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Abstract
As an effective approach to tune pre-trained001
language models (PLMs) for specific tasks,002
prompt-learning has recently attracted much003
attention from researchers. By using cloze-004
style language prompts to stimulate the ver-005
satile knowledge of PLMs, prompt-learning006
can achieve promising results on a series of007
NLP tasks, such as natural language inference,008
sentiment classification, and knowledge prob-009
ing. In this work, we investigate the appli-010
cation of prompt-learning on fine-grained en-011
tity typing in fully supervised, few-shot and012
zero-shot scenarios. We first develop a sim-013
ple and effective prompt-learning pipeline by014
constructing entity-oriented verbalizer and tem-015
plates and conducting masked language model-016
ing. Further, to tackle the zero-shot regime, we017
propose a self-supervised strategy that carries018
out distribution-level optimization in prompt-019
learning to automatically summarize the in-020
formation of entity types. Extensive experi-021
ments on three fine-grained entity typing bench-022
marks (with up to 86 classes) under fully su-023
pervised, few-shot and zero-shot settings show024
that prompt-learning methods significantly out-025
perform fine-tuning baselines, especially when026
the training data is insufficient.027

1 Introduction028

In recent years, pre-trained language models029

(PLMs) have been widely explored and become030

a key instrument for natural language understand-031

ing (Devlin et al., 2019; Liu et al., 2019) and gener-032

ation (Radford et al., 2018; Raffel et al., 2020). By033

applying self-supervised learning on large-scale034

unlabeled corpora, PLMs can capture rich lexi-035

cal (Jawahar et al., 2019), syntactic (Hewitt and036

Manning, 2019; Wang et al., 2021), and factual037

knowledge (Petroni et al., 2019) that well benefits038

downstream NLP tasks. Considering the versatile039

knowledge contained in PLMs, many efforts of040

researchers have been devoted to stimulating task-041

specific knowledge in PLMs and adapting such042
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Figure 1: Examples of prompt-learning to stimulate the
knowledge of PLMs by formalizing specific tasks as
equivalent cloze-style tasks.

knowledge to downstream NLP tasks. And fine- 043

tuning with extra classifiers has been one typical 044

solution for adapting PLMs to specific tasks in NLP 045

tasks (Qiu et al., 2020; Han et al., 2021a). 046

Some recent efforts on probing knowledge of 047

PLMs show that, by writing some natural language 048

prompts, we can induce PLMs to complete factual 049

knowledge (Petroni et al., 2019). GPT-3 further uti- 050

lizes the information provided by prompts to con- 051

duct few-shot learning and achieves awesome re- 052

sults (Brown et al., 2020). Inspired by this, prompt- 053

learning has been introduced. As shown in Fig- 054

ure 1, in prompt-learning, downstream tasks are for- 055

malized as equivalent cloze-style tasks, and PLMs 056

are asked to handle these tasks instead of original 057

downstream tasks. Compared with vanilla fine- 058

tuning methods, prompt-learning does not require 059

extra neural layers and intuitively bridges the objec- 060
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tive form gap between pre-training and fine-tuning.061

