Trajectory Bellman Residual Minimization:
A Simple Value-Based Method for LLM Reasoning

Yurun Yuan' Fan Chen? Zeyu Jia> Alexander Rakhlin?>* Tengyang Xie'*

University of Wisconsin—-Madison 2Massachusetts Institute of Technology
{yurun_yuan, tx}@cs.wisc.edu
{fanchen,zyjia,rakhlin}@mit.edu

Abstract

Policy-based methods currently dominate reinforcement learning (RL) pipelines
for large language model (LLM) reasoning, leaving value-based approaches largely
unexplored. We revisit the classical paradigm of Bellman Residual Minimization
and introduce Trajectory Bellman Residual Minimization (TBRM), an algorithm
that naturally adapts this idea to LLMs, yielding a simple yet effective off-policy
algorithm that optimizes a single trajectory-level Bellman objective using the
model’s own logits as ()-values. TBRM removes the need for critics, importance-
sampling ratios, or clipping, and can operate with only one rollout per prompt. We
prove convergence to the near-optimal KL-regularized policy from arbitrary off-
policy data via an improved change-of-trajectory-measure analysis. Experiments
on standard mathematical-reasoning benchmarks show that TBRM matches or
surpasses policy-based baselines, like PPO and GRPO, with comparable or lower
computational and memory overhead. Our results indicate that value-based RL
might be a principled and efficient alternative for enhancing reasoning capabilities
in LLMs. The codebase for TBRM is publicly available at https://github.com
/rlx-1lab/TBRM.

1 Introduction

Large language models (LLMs) have become the de-facto backbone for modern natural-language
understanding and generation (Brown et al., 2020; Ouyang et al., 2022). While ever-larger pre-
training corpora push the frontier of knowledge, high-value downstream usage increasingly hinges on
reasoning: the capacity to carry out multi-step thinking, apply abstract rules to practical situations,
and generalize from observed patterns to solve complex, structured problems. Reinforcement learning
(RL) with verifiable, outcome-based rewards has emerged as a powerful paradigm for enhancing this
reasoning capability in LLMs (Guo et al., 2025), especially for mathematical problem-solving where
correctness can be objectively determined.

Recent advances in LLM post-training for mathematical reasoning have primarily employed policy-
based variants—Proximal Policy Optimization (PPO; Schulman et al., 2017b) and Group Relative
Policy Optimization (GRPO; Shao et al., 2024; Guo et al., 2025)—which optimize policies to
maximize objective rewards that indicate successful task completion. These approaches leverage
the clear evaluation criteria of mathematical tasks, where responses can be automatically verified as
correct or incorrect without requiring human judgment.

Despite their empirical success, policy-based methods face several practical challenges. They
typically require fresh on-policy rollouts from the current model, increasing computational demands.
They often rely on additional components like critic models, advantage normalization, and clipping
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mechanisms, adding complexity to implementation and tuning. Moreover, for token-level decisions,
these methods (1) simplistically attribute outcome-based rewards (e.g., correctness of the entire
response) to individual tokens, often assigning credit primarily to the final token, and (2) bootstrap
advantages with truncated rollout horizons when additional critic models are used, potentially
compromising effective credit assignment during training.

Classical RL offers a compelling alternative: value-based methods learn an action-value function
@ and act, for instance, greedily with respect to it. In the LLM setting, each token is an action, and
the model’s logits (that is, raw network outputs) naturally provide a parametric family for ), under
the KL-regularized RL framework (e.g., Schulman et al., 2017a). Despite this natural alignment
and the inherent strengths of value-based methods for LL.Ms, their application to LLMs has been
limited, with policy-based techniques being more prevalent. One potential reason, we conjecture,
is the perceived difficulty in reconciling traditional iterative bootstrapping in value-based RL (e.g.,
the Q-learning family, Watkins and Dayan, 1992; Mnih et al., 2015) with the scale of LLM training,
as iterative-style algorithms are typically less stable than their optimization-style counterparts (e.g.,
policy-based methods).

Our starting point is Bellman Residual Minimization (BRM; Schweitzer and Seidmann, 1985; Baird
et al., 1995), a decades-old idea that fits the Q-function by directly minimizing its Bellman residual,
designed for deterministic environments (which LLMs naturally are). By leveraging the recent
theoretical advances in trajectory-level change of measure (Jia et al., 2025), we recognize that BRM
can be lifted from the step (foken) to the trajectory level: we square a single residual spanning the
whole rollout and regress the model’s logits onto it. This approach eliminates the aforementioned
per-step-signal barrier, removes the need for critics, importance weights, and clipping, and prov-
ably maintains fully off-policy optimization due to the value-based nature of the algorithm. The
resulting algorithm is Trajectory BRM (TBRM), which builds on classical BRM. Below we state our
contributions, focused on theoretical analysis and extensive experiments on math reasoning tasks.

1.1 Our Results

1. Algorithm. Building explicitly on the classical idea of Bellman Residual Minimization, we present
TBRM, a single-objective, off-policy algorithm that fits the trajectory-level Bellman residual using
the LLM logits as -values. TBRM dispenses with critics, advantage estimates, importance ratios,
or clipping, and can operate with only one rollout per prompt, while scaling effectively with
multiple rollouts in practice.

2. Theory. We prove that, under standard realizability assumptions, the algorithm converges to
the optimal KL-regularized policy even when training data are generated by arbitrary behavior
policies in deterministic environments (such as LLMs). Our results build upon the recent change-
of-trajectory-measure result of Jia et al. (2025). We significantly simplify that proof and improve
the rate of convergence in terms of horizon factors. Overall, our results offer a theoretically
grounded alternative to popular (yet ad-hoc) methods like GRPO.

3. Experiments. On six mathematical-reasoning benchmarks—namely AIME24/25, AMC23,
MATHS500, Minerva-Math, and OlympiadBench—TBRM performs on par with or better than
PPO and GRPO baselines. Notably, TBRM achieves up to 30.5% accuracy on AIME24 with
Qwen2.5-Math-7B. Compared to GRPO, it improves the average benchmark score by 1.3% ab-
solute, while under comparable conditions to PPO, it achieves better performance with 22.5%
less training time and 33% lower GPU memory. We further demonstrate that TBRM benefits
from additional rollouts and the model learns emergent reasoning patterns, such as verification,
backtracking, and decomposition, that align with human mathematical practice.

Collectively, our findings suggest that value-based approaches offer a compelling alternative to policy
gradient methods especially for enhancing mathematical reasoning capabilities in LLMs. By re-
casting value learning at the trajectory level, TBRM provides a principled, efficient, and theoretically
grounded approach for improving performance on mathematical reasoning tasks while dramatically
reducing computational requirements.

2 Preliminaries

This section provides the necessary background for our work. We first review the fundamentals of
KL-regularized RL (Section 2.1), then discuss prominent reinforcement learning algorithms applied to



large language models (Section 2.2), and finally introduce the autoregressive function approximation
framework (Section 2.3) that serves as the foundation for our proposed approach.

2.1 KL-Regularized Reinforcement Learning

Reinforcement learning (RL) provides a framework for sequential decision-making problems where
an agent interacts with an environment to maximize cumulative rewards. In the context of Markov
Decision Processes (MDPs), which provide the theoretical foundation for RL, we consider an episodic
finite-horizon framework. Formally, a horizon-H episodic MDP M = (H, S, A, P,r, p) consists
of a (potentially very large) state space S, an action space A, a probability transition function
P:S x A— A(S), areward function 7 : S x A — R, and an initial state distribution p € A(S).
The state space is typically layered such that S = S; U S U --- U Sy, where S, is the set of
states reachable at step h. A policy 7 : S — A(.A) maps states to distributions over actions and
induces a distribution over trajectories 7 = (s1, a1, ..., Sy, am) and rewards (r1,...,7y), where
the initial state is sampled as s; ~ p, and for h = 1,..., H: ap ~ w(sp), rn = r(sp,ap), and
Sht1 ~ P(sp,ap). Welet E,.[-] and P, [-] denote expectation and probability under this process,
and E[-] and P, [-] for brevity when 7 is not explicitly mentioned.

For any policy m, we define the occupancy measures that characterize the probabilities of visiting
states and selecting actions when following 7. Specifically, the state occupancy measure d™ (sy) =
P,x[sn € 7] represents the probability of visiting state s, € Sy, under policy . Similarly, the
state-action occupancy measure d” (sp,an) = Prz[(sh,an) € 7] gives the probability of the
state-action pair (sp, ap,) occurring in a trajectory. We also define the trajectory occupancy measure
d™ (1) == P [T = 7], which is the probability of generating the exact trajectory 7 when following
policy . It is important to distinguish between d™(7) and 7 (7) = [[(,, 4,)er T(an | sn), as they
differ when the transition dynamics are stochastic.

In standard RL, the objective is to find a policy 7 that maximizes the expected cumulative reward
J(7) = Ermn[r(7)], where r(1) = Zthl r(sp,an). In many practical applications, particularly
in the context of large language models, it is beneficial to incorporate a regularization term that
encourages the learned policy to stay close to a reference policy 7.f. This leads to the KL-regularized
RL objective (Ziebart et al., 2008; Ziebart, 2010; Neu et al., 2017; Ouyang et al., 2022)

Ja(m) = Errr[r(7)] = B Error {log m(7) } =E, n [Zthl (r(sh, ap) — Blog M)} ,

Toref (T) Tref (AR |Sh)

where 8 > 0 is a regularization parameter that controls the strength of the penalty Dy (7||7ref) =
Erxr [log () }, known as the Kullback-Leibler divergence.

Trref (T)

2.2 Reinforcement Learning Methods for Large Language Models

In this section, we briefly review popular reinforcement learning methods for large language models.
For the sake of generality, we continue to use the terminology of MDPs (i.e., we use s to represent
state and a to represent action). This terminology naturally encompasses the case of large language
models in both single-turn and multi-turn interaction settings.

