CoProver: A Recommender System for Proof
Construction

Eric Yeh, Briland Hitaj, Sam Owre, Maena Quemener, and Natarajan Shankar

SRI International, Menlo Park, CA 94025, USA
{eric.yeh,briland.hitaj,sam.owre,maena.quemener,natarajan.shankar}@sri.com

Abstract. Interactive Theorem Provers (ITPs) are an indispensable
tool in the arsenal of formal methods experts as a platform for construc-
tion and (formal) verification of proofs. The complexity of the proofs in
conjunction with the level of expertise typically required for the process
to succeed can often hinder the adoption of ITPs. A recent strain of
work has investigated methods to incorporate machine learning models
trained on ITP user activity traces as a viable path towards full automa-
tion. While a valuable line of investigation, many problems still require
human supervision to be completed fully, thus applying learning methods
to assist the user with useful recommendations can prove more fruitful.
Following the vein of user assistance, we introduce CoProver, a proof rec-
ommender system based on transformers, capable of learning from past
actions during proof construction, all while exploring knowledge stored in
the ITP concerning previous proofs. CoProver employs a neurally learnt
sequence-based encoding of sequents, capturing long distance relation-
ships between terms and hidden cues therein. We couple CoProver with
the Prototype Verification System (PVS) and evaluate its performance
on two key areas, namely: (1) Next Proof Action Recommendation, and
(2) Relevant Lemma Retrieval given a library of theories. We evaluate
CoProver on a series of well-established metrics originating from the rec-
ommender system and information retrieval communities, respectively.
We show that CoProver successfully outperforms prior state of the art
applied to recommendation in the domain. We conclude by discussing
future directions viable for CoProver (and similar approaches) such as
argument prediction, proof summarization, and more.

1 Introduction

Interactive theorem proving (ITP) is a well-entrenched technology for formalizing
proofs in mathematics, computing, and several other domains. While ITP tools
provide powerful automation and customization, the task of manually guiding
the theorem prover toward QED is still an onerous one. For inexperienced users,
this challenge translates to crafting mathematically elegant formalizations, iden-
tifying suitable proof commands, and diagnosing the root cause of failed proof
attempts. Whereas for the expert users, the challenge consists in navigating a
large body of formalized content to ferret out the useful definitions and the right

2 Yeh et al.

lemmas. Both novice and expert users can benefit from recommendations in the
form of proof commands and lemma retrieval that can guide proof construction.

The goal of the present project is to scale up proof technology by introduc-
ing CoProver as a proof recommender system that discerns suitable cues from
the libraries, the proof context, and the proof goal to offer recommendations
for ITP users [44]. Building on the proof technology and proof corpora of the
Prototype Verification System (PVS) a state-of-the-art proof assistant [37], we
focus on recommendations for two key tasks in ITP: Suggesting PVS commands
and lemmas. The first is to recommend the likely command an expert user would
take given the current proof state. As there are hundreds of possible commands,
recommending steps an expert may take would be beneficial, particularly for
novices. The second is to identify lemmas for inclusion from a library of lem-
mas that may help with forward progress on a proof. Currently, only lemmas
from user-imported theories are considered and selection of a lemma relies on
user familiarity with candidate theories and their lemmas. For the problems
PVS is commonly employed on, there are usually several hundred theories with
thousands of possible lemmas combined to consider. At this scale, even expert
users with decades of experience may not be aware of all possible lemmas (or
even their names) that may be relevant for their proof. A mechanism that can
automatically identify relevant lemmas at scale would be desirable.

To develop these capabilities, we leverage the expert proof traces for NASA’s
PVS Library E| (PVSLib), a large collection of highly polished formal develop-
ments centered on safety-critical applications, and the PVS Prelude, a collection
of theories built into PVS. We aim to capture the expertise and intuition of
the developers by training systems to emulate user decisions on these completed
proofs. Key to our approach is the use of recent machine learning techniques
that can capture sequential information across a greater window than previously
possible. We show how these methods using a simple sequence-based encoding
of formulas better capture relationships between proof states with commands
and libraries than prior sequence encoding techniques such as bag-of-words or
graph-based representations [47].

We start with an overview in Section [2] of the CoProver system, describing
the core recommendation tasks. Section [3|contains implementation details of how
sequents and states are featurized into a common representation used to provide
inputs for the command prediction and lemma retrieval capabilities. Sections []
and [p] provide specific details of how these are implemented, along with exper-
iments detailing their effectiveness described in Section [6] Section [7] examines
and contrasts against prior work, and Section [8] concludes with a discussion of
future directions.

2 CoProver Overview

Figure [] illustrates the CoProver system. Featurization converts the sequent
and previous commands into a token sequence for the transformer model. This

! mttps://shemesh.larc.nasa.gov/fm/pvs/PVS-library/

https://shemesh.larc.nasa.gov/fm/pvs/PVS-library/

CoProver 3

[-1] exists x : ... Command
[2]x>x-5 . Prediction
I— Featurization

{1} forall x: exists y: ...

