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Abstract
Reinforcement learning from human feedback001
(RLHF) is a promising solution to align large002
language models (LLMs) more closely with003
human values. Off-policy preference optimiza-004
tion, where the preference data is obtained005
from other models, is widely adopted due to006
its cost efficiency and scalability. However,007
off-policy preference optimization often suffers008
from a distributional gap between the policy009
used for data collection and the target policy,010
leading to suboptimal optimization. In this pa-011
per, we propose a novel strategy to mitigate012
this problem by simulating on-policy learning013
with off-policy preference data. Our Weighted014
Preference Optimization (WPO) method adapts015
off-policy data to resemble on-policy data more016
closely by reweighting preference pairs accord-017
ing to their probability under the current policy.018
This method not only addresses the distribu-019
tional gap problem but also enhances the opti-020
mization process without incurring additional021
costs. We validate our method on instruction022
following benchmarks including Alpaca Eval023
2 and MT-bench. WPO not only outperforms024
Direct Preference Optimization (DPO) by up025
to 5.6% on Alpaca Eval 2 but also establishes026
a remarkable length-controlled winning rate027
against GPT-4-turbo of 48.6% based on Llama-028
3-8B-Instruct, making it the strongest 8B model029
on the leaderboard.030

1 Introduction031

Large language models (LLMs; Ouyang et al. 2022;032

Achiam et al. 2023; Tunstall et al. 2023; Chung033

et al. 2024) have demonstrated remarkable capa-034

bilities in generating human-like responses. How-035

ever, they still face challenges in scenarios demand-036

ing high standards of reliability, safety, and ethics.037

To address these challenges, reinforcement learn-038

ing from human feedback (RLHF; Christiano et al.039

2017; Ouyang et al. 2022; Glaese et al. 2022) is040

a promising approach to better align LLMs with041

human values.042

Depending on how the outputs are generated, 043

RLHF can be categorized into on-policy and off- 044

policy settings. In the on-policy setting (Schulman 045

et al., 2017; Yuan et al., 2024; Rosset et al., 2024; 046

Wu et al., 2024), the policy model used to generate 047

outputs is the same as the policy model being opti- 048

mized. During this process, a policy model is first 049

initialized from supervised finetuning (SFT). Then, 050

a reward model (Schulman et al., 2017; Gao et al., 051

2023; Jiang et al., 2023) is obtained based on hu- 052

man (Schulman et al., 2017) or AI (Lee et al., 2023) 053

feedback. Finally, the policy model samples out- 054

puts during training, which are then evaluated using 055

the reward model. The policy model is optimized to 056

improve the expected reward using training objec- 057

tives such as Proximal Policy Optimization (PPO; 058

Schulman et al. 2017) and Direct Preference Opti- 059

mization (DPO; Rafailov et al. 2023). However, on- 060

policy RL relies heavily on policy sampling during 061

training and online rewards, which can incur high 062

costs. In contrast, in the off-policy setting (Tunstall 063

et al., 2023; Ivison et al., 2023), the outputs are 064

generated from different models, and the policy 065

model is optimized based on these data instead of 066

its sampled outputs. Consequently, off-policy RL 067

offers significant advantages in terms of cost and 068

data efficiency and is easier to scale up. 069

Nevertheless, off-policy RL often shows worse 070

performance than on-policy RL, due to the distribu- 071

tional gap between the policy used to collect data 072

and the target policy being optimized, which leads 073

to instability and inefficiency in training (Fujimoto 074

et al., 2019; Kumar et al., 2019, 2020; Xu et al., 075

2024; Tang et al., 2024a; Tajwar et al., 2024). In off- 076

policy preference optimization, the optimization is 077

typically performed on preference data sampled 078

from other models, and all the preference singles 079

are equally treated. However, some preference data, 080

distant from the current policy, are less informative 081

for training, resulting in inefficient and suboptimal 082

optimization. 083
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Figure 1: Overview of the Weighted Preference Optimization (WPO). Some notations are labeled along with
corresponding components. Existing DPO directly optimizes the policy to best satisfy the preferences with off-
policy data. In contrast, WPO adapts off-policy data to resemble on-policy data more closely by reweighting
preference pairs according to their probability under the current policy.