Sufficient empirical analysis shows that, either for062

manually picking hand-crafted prompts (Liu et al.,063

2021; Han et al., 2021b) or automatically building064

auto-generated prompts (Gao et al., 2020; Lester065

et al., 2021), taking prompts for tuning models is066

surprisingly effective for the knowledge stimula-067

tion and model adaptation of PLMs, especially in068

the low-data regime (Ding et al., 2021a).069

Intuitively, prompt-learning is applicable to fine-070

grained entity typing, which aims at classifying071

marked entities from input sequences into specific072

types in a pre-defined label set. We discuss this073

topic with a motivating example, “He is from New074

York”. By adding a prompt with a masking token075

[MASK], the sentence becomes “He is from New076

York. In this sentence, New York is [MASK]”. Due077

to the wealth of knowledge acquired during pre-078

training, PLMs can compute a probability distri-079

bution over the vocabulary at the masked position,080

and a relatively higher probability with the word081

“city” than the word “person”. In other words, with082

simple prompts, the abstract entity attributes con-083

tained in PLMs can be efficiently exploited, which084

is meaningful for downstream entity-related tasks.085

In this work, we comprehensively explore the086

application of prompt-learning to fine-grained en-087

tity typing in fully supervised, few-shot and zero-088

shot settings. Particularly, we first introduce a089

naive pipeline, where we construct entity-oriented090

prompts and formalize fine-grained entity typing091

as a cloze-style task. This simple pipeline yields092

promising results in our experiments, especially093

when supervision is insufficient. Then, to tackle094

the zero-shot scenario where no explicit supervi-095

sion exists in training, we develop a self-supervised096

strategy under our prompt-learning pipeline. Our097

self-supervised strategy attempts to automatically098

summarize entity types by optimizing the similarity099

of the predicted probability distributions of paired100

examples in prompt-learning.101

Three popular benchmarks are used for our ex-102

periments, including FEW-NERD (Ding et al.,103

2021c), OntoNotes (Weischedel et al., 2013),104

BBN (Weischedel and Brunstein, 2005). All these105

datasets have a complex type hierarchy consisting106

of rich entity types, requiring models to have good107

capabilities of entity attribute detection. Empiri-108

cally, our method yields significant improvements109

on these benchmark datasets, especially under the110

zero-shot and few-shot settings. We also make an111

analysis and point out both the superiority and bot- 112

tleneck of prompt-learning in fine-grained entity 113

typing, which may advance further efforts to ex- 114

tract entity attributes using PLMs. Our source code 115

and pre-trained models will be publicly available. 116

2 Background 117

In this section, we first give a problem definition of 118

the entity typing task (§ 2.1), followed by an intro- 119

duction of conventional vanilla fine-tuning (§ 2.2) 120

and prompt-based tuning (§ 2.3) with PLMs. 121

2.1 Problem Definition 122

The input of entity typing is a dataset D = 123

{x1, ..., xn} with n sentences, and each sentence x 124

contains a marked entity mention m. For each in- 125

put sentence x, entity typing aims at predicting the 126

entity type y ∈ Y of its marked mention m, where 127

Y is a pre-defined set of entity types. Entity typing 128

is typically regarded as a context-aware classifica- 129

tion task. For example, in the sentence “London 130

is the fifth album by the rock band Jesus Jones...”, 131

the entity mention London should be classified as 132

Music rather than Location. Using pre-trained 133

neural language models (e.g. BERT) as the encoder 134

and performing model tuning for classifying types 135

becomes a standard paradigm in recent years. 136

2.2 Vanilla Fine-tuning 137

In the vanilla fine-tuning paradigm of entity typ- 138

ing, for each token ti in an input sequence 139

x = {[CLS], t1, . . . ,m, . . . , tT ,[SEP]} with 140

a marked entity mention m = {ti, . . . , tj}, the 141

PLM M produces its contextualized representa- 142

tion {h[CLS],h1, . . . ,hT ,h[SEP]}. Empirically, 143

we choose the embedding of the [CLS] token, 144

h[CLS], as the final representation that is fed into 145

an output layer to predict the probability distribu- 146

tion over the label space 147

P (y ∈ Y|s) = softmax(Wh[CLS] + b), (1) 148

where W and b are learnable parameters. W, b 149

and all parameters of PLMs are tuned by maximiz- 150

ing the objective function 1
n

∑n
i=1 log(P (yi|si)), 151

where yi is the golden type label of si. 152

2.3 Prompt-based Tuning 153

In prompt-based tuning, for each label y ∈ Y , we 154

define a label word set Vy = {w1, . . . , wm}. Vy 155

is a subset of the vocabulary V of the PLM M, 156

2



London is one of the biggest cities in the world. London is a 
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Figure 2: The illustration of prompt-learning for fine-grained entity typing with supervision. We take hard-encoding
prompt strategy as an example in this figure.