*)[Lemma Retrieval]
Sequent

Fig. 1: The CoProver system employs a common sequent featurization, which is
used to recommend commands and retrieve relevant lemmas.

is provided to the Command Prediction and Lemma Retrieval modules. Com-
mand Prediction identifies the next likely command an expert user would take in
successful proofs, given similar states. When a lemma is to be imported, Lemma
Retrieval examines the state and suggests the most relevant ones from a given
library, based off a history of human-selected lemmas that have progressed their
proofs.

Both of these use RoOBERTa [30], a transformers-based neural language model
|46] capable of learning long-range sequences, to encode the proof state sequence
tokens. Unlike n-grams or other Markov window methods, transformers employ
a self-attention mechanism that allows features to derived from a significantly
wider window of tokens. Tokens are represented as real-valued vectors tailored as
inputs for a variety of tasks, and have been used to give state-of-the-art perfor-
mance across multiple tasks such as large language modeling, text classification,
and visual understanding. For command prediction, the RoBERTa-based encod-
ing of the proof state is used as input to a multinomial classifier for predicting
the next command an expert user would take. Backpropagated error from the
classifier is used to adjust, or to fine-tune these representations make them more
suitable for the classification task.

Lemma retrieval aims to make forward progress in a proof by identifying
relevant lemmas from a library of theories for inclusion. A major challenge is
the fact these lemmas may exist in theories that the user is not aware of, nor
remember. This is similar to the core problem of information retrieval (IR) |33],
where the goal is to retrieve documents from a collection most relevant to a query.
IR models rely on heuristics motivated by natural language, such as overlap and
term rarity to assess relevance. These assumptions may not hold in theorem-
proving, so CoProver is trained on user-made lemma import decisions to fine-
tune the proof state representations to learn combinations of sequent and lemma
symbols useful for identifying lemma relevance. This focus on human-driven
selection also differs from other work in premise selection, where the primary
aim is to identify lemmas that allow a hammer to automatically complete the
proof.

3 Data Generation

For both command prediction and lemma retrieval, we used proof sequences
from the PVSLib library, a large set of formal developments containing theorems

4 Yeh et al.

FORALL (F: nat, high:nat, low:nat):

(bool_-> (reals >= high low) (equalities = .. |:> FORALL NAT NAT NAT bool_-> reals_> NAT NAT...

PVS Featurized

Fig. 2: Featurization converts formulas in PVS (left) into a more machine learning
friendly token stream (right).

proofs for a variety of mathematical and engineering areas. In total PVSLib
contains 184,335 proof steps. We note that these are completed and polished
proofs so that backtracked sequences of steps are pared and only the successful
sequence of proof commands and imported lemmas are retained.

To make the logical formulas amenable to machine learning, we first tokenize
them and then use Byte Pair Encoding (BPE) |11L[43] from the Huggingface Li-
brary [49] to train a token vocabulary customized for PVS. BPE encodes words
as a sequences of byte pairs instead of singular tokens, reducing the size of the vo-
cabulary: Rare or unknown words can be encoded constituent byte pairs, while
common words are be encoded in their entirety to improve efficiency. Trans-
former models have fixed width inputs, so a more parsimonious encoding that
strips away boilerplate while retaining the original semantics will allow longer
formulas to work without truncating them. For this work, we used a window
of 1,000 tokens, which was sufficient to capture the majority of the sequents
and lemmas in our experiments. Given this, all symbol names for functions and
operators are copied over as-is. Constant and variable names are replaced by
a placeholder, to generalize the model, while integer values are retained. Syn-
tactic constructs such as parentheses are excluded as the ordering of the above
can roughly capture the syntactic arrangement of the original form. Figure [2]
provides an example: Symbols such as the FORALL quantifier and implication
operator are preserved, while the variables F, HIGH, and LOW are replaced with
their type, NAT representing the natural numbers.

Following common practice in transformer-based encodings, we use special
tokens <<ANT>, <CONS>, and <HID> to delimit the antecedent, consequent,
and hidden formulas (formulas reserved from being operated on by PVS com-
mands). The lefthand side of Figure [3| gives an example of a featurized sequent
with no antecedents and one consequent.

Our current setup makes the weak Markov assumption; only the current state
is sufficient for making our predictions. At least anecdotally knowing which com-
mands were performed can inform what steps are taken next, so incorporating
previous commands can capture some non-Markovian information. This is done
by prefixing the state representation with the previous three commands issued
by the user.

For the lemma retrieval experiments, we modified the above procedure to
allow constant and variables to be replaced with their type name. This was
done to allow matching by type, as arguments for imported lemmas also need
to match by type. Higher-order and custom types are currently represented by

CoProver 5

placeholders. Accounting for matches on higher-order types and on advanced
type operations such as predicate-based approaches is reserved for future work.