In the single-turn setting where © ~ p denotes the input prompt and y1,ya, ...,y denote the
output tokens, we can define s; := x and s;, = (,y1,...,yn—1) for h > 1, with a;, ==y, for
h =1,...,H. In the multi-turn setting, which consists of multiple interaction turns (¥, y{'};),
(z®,y{%)), and so forth, we can adapt the transition function accordingly. Here, y!"; is a shorthand
notation for the sequence of tokens yi”, yg'), .. ,yj,}) in the i-th turn. For instance, if a state-
action pair (s, a) contains the complete response for one turn (e.g., in a conversation with three or

more turns), where s = (@, y{\}, 2@, y$%);_|) and a = y'7, the next state would transition to

s = (xW, Yy, 2@, y(2y, @), rather than simply concatenating the previous state and action as in

the single-turn case.

Proximal Policy Optimization (PPO). PPO (Schulman et al., 2017b) introduces a clipped surrogate
objective to constrain policy updates:

TPPO(0) = E(sy, ap)~me, [min (M/Th(sh, ap), clip (M -1+ 6) Ap(sn, ah)ﬂ )

Tooq (@nlsn) Togq (anlsn)’

where Eh is the advantage estimate, and ¢ is a hyperparameter. The advantage Eh is typically
computed using Generalized Advantage Estimation (GAE; Schulman et al., 2015): Ap(sp,ar) =



> (N 6441, where 8, = rp, + Vi(snt1) — Vi(sp) is the temporal difference error and Vj is an

estimate of the value function of the KL regularized reward r(sp,, ap) — 8 log %

For LLMs, PPO has been widely used for enhancing mathematical reasoning capabilities, where
objective rewards signal the correctness of the model’s solutions.

Group Relative Policy Optimization (GRPO). GRPO (Shao et al., 2024) is a policy-based
method that, in practical implementations for LLMs like DeepSeek-R1, samples G responses
o, ...,0'? for each prompt 2 and computes advantages by normalizing rewards within each
prompt group. In the MDP terminology above, this corresponds to: si” = z ~ p, 0@ =
(af”,a%’, .. a0 0)s s = (z,a),...,a}," ), and r(z,0) = 3, r(s};’,a;’). The advan-
tage for the i-th response o (and implicitly for each token within that response) is computed
A\U) _ 7’(30,0“))—mean({r(m,o(l)),...,r(ac,o(G))})

o std({r(z,0™)),...,r(z,0(9)}) N
to prompt = as we defined above. This response-level advantage A is then used to replace the
step-wise advantage function Ay (sp,,ay) in the PPO objective 7P, but then GRPO objective
accommodates the KL-regularization at the end:

1 G 1 [oi]
N

() | 40 () | 4
a S -~ a S ~.
n MA“),clip (W’ 1—eg,1+ 8) Am} _ ﬁDKL(77||7Tref)}‘| )
0,

as: , where r(z, 0”) is the outcome for response 0"

GRPO _
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The normalization by mean and standard deviation is intended to stabilize training by reducing
variance. GRPO is often considered a simpler alternative to PPO for post-training LLMs. This
is partly because PPO typically involves training a separate critic network and incorporates more
complex mechanisms for policy updates. In the context of LLMs, the full complexity of PPO might
not always be necessary, leading to the adoption of more streamlined policy gradient methods like
GRPO.

2.3 Autoregressive Function Approximation

Having established the principles of KL-regularized RL and reviewed current RL methods for
LLMs, we now introduce the key formulation that bridges these concepts: autoregressive function
approximation. This framework allows us to naturally parameterize value functions and policies
using autoregressive models like LLMs, which is central to our proposed method.

Note that KL-regularized RL has been widely studied in classical RL literature (e.g., Schulman et al.,
2017a; Nachum et al., 2017; Haarnoja et al., 2018) and the similar idea of autoregressive function
approximation has also been introduced by Guo et al. (2022). This subsection should be viewed as a
discussion of preliminary background and unified notations that will enable our proposed approach.

Given a reference model 7,f, we first define the following modified reward function

Rp(sn, an) = "2 4 log mer(an | sn), (1
and, therefore, the original KL-regularized RL objective can be rewritten as: Jg(m) = S -
E;wr[Ra(T) —logn(7)] = B Eren [Zthl (Ra(sn,an) —logm(ayp | sh))} Here, KL-

regularization is equivalent to entropy regularization. However, we will continue to use the KL-
regularization terminology throughout the remainder of the paper for consistency.

The optimal policy for the above objective, denoted 7 = arg max, Jg (), has a closed-form solution
that takes the form of a softmax distribution,

75 (an | 5n) o Trer(an | sn) exp (@ (sman)/p),  or  w5(ap | sp) o exp (Q%B (sh,ah)) ,
where )} and Q}zﬁ are the optimal action-value functions for the original reward r and transformed
reward functions g, respectively.

‘We now formalize the Bellman operators under the shifted reward function R, and discuss the key
properties induced by the KL-regularization. For a given policy 7 and any Q-function (), we define
the Bellman operator as

(T3 Q)(snyan) = Rg(sn,an) + Ee, i ~P(lsp.an)iansi~n(lsnsn) [Q(Sht1, ant1) —logm(antt | sne1)] -



Throughout this paper, we will use Vi(s) := log . 4 e®(5:9) to denote the softmax of the given
(. With this, the Bellman optimality operator becomes

(TsQ)(sn,an) = Rg(sn,an) + Es,  ~P(|sp.an) LglAa&) Eayyyror(lsngn) [Q(Sh41,ant1) — logm(any | 5h+1)]]

=log 3, c .4 exP(Q(sp41,0))=VQ(shy1)
= Rg(sn,an) + Eqp ~p(lsp.an) Vo (snt1)]
With the above definitions, the optimal policy takes the form of the following Boltzmann distribution:

mQ(- | sn) = argmaxEq,, <r(|s,) [Q(sh,an) —logm(an | sn)] = Q) =Valsn),
TEA(A)

We can further define the KL-regularized value functions for a given policy 7:
Q5(5n,an) = Ex [RB(Sh»ah) + 3 it (Ra(snr, an) —logm(an: | sur)) ‘ (sn,an) = (Shyah)] ,

VEGn) = Ex [ S, (Ra(sn, anr) = log wlan | 1))

Sh = §h1| = Ea;,,’\/#('lgh,) [Qg(gm ah) - log 7r(ah ‘ gh)] .
The corresponding optimal value functions are Q7 = Qg’s and Vj := Vg ? . Here, Qg and Q,g are
also the fixed points of 74" and 7, respectively.

For autoregressive function approximation architectures, such as large language models, we can
directly leverage logits to parameterize (), Vi, and 7 as follows. Let 6 be the model weights. Define

’Q@(s, a) = logity(s, a), Vp(s) := softmax o logity(s, ‘), logme(a | s) == Qo(s,a) — Viy(s), ‘ 2)

where softmax o logity (s, ) == log >, 4 exp(logity(s, a)).” While we assumed here temperature to
be 1 for simplicity, any temperature can be incorporated by appropriately scaling the reward Eq. (1).

3 Trajectory Bellman Residual Minimization

In this section, we introduce our main algorithm, Trajectory Bellman Residual Minimization
(TBRM), designed specifically for large language models problems. As we discussed in Section 2.1,
the transition dynamics of large language models can be viewed as deterministic. For the remainder
of this section, we will apply the autoregressive function approximation defined in Eq. (2) and assume
deterministic transition dynamics.

Recall that Bellman error Q(sp, an) — (TpQ)(sh, ar) over state-action pairs (sy, ap,) is employed
as the proxy for controlling the performance Jz(mg) of mg. Minimizing the square of Bellman
error on (s, ap) in deterministic MDPs is equivalent for minimizing the square of Bellman residual
Q(sn,an) — Rp(sn,an) — Vo(sp41) given the (s, ap, sp4+1) tuple. This leads to the classical
Bellman residual minimization objective (BRM; Schweitzer and Seidmann, 1985; Baird et al., 1995),
which we expand using the definition of Rﬁ and autoregressive function approximation in Eq. (2):

2
£BRM (g \D| Z Z (loglte (sn,an) — (7—B|Ogit0)(8h7ah)) (3)

7€D h=1

2
1 Sh,Q .
|7 Z Z <|0g't9 Sh,Gn) — ( :0n) — log et (8n, an) — log Z exp(logity(sh+1, a))) .

T7E€D h=1 5 acA

Here D denotes data which can be either purely offline or updated online as a replay buffer. In the
context of LLMs, directly minimizing BRM may not be possible because the token-level reward signal
is either unavailable (e.g., if we assign the outcome reward to the final token) or very sparse. Crucially,
minimizing the square of per-step Bellman error as in L2fM(9) is sufficient but not necessary for
maximization of Jg(my). Indeed, a weaker control of Bellman errors over certain distributions is
sufficient for optimizing Jz(my) (see, e.g., Xie and Jiang (2020) or Corollary 4). As we prove below
(Section 3.1), it is sufficient to instead consider a trajectory-based variant of BRM,

ETBRM ‘D| Z

T€D

2
<Zlog|t9 Sh,an) (TBIOgite)(Shaah>>

h=1

2Here, softmax denotes the log-sum-exp operator for notational convenience, rather than the vocabulary
softmax layer used to produce token probabilities in language models.
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T€D

" 2
<|Ogit9<817 ay) — 7? — log meef (T) + Zlog mo(ap | sh)> , )
h=2

where the second equality used the autoregressive function approximation, i.e., log wg(ay, | sp) =
logity(an | sn) —log > ,c 4 exp(logity(sn, a)), to simplify the expression. An immediate benefit of
TBRM is that we only require the trajectory outcome r(7), rather than the process reward r(sp, ap,)
as in BRM, and credit assignment will be (provably) carried out in the learning procedure itself. In
our experiments, we update D online, and Algorithm 1 represents the exact implementation we used
in Section 4.

Algorithm 1 Trajectory Bellman Residual Minimization (TBRM)

input: Task prompt dataset Dyasx, reward function 7, reward scaling coefficient 3, reference policy
Tref With parameter 6, and number of iterations 7.

1: Initialize 0 < Oef.

2: fort =1to T do

3: Sample a batch Df,, C Diaek.

4: For each question g € D, sample a trajectory 7 from policy 7y with initial state s; = ¢,
and collect these trajectories into dataset D;.

5 Update 6 via gradient descent to minimize £7,>"™(6) as defined in Eq. (4):
1 - ’
VBW Z (logit9(51,a1) - % — log mref(T) + Zlogwe(ah | sh)> ,
¢ TEDy h=2

where logit,(s1, a1) is the raw logit of the first output token.
6: end for
7: return my.

