

¥
Crazyflie ZoeDepth Ground truth depth . | {
%

8 : %
6
. !
2 Crazyflie ZoeDepth
M Kinect Azure (ground truth)
0

Fig. 2. (Left) After transforming the Crazyflie and Kinect Azure cameras to common
intrinsics, we perform per-frame, per-pixel depth estimation evaluation. Note that the
Kinect Azure filters out many points (e.g., the floor) which are represented as zeros and
omitted from evaluation. (Right) To overcome per-pixel mismatch between the different
cameras, we also compute the point cloud distance (PCD); i.e., for each point in the
ground truth (blue) point cloud, we calculate its distance to the nearest point in our
estimated (yellow) point cloud. For quantitative comparison see Table

Depth (m)

of 1.05 m, and PCD error of 0.41 m, ZoeDepth is able to provide a sufficiently
accurate metric depth for indoor reconstruction and navigation.

Method |61 1 2t 83 1 REL| RMSE| log,,} PCD| |
MonoNav|0.62 0.85 0.95 0.48 1.05 0.11 0.41 \

Table 1. ZoeDepth depth estimation evaluation in the MonoNav pipeline (i.e., on a
MAYV camera in hallway environments). Units: meters. Arrows indicate the direction of
better performance. PCD is bolded as the fairest metric.

3.2 Results: Navigation

For hardware experiments, we define a set of motion primitives (Fig. [I} bottom
left) by T = 1.0 s, V = 0.5 m/s and A € {-0.7 + k0.23}%_, rad/s (i.e., 7
evenly spaced values between [-0.7, 0.7] rad/s). We set the distance threshold
¢ = 0.5 m and the goal position z, = (10,5,0.4) m (in an East-North-Up world
frame). The camera has a measured lag of 0.12 s, per-frame depth estimation with
ZoeDepth takes 0.11-0.16 s, fusion takes 0.02 s, and motion primitive selection
takes 0.01 s. Camera readings, depth estimation, and integration occur at 3-4 Hz
and replanning occurs at 1 Hz. It should be noted that both fusion and planning
take longer as more voxels are added to the map.

We test MonoNav in constrained hallway settings. These settings vary in com-
plexity, ranging from straight sections, T-intersections, curved walls, and open

MonoNav 7

Corner 1

Fig. 3. MonoNav produces metric reconstructions for planning real-time, enabling nav-
igation and collision avoidance indoors. Six representative scenes are shown above, in-
cluding corners and longer hallways. Coordinate frames represent the drone’s pose as
flown through the trajectory.

spaces with columns. In 15 runs across 10 unique indoor settings (six of which
are shown in Fig. , MonoNav navigates successfully and avoids most obstacles.
Of the 15 runs, MonoNav crashed once (Fig. 3| Hall 4), and was prematurely
terminated once (Fig. [3| Hall 1). In both cases, MonoNav turned into a wall or
dead-end that was previously occluded and thus not perceived as an obstacle.
The goal position 24 = (10,5,0.4) m induced a leftward bias into the navigation,
which is reflected in the trajectories.

4 Comparison to State of the Art: NoMaD

To evaluate MonoNav against state of the art monocular navigation techniques,
we compare it to NoMaD: Goal Masked Diffusion Policies for Unified Naviga-

MonoNav 8

tion and Ezxploration [9]. NoMaD uses EfficientNet encoders and a Transformer
decoder to transform a series of recent observations and (optional) goal image
into a context. NoMaD uses the context to condition action diffusion, producing
normalized action candidates which are scaled based on the robot’s physical char-
acteristics. The goal masking ensures NoMaD can operate in goal-image-directed
(“navigation”) and goal-image-agnostic (“exploration”) modes. For the purposes
of our evaluation, we only ran NoMaD in exploration mode to match MonoNav.
Example action candidates are shown in Fig.

We evaluate NoMaD and MonoNav side-by-side in 5 unique environments.
Each environment has a goal position, which encourages a certain behavior (e.g.,
straight, left turn, right turn). We run three trials for each method in each envi-
ronment (30 runs total). We calculate performance both in terms of goal comple-
tion (%) and collision rate, and report values in Table [2} Goal completion (% to
Goal) is calculated as 1 — ||zp — z4]|/||x0 — x4||, Where zg, x7, x4 are the initial,
final, and goal positions. Collision rate is the ratio of collisions to runs.