As with other transformers-based works, the model is first trained using a
series of self-supervised tasks, where supervised targets are generated from un-
abeled data. Masked language modeling is one such task, where random tokens
are masked and the model is trained to predict its identity [8]. By conducting
this type of self-supervised training on a large corpus, the resulting representa-
tions can capture distributional information about the domain that makes train-
ing downstream components easier. For our experiments, the language model
was trained for 1,100,000 stepsEl over our dataset, using the default set of self-
supervised language tasks used by RoBERTa.

We note that some works start from a model trained on natural language,
in order to capture correspondences based on human naming. In our experience
this applies for tasks where wider distributional knowledge of natural language is
required to perform the main task. At least for PVS and our tasks, the structure
of the formulas tends to be more important. Examination of the effect of human
language understanding is also reserved for future investigation.

4 Command Prediction

I—» skolem

T
S D G G
an G D G

-
]
—

FORALL (F: nat, high:nat, low:nat):
(bool_-> (reals_>= high low)
(equalities_= ..

@

CMD1 CMD2 CMD3 <ANT><CONS>FORALL NAT |:> [CMD1 J [
NAT NAT bool_-> ... <HID>...<S>

) [owon

CMD2

Fig.3: The process for featurizing a sequent and then using repeated self-
attention to create representations capturing information for predicting the next
command.

Command prediction’s task is to predict the command an expert would take
given the current step in the proof. We use the T5 sequence to sequence training
framework implemented in Huggingface [49|, with the RoOBERTa encoding of
the proof state used as input to predict the user selected command (Figure The
sequent and command history are tokenized and converted into classification-
suitable vector representations via repeated applications of self-attention. These
are then integrated by the classifier to emit predicted command. The top-N most
confident hypotheses can be emitted, allowing for a window of predictions to be

2 A step is a single forward-predict pass over a training instance, and multiple steps
can be performed over the same data during the training phase.

6 Yeh et al.

generated. We note that as with other I'TPs, PVS allows users to program their
own commands. For this work, we focus on the closed set of existing commands,
leaving the program synthesis aspect for future work.

5 Lemma Retrieval

forall int ..+..

Ed

o

= :

m

3

Sequent 5

BEGIN elt: U players_set: TYPE+ =
PR o

= non_empty_finite_set([U] .. @
=4 :

B

Lemma

Fig. 4: Siamese architecture used to determine whether a lemma is relevant to a
given sequent.

Following the information retrieval approach, the proof state acts as a query
against a library of available lemmas. We employ user-imported lemmas in PVS-
lib proof traces to train a neural information retrieval model , which learns
the best combination of features between sequents and lemmas to assess lemma
relevance. Figure [4] our lemma retrieval approach, which uses a Siamese Net-
work ﬂ§| implemented in the SBERT framework to score the relevance of a
lemma to the sequent. The lemma and sequent token sequences are encoded us-
ing RoOBERTa encoder to construct token-level representations that are averaged
to give a single characterizing vector. The relevance of the lemma and sequent
vectors is scored using cosine similarity, with 0 indicating no relevance and 1 in-
dicating maximal relevance. The representation is tuned for the similarity task
with supervised training over known relevant and irrelevant pairs. This approach
scales well as the bulk of the representations can be pre-computed. In addition,
this has been used to learn ranking functions for tasks with a large amount of
data, such as using clickthrough data .

6 Experiments and Results

6.1 Command Prediction

From the full PVSLib library of proofs, we subsampled 20,000 proof steps to
create a tractable command prediction training set El From these we randomly

3 Initial experiments with larger samples showed no difference in performance with a
system trained with the smaller set

CoProver 7

sampled 90% of these for the training data, and used the remaining 10% as a
held out test-set. We trained for 10 epochs on four NVIDIA GeForce RTX 3090
cards using distributed data parallel training (DDP) [28] implemented using Py-
Torch Lightning EL selecting the model with the best validation error. We follow
prior literature on tactic prediction [13] and used classifiers trained over term-
frequency inverse document frequency (TF-IDF) [23,32] weighted feature counts
of the CoProver featurized tokenization observed in the sequent for our baseline.
TF-IDF incorporates frequency of occurrence of a term and its distinguishabil-
ity against the backdrop of the entire collection. We experimented with multiple
classifiers to strengthen this baseline: Linear support vector classifier (Linear
SVC), support vector machines using a radial basis kernel (RBF) and one using
a polynomial kernel (Poly), and a k-nearest neighbor classifier (k-NN). We used
the Scikit—Learrﬂ implementations with default parameters. For the k-nearest
neighbor classifier, we used a distance weighted variant with n = 5 following
prior literature [13].

Table 1: Command prediction test accuracies by method and combinations of
sequent and command history information.