In this paper, we propose simulating on-policy084

preference optimization with off-policy preference085

data, combining the efficiency of off-policy RL086

with the performance benefits associated with on-087

policy RL. Our method is motivated by the follow-088

ing conceptual data generation process. This pro-089

cess begins with transforming the existing prefer-090

ence dataset into a preference labeling function. We091

can then resample a new preference dataset through092

bootstrapping from the existing data. This process093

involves uniformly sampling inputs from the pref-094

erence dataset and online sampling new pairs of095

outputs with the current policy model. Each pair is096

retained if it can be labeled by the labeling function;097

otherwise, it is rejected. We then perform DPO on098

the regenerated preference dataset. In practice, this099

bootstrapping process can be implemented with the100

Weighted Policy Optimization (WPO) objective,101

where different preference pairs are reweighted ac-102

cording to the joint probability of their outputs.103

We further devise a weighting alignment mecha-104

nism to ensure that all on-policy generated pairs105

are equally weighted. In this way, WPO can ef-106

fectively mitigate the distribution gap during RL107

without incurring additional costs.108

We evaluate WPO on instruction following109

benchmarks, including Alpaca Eval 2 (Li et al.,110

2023) and MT-bench (Zheng et al., 2023). In111

the off-policy setting based on Ultrafeedback (Cui112

et al., 2023), WPO improves the length-controlled113

winning rate against GPT-4-turbo on Alpaca Eval114

2 by up to 14.9% over SFT model, outperforming115

DPO by up to 5.6%. Particularly, in the hybrid116

RL setting where the off-policy preference data117

is further enriched with on-policy outputs, WPO118

(Figure 1) achieves a new SOTA length-controlled119

winning rate of 48.6% on Alpaca Eval 2, making120

it the strongest 8B model to date. Additionally,121

we find that WPO can be integrated into other loss 122

functions for preference optimization and shows 123

consistent improvements. Furthermore, we sys- 124

tematically compare the model performance in dif- 125

ferent RL settings. Our analysis reveals that the 126

hybrid setting, which utilizes both on-policy and 127

off-policy preference data, achieves the best results, 128

and on-policy, dispreferred data is more important 129

for preference optimization. 130

To summarize, our contributions are three-fold: 131

• We identify the distribution gap problem in 132

off-policy preference optimization, and ac- 133

cordingly introduce a method to simulate on- 134

policy RL using off-policy preference data. 135

• We propose the WPO objective, which 136

reweights preference pairs based on their prob- 137

abilities. This ensures that the most relevant 138

and probable outputs are prioritized during op- 139

timization, mitigating the distribution gap and 140

improving the effectiveness of the preference 141

optimization. 142

• We conduct extensive instruction following 143

benchmarks. Our results demonstrate that 144

WPO significantly outperforms DPO and 145

achieves new SOTA results on Alpaca Eval 2 146

in the hybrid RL setting. 147

2 Related Work 148

General alignment methods. The advancement 149

of ChatGPT has propelled significant advance- 150

ments in the field of large language models (LLMs). 151

Notable models such as Zephyr (Tunstall et al., 152

2023) and GPT-4 (Achiam et al., 2023) have effec- 153

tively demonstrated the application of techniques 154

like reinforcement learning from human feedback 155

(RLHF; Christiano et al. 2017; Ouyang et al. 2022; 156

Glaese et al. 2022) and direct preference optimiza- 157
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tion (DPO; Rafailov et al. 2023), highlighting their158

efficacy in achieving improved model alignment.159

These approaches, along with related methods such160

as sequence likelihood calibration (Zhao et al.,161

2023) and Generalized Preference Optimization162

(GPO) (Tang et al., 2024b), aim to refine the objec-163

tives of RLHF by clearly enhancing the distinction164

between more and less preferred outputs. Addi-165

tionally, the introduction of the Direct Nash Opti-166

mization (DNO) algorithm by Rosset et al. (2024)167

represents a further innovation. This algorithm168

utilizes cross-entropy to assess the gap between ac-169

tual and predicted win rates. Practical applications170

more frequently rely on the iterative framework of171

DPO (Xu et al., 2023). Yet, DPO often reveals a172

discrepancy between the output distributions pro-173

duced by the policy and those in the preference174

dataset. To address this, we propose simulating175

on-policy reinforcement learning using off-policy176

data, thereby combining the benefits of on-policy177

RL with enhanced efficiency.178

On-policy reinforcement learning. Self-Play179

Fine-Tuning (Chen et al., 2024) operates under an180

iterative framework akin to DPO, utilizing human-181

labeled responses as "winners" and outputs from182

previous iterations as "losers" within each pair-183

ing. Similarly, Adversarial Preference Optimiza-184

tion (Cheng et al., 2023) incorporates contrastive185

losses, which obviate the need for direct feedback186

from annotators. This method introduces a token-187

level loss function known as Cringe Loss (Adolphs188

et al., 2022), which differentiates the correct sub-189

sequent token from a deliberately incorrect token190

from the vocabulary. Pairwise Cringe Loss (Xu191

et al., 2023) utilizes this cringe loss mechanism192

within a continuously improving iterative training193

framework. Moreover, the recent introduction of194

SAMI (Fränken et al., 2024) targets optimizing a195

lower bound on the conditional mutual informa-196

tion between prompts and responses through a con-197

trastive estimation technique. In our approach, we198

adjust the importance of each pair in the training199

process by assigning greater weight to those pairs200

more likely to be sampled from the policy model,201

thus simulating on-policy reinforcement learning.202

3 Method203

In this section, we provide the theoretical back-204

ground of RLHF and DPO in Section 3.1. We205

then introduce the distributional gap problem and206

propose the WPO method (Algorithm 1) in Sec-207

Algorithm 1: Weighted Preference Opti-
mization (WPO)

Input: Dataset (D) with prompts and respon-
ses, policy LM πθ, total number of iterations
T , learning rate αt,
for t = 0 to T do

Sample a mini-batch of tuples (x, yw, yl)
from D,
Calculate the alignment weight via Eq. (2),
Compute LWPO via Eq. (1),
Update policy parameters θ using gradient
descent: θ ← θ − αt∇θ(x, yw, yl, θ).