As we formally prove in Section 3.1, TBRM is a fully off-policy algorithm with a directly optimizable
objective, and it provably converges to a near-optimal policy with any off-policy data (though the
degree of off-policyness may affect sample efficiency, Eq. (6)). In contrast, policy-based counterparts
are usually on-policy in nature: policy-gradient-based algorithms (like REINFORCE) require to
sample new trajectories in an on-policy manner. PPO-like algorithms require on-policy actions for
their actor components but optimize a surrogate loss instead. PPO’s critic update also requires on-
policy rollouts. In contrast, the off-policy nature of TBRM removes the need for additional techniques
such as importance sampling ratios, clipping, critic models, or (multiple) on-policy rollouts.

Readers may question: why hasn’t this simple variant of BRM received attention in the literature?
We conjecture that TBRM has been suspected to suffer from the curse of horizon, at least from the
theoretical perspective. In the theory of offline RL (e.g., Chen and Jiang, 2019; Xie and Jiang, 2020),
a key technique is to control the expected Bellman error |E~[> ", ((73Q)(sh,an) — Q(sh,an)))]|
on a certain (unavailable) distribution d" by instead minimizing the per-step squared Bellman error
YL EL(T3Q)(snyan) — Q(sn,an))?] on the data distribution d* generated by 4. This step only

incurs the cost of the state-wise distribution-shift %. When it comes to trajectory-level data,
minimization of the square of expected Bellman error E,,[(>°,, [(T3Q)(sh, an) — Q(sn,an)])?], as

in TBRM, would appear to incur the trajectory-level distribution-shift cost IIj ZEZ;}Z;;, and thus

possibly cause an exponential blow-up with horizon H compared to the state-wise case. However,
the recent theoretical results (Jia et al., 2025) challenge this conventional wisdom and indicate that
the Markov property can be the key to avoiding trajectory-level distribution-shift when conducting
trajectory-level change of measure. In Section 3.1, we formally prove that TBRM indeed only incurs
state-wise distribution-shift regardless of its trajectory-level objective, and show that TBRM can
efficiently converge to a near-optimal policy with finite-sample analysis.

Comparison with other related algorithms. We note that algorithms with similar structure to
TBRM have been derived previously from diverse perspectives in both deep RL (Haarnoja et al.,
2017; Schulman et al., 2017a; Nachum et al., 2017; Haarnoja et al., 2018) and LLM applications
(Guo et al., 2022; Ethayarajh et al., 2024; Team et al., 2025; Ji et al., 2024; Wang et al., 2024).
This convergence is unsurprising, as TBRM and related algorithms fundamentally aim to minimize
Bellman error, albeit through different formulations and optimization approaches. However, to the



best of our knowledge, TBRM is the only optimization algorithm (rather than iterative ones like
Q-learning; Appendix F demonstrates the benefit of optimization over iteration) that requires only
one rollout per prompt among all of these approaches. Appendix E provides a detailed comparison of
TBRM with other related algorithms. The present paper formally establishes finite-sample guarantees
for TBRM.

3.1 Theoretical Analysis of TBRM

We use O to denote the parameter space, equipped with norm ||-||. We assume the following standard
realizability condition, which can be relaxed to hold approximately (see, e.g., Cheng et al., 2022).

Assumption 1 (Realizability). There exists 0* € © such that Qg = Q™.

Motivation. We first show that 6* is the population minimizer of the TBRM loss (4) through
Bellman equation. Under the parametrization (2), Qg+ (s,a) = logity. (s, a) is the optimal soft

r(s,a)

Q-function for the transformed reward function Rg(s,a) = =5~ + log mef(a | s), and the optimal

value function is given by Vp(s) = Qg+ (s,a) — logmps(a | s). Therefore, the Bellman equation
becomes (deterministically for a trajectory 7 drawn from the MDP)

Qo+ (sh,an) = Rg(sn,an) + Vo (sn+1) = Rg(sn, an) + Qo+ (Sht1, ant1) — log mos (ant1 | Spy1)-
Then, summing over h = 1,2, --- , H — 1 for any admissible trajectory 7, we have

H-1
0= > [Qo+(sn,an) — Rs(sn,an) — Qo+ (sni1,ant1) +log mos (ans1 | sni1)]
h=1
H
= logity. (s1,a1) — R(7) + Z log mo+ (an | sn),
h=2

where R(1) = % + log meef(7) is the trajectory transformed reward. Hence, it holds that

LTBRM(9*) = 0 deterministically, and any approximate minimizer of the loss £1L2RM must also attain
low trajectory Bellman residual.

The analysis above establishes a necessary condition for the optimal soft Q-function Q-+ (s, a) or
logity. (s, a). Beyond this, the sub-optimality of a policy 7y can also be related to the trajectory
Bellman residual: through our analysis in Appendix B, we can show that for any § € ©,

JB(W*)—Jg(ﬂ'g) <28 max

me{n*,mo}

Er

H
logityg(s1,a1) — R(T) + Z log mg (ap, | sh)]
h=2

Therefore, it remains to relate the expected trajectory Bellman residual under the off-policy distribu-
tion induced by i and any policy 7 through change-of-trajectory-measure.

Change-of-trajectory-measure. A key to our analysis is the following improved version of the
change-of-trajectory-measure lemma (Jia et al., 2025). Let x? (P || Q) = Ep[dP/dQ] — 1 be the
x?-divergence. Let d7 (), d}(-) € A(Sh x A) denote the occupancy measures of Markovian policies
m and L.

Lemma 1 (Change-of-Trajectory-Measure Lemma). Given an MDP M = (H,S, A, P,r,p) and a
policy ,

(Ex [, F(snan)])?
Sup s E, {(Zle f(sh,ah))Q]

<1003 (df | ), 6)
where the supremum is over all measurable functions f : S x A — R.

The proof of Lemma 1 significantly simplifies the one in Jia et al. (2025), as shown in Appendix C.
dp (sn,an)
di (sh,an)’

As a direct corollary, the RHS of Eq. (5) can be further upper bounded by H - maxy, 5,
improving upon Jia et al. (2025) by a factor of H?2.



Our main result will be stated in terms of the following concentrability coefficient of the data
collection policy p:

Cconc(.u) =1+ IOHEaGX }{2?}% X2 (d;;g ” dZ) > (6)
a notion weaker than the commonly-studied L,-concentrability Ceonc,oo (£t) 1= MaXy j s.q %.
B (s,

The proof of the following theorem is deferred to Appendix D.

Theorem 2. Suppose bisa parameter that satisfies £1EfM (5) — infpee LEM(0) < opt, data D
are i.i.d. according to u, and Assumptions 1, 2 and 3 hold. Then, with high probability, it holds that

Jp(m*) — Jg(mp) < 5<\/HCCOHC(H) <5250pt + H2(|121)H|1(9)>>’

where dim(©) is the measure of the dimension of © defined in Assumption 3.

4 Experiments

In this section, we present experiments to evaluate the performance of TBRM on reasoning tasks.
We compare TBRM against two policy-based methods: GRPO and PPO. The codebase for the
experiments is publicly available at https://github.com/rlx-1lab/TBRM.

4.1 Experiment Setup

Datasets and models. We train our models using the prompt set from DAPO (Yu et al., 2025,
Apache license 2.0), which comprises approximately 17.4k math problems sourced from the AoPS?
website and official competition homepages. All problems are standardized to have integer answers.
To demonstrate the generality of our method across model scales, we conduct experiments using
Qwen2.5-Math-1.5B and Qwen2.5-Math-7B.

Evaluation. We assess the models’ reasoning abilities on several standard math benchmarks:
AIME24, AIME25, AMC23, MATHS500 (Hendrycks et al., 2021), Minerva Math (Lewkowycz et al.,
2022), and OlympiadBench (He et al., 2024). For MATH500, Minerva Math, and OlympiadBench,
we generate a single response per problem and report the overall accuracy, denoted as Avg@1. For
the smaller benchmarks AIME24, AIME25, and AMC23, where performance can fluctuate due
to limited data, we generate 32 responses per problem and average the accuracies to mitigate the
intrinsic randomness of LLM outputs; this metric is denoted as Avg@32. Responses are sampled
with temperature O for Avg@1 and temperature 1.0 for Avg@32. We employ Math-Verify (Kydlicek,
2025, Apache-2.0 license) as the verifier.

Implementation details. We implement our methods and baselines using the VERL framework
(Sheng et al., 2024, Apache-2.0 license), following most of the recommended hyperparameter settings
for GRPO and PPO. To balance performance and efficiency, we use a prompt batch size of 128 and
a response length of 2048 tokens per training step. For PPO, we generate one response per prompt
(n = 1), while for GRPO, which requires multiple rollouts, we generate four responses (n = 4). On
TBRM, we experiment with both settings (n = 1 and n = 4). All responses are sampled with a
temperature of 1.0. For TBRM, we set 5 = 0.002 across all experiments. All models are trained for
the same number of steps. More details of our implementation can be found in Appendix G.