Method ‘Acc. cmdhist + sequent‘Acc., sequent only‘Acc., cmdhist only

Linear SVC 0.30+ 1.1 x 1072 0.20+9.1 x 1073 0.30 +1.1 x 10—2
SVM (RBF) 0.294+1.0 x 1072 0.224+9.5 x 1073 0.30+1.0 x 1072
SVM (Poly) 0.20+8.9x 1073 0.20+89x%x 107 | 0.22+41.0x 1072
k-NN 0.28 +1.0 x 1072 0.19 +8.6 x 1073 0.27+9.6 x 1073
CoProver 048 +7.3x1073 0.28 +£9.8 x 1073 0.21+9.3 x 1073

Table [T] shows the test command predication accuracy for each of the meth-
ods on different combinations of the sequent and the command history. We find
that CoProver predictions are more significantly more accurate when the full se-
quent and command histories are used. Most of baseline performance is from the
command history, whereas CoProver is able to integrate the sequent and com-
mand history together to score significantly better than the next-best baseline,
k-NN. Variances for each method were estimated using bootstrap resampling [9]
and significance was determined using a two-sample t-test with a = 0.001.

To assess the significance of structural information, we tested with TF-
IDF sequent featurizations of increasing maximum n-gram degree, where a n-
gram featurization consists of all symbol sequences of length n. Table [2] shows
the accuracies for each classification method by the maximum n-gram degree.
With the exception of the SVM using the polynomial kernel (SVM Poly), every
method benefits from increasing structural information. We suspect that model’s
poorer performance may be due to the greater number of hyperparameters given

4 https://www.pytorchlightning.ai/
% https://scikit-learn.org/

8 Yeh et al.

Table 2: Command prediction accuracy for baseline methods using features that
incorporate more structural information (left to right).

Method ‘nzl‘nzZ‘nzS

Linear SVC[0.30[0.37/0.30
SVM (RBF)|0.290.32|0.33
SVM (Poly)|0.20{0.18|0.19

k-NN [0.28/0.30|0.32

the polynomial kernel, which greatly increases the risk of overfitting on sparse
data [16].

Command Prediction, Accuracy at N

—— cmdhist

sequent
0.7 —— cmdhistory+sequent
baseline

Accuracy

2 4 Top_N 6 8 10
Fig.5: Command prediction test accuracies by method, with and without com-
mand history information.

Recommender systems often present the top N-most relevant predictions,
as users can usually scan a set of candidates. To assess performance in this
regime, we score the top-IV test set accuracy, where matches are made if the
correct prediction is within the top N predictions. Figure [5| shows CoProver
accuracy at different sizes of N using just the command history (cmdhist),
sequent (sequent) and both (cmdhist+sequent) for N ranging from 1 to 10.
As baseline we use the top-N most frequent commands in the training set as
the candidate window. We find combining the sequent and command history
information gives consistently higher accuracy than using either alone, while all
methods outperform the baseline.

6.2 Lemma Retrieval

For lemma retrieval, we examined PVSLib traces where users imported lemmas
using the lemma command. While other commands also add lemmas, we focus

CoProver 9

on the explicit import action for this work. From these 20,221 imports, 12,132
were randomly selected for training, with 8, 089 for testing. These reference both
PVSLib and PVS Prelude, giving 9,468 candidate lemmas.

This model is trained on lemma commands in the training set of proof se-
quences in the PVSLib. For each lemma invocation, we record the sequent at that
point in the proof and the name of the referenced lemma. PVSLib has 20, 221
such pairs in its proof traces, consisting of the sequent state when the lemma
command was entered by the user and the name of the lemma. We randomly
split them into 12,132 train and 8,089 test pairs. This is against a combined
library of PVS and PVSLib theories, with a total of 747 theories and 9,468
available lemmas. For training the Siamese network, observed sequents and lem-
mas in the training invocations have a score of 1. An equal number of negative
sequent and lemma pairs were sampled, with their score set to 0, as a randomly
selected lemma is very unlikely to be relevant.

We evaluated the resulting network on the test pairs and measured perfor-
mance using mean reciprocal rank (MRR), an IR metric that assesses relevance-
ranking ability [33]. MRR is computed from the rank position of the ground
truth lemma in the relevance-ordered scores given the sequent (Formula, with
higher values indicating better ranking ability.

1L 1
MRR=—S = 1

For a given test pair consisting of a sequent s, selected lemma [; and library of
lemmas L with ly; € L, we score fre(s,l), the relevance of lemma ! € L to the
sequent. We derive a rank ordering over all lemmas L, where r; is the rank of
the ground truth lemma for the i*" lemma pair.

Method MRR

Baseline |0.0015
Count [0.0030
TF-IDF | 0.043
CoProver| 0.51

We find that the CoProver approach to outperform the other methods in-
cluding representation used by previous work [5,{12]. A MRR of 0.51 corresponds
to an average mean rank of 1.98, which corresponds to the relevant lemma ap-
pearing around position 2 in a score-based rank ordering of all lemmas.