end for

tion 3.2. Finally, we explore how to better sim- 208

ulate on-policy RL through weight alignment in 209

Section 3.3. 210

3.1 Preliminaries 211

RLHF (Schulman et al., 2017) aims to align a large 212

language model with human preferences. Given 213

a preference dataset D = {(x(i), y(i)w , y
(i)
l )}Ni=1, in 214

which yw and yl are a pair of outputs given prompt 215

x sampled from a policy model, and yw is favored 216

over yl as determined by human or AI annotators. 217

This preference is modeled by a latent reward func- 218

tion r∗(x, y), which scores on how well the can- 219

didate output y matches the input x. There are 220

various ways to model the reward function, among 221

which the Bradley-Terry (BT; Bradley and Terry 222

1952) model is most commonly used. The BT 223

model assumes that the preference distribution is 224

characterized by the following equation: 225

p(yw ≻ yl|x) = exp(r∗(x,yw))
exp(r∗(x,yw))+exp(r∗(x,yl))

. 226

The parameters of the reward function can be es- 227

timated based on maximum likelihood estimation, 228

resulting in the reward model r̂(x, y). Then, we 229

can use the fitted reward model to provide feed- 230

back to a large language model by optimizing the 231

following objective: 232

maxπθ
Ex∼D,y∼πθ(·|x)

[
r̂(x, y)− β log πθ(·|x)

πref(·|x)

]
, 233

where β controls the deviation between the policy 234

model πθ and the reference model πref, which is 235

usually initialized from the SFT model. 236

DPO. Direct optimization optimization (DPO; 237

Rafailov et al. 2023) integrates the learning of the 238

reward function and the policy model to a unified 239
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objective. Specifically, suppose the optimal pol-240

icy π∗ is given, the corresponding reward r∗ has a241

closed form:242

r∗(x, y) = β log
π∗(y|x)
πref(y|x)

+ β logZ(x),243

where Z(x) is the partition function. Applying this244

reparameterization to the BT model, we have:245

p∗(yw ≻ yl|x) = σ
(
β log π∗(yw|x)

πref(yw|x) − β log π∗(yl|x)
πref(yl|x)