4.2 Main Results

The effectiveness of our algorithm is demonstrated in Table 1. Across six challenging math bench-
marks, TBRM consistently matches or surpasses its comparable baselines. Specifically, with a single
rollout per prompt, TBRM,,—1 achieves higher accuracies than PPO,,—; on most benchmarks and
matches the performance of GRPO,,_,, despite the latter using four times as many samples during
training. Notably, our Qwen2.5-Math-1.5B-based model attains 13.2% accuracy on AIME24, outper-
forming both the Qwen2.5-Math-7B base model and the 1.5B GRPO,,_4 model. When increasing
the number of sampled responses to four, TBRM,,—, surpasses baselines by a larger margin. On
AIME24, our 1.5B model reaches 14.3% accuracy, while the 7B model further advances to 30.5%,
exceeding GRPO,,—4 by 1.6%. Additional results with more rollouts are presented in Appendix H.5.
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Method AIME24 AIME25 AMC23 MATHS00 Minerva Math OlympiadBench

Avg@32 Avg@32 Avg@32 Avg@1 Avg@1 Avg@1
Qwen2.5-Math-1.5B 5.0 1.9 249 63.4 16.5 30.8
PPO n=1 11.4 4.5 46.6 72.2 26.8 36.0
TBRM 1 = 1 132 5.6 48.6 722 Wi 35.7
GRPO n =14 13.0 7.1 49.9 71.2 28.7 37.5
TBRM n =14 14.3 6.9 52.0 72.2 30.5 36.1
Qwen2.5-Math-7B 10.6 2.8 31.6 67.4 13.2 29.3
PPO n=1 254 13.2 63.4 76.4 338 39.3
TBRM 1 = 1 24.1 132 63.4 78.6 36.4 415
GRPO n =14 28.9 10.7 66.8 79.8 36.0 425
TBRM n =4 30.5 13.1 68.4 79.8 36.4 44.1

Table 1: Performance of various methods on math benchmarks, where n denotes the number of
responses sampled per prompt during training. For each benchmark, the highest accuracy across all
methods is bolded, and the highest accuracy among methods with n = 1 is underscored.
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Figure 1: Figure 1(a) shows average learning accuracy across benchmarks for PPO, GRPO, and
TBRM. Per-benchmark results can be found in Appendix H.1. Figure 1(b) demonstrates model’s
ability to engage in extended reasoning at test time with R1 template.

Figure 1(a) illustrates the step-wise average performance across all benchmarks for TBRM and
baseline methods. While all approaches demonstrate improved reasoning with increased training data,
TBRM consistently exhibits a superior convergence rate and achieves higher absolute performance
than its counterparts. Notably, TBRM,,_, attains the highest performance throughout nearly the
entire training duration. Futhermore, TBRM,,—; outperforms PPO,,—; and performs similarly to
GRPO,,—4, especially on 1.5B model, with only a mild gap in their results.

4.3 Training Dynamics and Performance Analysis

Reward. We present the training reward curves in Figure 2(a), which shows that TBRM achieves
comparable reward levels to its baselines. Furthermore, TBRM demonstrates a faster convergence
rate during early training. This is particularly evident with the 1.5B model, where TBRM attains
significantly higher rewards than PPO and GRPO.

Response length. Prior work has shown that reinforcement learning can enhance a model’s ability
to solve increasingly complex reasoning tasks by leveraging extended test-time computation, as
reflected in progressively longer responses during training (Guo et al., 2025; Zeng et al., 2025; Liu
et al., 2025). We find that TBRM exhibits a similar capability. Specifically, we adopt the prompt
template from DeepSeek-R1 (Guo et al., 2025) and apply TBRM training to Qwen2.5-Math-1.5B.
Following previous studies (Zeng et al., 2025), we include only responses that terminate under normal
conditions—excluding those truncated due to length limits—as truncated outputs often suffer from
repetition and incompleteness. As illustrated in Figure 1(b), TBRM encourages the model to explore
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Figure 2: Figure 2(a) demonstrates the increment of rewards during training. Figure 2(b) is a
comparison of maximal GPU memory consumption and per-step time cost across different methods
with base model Qwen2.5-Math-7B. Time cost is segmented into key partitions, with time partition
labels defined in Appendix G.2 (Appendix G.2).

and refine its reasoning more deeply over time, enabling models to take advantage of extended
computation at test time to improve reasoning performance.

Training efficiency. TBRM offers substantial implementation simplicity relative to existing ap-
proaches. Specifically, it eliminates the need for critic models V;;, as required by PPO, and avoids the
necessity of sampling multiple responses per prompt (n > 1), as in GRPO. Moreover, due to its fully
off-policy nature, TBRM does not require multiple updates per training step. We conduct experiments
using Qwen2.5-Math-7B under consistent training conditions (see Appendix G.2 for details) and
report the peak GPU memory usage and wall-clock time per training step for each method in Figure
2(b). Overall, TBRM exhibits matched or lower resource consumption compared to its counterparts.
When n = 1, TBRM,,—; uses 33.3% less GPU memory than PPO,,—; and achieves a 1.3x speedup.
For n = 4, TBRM,,—4 demonstrates comparable resource usage to GRPO,,—4. Notably, TBRM,,—1
achieves a 3.1x training speedup relative to GRPO,,—, while yielding similar performance despite
sampling only a single response—GRPO,,—4 outperforms TBRM,,—; by only 0.80% with the 1.5B
model and 1.27% with the 7B model on average across math benchmarks.

Extended Analysis. We further analyze the responses generated by the TBRM models and identify
several notable reasoning patterns, including verification, backtracking, decomposition, and enu-
meration. Ilustrative examples of these patterns are provided in Appendix H.2. In Appendix H.3,
we compare TBRM with the classical, token-level BRM formulation and show that directly apply-
ing BRM to LLMs leads to unstable training and reward collapse, underscoring the importance of
the trajectory-level design. In Appendix H.4, we evaluate TBRM on a suite of non-mathematical
reasoning tasks, demonstrating its ability to generalize beyond the mathematical domain.

5 Conclusion

In this paper, we present TBRM, a simple yet effective value-based RL algorithm for enhancing LLM
reasoning capabilities. TBRM operates efficiently with just a single rollout per prompt and employs
a lightweight optimization objective, eliminating the need for critics, importance-sampling ratios,
or clipping mechanisms that are commonly required in policy-based approaches. Our theoretical
analysis demonstrates that TBRM is guaranteed to converge to a near-optimal policy using off-policy
data, while our empirical results show its effectiveness across standard mathematical reasoning
benchmarks. We hope this work may contribute to expanding interest in value-based approaches
for LLM reasoning, potentially complementing the policy-based algorithms that currently dominate
LLM post-training methods.
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A Related Works

Value-based RL. Value-based methods are arguably the oldest and most widely studied concepts
of reinforcement learning (RL) algorithms (Bellman, 1957; Samuel, 1959). They seek to learn an
approximation of the optimal state-action-value function @™ and act greedily with respect to it, in
contrast to policy-gradient methods that directly optimize a parameterized policy. Early works such
as Q-learning (Watkins and Dayan, 1992), SARSA (Sutton et al., 1998), Approximate Dynamic
Programming (Bertsekas and Tsitsiklis, 1996) established the foundations, while the successive
studies introduced function approximation (Sutton, 1988; Bertsekas and Tsitsiklis, 1996), eligibility
traces (Singh and Sutton, 1996), and residual updates (Baird et al., 1995). The combination of
value-based ideas with deep neural networks culminated in the Deep Q-Network (Mnih et al., 2015),
which sparked a wave of extensions including Double DQN (Hasselt, 2010; Van Hasselt et al., 2016),
distributional learning (Bellemare et al., 2017), and the integrative DQN-based agent (Hessel et al.,
2018).

KL-regularized RL. KL-regularized (or entropy-regularized) reinforcement learning (RL) orig-
inated from the maximum-entropy formulation of Ziebart et al. (2008); Ziebart (2010); Neu et al.
(2017), where a Kullback—Leibler (KL) penalty encourages policies to stay close to a reference
distribution while optimizing reward. Different styles of algorithms have emerged from this line
of work, including Soft Q-Learning (SQL) style algorithms such as SQL itself (Haarnoja et al.,
2017; Schulman et al., 2017a; Guo et al., 2022), Soft Actor-Critic (SAC) style algorithms like PCL
(Nachum et al., 2017), SAC (Haarnoja et al., 2018), DQO (Ji et al., 2024), and OREO (Wang et al.,
2024), Point-Wise Direct Alignment Algorithms (DAA-pt) such as KTO (Ethayarajh et al., 2024),
DRO (Richemond et al., 2024), and an online policy mirror descent variant (Team et al., 2025), and
Pair-Wise Direct Alignment Algorithms (DAA-pair) like DPO (Rafailov et al., 2023, 2024) and IPO
(Azar et al., 2024). In Appendix E, we provide a comprehensive discussion of the differences between
TBRM and these related algorithms.

RL training for LLM reasoning. RL has played a pivotal role in the post-training of LLMs. The
most prominent early example is reinforcement learning from human feedback (RLHF; Ouyang
et al., 2022; Bai et al., 2022), which uses PPO to align LLMs with human preferences. A series of
subsequent works introduced contrastive learning objectives based on pairwise datasets (Rafailov
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et al., 2024; Zhao et al., 2023; Azar et al., 2024; Tang et al., 2024), or verification-driven objectives
using a binary verifier (Ethayarajh et al., 2024; Chen et al., 2025). The release of OpenAI’s Ol
(Jaech et al., 2024) and DeepSeek’s R1 (Guo et al., 2025) marked a new era of RL algorithms for
LLMs—particularly for reasoning tasks—by framing the response generation process as a Markov
Decision Process (MDP) and using rule-based verifiers to provide reward signals. Numerous studies
have demonstrated and analyzed the effectiveness of RL algorithms in enhancing LLM reasoning
capabilities, with PPO and GRPO emerging as the most widely adopted approaches. Prior studies,
such as SimpleRL-Zoo (Zeng et al., 2025), Open Reasoner Zero (Hu et al., 2025), Light-r1 (Wen
et al., 2025), Logic-rl (Xie et al., 2025), and Skywork-OR1 (He et al., 2025), fall in this category.
Variants of these algorithms have been proposed to further improve performance (Zhang et al., 2025).
For instance, DAPO (Yu et al., 2025) enhances GRPO with techniques like clip-higher, dynamic
sampling, and token-level policy gradient loss, achieving strong results on AIME24. Dr. GRPO (Liu
et al., 2025) addresses optimization bias in GRPO to improve token efficiency, while CPPO (Lin et al.,
2025) reduces its computational cost by skipping rollouts with low advantages. VC-PPO (Yuan et al.,
2025b) resolves PPO’s challenges with value initialization bias and delayed reward signals through
value pretraining and decoupled-GAE. Building on this, VAPO (Yuan et al., 2025a) improve DAPO
further by incorporating selected techniques from VC-PPO. Additionally, several works explore
REINFORCE (Williams and Peng, 1991; Williams, 1992) style RL algorithms, including ReMax (Li
et al., 2023), REINFORCE++ (Hu, 2025), RAFT++ (Xiong et al., 2025), and RLOO (Kool et al.,
2019; Ahmadian et al., 2024). However, all these approaches rely on policy-based methods or their
variants. In contrast, our method adopts a value-based, off-policy RL approach that is principled,
efficient, and theoretically grounded.