7 Related Work

In the last decade, there has been a significant amount of activity in applying
machine learning to automated deduction, and can be classified in terms of the
predictive goal of machine learning [38]:

10 Yeh et al.

1. Learning search heuristics (E-prover [41], SAT/SMT solvers [4]): The sys-
tems ENIGMA [20], MaLeCoP [|45] and FEMaLeCoP [24] augment a tableau-
based prover LeanCoP [36] with a naive Bayes classifier for clause selection.
Graph neural nets have been used to predict the clauses that are in the
unsatisfiable core set of clauses from a clause set [42] and to guide SMT
solvers [2].

2. Premise selection from a library of facts (DeepMath [19], CogHammer, HOLy-
Hammer, HOList [3], Thor [21]): Several proof assistants invoke hammers
(theorem provers and SAT/SMT solvers) on each subgoal together with a
set of background lemmas (the premises). These hammers can fail if there
are too many premises. Machine learning has been used to identify the most
promising premises to pick from the background library [26]. As with tac-
tic selection below, a range of learning techniques have been employed for
premise selection, including sequence, tree, and graph representations [47].

3. Step or tactic selection (GPT-f, Holophrasm [48], CoqGym [51], HOL4RL [50],
HOList [31], GamePad |17], Tactic-Toe |13|, proof synthesis [10,22,27]): In-
teractive proof assistants build proof trees by applying tactics to goals to
generate zero or more subgoals. The SEPIA system [15] predicts tactics for
the Coq proof assistant based purely on analyzing proofs. GPT-f uses the
GPT-3 transformer model to train on Goal/Proof pairs from the Metamath
corpus (augmented with synthesized proofs) to predict the proof given the
goal. This is used to construct a proof tree by applying the proof steps sug-
gested by the model to the open subgoals in the tree. The system was able
to find shorter proofs for 23 theorems in the Metamath corpus. CoqGym [51]
uses a much larger training corpus spanning 71,000 proofs from various Coq
libraries. TacticToe [14] is trained on proofs from HOL4 libraries and com-
bines tactic prediction using k-nearest neighbors with A* search, and in
some cases yields better (more perspicuous and maintainable) proofs than
the alternatives using Hammers. IsarStep [29] uses a transformer encoding
to identify intermediate formulas in a declarative Isar proof. MLAPG [25]
extracts useful statistical patterns from higher-order logic proofs using un-
supervised learning techniques like K-Means clustering.

Prior work in step selection focused on the ability of the system to fully au-
tomate the proof, with performance was measured in number of proofs that can
be automatically completed. CoProver’s focus is on the ability of the system to
capture human-selected proof steps. Prior work in this area featurized sequents
as histograms of tokens. As we have shown, structural information matters, and
using neural language modeling technology captures this over wider portions of
the formulas. Premise selection has been a topic of investigation, albeit focused
on selection of useful premises for application of hammers and evaluating based
on automatic completion [1,/34,47]. In contrast, we focus on a broader use case,
retrieving useful recommendations that can progress the proof via additional
user interactions as well as application of hammers. Treating lemma retrieval
as an information retrieval problem has been done in prior work [5,[13], which
used term-weighted histograms of the sequent (query) and lemma (document)

CoProver 11

for comparison. While this “bag-of-words” approach removes sequentiality and
thus structural information, vocabulary overlap between query and candidate
document is a good approximator for relevance. However, bag-of-words model-
ing and the TF-IDF weighting scheme are assumptions targeting how relevance
appears for natural language queries and documents. Logical formula observed
in lemmas and sequents may not exhibit the same behavior, particularly for de-
termining if a lemma is relevant to moving proof progress in a sequent. Indeed,
neural information retrieval has focused on using supervised queries and docu-
ment pairs to learn relevance functions that may not be captured by assumptions
taken in standard IR modeling. Here, the Magnushammer approach is similar to
ours [34], leveraging a Transformer-based architecture to encode the string rep-
resentation of the proof-state and the lemma. However, we include variable type
information into the encodings and conduct an evaluation focusing on retrieval
quality.

8 Conclusions

In this work, we have demonstrated how a simple featurization of proof state can
be used to perform two recommendation tasks, predicting next commands and
retrieving relevant lemmas. For command prediction, CoProver’s approach has
been shown to outperform prior methods, giving significantly higher accuracies.
In the context of recommendation systems, showing the top 3 — 5 commands is
a reasonable amount, with these windows capturing 50% — 70% of the original
prediction correctly on the validation set. As with systems trained on user inter-
action traces, there are often cases where the system can learn a solution that
the user did not consider. As one internal user commented, the application of
an automated hammer (the grind command) in a convergence proof was unex-
pected, but lead to completion of the proof. Similarly, using a neural learning
approach with CoProver’s featurization can give significantly better performance
on lemma retrieval, in comparison with retrieval using IR-derived baselines.

In spite of these results, we note that the neural learning mechanism are not
necessarily learning deep reasoning structures, and may more likely be learning
complex structural cues. Indeed, an analysis of large language models found
them to be impressive memorization machines that are incapable of performing
arithmetic |7]. A cursory examination of the attention heads in the command
prediction task revealed the model’s attention weightings did not consistently
align with experienced users’ intuitions about what should govern the direction
of the proof.