i.e., Vy ⊆ V . By taking the union of the dictio-157

nary corresponding to each label, we get an overall158

dictionary V∗. For example, in sentiment classi-159

fication, we could map the label y = POSITIVE160

into a set Vy = {great, good, wonderful...}. And161

another primary component of prompt-learning is a162

prompt template T (·), which modifies the original163

input x into a prompt input T (x) by adding a set164

of additional tokens at the end of x. Convention-165

ally, a [MASK] token is added for PLMs to predict166

the missing label word w ∈ V∗. Thus, in prompt-167

learning, a classification problem is transferred into168

a masked language modeling problem,169

p(y ∈ Y|s)=p([MASK]=w∈Vy|T (s)). (2)170

3 Prompt-learning for Entity Typing: A171

Naive Pipeline172

After transferred into masked language modeling,173

the prompt-learning method is applicable to learn-174

ing and aggregating type information of entities. In175

this section, we first introduce a naive but empiri-176

cally strong baseline that utilizes prompts to extract177

entity types with explicit supervision, including178

the construction of label words (§ 3.1), templates179

(§ 3.2) and training (§ 3.3). And such a simple180

pipeline yields remarkable results on three bench-181

mark datasets. Then we propose a self-supervised182

prompt-learning method that automatically learns183

type information from unlabeled data (§ 4).184

3.1 Label Words Set V∗185

For fine-grained entity typing, datasets usu-186

ally use hierarchical label space such as PER-187

SON/ARTIST (FEW-NERD) and ORGANIZA-188

TION/PARTY (OntoNotes). In this case, we use189

all the words as the label words set V∗ for this en-190

tity type. For example, y = LOCATION/CITY →191

v = {location, city}. And as the entity types are192

all well-defined nouns with clear boundaries, it is193

intuitive to expand the label words set V∗ with ob- 194

tainable related nouns. For example, in Related 195

Words1, the top-5 related words of the label word 196

city is “metropolis, town, municipality, urban, sub- 197

urb”. These words are strongly related to the class 198

CITY, and they are hardly mapped to other entity 199

types even under the same LOCATION class, such 200

as LOCATION/MOUNTAIN or LOCATION/ISLAND. 201

In masked language modeling, we use confi- 202

dence scores of all the words in Vy to construct 203

the final score of the particular type y. That is, for 204

an input x (which is mapped to T (x)) and its entity 205

type y (which is mapped to Vy = {w1, ..., wm}), 206

the conditional probability becomes 207

P (y|x)= 1

m

m∑
j

λjP ([MASK]=wj |T (x)), (3) 208

where λi is a parameter to indicate the importance 209

of the current word wj ∈ Vy. Note that λi could 210

also be learnable or heuristically defined. 211

3.2 Templates 212

In this section, we construct entity-oriented 213

prompts for the fine-grained entity typing task. We 214

choose hard-encoding templates with natural lan- 215

guage and soft-encoding templates with additional 216

special tokens in our work. 217

For the choice of hard-encoding templates, we 218

do not use automatic searching methods for dis- 219

crete prompts since the fine-grained entity typing 220

task is clearly defined and the prompts are easily 221

purposeful. We select simple declarative templates 222

rather than hypernym templates to avoid grammarti- 223

cal errors. In the template of hard encoding setting, 224

we first copy the marked entity mention in x, then 225

we add a few linking verbs and articles followed by 226

the [MASK] token. With the marked entity mention 227

1https://relatedwords.org
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[Ent], we use the following templates:228