B Technical Tools

We now present Lemma 3 as a soft performance difference lemma with arbitrary reference function.
Lemma 3 holds generally for KL-regularized RL, which uses a slightly different form of Bellman

operator defined as below,
m(ant1 | Snhy1)
(T7 £ 00) = 80 00) 4 Eap ) iy {5 aner) = Flog e Lt

We present this slightly different version as this lemma is more generally applicable than the results
in this paper.

Lemma 3 (Soft Performance Difference Lemma via Reference Function). For any function f as well
as any policies ™' and m, we have

H

Jp(n") = Jg(m) = Eqt lz ((TF £)(sn,an) = f(sn, an))

h=1

H

Z (sn,an) — (T§ f)(Smah))]

H

Z <f(5h, ap) — Blog M — Eapr(lsn) [f(sh, ap) — Blog W(ah'Sh)} )] ,

+ K+
i Pt Tref (an | sh) Teef (an | sn)

Proof of Lemma 3. We first prove the soft performance difference via QF as the reference,

Ja(m') = Ja(m)

—-F i <r(s an) — Blo M) — Js(m)
=E P hs Qh g et (@ | 51) B
[ 7l (ap | sp)
=E_; Z (r (8n,an) — Blog ————= — Vi (sn) + Vg(sh)) — Jg(m)
L h—1 7Tref(ah | Sh)
s ﬂ'T(ah | Sh)
=K.+ hz::l <7" sh,ap) — Blog m - VBW(Sh) + VBW(Sh)) —Esinp [Vér(sl)}
[ WT(ah | Sh)
=FE_: Z <r (sn,an) — Blog - Vﬂ’r(sh) + Vg(sh)) - Vi (s1)

Tref (ah | Sh)

=~
Il
—
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H
. m(an | s .
=E_+ Z <r(sh,ah) + By, nP(lsnan) [VA (Sn41)] — Blog - f((ahh| shh)) v (Sh))]
h=1 re
B |5 (Q5(sman) — plog Ton L) g 0% ) + Flog L) Y]
i e g Mrer(an [ sp) - orTTUls) AR Tref(an | Sn)

Next, consider an arbitrary reference function f, we define the augment reward r ¢ as

. m(ant1 | Sni1)
Tf(shv ap) = f(sn,an) — Esh_H~’P(»|sh,ah),ah+1~7r(-\sh+1) |:f(5h+17 ant1) — Blog m
= f(S}H ah) (% f)(sha ah) + T(Sha ah)

for any (sp, ap) € Sp X Ap,. This means f is the fixed point of 7;3“ with replacing reward function
7 by r7. We use Qg,rf to denote the soft Q-function with replacing reward function r by r, and

we immediately have f = Q. . We also use Jg,, () to denote the soft return of policy 7 with
replacing reward function r by 7. Then

Ja(wh) — Jg(m)
= Ja(m T) — Jgr, (1) + T, (71) = T, (%) + Jpr, (1) = Jp(7)

H
Z r(snyan) = 7s(sn, an)) > (ry(snan) —T(Sh,ah))l

— h=1

+E7r

H (
7w (ap, | sp) [ w(an | sn) })
+E, Snyan) — Blog ———5 —Eg r(s Sh,an) — Blog —————
f }; (f( hyan) = B 8 reec(an | 5n) pr(clsn) [f(8nyan) — B 8 c(an | 5)
(by the soft performance difference via reference as f = ngrf)
H

+ ZEd" (sn,an) = (T3 f)(sn, an)]

> ((TF F)(snyan) = f(sn,an))

mh(ap | Sh) [ 7r(ah | Sh) :|>
+E, Shyap) — Blog ———— —E,, wn(.|s Sh,ap) — Blog ————— .
T ; (f( h h) B g ﬂ'ref(ah | Sh) h ( | h) f( h h) B g Wref(ah | Sh)
This completes the proof. O

When specializing to the Bellman operator in this paper as in Section 2.3, Lemma 3 becomes

H
M =E, + [Z ((%”Q)(sm ap) — Q(sh,ah Z (sh,an) 723 Q) (sh, ah))‘|

ﬂ h=1

H

+ Bt | Y (Qsnyan) —logmi(an | sn) = Eapmn(sy) [Q(sn, an) —logm(an | Sh)])] :
h=1

As corollary, we have the following upper bound on the sub-optimality of any policy induced by a
value function.

Corollary 4. Suppose that the policy T = mq is induced by a value function @, i.e.,

cals) - (@0
Y eacxp Qs )

Then it holds that

H
Ja(m*) = Js(7 )<25ﬂ€r?g><ﬂ} Ex [ > (Q(sn,an) — (T5Q) (Smah))H
h=1

Proof of Corollary 4. By Lemma 3, we have
Jp (") — J5(7)
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( )(8n,an) — Q(sh, an) )

+ BEz lz ( snyan) — (Tg' Q)(Sh,ah))]

H
+ BEr+ [Z ( snyan) —log T (an | sn) — Egy wz( s, [Q(sh, ap,) — log 7 (aj, | Sh)])]

h=1
H H
< BExe | (TQ) (snyan) — Q(sn,an)) | + BEz lz (Q(sn, an) — (T5Q) (Siuah))]
h=1 Y h=1
<26 mﬁx Z (snyan) — (TQ) (sn,an))

where the first inequality follows from the definition that

7(- | sn) = argmax Eqr <, [Q(sn, ) —logp(ay)],  Vsn € Sp,
PEA(A)

and hence

Eaprrs (fsn) [Q(sn, an) —logm*(an | sn)] < Bay wz(fs,) [Q(sh, ap,) —log T (ay, | sn)] .

C Change of Trajectory Measure with Concentrability

We first state the following lemma, which follows immediately from the definition of y2-divergence,
see e.g. (Polyanskiy and Wu, 2025, Eq. (7.91))

Lemma 5. For distribution P,Q € A(X) and function F : X — R such that Eg[F(X)] = 0, it
holds that

(EpF(X)* <X (P Q)-EQF(X)*.

Proof of Lemma 1. We only need to prove that for any function f : S x A — R,
H 2 H 2
( Z Sh, @h 1) < <1 + ZXQ (dp || d™) > Tret <Zf Sh, Gh ) )

h=1 h=1
First of all, we construct function f :S — Ras

H

> Flsnr,an)
h'=h
Then, it is direct to verify that for h € [H], sj, € S,

f(slz) = Eu [f(3h7ah) + ,]E(Sh-‘rl) | Sh} )

where we adopt the notation that sz is a deterministic terminal state and f (sg+1) = 0. Then, we
expand

s;;| s Vh € [H},Sh e Sy. (8)




+Ey J(s1) (f(snyan) + F(sni1) — f(sn))

1<h<H

+E, > (Fswran) + Flswia) = F(sn)) (f(snoan) + f(snia) = F(sn))
1<h/<h<H

Therefore, using the Markov property, it holds that for any h € [H],
E, [f(smah) + f(sh+1) - J?(Sh)\Shah T 75h} =E, [f(sh»ah) + f(5h+1) ‘ Sh} - f(sh) =0

and hence we can deduce that

H 2
<Z f(sh»ah)> =E,
h=1

Next, for every h & [H], we apply Lemma 5 on the function (sh, an, sh+1) = f(sn, an) — f_(Sh) +
f(sh41) to derive

H

Z (Sh,an) + f(snt1) — f(sh))ﬂ . 9

(Ex [£(snan) = Flsn) + Flsnen)])?
< (dF | ) B [ (s >—f<sh>+f<sh+1>)2}, 1o
where we again use the fact that E,, [ f(sp, an) + f(sh+1) f(sn)] =
Furthermore, we note that E. f(s1) = Es,~,f(s1) = E, f(s1), and hence
(Ewﬂsl))%(m(sl)) < E,.f(s1)%. (11)

Therefore, combining the inequalities above, we have

H 2
(Eﬂ Zf(%ﬂh)])
h=1
(f(sl) + D Er [f(sn,an) — f(sn) + f(5h+1)]>
h=1
— H — —_ 2 °
(\/]E,Lf(81)2 + Z \/X2 (dr |l dy)-E, [(f(Sh,,ah) — f(sn) + f(snt1)) D
(1 + ZX aldy ) ( uf(s1 Z w (f(snyan) — fsn) + f(3h+1))2>
2
@ <1+ZX2( all d“ [ Zf%ﬂh) ,
h=1
i)

uses Cauchy-Schwarz inequality, and (iii) uses Eq. (9).
O

INS

,\
INS
=

where (i) uses Eq. (10) and Eq. (11), (
Hence Eq. (7) is verified.

Recall the definition of state-action concentrability (e.g. Eq. (5) in Jia et al. (2025)):

dﬂ(sh ah)
Cea(m;p) = max  sup  —pt2 2
sa( ) he[H] s,€8,,an €A dj, (Sha ah)

We have following direct corollary of Lemma 1, after noticing that the x? divergence can be upper
bounded by the state concentrability. However, we remark that the state concentrability might yield a
much more pessimistic bound compared to the upper bound of Lemma 1.
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Corollary 6. Given MDP M = (H,S, A, P,r,p). We use d};(-),d},(-) € A(Sy x A) to denote the
occupancy measure of the MDP under policy m and ji. Then we have

s <]E7r [Zthl f(sn, ah)D2
7 m (S fnan) |

where the supremum is over all functions f : S x A — R.

S - Csa(ﬂ-; /”')a

Proof of Corollary 6. In view of Lemma 1, we only need to verify that

142 (df, || d}y) < Cea. 1)
‘We have
T dw<8haah)2
1+X2(hH dZ): Z m
snESh,ancA N hs @h
S o) Cutrs) =t
ShESh,anEA
and Eq. (12) is verified. .