Future directions of proof command recommendation include identification
of arguments used for these commands. These primarily consist of the formula
to use, but in some cases more complex arguments are needed. Of particular
interest is pairing this capability with explanation mechanisms. Perhaps the
simplest explanation capability is to run the top-N commands in the background
and displaying the results provides a look-ahead capability that allows users to

12 Yeh et al.

see the envelope of outcomes. When paired with heuristics that measure proof
completion, this may be beneficial for developing an intuitive understanding.

To the best of our knowledge, we are the first work to treat lemma retrieval as
an information retrieval problem. Previous work focused on if a selected lemma
can progress a proof towards completion in an automated solver. For the type of
problems addressed by interactive theorem provers, automatic completion may
not be feasible in all cases. Importing a lemma to progress the proof becomes
useful, similar to how retrieving the right document can help a querying user
perform a task. To that end, we have demonstrated how a neurally trained
architecture can determine which lemma an expert user would have selected.
This approach can provide a better relevance ranking for lemmas, as opposed
to the representation and scoring methods discussed in previous work. We note
that setup only considers lemmas selected by the user as relevant for a given
sequent. This disregards the possibility that another lemma may be just as useful
for the proof as well. This is a well known issue in natural language information
retrieval corpora, and thus measures like MRR are used more to compare system
performance as opposed to acting as a standalone performance measure.

Possible future work in this area can focus on analyzing relevant structural
elements that trigger a match between a sequent and a lemma. While the final
comparison is performed using a cosine similarity computation, the nature of
the highest scoring feature matches can be hard to discern. In particular, it
is possible that the formula for the lemma and sequent may not have much
apparent overlap, but relevant token sequences may map to the same feature.

For future work, we are examining the application of CoProver’s transformer
based sequent representation towards tasks such as nominating witnesses, proof
repair, and developing a measure for proof progress. The code and the data used
for this work are open-sourced and will be available at https://github.com/
SRI-CSL/coproof.

Acknowledgements This material is based upon work supported by the De-
fense Advanced Research Projects Agency (DARPA) under Contract

No. HR00112290064 and by the National Institute of Aeronautics. Any opin-
ions, findings, and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of the United
States Government or DARPA.

References

1. Alama, J., Kiihlwein, D., Tsivtsivadze, E., Urban, J., Heskes, T.: Premise selection
for mathematics by corpus analysis and kernel methods. CoRR abs/1108.3446
(2011), http://arxiv.org/abs/1108.3446

2. Balunovic, M., Bielik, P., Vechev, M.T.: Learning to solve SMT formulas. In:
NeurIPS. pp. 10338-10349 (2018)

3. Bansal, K., Loos, S., Rabe, M., Szegedy, C., Wilcox, S.: Holist: An environment
for machine learning of higher order logic theorem proving. In: International Con-
ference on Machine Learning. pp. 454-463. PMLR (2019)

https://github.com/SRI-CSL/coproof
https://github.com/SRI-CSL/coproof
http://arxiv.org/abs/1108.3446

10.

11.

12.

13.

14.

15.

16.

17.

18.

CoProver 13

Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability.
IOS Press (2009)

Blanchette, J.C., Greenaway, D., Kaliszyk, C., Kiihlwein, D., Urban, J.: A
learning-based fact selector for Isabelle/HOL. J. Autom. Reason. 57(3), 219-244
(2016). https://doi.org/10.1007/s10817-016-9362-8, https://doi.org/10.1007/
s10817-016-9362-8

Bromley, J., Guyon, 1., LeCun, Y., Sickinger, E., Shah, R.: Signature verifica-
tion using a "siamese" time delay neural network. Advances in neural information
processing systems 6 (1993)

Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A.,
Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D.M., Wu, J., Win-
ter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark,
J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., Amodei, D.: Language
models are few-shot learners. CoRR abs/2005.14165 (2020), https://arxiv.
org/abs/2005.14165

Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: Pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers).
pp- 4171-4186. Association for Computational Linguistics, Minneapolis, Minnesota
(Jun 2019). https://doi.org/10.18653/v1/N19-1423| https://aclanthology.org/
N19-1423

Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. No. 57 in Mono-
graphs on Statistics and Applied Probability, Chapman & Hall/CRC, Boca Raton,
Florida, USA (1993)

First, E., Brun, Y., Guha, A.: Tactok: semantics-aware proof synthesis. Proceedings
of the ACM on Programming Languages 4(OOPSLA), 1-31 (2020)

Gage, P.: A new algorithm for data compression. C Users J. 12(2), 23-38 (feb
1994)

Gauthier, T., Kaliszyk, C., Urban, J.: Learning to reason with hol4 tactics. arXiv
preprint arXiv:1804.00595 (2018)