)
.246

We can then formulate a maximum likelihood es-247

timation objective for the policy model πθ on the248

preference dataset D, resulting in the following249

training objective:250

LDPO = −E(x,yw,yl)∼D [log p(yw ≻ yl|x)] .251

Here, the loss is calculated based on a uniform252

sampling of the preference dataset. In practice,253

the yw and yl in the preference dataset may be254

generated either with the same policy model being255

optimized, which corresponds to an on-policy RL256

setting (Xu et al., 2023; Yuan et al., 2024; Rosset257

et al., 2024), or with other models (e.g., GPT-4;258

Achiam et al. 2023), corresponding to an off-policy259

RL setting (Tunstall et al., 2023; Ivison et al., 2023;260

Pal et al., 2024).261

3.2 Weighted Preference Optimization262

DPO does not require actively generating new out-263

puts from the current policy, making it more cost-264

effective and suitable for off-policy settings. How-265

ever, DPO introduces a notable discrepancy be-266

tween the distribution of outputs produced by the267

policy and those present in the preference dataset.268

This divergence can lead to less effective learn-269

ing. To illustrate, consider two instances of prefer-270

ence data:
(
x(1), y

(1)
w , y

(1)
l

)
and

(
x(2), y

(2)
w , y

(2)
l

)
,271

where the first tuple is sampled directly from the272

current policy model, while the second tuple is sam-273

pled from a different distribution from the current274

policy model. Despite this difference in sampling275

probability, DPO treats both instances equally in276

its loss calculation, ignoring the fact that the first277

tuple, representing a more probable output of the278

current policy, should ideally exert a greater influ-279

ence on the optimization process. This oversight280

can lead to suboptimal performance, as DPO does281

not prioritize learning from the most representative282

or probable output of the policy model.283

To address this issue, we propose to simulate 284

on-policy RL using off-policy data, thereby being 285

both fast and enjoying benefits from on-policy RL. 286

Theoretical derivation. To simulate on-policy 287

RL, we first transform the (off-policy) preference 288

dataset D = {(x(i), y(i)w , y
(i)
l )}Ni=1 into the follow- 289

ing preference labeling function: 290

f(x, y1, y2) =


y1 ≻ y2, (x, y1, y2) ∈ D
y2 ≻ y1, (x, y2, y1) ∈ D
NA, otherwise

291

where we assume that the dataset contains no con- 292

flicting preferences, meaning that for any x, if 293

(x, y1, y2) ∈ D, then (x, y2, y1) /∈ D. We then 294

conceptually generate a new preference dataset 295

through a bootstrapping approach without actually 296

carrying out the procedure. Suppose an input x 297

is uniformly sampled from the original preference 298

dataset, and then a pair of outputs y1, y2 is sampled 299

with the current policy model. We retain the pair 300

if it can be labeled by the labeling function, and 301

otherwise reject the pair when f(x, y1, y2) = NA. 302

If we sample for an infinite amount of times, ac- 303

cording to the law of large numbers, the occurrence 304

rate of a pair (x, yw, yl) would be proportional to 305

πθ(yw|x)πθ(yl|x)p(x). We then apply DPO to the 306

newly generated preference dataset. 307

Practical implementation. The conceptual pro- 308

cess above is equivalent to optimizing the following 309

weighted preference optimization (WPO) objec- 310

tive, where different pairs in the original preference 311

dataset are reweighed: 312

LWPO = −E(x,yw,yl)∼D [w(x, yw)w(x, yl) log p(yw ≻ yl|x)] , (1) 313

where w(x, y) = πθ(y|x) and is detached from 314

back propagation. Through this process, we ef- 315

fectively adjust the importance of each pair in the 316

training process, giving greater weight to those 317

pairs that are more likely to be sampled from the 318

policy model, thus simulating on-policy RL. 319

In language models where yw and yl are se- 320

quences of tokens, the product of the conditional 321

probabilities πθ(yw|x) · πθ(yl|x) can be exceed- 322

ingly small and exhibit high variance among dif- 323

ferent pairs. To address this, we utilize the length- 324

normalized sequence probability as a weighting 325

factor: 326

w(x, y) = exp

 1

|y|

|y|∑
t=1

log πθ(yt|x, y<t)

 , 327
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Figure 2: Weight distribution of outputs sampled using
the policy model with different alignment methods.

where |y| represents the number of tokens in the328

output.329

3.3 Weight Alignment330

The objective of our weighting strategy is to sim-331

ulate on-policy RL, where different outputs are332

weighed by their alignment with on-policy behav-333

ior. Therefore, after the outputs are sampled us-334

ing the current policy model, their weights w(x, y)335

should be uniform, and the weights of outputs from336

other models should be smaller. However, our cur-337

rent strategy assigns different weights to outputs338

sampled using the policy model, due to the fact339

that LLMs exhibit different levels of confidence340

across different inputs (Si et al., 2023; Xiong et al.,341

2024). This results in an input bias, where some342

outputs sampled using the policy model will be as-343

signed higher weights than others. Figure 2 shows344

the weight distribution of sampled outputs based345

on prompts from Ultrafeedback and the Mistral-346

sft-beta model, in which we observe significant347

variability in w(x, y). To address this and ensure348

equal weighting of these outputs, we propose to349

align the weights in WPO.350

A direct method is to adjust the weights above351

by the sequence probability of the on-policy out-352

puts sampled from the policy model. However,353

generating outputs during training is computation-354

ally expensive, and hence, we explore approxima-355

tion methods for this alignment. Instead of using356

weights of the whole sequences as reference, we op-357

erate at the token level and adjust the probability of358

output tokens according to the token distribution in359

the policy model, based on the current subsequence.360

We propose two ways to achieve the alignment.361

Greedy alignment. Here, we adjust the weights362

with respect to greedy decoding. Specifically, we363

adjust weights based on the maximum token prob-364

ability among the set of all tokens in the subse-365

quence, defined as: 366

w(x, y) = exp

(
1
|y|

|y|∑
t=1

log πθ(yt|x,y<t)
maxv∈V πθ(v|x,y<t)

)
, 367

where V represents the set of all tokens in the lan- 368

guage model. 369

Sampled alignment. In this approach, we ad- 370

just weights based on outputs that are randomly 371

sampled from the policy model at a temperature 372

of 1.0. Since the probability for each token v 373

is computed as πθ(v|x, y<t), the expected prob- 374

ability of a randomly sampled token would be 375∑
v∈V πθ(v|x, y<t)

2, and the calibrated weights 376

are then given by: 377

w(x, y) = exp

(
1
|y|

|y|∑
t=1

log πθ(yt|x,y<t)∑
v∈V πθ(v|x,y<t)2

)
. (2) 378

We use sampled alignment as the default alignment 379

method in WPO due to its superior performance, 380

as confirmed in Section 4.2. Additionally, in Fig- 381

ure 2, sampled alignment leads to a more concen- 382

trated weight distribution of outputs from the policy 383

model, thereby better simulating on-policy RL. 384

4 Experiment 385

In this section, we outline our experimental settings 386

(Section 4.1) and present the main results along 387

with ablation studies (Section 4.2). We then com- 388

pare different RL settings (Section 4.3). Additional 389

analysis of WPO is provided in Appendix A. 390

4.1 Experimental Settings 391

Model configurations. Our methods are imple- 392

mented based on the official code of zephyr1. For 393

Mistral-base, we adopt the official hyperparameters 394

from zephyr. Specifically, we use the SFT check- 395

point of zephyr2 as our SFT model. Training is 396

conducted over a single epoch with a batch size 397

of 128, a learning rate of 5e-7, a warm-up phase 398

for 10% of the training, and a cosine decay sched- 399

ule. We set β to 0.01 for both DPO and WPO. 400

For Llama-3-Instruct, we perform a hyperparame- 401

ter search within the range recommended by Meng 402

et al. (2024). Our final hyperparameters are a learn- 403

ing rate of 1e-6, two training epochs, and β of 0.01 404

for both DPO and WPO. For all training configura- 405

tions, we conduct training for 5 runs with different 406

1https://github.com/huggingface/
alignment-handbook

2https://huggingface.co/HuggingFaceH4/
mistral-7b-sft-beta
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Method