Since all of the action candidates suggested by NoMaD should in principle be
collision-free (and there is no other way to reason about proximity to obstacles),
we choose the action candidate which makes the most progress towards the goal.
Additionally, other than reaching the goal or manual termination, there are no
other criteria for self-stopping in NoMaD as there are in MonoNayv.

For the evaluation, MonoNav has access to 11 one-second motion primitives
at V = 0.5 m/s, with ¥ amplitudes defined by 4 € {—0.7+£0.14}}%) rad/s (i.e.,
10 evenly spaced values between [-0.7, 0.7] rad/s). We set the distance threshold
¢ = 0.2 m. MonoNav flies each motion primitive open-loop using velocity control,
resulting in smooth, chained primitives.

NoMaD accepts a series of images directly from the Wolfwhoop camera. We
keep the settings identical to the original paper wherever possible, and configure
NoMaD to output 8 action candidates. These action candidates are not exactly
metric; through testing, a factor of 1/7 was determined to be an appropriate,
conservative approach for indoor hallways. Following the paper, we follow the
first 3 waypoints in open-loop fashion before re-planning.

4.1 Results: Baseline Comparison

The performance of MonoNav and NoMaD, averaged over 15 trials (each) in 5
diverse settings, is shown in Table 2] and Fig. [We find that while MonoNav
has a 22% decrease in goal-seeking performance, it has a 4x improvement in
collision avoidance. This is because MonoNav can use the 3D reconstruction to
reason about collisions, and stop itself if no primitive remains sufficiently far
from obstacles. Noise in the state and depth estimates translates to noise in
the point cloud, so MonoNav is typically over-conservative, resulting in the 22%
degradation in performance.

4.2 Discussion

NoMaD is a powerful monocular navigation platform with impressive demon-
strations on numerous embodiments. Additionally, it accepts fish-eye images as

MonoNav 9

Method ‘ % to Goal 1 ‘ Collision Rate | ‘
MonoNav 47.4% 0.13
NoMaD 61.0% 0.53

Table 2. Average monocular navigation performance in 15 trials (each) across 5 envi-
ronments. % to Goal is the ratio of progress to the goal, and collision rate is the ratio
of collisions. Arrows indicate the direction of best performance, and the top performer
in each column is bolded.

input, which contain much more peripheral information about obstacles than the
transformed camera images do for MonoNav.

There are additional advantages as compared to MonoNav. NoMaD is more
straightforward to run out of the box (e.g., no additional planner is required). Ad-
ditionally, since MonoNav fuses all frames into the reconstruction (0 — 100+), the
reconstruction can be too sparse in the beginning, and too noisy by the end (re-
sulting in premature termination). NoMaD, by comparison, requires fewer frames

Corner 1 Corner 2
[J 61 ® @ Goal for Corners
4l J
— —~ 41
E E
> 2 A [> 2
0 == 0 __j
0 2 4 0.0 2.5 .MonoNav
x(m) x(m) MNoMaD
YMonoNav Crash (2x)
Three Hallway Runs #nNoMaD Crash (8x)
w
—~ 0 LIRS %fé*&*“_ﬂm‘—"":‘_ '''''''''' [)
5 i TSSISSEso . @ Goal for ===
> 5 4 it YO Goal forsmasss
- - Goal for = mm

-2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

Fig. 4. We plot the trajectories of all 15 trials in 5 unique environments, the goal posi-
tions, and the crash locations. As shown in the graph, MonoNav outperforms NoMaD
during straighter segments; NoMaD outperforms MonoNav in cornering, when a clear,
agile maneuver is required. Note while the walls are not depicted, the hallway width is
typically 2.5 meters throughout. Due to its reliance on past frames for reconstruction
(see Sec.[5.1), MonoNav is “warm-started” at zo = (—1.5,0.0) m.

MonoNav 10

to produce meaningful candidates, and is able to handle dynamic environments
better than MonoNav.

The main disadvantage to NoMaD is the lack of concrete spatial grounding.
While NoMaD regularly produces meaningful action candidates, it is also prone
to over- or under-reacting, such as a U-turn in a tight space (see Fig. |5]). Further-
more, since information is not preserved over longer horizons (as in MonoNav),
NoMaD can be tricked (e.g., by a featureless wall or poster). In our experiments,
we found that NoMaD does very well in cornering, when there is clear consensus
among action candidates, but (surprisingly) poorly in straights, where the ac-
tion candidates under-react and NoMaD tends to drift into walls. In these cases,
NoMaD is limited by its inability to self-terminate when collision is imminent.
This could be addressed by implementing a lightweight collision-detection mod-
ule. Finally, the nature of the diffusion policy makes the actions stochastic and
unrepeatable, making behaviors difficult to explain and reproduce.