T1(x) = x. [Ent] is [MASK],

T2(x) = x. [Ent] is a [MASK],

T3(x) = x. In this sentence, [Ent] is a [MASK],

229

where [Ent] is the entity mention in x. In § 5, we230

report the the results of T3(·).231

We also adopt the soft-encoding strategy,232

which introduces some additional special tokens233

[P1], ..., [Pl] as the template, where l is a pre-234

defined hyper-parameter. The template begins with235

a delimiter [P] and a copy of the entity mention [M].236

The complete template becomes:237

T4(x) = x [P] [Ent] [P1],..., [Pl] [MASK],238

where each embedding of prompts is randomly ini-239

tialized and optimized during training. Intuitively,240

these special tokens can represent a cluster of words241

with similar semantics in the vocabulary.242

3.3 Training and Inference243

The strategies of hard or soft encoding provide dif-244

ferent initialization of templates, and they both can245

be parameterized by ϕ and optimized along with246

M during training. We train the pre-trained model247

M (parameterized by θ) along with the additional248

prompt embeddings by the cross-entropy loss:249

L = −
∑

logP (y|x; θ, ϕ). (4)250

For inference, we can directly use Eq. 3 to predict251

the label of the current input instance based on the252

predicted words of the [MASK] position.253

This pipeline could be applied to entity typing254

with explicit supervision, and it is more effective255

when the training data are insufficient, i.e., the few-256

shot scenario (§ 5.3). Naturally, we take further257

step and consider a more extreme situation, that258

is, a scenario without any training data (zero-shot259

scenario). In this setting, if we directly use an ad-260

ditional classifier to predict the label, the result is261

equivalent to random guessing since the parameters262

of the classifier are randomly initialized. If we use263

prompts to infer the label based on the predicted264

words, although its performance is significantly bet-265

ter than guessing, there will also be a catastrophic266

decline (§ 5.4). To this end, a question emerges: “Is267

it possible for PLMs to predict entity types without268

any explicit supervision? ”269

4 Self-supervised Prompt-learning for 270

Zero-shot Entity Typing 271

With prompt-learning, the answer is yes, be- 272

cause in the pre-training stage, the contexts of 273

entities have already implied the corresponding 274

type information, which provides an advanta- 275

geous initialization point for the prompt-learning 276

paradigm. For example, in the input sentence 277

with the T3(·) template: “Steve Jobs found Ap- 278

ple. In this sentence, Steve Jobs is a [MASK] ”. 279

In our observations, the probability of PLMs pre- 280

dicting person at the masked position will be sig- 281

nificantly higher than the probability of location. 282

And if we make reasonable use of this superior 283

initialization point, it is possible for PLMs to au- 284

tomatically summarize the type information, and 285

finally extract the correct entity type. 286

4.1 Overview 287

In order to create conditions for PLMs to sum- 288

marize entity types, we consider a self-supervised 289

paradigm that optimizes the similarity of the prob- 290

ability distribution predicted by similar examples 291

over a projected vocabulary V∗. To achieve that 292

in prompt-learning, we need to (1) impose a limit 293

on the prediction range of the model, so that only 294

those words that we need, that is, words that ex- 295

press entity types, participate in the optimization 296

of the gradient; (2) provide an unlabeled dataset, 297

where entity mentions are marked without any 298

types to allow the model to learn the process of 299

inducing type information in a self-supervised man- 300

ner. The inputs contain a pre-trained model M, a 301

pre-defined label schema Y , and a dataset with- 302

out labels D = {x1, ..., xn} (entity mentions are 303

marked without any types). our goal is to make M 304

capable to automatically carry out zero-shot entity 305

typing after trained on D and Y . Using prompt- 306

learning as the training strategy, we first construct a 307

label words set V∗ from Y , and for each sentence x 308

in D, we wrap it with hard-encoding template with 309

a [MASK] symbol. The key idea is to make the 310

prediction distributions of the same type of entities 311

on V∗ as similar as possible. In this way, we can 312

perform contrastive learning by sampling positive 313

and negative examples, while ignoring the impact 314

of other words that are not in V∗ on optimization 315

during the MLM process. 316

4.2 Self-supervised Learning 317

Although there are no labels in D, we can still 318

develop a sampling strategy based on a simple 319
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Figure 3: The illustration of self-supervised prompt-learning for fine-grained entity typing with unlabeled data and a
pre-defined label set. V∗ denotes the label words projected from the input label set. Note that we only show the
positive pair in this figure.

hypothesis, that is, same entities in different sen-320

tences have similar types. For instance, we will321

sample two sentences contain “Steve Jobs” as a pos-322

itive pair. Moreover, considering entity typing is323

context-aware, “Steve Jobs” could be entrepreneur,324

designer, philanthropist in different contexts, we325

choose to optimize the similarity between distribu-326

tions of the words over V∗. This strategy not only327

softens the supervision, but also eliminates the im-328

pact of other words in self-supervised learning.329

Particularly, we randomly sample c positive330

pairs, i.e., sentence pairs that share one same en-331

tity mention, denoted as ˆDpos, and c negative pairs,332

i.e., two sentences with different entity mentions333

marked, denoted as ˆDneg from a large-scale entity-334

linked corpus D. To avoid generating false negative335

samples, the negative samples are further restricted336

by a large dictionary that contains common entities337

and their type information. Only sentence pairs338

with entities of different types in the dictionary are339

selected as negative samples. Then we wrap them340

with hard-encoding T3(·). To avoid overfitting of341

the entity names, we randomly hide the entity men-342

tion (in the original input and the template) with343

a special symbol [Hide] with a probability of α.344

Empirically, α is set to 0.4.345

Since the impact of a pair of examples on train-346

ing should be measured at the distribution level, we347

choose Jensen-Shannon divergence as a metric to348

assess the similarity of two distributions. Thus, in349

a sentence pair (x, x′), the similarity score of two350

representations of the the predictions h and h′ of351

the [MASK] position is computed by:352

s(h,h′) = JS(PV∗(w|x), PV∗(w|x′)), (5)353

where JS is Jensen-Shannon divergence, PV∗(w|x) 354

and PV∗(w|x′) are probability distributions of the 355

predicting token w over V∗ obtained by h and h′. 356

As we attempt to make the predictions of the 357

positive pairs similar, the objective is computed by: 358

359

L= − 1

| ˆDpos|2
∑

x∈D̂pos

∑
x′∈D̂pos

log(1−s(h,h′))