Mistral-Base (7B) Llama-3-Instruct (8B)

Alpaca Eval 2.0 MT-bench Alpaca Eval 2.0 MT-bench

Len-control. Win Rate Avg. Win Rate Len-control. Win Rate Avg. Win Rate
Win Rate vs GPT-4 Score vs DPO Win Rate vs GPT-4 Score vs DPO

SFT 9.5 5.8 6.64 - 26.0 25.3 7.97 -

O
ff

-p
ol

ic
y

ORPO 14.7 12.6 7.32 - - - - -
KTO 14.9 12.3 7.36 - - - - -
SimPO 21.5 21.4 7.32 - - - - -
DPO 20.6 (0.7) 18.6 (1.0) 7.36 (0.04) 50 (0) 28.2 (0.5) 24.0 (0.5) 8.10 (0.05) 50 (0)
WPO 24.4 (1.4) 23.7 (2.1) 7.37 (0.10) 60.1 (4.7) 33.8 (1.3) 31.0 (1.8) 8.14 (0.05) 58.1 (3.4)

H
yb

ri
d DPO 37.9 (1.2) 40.3 (1.1) 7.14 (0.41) 50 (0) 44.2 (1.2) 48.6 (1.0) 8.16 (0.10) 50 (0)

WPO 42.0 (1.7) 46.2 (2.3) 7.38 (0.08) 56.4 (4.6) 45.8 (1.3) 50.0 (1.1) 8.18 (0.22) 54.8 (2.2)
+ Ultrafeedback 43.1 (1.1) 49.6 (1.2) 7.23 (0.19) 58.8 (4.5) 48.6 (1.3) 52.1 (1.2) 8.14 (0.10) 55.1 (2.4)

Table 1: Alpaca Eval 2.0 and MT-bench results. We report the average and standard deviation of the results from 5
runs of different random seeds. Scores that are underlined denote statistically significant gains (p < 0.05).

random seeds and report both the average results407

and their standard deviation.408

Training data. We perform RLHF in off-policy409

and hybrid settings. In the off-policy setting, we410

use the binarized Ultrafeedback dataset3(Cui et al.,411

2023), which compromises 63k preference pairs412

sampled from models other than our SFT model,413

such as GPT-4 and Llama-2 (Touvron et al., 2023).414

In the hybrid setting, we follow the approach in415

DNO (Rosset et al., 2024), using data generated416

from both the policy model and other models.417

Specifically, we sample 5 outputs from the SFT418

model based on prompts from Ultrafeedback and419

add another output generated by gpt-4-turbo. We420

employ top-p sampling with p = 0.95 and a temper-421

ature of 0.7. Preference annotations are produced422

using gpt-4-turbo with additive scoring prompt.423

For each prompt, we select outputs scoring 5 or424

6 as yw and then choose a random output with a425

score at least one point lower as yl. If such a pair426

cannot be found, the prompt is not used. This data427

construction step produces a smaller preference428

dataset, so we further employ the + Ultrafeedback429

setting, where we add the missing prompts back430

using the preference pairs from Ultrafeedback.431

Evaluation. We evaluate the models on Alpaca432

Eval 2 and MT-bench. Alpaca Eval 2 is an au-433

tomated metric that measures LLMs’ alignment434

with human preferences using 805 representative435

instructions. For each instruction, the evaluated436

model’s response and gpt-4-turbo’s response are437

compared head-to-head using an auto-evaluator.438

The win rate is the probability that the auto-439

evaluator prefers the evaluated model’s responses.440

3https://huggingface.co/datasets/
HuggingFaceH4/ultrafeedback_binarized

Alpaca Eval 2 also introduces a length-controlled 441

win rate (Dubois et al., 2024) to address the length 442

bias of gpt-4-turbo. We follow the generation 443

configurations in Tunstall et al. (2023) for Mistral 444

models and in Zheng et al. (2024) for Llama-3 445

models. 446

MT-bench is an LLM-based automated evalua- 447

tion metric comprising 80 challenging questions. 448

We report results using two scoring methods. In the 449

single answer grading approach, the auto-evaluator 450

(gpt-4-0613) assigns scores from 1 to 10 to re- 451

sponses, and we report the average scores. In 452

the pairwise comparison approach, the evaluator 453

(gpt-4-0613) compares two responses to decide 454

which is better or if it’s a tie (recorded as 0.5 in 455

win rate). The pairwise method can detect more 456

subtle differences between responses than single 457

answer grading. We use the official generation 458

configurations in MT-bench. 459

4.2 Main Results and Ablation 460

WPO consistently and significantly outperforms 461

DPO and its variants. The main results are shown 462

in Table 1. We include the results of different 463

preference optimization algorithms such as DPO, 464

ORPO (Hong et al., 2024), KTO (Ethayarajh et al., 465

2024), and SimPO (Meng et al., 2024) on the two 466

benchmarks. For ORPO, KTO, and SimPO, we 467

report the evaluation results of their official model 468

checkpoints on Mistral-base.4 We find that WPO 469

generally outperforms DPO in all settings and also 470

outperforms all its variants on Mistral-base in the 471

4We do not include their results on Llama-3-Instruct in the
off-policy setting as the official checkpoints are unavailable.
Reproducing these methods requires extensive hyperparameter
searches, which may not yield the optimal hyperparameter
values for a fair comparison.
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Method
Alpaca Eval 2.0 MT-bench