D Proof of Theorem 2
Recall that the TBRM loss defined in Eq. (4) is given by

I 2
1
E%BRM (0) = ﬁ Z (Iogite(sl, ay) — % —log mref(7) + Z log g (ay, | sh)> . (13)
T€D h=2
In the following, to simplify presentation, we define
. r(s1,a
fo.1(s1,a1) = logity(s1,a1) — % — log mref (a1 | s1),
r(sp,a
fg}h(sh,ah) = 10g71'.9(ah | Sh) — (hﬂh) — 10gﬂ'ref(ah | Sh), Vh > 1.
and
. r(r) -
fo(T) :=logity(s1,a1) — 5 log mref (T) + Z log g (an | sn)

h=2

H
= fon(snan), VT =(s1,a1,---,sm,an).
h=1

Uniform convergence. Before applying Lemma 1, we need to first relate the empirical loss £12fM
to the population loss. We introduce the following assumption on the parametrization.

Assumption 2 (Bounded and smooth parametrization). There exists constant Cq > 1 and parameter
Le such that for any 6 € ©, it holds that Vs € S, a € A,

Co
ﬁ )

where ||-||, is the dual norm of ||-||. We also assume |log mef(a | s)| < %9 VseS,aec A

[logit,(s, a)| < [Vlogity(s, a)l, < Le,

Lemma 7. Fix§ € (0, 1). Suppose that Assumption 2 holds. Then with probability at least 1 — & (over

the randomness of the dataset D),
Estat(IV)
Ernnfo(r)* < 2L57(0) + =552,

where the statistical error g, (IN) is defined as

log(N(©,a)/d)
s HL@,Ba>

where ¢ > 0 is a large absolute constant and o > 0 is a fixed parameter.

gstat(N) =C- CéH2<
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The above upper bound can be further simplified by the standard assumption on the covering number
of ©.

Assumption 3 (Parametric function class). The parameter space © C {6 € R? : ||0|| < R}. In this
case, we write dim(©) = d.

Under Assumption 3, it is clear that log NV (©, ) < O(dlog(1/a)) for all & > 0 (see e.g., Wain-
wright (2019). Therefore, Lemma 7 implies that eg,¢ (V) = HWZ (up to poly-logarithmic factors).

Bounding the sub-optimality. Under Assumption 1, it is clear that fyp« = 0 and hence
LIBRM(9*) = 0 (as we have argued in Section 3.1). Therefore, using the condition that

LTBRM (5) — infpeo LIERM(0) < £4pt, we have

Erwuf@‘(T)z < 2eopt + /B_Qestat(N)~

In the following, we denote 7 := 7y, Q(s,a) := logitz(s, a), and V be the corresponding value
function. Then, by Corollary 4, we have

Note that the MDP is deterministic, and hence (7};@) (sh,an) = Rg(sn,an) + V(shi1) holds
deterministically. Therefore, for any fixed policy 7, we have

H

> (@(Smah) - (778@) (Shaah))

Jp(n*) = Jp(7) <26 max_

me{m*, 7}

E, EH: (Q(Sh,ah) - (723@) (Sh,ah))]

Lh=

—

—E, i( Q(sn,an) Rﬂ(Sh,ah)—‘A/(ShH))]

Lh=
' H H N N
=Ex |Q(s1,a1) Z (snran) + > {Q(sh, an) — V(Sh)]
L h=1 h=
_/\ H 1
=E; [Q(s1,a1) — Ra(7) + Zlog my(an | sn)| = Ex[f3(7)].
L h=1

Further, by Lemma 1, it holds that for any 7 = my,

2 _
(Ew [fé\('r):l) S HCCOI]C (,LL) : ETNp,fé\(T)Q S HCconc (,U/) (250pt + ﬁ 2?'l-stat(-N')) .
Therefore, we can conclude that

Jﬂ (7T ) JB( ) < 2/8 er?_f?‘xﬂ \/]Eﬂ' [f@(T)] < 2\/Hcconc(ﬂ) (2ﬁ2€opt + 5stat(]\/v))~

This is the desired upper bound. O

D.1 Proof of Lemma 7

By Assumption 2, it holds that |fy(7)| < B := QCOH for any € © and any trajectory 7. Using
Freedman’s inequality with the standard union bound we have the following: with probability at
least 1 — § (over the randomness of the dataset D), for all § € ©,

log N'(F,a) +1og(1/6) +Bla>
N b

B fo(m)? < 2L0BRM(9) + cOB2<

where F = {fp : 0 € O} is the function class induced by ©, and ¢y > 0 is an absolute constant.

Next, for any fixed trajectory 7, it holds that

H

Vo lo(7) = Vologity(s1,a1) + Y Vologmg(an | sn)
h=2
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H

= V9|Oglt9 S1, a1 Z [V9|Oglt9 Sh, ah) EG;LNWB(‘|S}L)V9|Ogit9(sh, a%)} .
h=

Hence, we can upper bound ||V fo(7)

I, < 2H Lg. This immediately implies that
Ifo = forlle = sup1fo(7) — for ()| < 2HLe |10 - ¢"],  V6,6" € ©.

Therefore, we have

[0
N(F.a) < N(@, ML@)

Combining the inequalities above and rescaling o <— 2H Lga completes the proof. O

E Comparison with Related Algorithms

In this section, we compare TBRM with other related algorithms in detail. We group the related
algorithms into the following categories:

* Soft Q-Learning (SQL) Style: SQL (Haarnoja et al., 2017; Schulman et al., 2017a; Guo
et al., 2022)

* Soft Actor-Critic (SAC) Style: PCL (Nachum et al., 2017), SAC (Haarnoja et al., 2018),
DQO (Ji et al., 2024), OREO (Wang et al., 2024)

* Point-Wise Direct Alignment Algorithms (DAA-pt): KTO (Ethayarajh et al., 2024), DRO
(Richemond et al., 2024), online policy mirror decent variant (Team et al., 2025)

¢ Pair-Wise Direct Alignment Algorithms (DAA-pair): DPO (Rafailov et al., 2023, 2024),
IPO (Azar et al., 2024)

It is important to note that the present paper primarily addresses LLM reasoning in environments
where the state space is tokenized and the base model operates autoregressively. Several algorithms
mentioned above were initially developed for continuous control domains such as robotics; however,
our analysis considers only their adaptation to the discrete, tokenized setting relevant to language
models, as in this paper. Given space constraints, we restrict our discussion to the fundamental
principles underlying each algorithmic category rather than providing exhaustive implementation
details.

We first present Table 2 to summarize the key differences between TBRM and other algorithms. Note
that this comparison is only for algorithm design; the consequences of these differences for theoretical
guarantees are likely to be more significant. However, given that TBRM is the only algorithm here
with established finite-sample guarantees under the more general MDP setting, we will leave the
theoretical comparison to future work.

Algorithms Optimization Single Rollout Single Model Training Traj. Reward Allowed

SQL X v v X
SAC 4 4 X X
DAA-pt v X v v
DAA-pair v X v v
TBRM v v v v

Table 2: Comparison between TBRM and related algorithms in terms of algorithm design.

For the ease of comparison, we rewrite the loss function of TBRM as follows, by the definition of the
autoregressive function approximation:

2
r(r
LIERM () = |D| Z <|0g|t()(517a1) — % — log meef (T Zlogm} ap | sh)>
T€D
2
Z Vo(s1) 7(—+ilog ahlsh) .
|D| = B Tref (@n | Sh)
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Comparing TBRM with Soft Q-Learning Style Algorithms. The soft Q-learning based algo-
rithms are typically iterative algorithms, formulated as two different versions: single-step case and
multi-step case. We consider the loss used in Guo et al. (2022) which is motivated by path consistency
learning (PCL; Nachum et al., 2017). The single-step case is then formulated as

2
Op 1 aurgmln./JSQ"s 0;0,) == ‘ Z Z <V9 Sh) ( h @) +logM -V, (Sh+1)) )

7D h=1 6 Wref(ah ‘ sh)

while the multi-step case is formulated as

O11 argmm ESQL ™(0;6,)

Wref(ah’ | sp

TED h=1 '=h h'=h

If we want to exactly match the original loss of soft Q-learning (Haarnoja et al., 2017; Schulman
et al., 2017a), then these should be rewritten as

2
Ort1 < argmlnﬁsQLs 0;0:) |D\ Z Z (Ioglt() sh) r(sn, an) —log met(an | sn) — Vo, (Sthl)) )

7€D h=1 ﬂ
H (w>a H
Ory1 argmln [,SQLm 0;0;) = |D\ Z Z logit, (sn) Z h h — log mref(an | sn) + Z
€D h=1 '—h h!=h+1

There can be a more general multi-step version, which blends the multi-step return in E%QL'"“ and

the value bootstrap in LSDQL'S, but we omit it here for brevity as our existing argument would directly
extend to this case.

From the derivation above, we can identify two key distinctions between TBRM and soft Q-learning
based algorithms: 1) TBRM employs direct optimization rather than an iterative approach, and 2)
TBRM'’s loss function operates on complete trajectories rather than summing losses over individual
timesteps within trajectories, hence eliminating the need for per-step reward.

Comparing TBRM with Soft Actor-Critic Style Algorithms. The soft actor-critic style algorithms
for LLMs are similar to SQL, but they 1) introduce a separate V' model; 2) operate as optimization
rather than iteration. In particular, in the single-step case,

2

Sh, @ ap | s

argmin LAC3(0), ) = ZZ( (5n) _ r(snsan) g mo(an | sn) —V,(sh+1)) ’
0.6 D] & &= B Tref (an | sh)

while the multi-step case is

H 2
ar%minE%Acm L 0) = ] ZZ( " (sn) Z S;u an) n Z og o(an |sh/))> .

Teef(aps | $
b €D h=1 ref(an | s

Comparing TBRM with Point-Wise Direct Alignment Algorithms. Perhaps surprisingly, among
all four categories of algorithms, the point-wise direct alignment algorithms appear to be the most sim-
ilar to TBRM, although they are derived from a different perspective (mostly from bandit formulation).
We view the core objective of these algorithms as optimizing the following loss

2
DAA pt B TTh ah | Sh)
argmln/i |D| Z <V/3 B + Zl Tref (@, | Sh)>

T€D
where \A/ﬁ* is an estimate of V' (the optimal value function for KL-regularized MDP). Note that V is
exactly the same as the partition function in the bandit formulation. One popular way to estimate ‘A/E
is by using the softmax of returns from multiple rollouts for each question, for example (Team et al.,

2025),
Vi(s1) « Blog Y exp (”g)) .