− 1

| ˆDneg|2
∑

x∈ ˆDneg

∑
x′∈ ˆDneg

γ log(s(h,h′)),

(6) 360

where γ is a penalty term because the assumption 361

is loose in negative pairs. We use entity-linked 362

Wikipedia corpus as the raw data and generate 363

about 1 million pairs of data each as ˆDpos and ˆDneg. 364

5 Experiments 365

We evaluate our methods on three widely used fine- 366

grained entity typing datasets, the dataset split and 367

experimental details are reported in Appendix A. 368

5.1 Datasets 369

We use the following three fine-grained entity typ- 370

ing datasets in our experiments. 371

FEW-NERD We use FEW-NERD (Ding et al., 372

2021c) as the main dataset, which has the follow- 373

ing advantages: (1) FEW-NERD is large-scale and 374

fine-grained, which contains 8 coarse-grained and 375

66 fine-grained entity types. (2) FEW-NERD is 376

manually annotated, thereby we can precisely as- 377

sess the capability of entity typing models. We use 378

the supervised setting of the dataset, FEW-NERD 379

(SUP), and the official split in our experiments. 380
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Shot Metric Few-NERD OntoNotes BBN

Fine-tuning PLET Fine-tuning PLET Fine-tuning PLET

1
Acc 8.94 43.87 (+34.93) 3.70 38.97 (+35.27) 0.80 40.70 (+39.90)
MiF 19.85 60.60 (+45.75) 18.98 59.91 (+40.93) 5.79 49.25 (+43.46)
MaF 19.85 60.60 (+40.75) 19.43 61.42 (+41.99) 4.42 48.48 (+43.06)

2
Acc 20.83 47.78 (+26.95) 7.27 39.19 (+31.92) 6.68 41.33 (+34.65)
MiF 32.67 62.09 (+29.42) 24.89 61.09 (+36.20) 13.70 54.00 (+40.30)
MaF 32.67 62.09 (+29.42) 25.64 62.68 (+37.04) 13.23 51.97 (+38.74)

4
Acc 33.09 57.00 (+23.91) 11.15 38.39 (+27.24) 19.34 52.21 (+32.87)
MiF 44.14 68.61 (+24.47) 27.69 59.81 (+32.12) 27.03 61.13 (+34.10)
MaF 44.14 68.61 (+24.47) 28.26 60.89 (+32.63) 24.69 58.91 (+34.22)

8
Acc 46.44 55.75 (+9.31) 18.37 39.37 (+21.00) 27.01 44.30 (+17.29)
MiF 57.76 68.74 (+10.98) 38.16 57.97 (+19.81) 40.19 56.21 (+16.02)
MaF 57.76 68.74 (+10.98) 37.77 58.32 (+20.55) 39.50 55.15 (+15.65)

16
Acc 60.98 61.58 (+0.60) 32.26 42.29 (+10.03) 39.67 55.00 (+15.33)
MiF 71.59 72.39 (+0.80) 51.40 60.79 (+9.39) 49.01 62.84 (+13.83)
MaF 71.59 72.39 (+0.80) 51.45 61.80 (+10.35) 47.09 62.38 (+15.29)

Table 1: Results of few-shot entity typing on FEW-NERD, OntoNotes and BBN, all the methods use BERTbase with
same initialization weights as the backbone encoder. Training set and dev set have the same size.