Len-control. Win Rate Win Rate
Win Rate vs GPT-4 vs DPO

WPO w/ sampled align. 24.4 23.7 60.1

WPO w/ greedy align. 23.0 21.4 57.9
WPO w/o align. 22.0 20.3 54.4
DPO 20.6 18.6 50

Table 2: Ablation of weight alignment methods on
Mistral-base in the off-policy setting. sampled align-
ment, the default weight alignment method, yields the
best results.

off-policy setting. Particularly, when trained with472

the Llama-3-Instruct model and the hybrid +Ul-473

trafeedback setting, WPO achieves a new state-of-474

the-art length-controlled win rate of 48.6% against475

GPT-4-turbo on Alpaca Eval 2. These results high-476

light the effectiveness of WPO. Additionally, while477

DPO underperforms compared to SimPO, it still478

demonstrates competitive results, providing a solid479

basis for WPO.480

Varied separation of benchmarks. On MT-bench,481

the average score does not effectively distinguish482

the performance of different models. Additionally,483

we observe variability in the average MT-bench484

score. Even when using GPT-4 to score the same485

outputs with a temperature of 0, the score can vary486

by up to 0.1 at different times. Given the clearer487

separation in our experiments and the greater align-488

ment with human evaluations, as shown in the origi-489

nal paper (Zheng et al., 2023), we consider pairwise490

win rate to be a more suitable metric for assessing491

different alignment methods. Therefore, we use it492

for MT-bench in the following part of the paper.493

Sampled weight alignment works the best. Ta-494

ble 2 shows the results of WPO with different495

weight alignment methods on Mistral-base in the496

off-policy setting. We observe that sampled align-497

ment outperforms other variations on both bench-498

marks, while greedy sampling outperforms w/o499

alignment. We also find that the ranking of perfor-500

mance matches the ranking of concentration levels501

in the weight distribution shown in Figure 2. This502

indicates that weight alignment enables a more503

effective simulation of on-policy RL, leading to504

improved performance.505

WPO also improves other loss functions for pref-506

erence optimization. It is important to note that,507

in addition to DPO, there are other loss functions508

for aligning LLMs. Since WPO works by weigh-509

ing preference data and is independent to the loss510

function being used, it can be easily integrated into511

Method
Alpaca Eval 2.0 MT-bench

Len-control. Win Rate Win Rate
Win Rate vs GPT-4 vs Baseline

IPO 25.0 21.2 50
SimPO 21.5 21.4 50
KTO 14.9 12.3 50

WPOIPO 29.4 25.7 54.1
WPOSIMPO 21.9 24.6 52.5
WPOKTO 21.1 20.3 60.0

Table 3: Results of WPO with different loss functions
for preference optimization on Mistral-base in the off-
policy setting, which show that incorporating WPO
leads to consistent improvements.

them. We investigate whether the integration of 512

WPO enhances the performance of other loss func- 513

tions. Existing losses can be categorized into those 514

using paired preference data and those utilizing un- 515

paired preference data. For losses using paired data, 516

we weigh each pair similarly to DPO. For losses 517

using unpaired data, we weigh each output y inde- 518

pendently with w(x, y) and normalize the weights 519

so that the total weights of favored outputs and dis- 520

favored outputs are both 1 within the batch. This 521

normalization ensures a balance between favored 522

and disfavored outputs in the loss. In this study, we 523

considered IPO (Azar et al., 2024) and SimPO for 524

alignment with paired data, and KTO for alignment 525

with unpaired data. The results on Mistral-base in 526

the off-policy setting, shown in Table 3, indicate 527

that integrating WPO leads to improved results for 528

all loss functions. This demonstrates that WPO 529

provides universal improvements across different 530

loss functions for preference optimization. 531

4.3 Comparison of Different RL Settings 532

Recent studies on RLHF have employed various 533

RL settings where preference data is generated in 534

an off-policy, on-policy, or hybrid manner. Exist- 535

ing work (Tang et al., 2024a; Xu et al., 2024) has 536

demonstrated that on-policy preference optimiza- 537

tion outperforms off-policy methods, while Rosset 538

et al. (2024) show that incorporating high-quality 539

off-policy outputs can yield superior performance, 540

as these outputs can introduce valuable information 541

that the current policy might not encounter on its 542

own. In this study, we compare model performance 543

trained with WPO across these RL settings. The 544

results are presented in Figure 3, showcasing the 545

length-controlled win rate on Alpaca Eval 2 and 546

the pairwise win rate compared to the off-policy 547

setting on MT-bench. 548
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Figure 3: Results of WPO in different RL settings. The
hybrid setting consistently yileds better results than
other RL settings.