TGS

4\7[3* can also be estimated using a separate model (Richemond et al., 2024), similar to our discussion of
SAC-style algorithms.
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However, it is unclear whether this estimate is accurate enough, particularly when the rollout policy
g differs significantly from the optimal policy 7. In contrast, TBRM leverages 1) Bellman equation
in KL-regularized RL (see, e.g., Section 2.3) and 2) recent advances in change of trajectory measure,
which allows us to directly use Vj instead of requiring 175* . This approach enables TBRM to provably
converge to a near-optimal policy using only a single rollout per prompt, while maintaining the
advantages of a direct optimization algorithm.

Comparing TBRM with Pair-Wise Direct Alignment Algorithms. Under the perspective above,
we can view the motivation of pair-wise direct alignment algorithms as using a pair of responses from
the same question s to cancel the need for Vjp(s1), which leads to the following objective:

2
argmln[:DAA pair () = D | Z <Zl mo(an | sn) Zl o ah | sh) T(BT) 4 7'(; )) .

(€D \h=1 7Tref Qp, | Sh Trref ah | Sh

Comparing with TBRM, the pair-wise direct alignment algorithms are basically optimizing the
difference between the Bellman residuals of two trajectories.
F Hard Instances for Iterative Algorithms

In this section, we demonstrate the advantages of direct optimization (TBRM) over its iterative variant
using a simple but illustrative hard instance.

By the autoregressive function approximation definition, we can rewrite the loss function of TBRM
as follows:

TBRM
LTBRM () = |D|Z

T7€D

IDI 2

T€D

2
(T
<|0g|t0(817a1) - % — log mref (7) + Z log mg(ap, | sh)>
h=2

Z o mlanls) )
Vo(s1) — —= + lo h 1%h .
( 1 Z g 7Tref Qp | Sh)
A typical iterative variant of this approach can be formulated as:

2
(Ve, s1) — (7+Zlo W) , (14)

0;41 + argmin — Z
" g \D| Tref(an | Sn

T€D
where Vj, is fixed from the previous iteration while optimizing for 6.

To illustrate the difference between these approaches, we consider a simple 2-arm bandit problem
where r(a;) = 1 and r(az) = 0. We will show that, even at the population level, the iterative
algorithm becomes trapped at a suboptimal solution, whereas TBRM converges to the globally
optimal solution.

For this example, our Q-function class contains only two elements: Qf = (0,0) and Q* = (10,0),
corresponding to the uniform policy and optimal policy, respectively.

Suppose at iteration ¢ we have Q; = QT = (0,0), with temperature parameter 3 = 0.1, and data
uniformly distributed over actions. The loss for the next iteration becomes:

6(Q) = (1= Q(ar) + Vo — Vi) + (= Q(a2) + Vg — V),
where V; = Blog > exp(@t()/p) represents the value function from the current iteration.

In this setting, we can verify that £;(Q") < ¢;(Q*), meaning the iterative algorithm will select
Qi+1 = Q¢ = QT = (0,0) and remain stuck at this suboptimal solution. In contrast, Q* is the global
minimizer of the TBRM loss by definition, demonstrating the advantage of direct optimization over
the iterative approach.
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G Implementation Details
G.1 Training Details

To ensure rigorous and reproducible experimentation, we employ standardized and universally
adopted hyperparameter settings, as detailed in Section 4.2. For baselines, we adhere closely to
the recommended hyperparameter configurations as presented in VERL. Specifically, PPO training
utilizes a learning rate of 1 x 10~ for the actor policy and 1 x 10~ for the critic policy. We
incorporate a KL divergence coefficient and an entropy regularization coefficient of 0.001 for PPO.
The clip ratio for the actor loss function is set to 0.2. For the GRPO baseline, we maintain the
same KL divergence coefficient as PPO for the KL regularization term. To balance computational
efficiency and performance, we utilize a prompt batch size of 128 and a maximum response length
of 2048 tokens per training iteration. All generated responses are sampled using a temperature
parameter of 1.0. For the TBRM method, the parameter [ is consistently set to 0.002 across all
experimental conditions. The learning rate for TBRM experiments is 2.5 x 10~°, with the exception
of the TBRM,,—; with Qwen2.5-Math-7B model adopting a learning rate of 2 x 10~°. All models
are trained for a total of 760 steps.

All experiments are conducted on the same platform featuring 4x H100 80GB GPUs.

G.2 Training Efficiency of TBRM

We compare the resource cost of TBRM, GRPO, and PPO in Section 4.3 by examining wall-clock
time and maximal GPU memory usage. The labels for the time segments used in Figure 2(b) are
detailed in Appendix G.2. To ensure a fair comparison, all experiments were conducted on the
same platform featuring 4x H100 GPUs, and all configurations were standardized. Specifically, we
employed vllm as the rollout backend and set gpu_memory_utilization to 0.4. For policy updates,
we set micro_batch_size_per_gpu to 1, and for calculating log probabilities for both 7y, and e,
we also used a micro_batch_size_per_gpu of 1. The value function model update for PPO also
utilized amicro_batch_size_per_gpu of 1. We use Qwen2.5-Math-7B as the base model, with a
prompt batch size of 128.

Name Description Involved Algorithms
ref_prob Computing 7rer(at | s¢) TBRM, GRPO, PPO
old_prob Computing 7y, (at | s¢) GRPO, PPO
update_policy Updating the policy parameter 6 TBRM, GRPO, PPO
ppo_update_value  Updating the value function model V PPO

ppo_value Computing Vi (s;) PPO

rollout Sampling trajectories from the prompt set TBRM, GRPO, PPO

Miscellaneous computations, e.g., rule-based re-
ward r(7), advantage (for GRPO and PPO), etc.

Table 3: Description of labels of time segments in Figure 2(b).

other

G.3 Prompt Templates

Qwen-Math Prompt Template. We use the default prompt template of Qwen2.5-Math in the main
experiments (Section 4.2).

<|im_start|>system

Please reason step by step, and put your final answer within \boxed{ }.<|im_end|>
<|im_start|>user

question <|im_end|>

<|im_start|>assistant

DeepSeek-R1 Prompt Template. We use DeepSeek-R1 prompt template in the experiment dis-
cussed in Section 4.3.

A conversation between User and Assistant. The user asks a question, and the Assistant solves
it. The Assistant first thinks about the reasoning process in the mind and then provides the user
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Figure 3: Learning accuracy across benchmarks with model Qwen2.5-Math-1.5B.
with the answer. The reasoning process and answer are enclosed within <think> ... </think>
and <answer> ... </answer> tags, respectively, i.e., <think> reasoning process here </think>

<answer> answer here </answer>.
User: question
Assistant:

H Additional Experimental Results

H.1 Training-Time Performance

Following the setup described in Section 4.1, we train and evaluate models of various sizes. Their
performance on benchmarks during training is presented in Figure 3 and Figure 4.

H.2 Qualitative Analysis

We delve into the responses of the TBRM model and observe intriguing reasoning behaviors. In this
subsection, we highlight emergent reasoning patterns that the model develops during training, which
contribute to its improved reasoning capabilities. Unless otherwise noted, all responses presented
here are sampled from Qwen2.5-Math-7B-TBRM,, 4.

Decomposition. The model demonstrates the ability to break down complex problems into smaller,
manageable subproblems, solving each sequentially to construct the final solution. This hierarchical
strategy reflects a structured and efficient approach to reasoning.

Decomposition

(MATHS500) For what real values of z is —4 < x* 4 42% < 21 satisfied? Express your
answer in interval notation.

To solve the inequality —4 < x* + 422 < 21, we need to break it into two parts and solve
each part separately:

1. Solve the inequality 2* + 422 > —4.

2. Solve the inequality z* + 422 < 21.
Step 1: Solve z* + 422 > —4
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Figure 4: Learning accuracy across benchmarks with model Qwen2.5-Math-7B.

The expression x* + 422 is always non-negative for all real numbers 2 because both z*
and 42 are non-negative. Therefore, xt + 422 > 0 > —4 for all z. So, the inequality
x* + 42% > —4 is satisfied for all real numbers .

Step 2: Solve z* + 422 < 21

To solve * + 422 < 21, let’s make a substitution. Let y = 2. Then the inequality becomes
y? + 4y < 21. Rearranging terms, we get y? + 4y — 21 < 0. We need to find the roots of the
equation y? + 4y — 21 = 0 to determine the interval for y.

The quadratic equation y? + 4y — 21 = 0 can be factored as (y + 7)(y — 3) = 0. So, the
roots are y = —7 and y = 3. Since y = 22 and 2 is always non-negative, we only consider
the positive root y = 3. Thus, we need to solve 0 < y < 3.

Substituting back y = 2, we get 0 < 22 < 3. This means —/3 < z < /3.

Combining the Results

Since the first inequality 2 + 42% > —4 is satisfied for all real numbers x, the solution to the
original inequality —4 < 2* + 422 < 21 is determined by the second inequality. Therefore,
the solution is —\/5 <z< \/§

The final answer in interval notation is:

(_\/ga \/§)

Enumeration.

particularly useful in combinatorial or search-based problems.

(AIME24) Alice chooses a set A of positive integers. Then Bob lists all finite nonempty sets
B of positive integers with the property that the maximum element of B belongs to A. Bob’s
list has 2024 sets. Find the sum of the elements of A.
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The model adopts an exhaustive strategy by systematically iterating through possi-
bilities or repeatedly applying a specific operation until the correct answer emerges. This approach is



To solve this problem, we need to understand the relationship between the set A and the
number of nonempty subsets B of positive integers where the maximum element of B belongs
to A.

If A= {a1,as,...,ay,}, then for each element a; € A, the number of subsets B where the
maximum element is a; is given by the number of nonempty subsets of {1,2,...,a; — 1},
which is 2%~ — 1. Summing over all elements in A, the total number of such subsets B is:

-1+ 22 -1)+...+ (2" —1)=2" 4292 4 ... 42 —n
Given that this total is 2024, we can write:
20 4 2% 4 | 4+ 2% —n = 2024

or
29 4292 4 . 4+2% =2024+n

To find the appropriate values for a;, as, . .., a,, we need to find a combination of powers of
2 that sum up to just over 2024. We can start by finding the largest power of 2 less than or
equal to 2024. The largest power of 2 less than 2024 is 219 = 1024.