OntoNotes We also use the OntoNotes 5.0381

dataset (Weischedel et al., 2013). Following previ-382

ous works for fine-grained entity typing, we adopt383

86-classes version of OntoNotes, while each class384

has at most 3 levels of the type hierarchy. And the385

data split is identical to (Shimaoka et al., 2017).386

BBN. BBN dataset is selected from Penn Tree-387

bank corpus of Wall Street Journal texts and labeled388

by (Weischedel and Brunstein, 2005). We follow389

the version processed by (Ren et al., 2016a), and390

the data split by (Ren et al., 2016b). The dataset391

contains 46 types and each type has a maximum392

type hierarchy level of 2.393

5.2 Results of Fully Supervised Entity Typing394

Dataset Metric Method

FT PLET (H) PLET (S)

Few-NERD
Acc 79.75 79.90 79.86
MiF 85.74 85.84 85.76
MaF 85.74 85.84 85.76

OntoNotes
Acc 59.71 60.37 65.68
MiF 70.47 70.78 74.53
MaF 76.57 76.42 79.77

BBN
Acc 62.39 65.92 63.11
MiF 68.88 71.55 68.68
MaF 67.37 70.82 67.81

Table 2: Fully supervised entity typing results. FT de-
notes the vanilla fine-tuning method, (H) denotes the
hard-encoding and (S) denotes the soft-encoding.

The results on all three datasets across different395

models are reported in Table 2. Overall, the prompt- 396

based methods have shown certain improvements 397

comparing to directly fine-tuned models. It shows 398

that the prompt-based method does help with cap- 399

turing entity-type information from a given context. 400

It is also observed that the magnitude of the im- 401

provement and the preference of prompt encod- 402

ing strategy may vary with different datasets. The 403

prompt-based method seems less effective on FEW- 404

NERD dataset than the other two. It indicates that 405

the effect of the prompt-based method partially de- 406

pends on the characteristics of the dataset and that 407

different prompt designs may suit different data. 408

Specifically, FEW-NERD is manually annotated 409

and contains much less noise than the other two 410

datasets, benefiting the FT method to learn classi- 411

fication with an extra linear layer. Moreover, for 412

the OntoNotes dataset, soft encoding significantly 413

outperforms hard encoding, while for the other two 414

datasets the effect seems reversed. 415

5.3 Results of Few-shot Entity Typing 416

Table 1 shows the results on few-shot entity typ- 417

ing. It is shown that prompt-based model outper- 418

forms fine-tuning by a large margin under few-shot 419

setting, especially when only 1 ∼ 2 training in- 420

stances per type are available. It should be noted 421

that for OntoNotes and BBN datasets, sampling 16 422

instances for each entity type already amounts to 423

over 0.5% of the total training data. Meanwhile, 424

some of the data in BBN are distantly-supervised 425
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Dataset Metric Method

PLET PLET (S)

Few-NERD
Acc 17.55 23.99 (+6.44)
MiF 28.39 47.98 (+19.59)
MaF 28.39 47.98 (+19.59)

OntoNotes‡
Acc 25.10 28.27 (+3.17)
MiF 33.61 49.79 (+16.18)
MaF 37.91 49.95 (+12.04)

BBN
Acc 55.82 57.79 (+1.97)
MiF 60.64 63.24 (+2.60)
MaF 59.99 64.00 (+4.01)

Table 3: Results of zero-shot entity typing on FEW-
NERD, OntoNotes, and BBN. ‡ means that we remove
the “Other” class during testing. PLET denotes the
prompt-learning pipeline and PLET (S) denotes self-
supervised prompt-learning.