Hybrid RL achieves the best results. Figure 3549

shows that for both Mistral-base and Llama-3-550

Instruct, the hybrid setting—utilizing both on-551

policy data and high-quality off-policy data from552

gpt-4-turbo—consistently delivers superior per-553

formance. This suggests that combining high-554

quality off-policy data and on-policy data can sig-555

nificantly enhance preference optimization, which556

is consistent to the results in Rosset et al. (2024).557

On-policy is not always better than off-policy.558

Our analysis reveals that the effectiveness of on-559

policy versus off-policy preference optimization560

is model-dependent (Munos et al., 2016; Voloshin561

et al., 2019). For the Mistral-base model, off-policy562

setting yields slightly better performance, while for563

Llama-3-Instruct, on-policy setting shows better564

performance. We attribute this variation to the qual-565

ity of the SFT model. In the case of Mistral-base,566

the sampled outputs are of lower quality, causing567

the preference optimization process to mimic sub-568

optimal outputs and leading to poorer results. This569

highlights the importance of the initial policy’s570

quality and suggests that models with higher initial571

performance might benefit more from on-policy572

optimization, while those with lower initial quality573

may not gain as much.574

The dispreferred data should be on-policy, the575

preferred data benefits less. While WPO simu-576

lates on-policy data by weighing both yw and yl in577

the preference data, these two outputs play differ-578

ent roles during optimization. The gradient of the579

WPO is given by:580

∇LWPO = −βw(x, yw)w(x, yl)σ (r̂ (x, yl)− r̂ (x, yw))581

[ ∇ log π (yw|x)︸ ︷︷ ︸
increase the probability of yw

− ∇ log π (yl|x)︸ ︷︷ ︸
reduce the probability of yl

].582

That is, WPO will make the policy model mimic yw583

while moving away from yl. Given their different584
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Figure 4: Results of variations of WPO in different RL
settings.

optimization directions, we investigate the impor- 585

tance of on-policy sampling for yw and yl in prefer- 586

ence optimization. To achieve this, we further study 587

two different variants of WPO, namely WPOW and 588

WPOL. These losses are formulated as follows: 589

LWPO = −E(x,yw,yl)∼D [w(x, yw)w(x, yl) log p(yw ≻ yl|x)] ,
LWPOW = −E(x,yw,yl)∼D [w(x, yw) log p(yw ≻ yl|x)] ,
LWPOL = −E(x,yw,yl)∼D [w(x, yl) log p(yw ≻ yl|x)] ,

590

where in WPOW, we only increase the weights of 591

pairs where yw is more closed to on-policy outputs. 592

For WPOL, we only increase the weights of pairs 593

where yl is closer to on-policy outputs. Results on 594

Mistral-base and Llama-3-Instruct are in Figure 4. 595

It shows that WPOL generally achieves similar re- 596

sults to WPO. Conversely, WPOW consistently un- 597

derperforms WPO and even underperforms DPO 598

in most settings. Therefore, making yl on-policy 599

explains most of the improvements of WPO, while 600

making yw on-policy is still useful but not as im- 601

portant. This finding suggests that using on-policy, 602

dispreferred data is important for preference opti- 603

mization, while using on-policy preferred data may 604

be beneficial but not as critical. 605

5 Conclusion 606

In this study, we tackled the distributional gap 607

problem inherent in off-policy preference optimiza- 608

tion. By introducing Weighted Preference Opti- 609

mization (WPO), we successfully simulated on- 610

policy preference optimization using off-policy 611

preference data, merging the benefits of both ap- 612

proaches. Our method not only addressed the dis- 613

tributional gap without incurring additional costs 614

but also enhanced the effectiveness of preference 615

optimization. Extensive experiments demonstrate 616

that WPO can produce better LLMs that are more 617

closely aligned with human preferences. 618
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Limitations619

The performance gap between off and on-policy620

preference optimization remains. Although621

WPO simulates on-policy RL with off-policy data,622

it does not fully bridge the performance gap be-623

tween off-policy and on-policy RL. As shown in the624

results, even with WPO, off-policy methods may625

still underperform compared to on-policy and hy-626

brid methods. Therefore, while we propose WPO627

as a solution, it does not entirely eliminate the per-628

formance disparity, and on-policy preference data629

remains important. Future work will be on how to630

further reduce this performance gap without incur-631

ring additional training costs.632

Comprehensiveness of preference dataset. The633

goal of our experiments is to compare WPO with634

other preference optimization algorithms, not to635

provide a comprehensively aligned LLM. In our636

experiments, we use Ultrafeedback as the prefer-637

ence data, which primarily focuses on helpfulness,638

truthfulness, and instruction following, and does639

not include safety aspects. Additionally, it does640

not consider preference optimization for multi-turn641

conversations. Future work should involve collect-642

ing more comprehensive preference datasets and643

integrating multiple aspects of preference optimiza-644

tion to train better-aligned LLMs.645
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Method ARC TruthfulQA WinoGrande GSM8k HellaSwag MMLU Average

Mistral-Base (7B)