Gauthier, T., Kaliszyk, C., Urban, J., Kumar, R., Norrish, M.: Learning to prove
with tactics. CoORR abs/1804.00596 (2018), http://arxiv.org/abs/1804.00596
Gauthier, T., Kaliszyk, C., Urban, J., Kumar, R., Norrish, M.: Tactictoe: Learning
to prove with tactics. Journal of Automated Reasoning 65(2), 257-286 (2021)
Gransden, T., Walkinshaw, N.; Raman, R.: Sepia: search for proofs using inferred
automata. In: International Conference on Automated Deduction. pp. 246-255.
Springer (2015)

Hsu, C.W., Chang, C.C., Lin, C.J.: A practical guide to support vector classifi-
cation. Tech. rep., Department of Computer Science, National Taiwan University
(2003), http://www.csie.ntu.edu.tw/“cjlin/papers.html

Huang, D., Dhariwal, P., Song, D., Sutskever, I.: Gamepad: A learning environment
for theorem proving. arXiv preprint arXiv:1806.00608 (2018)

Huang, P.S., He, X., Gao, J., Deng, L., Acero, A., Heck, L.: Learning deep
structured semantic models for web search using clickthrough data. In: Pro-
ceedings of the 22nd ACM International Conference on Information and Knowl-
edge Management. p. 2333-2338. CIKM ’13, Association for Computing Ma-
chinery, New York, NY, USA (2013). https://doi.org/10.1145/2505515.2505665,
https://doi.org/10.1145/2505515.2505665

https://doi.org/10.1007/s10817-016-9362-8
https://doi.org/10.1007/s10817-016-9362-8
https://doi.org/10.1007/s10817-016-9362-8
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
http://arxiv.org/abs/1804.00596
http://www.csie.ntu.edu.tw/~cjlin/papers.html
https://doi.org/10.1145/2505515.2505665
https://doi.org/10.1145/2505515.2505665

14

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Yeh et al.

Irving, G., Szegedy, C., Alemi, A.A., Eén, N., Chollet, F., Urban, J.: Deepmath-
deep sequence models for premise selection. Advances in Neural Information Pro-
cessing Systems 29, 2235-2243 (2016)

Jakubuv, J., Urban, J.: Enigma: efficient learning-based inference guiding machine.
In: International Conference on Intelligent Computer Mathematics. pp. 292-302.
Springer (2017)

Jiang, A.Q., Li, W., Tworkowski, S., Czechowski, K., Odrzygozdz, T., Mitos, P.,
Wu, Y., Jamnik, M.: Thor: Wielding hammers to integrate language models and
automated theorem provers (2022). https://doi.org/10.48550/ ARXIV.2205.10893,
https://arxiv.org/abs/2205.10893

Jiang, A.Q., Welleck, S., Zhou, J.P., Li, W., Liu, J., Jamnik, M., Lacroix, T.,
Wu, Y., Lample, G.: Draft, sketch, and prove: Guiding formal theorem provers
with informal proofs (2022). |https://doi.org/10.48550/ ARXIV.2210.12283, https:
//arxiv.org/abs/2210.12283

Jones, K.S.: A statistical interpretation of term specificity and its application in
retrieval. Journal of Documentation 28, 11-21 (1972)

Kaliszyk, C., Urban, J.: Femalecop: Fairly efficient machine learning connection
prover. In: Logic for Programming, Artificial Intelligence, and Reasoning. pp. 88—
96. Springer (2015)

Komendantskaya, E., Heras, J., Grov, G.: Machine learning in proof general: In-
terfacing interfaces. arXiv preprint arXiv:1212.3618 (2012)

Kiihlwein, D., Blanchette, J.C., Kaliszyk, C., Urban, J.: Mash: machine learning
for sledgehammer. In: International Conference on Interactive Theorem Proving.
pp. 35-50. Springer (2013)

Lample, G., Lachaux, M.A., Lavril, T., Martinet, X., Hayat, A., Ebner, G.,
Rodriguez, A., Lacroix, T.: Hypertree proof search for neural theorem proving
(2022). |https://doi.org/10.48550/ARXIV.2205.11491, https://arxiv.org/abs/
2205.11491

Li, S., Zhao, Y., Varma, R., Salpekar, O., Noordhuis, P., Li, T., Paszke, A.,
Smith, J., Vaughan, B., Damania, P., Chintala, S.: PyTorch Distributed: Expe-
riences on accelerating data parallel training. CoRR abs/2006.15704 (2020),
https://arxiv.org/abs/2006.15704

Li, W., Yu, L., Wu, Y., Paulson, L.C.: Isarstep: a benchmark for high-level math-
ematical reasoning. arXiv preprint arXiv:2006.09265 (2020)

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis,
M., Zettlemoyer, L., Stoyanov, V.: RoBERTa: A robustly optimized BERT pre-
training approach (2019). https://doi.org/10.48550/ARXIV.1907.11692, https:
//arxiv.org/abs/1907.11692

Loos, S., Irving, G., Szegedy, C., Kaliszyk, C.: Deep network guided proof search.
arXiv preprint arXiv:1701.06972 (2017)