and are potentially erroneous. It brings more ran-426

domness to few-shot training. The results support427

the idea that a well-designed prompt has much428

potential in mining the learned knowledge in pre-429

trained models and thus yields better performance430

in few-shot settings. The results also indicate that431

even when the number of entity types is large (46 ∼432

86), the superiority of prompt-learning still holds.433

5.4 Results of Zero-shot Entity Typing434

Table 3 shows the results on zero-shot entity typ-435

ing task on FEW-NERD dataset. We did not re-436

port the performance of the vanilla fine-tuning ap-437

proach because it cannot produce reasonable results438

with a randomly initialized classifier. And it also439

should be noted that the prompt method without440

fine-tuning already outperforms random guessing.441

It indicates that adding a prompt is informative for442

a model pre-trained on masked-language-model443

task (e.g. BERT) and can induce reasonable pre-444

dictions in entity typing tasks. Second, the perfor-445

mance of the model improves by a large margin if446

trained on unlabeled data. It shows the effective-447

ness of the proposed self-supervised training ap-448

proach and points to the potential of a pre-trained449

prompt-based model under the zero-shot setting450

when no labeled data are available.451

To explore the more subtle changes in perfor-452

mance, we carry out case study for the zero-shot453

entity typing. In Figure 4, we illustrate the zero-454

shot prediction distribution (the correct prediction455

and other top-5 predictions) for four entity types456

in FEW-NERD. We could observe that with self-457

supervised prompt-learning, PLET (S) could sum-458

marize entity type information and infer the re-459

lated words to a certain extent. In Figure 4 (a) 460

and Figure 4 (b), the PLET model suffers from a 461

severe bias and almost predict no correct labels 462

in the zero-shot setting since such words are low- 463

frequency. And although there is no explicit su- 464

pervision in the pre-training stage of UNPLET, the 465

model could still find the corresponding words that 466

express the ORG-SPORTSLEAGUE and the EVENT- 467

ATTACK types. In Figure 4 (c), self-supervised 468

learning increases the performance of the origi- 469

nal encoder. Further, in Figure 4 (d), PLET has 470

been able to make satisfying predictions for this 471

type LOC-MOUNTAIN. In this case, the use of 472

self-supervised learning has hardly weakened the 473

performance, which means that the process of auto- 474

matically summarizing type information has little 475

negative impact on high-confidence entity types. 476

Type Template Acc MiF MaF

Hard
T1(x) 54.45 67.34 67.34
T2(x) 53.93 66.44 66.44
T3(x) 55.75 68.74 68.74

Soft

l = 2 59.25 69.58 69.58
l = 3 53.66 66.06 66.06
l = 4 52.96 66.01 66.01
l = 5 55.44 68.39 68.39

Table 4: Effect of templates. The results are produced
under 8-shot setting on FEW-NERD dataset by PLET. l
is the number of soft tokens.

5.5 Effect of Templates 477

As stated in previous studies (Zhao et al., 2021), the 478

choice of templates may have a huge impact on the 479

performance in prompt-learning, We carry out ex- 480

periments under the 8-shot setting on FEW-NERD 481

dataset to investigate such influence. And we use 482

3 different hard templates and 4 soft templates (by 483

changing the number of prompt tokens l). The 484

results demonstrate that the choice of templates ex- 485

erts a considerable influence on the performance of 486

prompt-based few-shot learning. For the hard tem- 487

plates, the phrase that describes the location “in this 488

sentence” contributes a remarkable improvement in 489

performance. For the soft templates, surprisingly, 490

the prompt-learning model yields the best result 491

with the fewest special tokens. 492

6 Related Work 493

After a series of effective PLMs like GPT (Radford 494

et al., 2018) and BERT (Devlin et al., 2019), fine- 495

tuned PLMs have demonstrated their effectiveness 496
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(d) Zero-shot prediction distribution on LOC-MOUNTAIN.

Figure 4: Zero-shot prediction distribution on 4 types in FEW-NERD. In each subgraph, the left part illustrates the
results of PLET and the right part are PLET (S). denotes the correct predictions, denotes the wrong predictions
with correct coarse-grained types, and denotes the wrong predictions with wrong coarse-grained types.