. Optional action candidates
. Goal point (projected):

‘ Selected action candidate
. Waypoint series (open-loop)

Action Candidates Action Candidates

0.2 0.6
0.5 4
0.4 4
0.0
E 03
>
0.2 4
£ _
s -02 Gi
0.0 q
—0.4 4 0.2 0.4 0.6 0.8 1.0
xm
-0.6
0.2 0.4 0.6 0.8 10

xm

Fig. 5. Sample action candidates from NoMaD. The 8 action candidates are shown
in orange, the goal position x4 = (10, 5) is projected in blue, and the selected candidate
(which makes the most progress towards the goal) is in green. Open-loop navigation
through the red waypoints is completed before re-planning. (Left) NoMaD demonstrates
diverse, multimodal actions - avoiding the wall by turning right or left. (Right) NoMaD
suggests a turn left into an obstacle.

MonoNav 11

5 Conclusions

We introduce MonoNav, a navigation stack for monocular robots that generates
a metric reconstruction using pre-trained depth estimation models and off-the-
shelf fusion methods, enabling the use of conventional path planning techniques
for collision-free navigation. We use MonoNav to enable a 37 g MAV to navigate
numerous indoor environments at 0.5 m/s. We evaluate ZoeDepth’s accuracy in
MonoNav, and demonstrate that it is sufficient for metric reconstruction. Finally,
we compare MonoNav against a state of the art method in monocular navigation
(NoMaD). Using the 3D reconstruction, MonoNav is able to reduce collision rates
by a factor of 4; the trade-off of this added safety is a 22% degradation in progress
towards the goal.

5.1 Limitations and Future Work

MonoNav’s performance is highly dependent on the quality of its reconstruction.
One source of error is noise in the analog camera feed. Discolored blobs in frames,
though temporary, are often integrated as occupied voxels, as are overexposed
pixels when the MAV is exposed to a bright light. This can cause early self-
termination as the MAV avoids a phantom obstacle. Additionally, reconstruction
quality (and utility) is sensitive to errors in state estimation.

The image transformation (from fish-eye to Kinect intrinsics) narrows the field
of view significantly, losing peripheral information. As a result, when MonoNav is
selecting a motion primitive, the relevant depth information was seen 1.5 meters
or 3 planning cycles ago. As a result, MonoNav needs to be ‘warm-started’ with
several frames before operating autonomously (e.g., in Fig. 4} MonoNav starts
at (—1.5,0.0) m while NoMaD starts at (0.0,0.0) m). In the presence of state
estimation error, this reliance on previous perspectives can reduce reconstruction
accuracy.

Additionally, MonoNav does not distinguish between explored and unexplored
regions; unexplored regions are considered unoccupied. This architecture encour-
ages aggressive exploration, but can lead to crashes (see Fig.|3|- Hall 4). A more
conservative planning framework that treats space as occupied until explored
could further reduce the collision rate.

In addition, active perception techniques could be used to improve recon-
struction and navigation quality simultaneously. To address noise in long hori-
zons, “sliding window” fusion could be used instead of fusing all images. Finally,
improvements in depth estimation models, state estimation, and camera will im-
prove MonoNav’s performance. Digital perception systems would vastly improve
image quality over the analog feed, and products such as the HDZero Whoop
Lite (7 g) may be light enough to integrate on the Crazyflie.

MonoNav 12

Acknowledgments

We are grateful to the authors of NoMaD [d] — specifically, Dhruv Shah — for
providing early-access to their code and model checkpoints for baseline evaluation,
as well as for answering our many questions about the system. This work was
partially supported by the NSF CAREER Award [#2044149] and the Office of
Naval Research [N00014-23-1-2148].

References

10.

11.

12.

13.

14.

15.