By subtracting 1024 from 2024, we get 1000. The next largest power of 2 less than or equal
to 1000 is 2 = 512. Subtracting 512 from 1000 gives 488. The next largest power of 2 less
than or equal to 488 is 28 = 256, leaving us with 232. The next largest power of 2 less than
or equal to 232 is 27 = 128, leaving us with 104. The next largest power of 2 less than or
equal to 104 is 2° = 64, leaving us with 40. The next largest power of 2 less than or equal to
40 is 2° = 32, leaving us with 8. The next largest power of 2 less than or equal to 8 is 2% = 8,
leaving us with 0. So, the sum of the powers of 2 is:

1024 4 512 4 256 + 128 + 64 + 32 + 8 = 2024

This means that we have n = 7 elements in set A, and these elements are {11, 10,9, 8, 7, 6,
4} because the powers of 2 correspond to 210,29 28 27 26 95 23,
So, the set A = {11, 10,9,8,7,6,4}. The sum of the elements of A is:

11+10+9+8+7+6+4=255

\. J

The final answer is:

Verification. The model exhibits self-monitoring behavior by verifying intermediate results during
problem solving. This helps catch early mistakes and reinforces correct reasoning steps, enhancing
both accuracy and reliability.

(MATHS500) What is the length, in units, of the radius of a sphere whose volume and surface
area, in cubic units and square units, respectively, are numerically equal?

To find the radius of a sphere whose volume and surface area are numerically equal, we need
to set up the equations for the volume and surface area of a sphere and then solve for the
radius 7.

The volume V' of a sphere is given by: V = %m‘
The surface area A of a sphere is given by: A = 47r?

We are given that the volume and surface area are numerically equal, so we can set the two
equations equal to each other: %m"?’ = 4qr?

To solve for r, we can simplify the equation by dividing both sides by 472 (assuming r # 0):
I=1r=3

go, the radius of the sphere is » = 3. Let’s verify this by substituting » = 3 back into the
volume and surface area formulas to ensure they are indeed equal.

The volume when r = 3is: V = 37(3)% = 37 - 27 = 367

The surface area when r = 3 is: A = 47(3)? = 47 - 9 = 367

3
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Since the volume and surface area are both 36, our solution is correct. The length of the
radius of the sphere is .

Backtracking. Upon encountering contradictions or errors, the model is able to reassess its prior
steps, revise incorrect assumptions, and pursue an alternative line of reasoning. This reflective
capability mirrors human-like problem-solving resilience.

Backtracking

(MATHS00) The asymptotes of a hyperbola are y = 2x — 3 and y = 17 — 2z. Also, the
hyperbola passes through the point (4, 7). Find the distance between the foci of the hyperbola.

To find the distance between the foci of the hyperbola, we need to follow these steps:

1. Determine the center of the hyperbola: The center of the hyperbola is the inter-
section point of the asymptotes. To find this point, we solve the system of equations
given by the asymptotes:

y=2r—3

y=17—-2x
Setting the two equations equal to each other:

2 -3 =17—-2x
Solving for x:
dr =20 = =5
Substituting = 5 back into one of the equations to find y:
y=2(5)—-3=10-3=7

So, the center of the hyperbola is (5, 7).

2. Determine the slopes of the asymptotes: The slopes of the asymptotes are 2 and
—2. This indicates that the hyperbola is oriented with its transverse axis vertical or
horizontal. Since the slopes are 4-2, the hyperbola is of the form:

— h)2 — k)2 _1.\2 _1)\2
(e=h? @-R?_ | WP (@-h?
b2 a? a? b2
where the slopes of the asymptotes are £¢ or j:g. In this case, § = 2 or % = 2
Let’s assume the hyperbola is of the form:

-7 @-5° _
a? b2

1

with % =2,50a = 2b.

3. Use the point (4, 7) to find ¢ and b: The hyperbola passes through the point (4, 7).
Substituting = 4 and y = 7 into the equation of the hyperbola:

(=72 _ (4-5)? _

a? b2 1

Simplifying, we get:
O—bézl = —%:1 — b =-1
This is incorrect, so let’s assume the hyperbola is of the form:
(=52 -7 _
b2 a2
with % = 2,50 a = 2b. Substitutingx =4 andy = 7:
(4-52 (1-7°_

b2 a?

=1

-1

Simplifying, we get:

1 1 9
b_2_0:_1 = b—2:—1 = b =1
So,b=1anda = 2b = 2.
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4. Find the distance between the foci: The distance between the foci of a hyperbola
is 2¢, where ¢ = v/a? + b2. In this case:

e= \/a2+b2: \/22—1—12:\/4—1— =5
So, the distance between the foci is:

2¢c = 2v/5

The final answer is:

25
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H.3 Ablation Study: Classical BRM on LLMs

As discussed in Section 3, in the context of LLMs, directly minimizing BRM may not be possible
because the token-level reward signal is either unavailable (e.g. if we assign the outcome reward to
the final token) or very sparse. To highlight the advantages of the trajectory-level approach, we imple-
mented classical BRM, whose loss function is defined in Eq. (3), using the same hyperparameters as
in our main setup on Qwen2.5-Math-1.5B.

Classical BRM - Qwen2.5-Math-1.5B

T T T T T T T
0 10 20 30 40 50 60 70 80

Step

Figure 5: Training reward with classical BRM on model Qwen2.5-Math-1.5B.

Figure 5 shows that training reward quickly collapses, and we observe that the model outputs become
random and meaningless. Intuitively, this degradation occurs because BRM has to propagate the sparse
reward signal, which only receives at the final token, back through multiple token-wise regressions,
whereas the TBRM provides a better implicit credit assignment through a single trajectory-level
objective.

H.4 Tasks Beyond Mathematical Problems

To demonstrate the generalizability of our method beyond mathematical tasks, we evaluate TBRM
on five tasks from the reasoning-gym (Stojanovski et al., 2025) under the graphs category:
course_schedule, family_relationships, largest_island, quantum_lock, and shortest_path. These
tasks are naturally represented as graphs, consisting of nodes and edges, and typically require travers-
ing connections to identify relationships, compute optimal paths, or determine reachable components.
They involve reasoning patterns that differ significantly from those in mathematical tasks.

Method course_schedule family_relationships largest_island quantum_lock shortest_path Average
Qwen2.5-Math-1.5B 29.5 3.0 11.0 5.5 0.0 9.8
GRPO n=14 54.0 84.0 34.0 30.5 26.0 45.7
TBRM n =4 60.0 80.0 38.0 27.0 31.0 47.2

Table 4: Performance of GRPO and TBRM on various tasks from reasoning-gym, category graphs.

We construct a training set of 10,000 problems, with 2,000 questions per task, and a test set of 500
problems, comprising 100 questions from each task. For both training and evaluation, we use the
official verifiers provided by reasoning-gym to compute rewards. Our experiments are conducted on
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Qwen2.5-Math-1.5B using both TBRM and GRPO, with a prompt batch size of 1024 and 4 sampled
responses per question (n = 4). Models are trained for 100 steps. All evaluations are conducted using
greedy decoding. Results in Table 4 demonstrate that TBRM generalizes well to diverse reasoning
tasks and performs on par with GRPO.

H.5 TBRM with More Rollouts

To demonstrate that TBRM scales effectively with increasing number of sampled responses per
prompt, we rerun GRPO and TBRM using most hyperparameters from DAPO (Yu et al., 2025).
Specifically, we used a prompt batch size of 512 and generated n = 16 responses per prompt. For
GRPO, we set the microbatch size to 512, resulting in 16 updates per training step. The experiments
were conducted on the Qwen2.5-Math-7B model, following the same evaluation pipeline described in
our paper. Both algorithms were trained for 100 steps. Table 5 shows that TBRM remains comparable
to GRPO under these aligned settings.

Method AIME24 AIME25 AMC23 MATHS00 Minerva Math OlympiadBench
Avg@32 Avg@32 Avg@32 Avg@1 Avg@1 Avg@1
Qwen2.5-Math-7B 10.6 2.8 31.6 67.4 13.2 29.3
GRPO n =16 26.6 11.0 61.8 77.8 32.7 404
TBRM n = 16 27.9 10.9 62.8 76.4 33.5 39.9

Table 5: Performance of GRPO and TBRM with n = 16.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Claims made in the abstract and introduction clearly reflect our main contribu-
tions, which are later elaborated in Section 3 and Section 4.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

We explicitly discuss our work’s limitations in Section 3 and their proofs in Appendix D.
Specifically, we note the reliance on repeated inference runs to mitigate LLM randomness on
small test sets (Section 4.1), and we analyze our training pipeline’s computational efficiency
and scalability in Section 4.3.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: In our theoretical results (e.g., Theorem 2), we clearly state the assumption
and postpone the complete proof to Appendix D.

Guidelines:
* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: We thoroughly discuss the experimental setup in Section 4.1 and Appendix G.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.
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(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The codebase for our experiments is publicly available at https://github.c
om/rlx-1ab/TBRM. All datasets used in this work are public.

Guidelines:
* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/pu
blic/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Section 4.1 and Appendix G includes all information needed to understand
and replicate our results.

Guidelines:

* The answer NA means that the paper does not include experiments.
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* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Due to time and resource constraints, we did not perform repeated training runs,
and therefore do not report error bars or confidence intervals based on training variability.
For evaluation, we include repeated inference runs to mitigate intrinsic LLM randomness on
small test sets, which enhances reproducibility. However, we do not report formal error bars,
statistical significance tests, or confidence intervals in our results.

Guidelines:
» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We discuss the platform used for our experiments in Appendix G.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.
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9.

10.

11.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics.
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: This paper introduces a fundamental, generic algorithm for LLM training
that, in itself, has no direct societal impact, as any such effects are tied to the independent
applications of LLM technology, not this specific algorithmic work.

Guidelines:
» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification: We utilize public datasets that only involve math tasks and we do not see the
potential risks for misuse.

Guidelines:
* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We clarify the required information in Section 4.1.
Guidelines:
* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The codebase for TBRM is publicly available at https://github.com/rlx
-1ab/TBRM along with detailed documentation.

Guidelines:

* The answer NA means that the paper does not release new assets.
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14.

15.

16.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
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Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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