on various important NLP tasks (Baldini Soares497

et al., 2019; Peng et al., 2020; Ding et al., 2021b).498

Despite the success of fine-tuning PLMs, the499

huge objective form gap between pre-training and500

fine-tuning still hinders the full use of per-trained501

knowledge for downstream tasks (Liu et al., 2021;502

Han et al., 2021b; Hu et al., 2021). To this503

end, prompt-learning has been proposed. The504

seminal work that stimulates the development of505

prompt-learning is the birth of GPT-3 (Brown et al.,506

2020), which uses hand-crafted prompts for tuning507

and achieves impressive performance on various508

tasks. A series of hand-crafted prompts have been509

widely explored in knowledge probing (Petroni510

et al., 2019; Davison et al., 2019), relation clas-511

sification (Han et al., 2021b), sentiment classi-512

fication and natural language inference (Schick513

and Schütze, 2021; Liu et al., 2021). To avoid514

labor-intensive prompt design, automatic prompt515

search has also been extensively explored Schick516

et al. (2020); Schick and Schütze (2021); Shin517

et al. (2020); Gao et al. (2020) to generate lan-518

guage phrases for prompts. Recently, some con-519

tinuous prompts have also been proposed (Li and520

Liang, 2021; Lester et al., 2021), which directly521

use a series of learnable continuous embeddings as522

prompts rather than discrete language phrases.523

This paper aims to stimulate PLMs with prompt-524

learning to capture the attribute information of en-525

tities. We take fine-grained entity typing, a cru- 526

cial task in knowledge extraction to assign entity 527

types to entity mentions (Lin et al., 2012), as the 528

foothold to develop prompt-learning strategies. In 529

fact, Dai et al. (2021) use hypernym extraction 530

patterns to enhance the context and apply masked 531

language modeling to tackle the ultra-fine entity 532

typing problem (Choi et al., 2018) with free-form 533

labels, which shares a similar intuition with prompt- 534

learning. In our work, we mainly emphasize using 535

prompt-learning to extract entity types that have 536

been pre-defined in low-data scenarios. 537

7 Conclusion 538

This work investigates the application of prompt- 539

learning on fine-grained entity typing in in fully 540

supervised, few-shot and zero-shot scenarios. We 541

first investigate a simple and effective prompt- 542

learning pipeline that could be used to extract entity 543

types with both sufficient and insufficient supervi- 544

sion. Furthermore, to handle the zero-shot setting, 545

we propose a self-supervised prompt-learning ap- 546

proach that automatically learns and summarizes 547

entity types based on unlabeled corpora and a pre- 548

defined label schema, which utilizes prompts to 549

take advantage of prior knowledge distributed in 550

PLMs, and could learn pre-defined type informa- 551

tion without overfitting by performing distribution- 552

level optimization. 553
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A Experimental Settings and Details729

A.1 Experimental Settings730

The experiments are performed under three differ-731

ent settings to evaluate the effect of the prompt-732

learning method and semi-supervised training. In733

table 5, we show the statistics of all the settings on734

the three datasets.735

Supervised Setting. In a fully supervised set-736

ting, all training data are used in the training phase.737

FT and PLET are used to train the model. We run738

the experiments on all three datasets with BERT-739

base-cased backbone. Both hard and soft encodings740

are used for PLET.741

Few-shot Setting. In a few-shot setting, we742

randomly sample 1, 2, 4, 8, 16 instances for each743

entity type for training. We apply both FT and744

PLET methods with hard encoding on all the three745

datasets.746

Zero-shot Setting. In zero-shot setting, no747

training data with labels are available. The model is748

required to infer the entity type without any super-749

vised training. Since fine-tuning is not applicable750

in this setting, we only conduct experiments on751

PLET and PLET (S).752

Metrics. In terms of evaluation metrics, we753

follow the widely used setting of Ling and Weld754

(2012), which includes strict accuracy (Acc), loose755

macro F1-score (MaF) and loose micro F1-score756

(MiF) to evaluate the performances of models. The757

loose F1-score calculation concerns type labels by758

different granularities.759

A.2 Experimental Details760

We use BERT-base (Devlin et al., 2019) as the761

backbone structures of our model and initialized762

with the corresponding pre-trained cased weights2.763

The hidden sizes are 768, and the number of lay-764

ers are 12. Models are implemented by Pytorch765

framework3 (Paszke et al., 2019) and Huggingface766

transformers4 (Wolf et al., 2020). BERT models767

are optimized by AdamW (Loshchilov and Hutter,768

2019) with the learning rate of 5e-5. The training769

batch size used is 16 for all models. In the super-770

vised setting, each model is trained for 10 epochs771

and evaluated on the dev set every 2000 steps. In772

the few-shot setting, each model is trained for 30773

2https://github.com/google-research/
bert

3https://pytorch.org
4https://github.com/huggingface/

transformers

epochs and evaluated every 10∼50 steps, each time 774

the evaluation is run for 200 steps. For the methods 775

with hard-encoding, we report the experimental re- 776

sults of T3(·). For the soft-encoding method, we 777

report the results of m = 2. Experiments are con- 778

ducted with CUDA on NVIDIA Tesla V100 GPUs. 779
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Dataset #Type Supervised Few-shot Zero-shot

|Dtrain| |Ddev| |Dtest| |Dtrain| |Ddev| |Dtest| |Dtrain| |Ddev| |Dtest|

Few-NERD 66 340,382 48,758 96,901 66~1,056 = |Dtrain| 96,901 0 0 96,901
OntoNotes 86 253,239 2,200 8,962 86~1,376 = |Dtrain| 8,962 0 0 8,962
BBN 46 86,077 12,824 12,824 46~736 = |Dtrain| 12,824 0 0 12,824

Table 5: Statistics of FEW-NERD, OntoNotes and BBN from three experimental settings. For all three settings, the
test sets are identical. For the training set of the few-shot setting, we report the summation from 1-shot to 16-shot.
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