. Niculescu, V., Miiller, H., Ostovar, 1., Polonelli, T., Magno, M., Benini, L.: Towards

a multi-pixel time-of-flight indoor navigation system for nano-drone applications. In:
International Instrumentation and Measurement Technology Conference (I2MTC),
pp. 1-6. IEEE (2022)

. Palossi, D., Conti, F., Benini, L.: An open source and open hardware deep learning-

powered visual navigation engine for autonomous nano-UAVs. In: 15th International
Conference on Distributed Computing in Sensor Systems (DCOSS), pp. 604-611.
IEEE (2019)

Chaplot, D.S., Gandhi, D., Gupta, S., Gupta, A., Salakhutdinov, R.: Learning to
explore using active neural SLAM. In: International Conference on Learning Rep-
resentations (ICLR) (2020)

Chaplot, D.S., Salakhutdinov, R., Gupta, A., Gupta, S.: Neural topological SLAM
for visual navigation. In: Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 12,875-12,884 (2020)

. Sadeghi, F., Levine, S.: CAD2RL: Real single-image flight without a single real

image. In: Proceedings of Robotics: Science and Systems (RSS) (2017)

Shah, D.; Sridhar, A., Bhorkar, A., Hirose, N., Levine, S.:. GNM: A general nav-
igation model to drive any robot. In: International Conference on Robotics and
Automation (ICRA), pp. 7226-7233. IEEE (2023)

Shah, D., Eysenbach, B., Rhinehart, N., Levine, S.: Rapid Exploration for Open-
World Navigation with Latent Goal Models. In: 5th Annual Conference on Robot
Learning (2021)

Shah, D., Sridhar, A., Dashora, N., Stachowicz, K., Black, K., Hirose, N., Levine,
S.: VINT: A foundation model for visual navigation. In: 7th Annual Conference on
Robot Learning (2023)

Sridhar, A., Shah, D., Glossop, C., Levine, S.: NoMaD: Goal masked diffusion poli-
cies for navigation and exploration. arXiv preprint arXiv:2310.07896 (2023)

Chi, C., Feng, S., Du, Y., Xu, Z., Cousineau, E., Burchfiel, B., Song, S.: Diffusion
policy: Visuomotor policy learning via action diffusion. In: Proceedings of Robotics:
Science and Systems (RSS) (2023)

Tang, S., Kumar, V.: Autonomous flight. Annual Review of Control, Robotics, and
Autonomous Systems 1, 29-52 (2018)

Loquercio, A., Kaufmann, E., Ranftl, R., Miiller, M., Koltun, V., Scaramuzza, D.:
Learning high-speed flight in the wild. Science Robotics 6(59), eabg5810 (2021)
Gervet, T., Chintala, S., Batra, D., Malik, J., Chaplot, D.S.: Navigating to objects
in the real world. Science Robotics 8(79), eadf6991 (2023)

Bhat, S.F., Birkl, R., Wofk, D., Wonka, P., Miiller, M.: ZoeDepth: Zero-shot transfer
by combining relative and metric depth. arXiv preprint arXiv:2302.12288 (2023)
Sayed, M., Gibson, J., Watson, J., Prisacariu, V., Firman, M., Godard, C.: Sim-
pleRecon: 3D reconstruction without 3D convolutions. In: 17th European Confer-
ence on Computer Vision (ECCV). Springer (2022)

16.

17.

18.

19.

20.
21.

MonoNav 13

Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust
monocular depth estimation: Mixing datasets for zero-shot cross-dataset transfer.
Transactions on Pattern Analysis and Machine Intelligence 44(3), 1623-1637 (2020)
Newcombe, R.A., Izadi, S., Hilliges, O., Molyneaux, D., Kim, D., Davison, A.J.,
Kohi, P., Shotton, J., Hodges, S., Fitzgibbon, A.: Kinectfusion: Real-time dense
surface mapping and tracking. In: 10th International Symposium on Mixed and
Augmented Reality, pp. 127-136. IEEE (2011)

Dong, W., Lao, Y., Kaess, M., Koltun, V.: Ash: A modern framework for parallel
spatial hashing in 3D perception. Transactions on Pattern Analysis and Machine
Intelligence 45(5), 5417-5435 (2022)

Kang, K., Belkhale, S., Kahn, G., Abbeel, P., Levine, S.: Generalization through
simulation: Integrating simulated and real data into deep reinforcement learning
for vision-based autonomous flight. In: International Conference on Robotics and
Automation (ICRA), pp. 6008-6014. IEEE (2019)

Majumdar, A.: Introduction to Robotics at Princeton. lirom-lab.princeton.edu
Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using
a multi-scale deep network. Advances in Neural Information Processing Systems
27 (2014)

https://irom-lab.princeton.edu/intro-to-robotics/

	MonoNav: MAV Navigation via Monocular Depth Estimation and Reconstruction