Luhn, H.P.: A statistical approach to mechanized encoding and searching of literary
information. IBM Journal of Research and Development 1(4), 309-317 (1957).
https://doi.org/10.1147/rd.14.0309

Manning, C.D., Raghavan, P., Schiitze, H.: Introduction to Information Retrieval.
Cambridge University Press, Cambridge, UK (2008), http://nlp.stanford.edu/
IR-book/information-retrieval-book.html

Mikuta, M., Antoniak, S., Tworkowski, S., Jiang, A.Q., Zhou, J.P., Szegedy, C.,
Lukasz Kucinski, Mitos, P., Wu, Y.: Magnushammer: A transformer-based ap-
proach to premise selection (2023)

Mitra, B., Craswell, N.: (2018)

https://doi.org/10.48550/ARXIV.2205.10893
https://arxiv.org/abs/2205.10893
https://doi.org/10.48550/ARXIV.2210.12283
https://arxiv.org/abs/2210.12283
https://arxiv.org/abs/2210.12283
https://doi.org/10.48550/ARXIV.2205.11491
https://arxiv.org/abs/2205.11491
https://arxiv.org/abs/2205.11491
https://arxiv.org/abs/2006.15704
https://doi.org/10.48550/ARXIV.1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://doi.org/10.1147/rd.14.0309
http://nlp.stanford.edu/IR-book/information-retrieval-book.html
http://nlp.stanford.edu/IR-book/information-retrieval-book.html

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

CoProver 15

Otten, J., Bibel, W.: leancop: lean connection-based theorem proving. Journal of
Symbolic Computation 36(1-2), 139-161 (2003)

Owre, S., Rushby, J.M., Shankar, N.: PVS: A prototype verification system. In:
International Conference on Automated Deduction. pp. 748-752. Springer (1992)
Rabe, M.N., Szegedy, C.: Towards the automatic mathematician. In: International
Conference on Automated Deduction. pp. 25-37. Springer, Cham (2021)

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li,
W., Liu, P.J.: Exploring the limits of transfer learning with a unified text-to-text
transformer. CoRR abs/1910.10683 (2019), http://arxiv.org/abs/1910.10683
Reimers, N.; Gurevych, I.: Sentence-BERT: Sentence embeddings using Siamese
BERT-Networks. CoRR abs/1908.10084 (2019), http://arxiv.org/abs/1908.
10084

Schulz, S.: E — A Brainiac Theorem Prover. Journal of AT Communications 15(2/3),
111-126 (2002)

Selsam, D., Bjgrner, N.: Guiding high-performance SAT solvers with unsat-core
predictions. In: International Conference on Theory and Applications of Satisfia-
bility Testing. pp. 336-353. Springer (2019)

Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words
with subword units. In: Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1: Long Papers). pp. 1715—
1725. Association for Computational Linguistics, Berlin, Germany (Aug 2016).
https://doi.org/10.18653/v1/P16-1162, https://aclanthology.org/P16-1162
Shankar, N.: Automated reasoning, fast and slow. In: Proceedings of the 24th in-
ternational conference on Automated Deduction. pp. 145-161. CADE’13, Springer-
Verlag, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2,0,
http://dx.doi.org/10.1007/978-3-642-38574-2_10

Urban, J., Vyskodil, J., Stépanek, P.: Malecop machine learning connection prover.
In: International Conference on Automated Reasoning with Analytic Tableaux and
Related Methods. pp. 263-277. Springer (2011)

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is all you need. Advances in neural information pro-
cessing systems 30 (2017)

Wang, M., Tang, Y., Wang, J., Deng, J.: Premise selection for theorem proving by
deep graph embedding. arXiv preprint arXiv:1709.09994 (2017)

Whalen, D.: Holophrasm: a neural automated theorem prover for higher-order
logic. arXiv preprint arXiv:1608.02644 (2016)

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P.,
Rault, T., Louf, R., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C.,
Jernite, Y., Plu, J., Xu, C., Scao, T.L., Gugger, S., Drame, M., Lhoest, Q., Rush,
A.M.: Transformers: State-of-the-art natural language processing. In: Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing: Sys-
tem Demonstrations. pp. 38—45. Association for Computational Linguistics, Online
(Oct 2020), https://www.aclweb.org/anthology/2020.emnlp-demos.6

Wu, M., Norrish, M., Walder, C., Dezfouli, A.: Tacticzero: Learning to
prove theorems from scratch with deep reinforcement learning. arXiv preprint
arXiv:2102.09756 (2021)

Yang, K., Deng, J.: Learning to prove theorems via interacting with proof assis-
tants. In: International Conference on Machine Learning. pp. 6984-6994. PMLR
(2019)

http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/1908.10084
https://doi.org/10.18653/v1/P16-1162
https://aclanthology.org/P16-1162
https://doi.org/10.1007/978-3-642-38574-2_10
http://dx.doi.org/10.1007/978-3-642-38574-2_10
https://www.aclweb.org/anthology/2020.emnlp-demos.6

	CoProver: A Recommender System for Proof Construction