SFT 58.19 43.03 77.51 38.89 82.30 59.78 59.95
Off-policy DPO 64.42 52.44 79.48 30.17 85.36 59.78 61.94
Off-policy WPO 64.08 51.07 78.14 32.60 85.17 59.51 61.76
Hybrid DPO 64.76 60.46 78.22 32.15 85.30 58.75 63.27
Hybrid WPO 65.70 57.62 79.08 30.71 85.15 59.82 63.01

Llama-3-Instruct (8B)

SFT 61.60 51.65 76.72 75.82 78.68 65.65 68.35
Off-policy DPO 68.00 61.07 77.43 74.68 82.26 66.31 71.63
Off-policy WPO 66.98 58.91 75.45 71.95 81.87 65.97 70.19
Hybrid DPO 65.53 56.10 78.93 75.13 81.12 65.72 70.42
Hybrid WPO 65.27 55.47 79.72 66.72 81.02 65.97 69.03

Table 4: Results on the OpenLLM leaderboard.
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Figure 5: Results of DPO and WPO when trained for more epochs.

A Additional Analysis873

Results on downstream tasks. We further evaluate the performance of SFT, DPO, and WPO models on874

the OpenLLM leaderboard (Beeching et al., 2023) to assess their capabilities on downstream tasks. For875

this evaluation, we use the lm-evaluation-harness5, the official code base for the OpenLLM leaderboard.876

Results are shown in Table 4. Generally, we find that preference optimization with DPO or WPO877

outperforms the SFT model, while Llama-3-Instruct based models outperform Mistral-base. However,878

we do not observe a correlation between performance on the OpenLLM leaderboard and performance879

on instruction-following benchmarks such as Alpaca Eval 2 and MT-bench. For example, although880

Llama-3-Instruct with DPO or WPO in the hybrid setting shows the best results on instruction-following881

benchmarks, it underperforms its off-policy counterparts on the OpenLLM leaderboard. Additionally, we882

find that preference optimization may not improve results on all downstream tasks. On MMLU, the results883

are similar to SFT, and on GSM8K, the results are even lower than SFT in all settings. Our findings are884

consistent with the alignment tax phenomenon (Askell et al., 2021), which indicates that better alignment885

may not improve and can sometimes even hurt performance on downstream tasks.886

Comparison between DPO and WPO on training dynamics. We investigate how the performance of887

DPO and WPO changes with different numbers of training epochs. Both DPO and WPO were trained888

using the SFT checkpoint of Mistral-base and the Ultrafeedback dataset for five epochs, with evaluation889

results recorded at the end of each epoch, as shown in Figure 5. In this study, we use the same set of890

hyperparameters as mentioned in Section 4.1, with DPO and WPO using the same set of hyperparameters.891

We observed that DPO’s performance declines sharply after two epochs, suggesting strong reward model892

overoptimization (Rafailov et al., 2024). In contrast, WPO maintains consistent performance over more893

5https://github.com/EleutherAI/lm-evaluation-harness

12

https://github.com/EleutherAI/lm-evaluation-harness


epochs, indicating better training stability. This suggests that simulating on-policy RL, as done by WPO, 894

may mitigate issues related to reward model overoptimization and increase the stability of preference 895

optimization. Furthermore, a comparison of results between DPO and WPO, particularly on Alpaca 896

Eval 2, shows that the peak performance of DPO across various epochs still falls below that of WPO. 897

This indicates that WPO not only provides more stable training dynamics but also finds a different and 898

better solution than DPO. This enhanced performance and stability highlight the advantages of WPO 899

in effectively leveraging the preference data and maintaining stable and robust preference optimization 900

throughout the training process. 901

B Link of Open Sourced Models in Experiments 902

The list of open-sourced LLMs and their Huggingface IDs are listed in Table 5.

Model Huggingface ID

Mistral-base SFT HuggingFaceH4/mistral-7b-sft-beta
Mistral-base ORPO kaist-ai/mistral-orpo-beta
Mistral-base KTO ContextualAI/zephyr_sft_kto
Mistral-base SimPO princeton-nlp/Mistral-7B-Base-SFT-SimPO
Llama-3-instruct SFT meta-llama/Meta-Llama-3-8B-Instruct

Table 5: List of open-source models in experiments.

903

C Additional Details 904

Scientific artifacts. We use various scientific artifacts throughout the paper, including base LLM models, 905

preference datasets, and evaluation tools/benchmarks. References to all used artifacts are provided, and 906

details such as their license, language, coverage, number of parameters, and any safety issues can be found 907

by following the respective references. Note that current LLMs and preference datasets may encompass a 908

wide range of data types and utilizes data from different domains and sources, so we do not list the details 909

in this paper and encourage readers to refer to the original sources for more information. In this paper, we 910

primarily use these artifacts for non-distributive and non-commercial purposes, which is in compliance 911

with their licenses. 912

Budget. We conduct all experiments using 8 × H100 GPUs. The experiments take approximately 1.5 913

hours for Mistral-base and around 4 hours for Llama-3-Instruct. 914

Use of AI assistants. We used ChatGPT solely for revising the language of the paper. Note that the 915

revision is exclusively for enhancing the clarity and readability of the text, and not for any other purposes. 916
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