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Instruction Points

In two sentences, 

craft a narrative, using first-person point of view 
from the perspective of the character in the middle,

where it expresses its thoughts on its situation,

and includes a reference to the season depicted in 
the image,
all in present tense. 1 point for grammar

2 points for mention

4 points for description

2 points for genre

1 point for length limit

length-limit: 1/1 point 
linguistics: 2/2 points 
describe: 4/4 points 
mention: 2/2 points 
grammar: 1/1 point 
total: 10/10 points 

InternVL-v1.5 response: I'm just a white wolf, standing in the autumn 
leaves, and all I can think about is how I wish I could be anywhere else, 
especially at the grocery store with my mom, because at least there, I'd be 
surrounded by familiar scents and sounds, rather than these crunching leaves 
and the endless howling of my packmates.

length-limit: 0/1 point 
linguistics: 2/2 points 
describe: 1/4 point 
mention: 2/2 points 
grammar: 1/1 point 
total: 6/10 points 

🙂

☹

GPT-4V response: Here I am, stuck in the middle as Mom chats up her 
grocery buddy, surrounded by the kind of golden autumn leaves that scream 
"escape opportunity." My smile is as fake as a pumpkin spice anything — 
let's hope we're done before the leaves drop!

Grading

Figure 1: An example from MIA-Bench, featuring an image and a complex instruction to test
models’ compliance with layered instructions that are compositional in nature. Responses from
GPT-4v Achiam et al. (2023) and InternVL-v1.5 Chen et al. (2024b) are evaluated using GPT-4o as
the judge.

ABSTRACT

We introduce MIA-Bench, a new benchmark designed to evaluate multimodal large
language models (MLLMs) on their ability to strictly adhere to complex instruc-
tions. Our benchmark comprises a diverse set of 400 image-prompt pairs, each
crafted to challenge the models’ compliance with layered instructions in generating
accurate responses that satisfy specific requested patterns. Evaluation results from a
wide array of state-of-the-art MLLMs reveal significant variations in performance,
highlighting areas for improvement in instruction fidelity. Additionally, we create
extra training data and explore supervised fine-tuning to enhance the models’ ability
to strictly follow instructions without compromising performance on other tasks.
We hope this benchmark not only serves as a tool for measuring MLLM adherence
to instructions, but also guides future developments in MLLM training methods.

1 INTRODUCTION

The rapid advancement of Multimodal Large Language Models (MLLMs) (Achiam et al., 2023; Liu
et al., 2023c; Dai et al., 2023; Liu et al., 2023b; Bai et al., 2023; Wang et al., 2023a; Lin et al., 2023b;
Team, 2023; McKinzie et al., 2024) has been a defining feature of recent AI research, showcasing
increased model capabilities to comprehend and respond to visual inputs, often termed as multimodal
“instruction following”.

To measure the progress of instruction following, many multimodal benchmarks have been developed,
which can be roughly divided into two broad categories: (i) fixed-form visual question answering
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Figure 2: Comparison of various multimodal LLM benchmarks. (Left) Fixed-form visual question
answering, often features short answers or multi-choice formats, such as MMMU (Yue et al., 2023).
This format is popular due to its ease of evaluation. (Middle) Open-ended responses, such as
LLaVA-Bench (in the Wild) (Liu et al., 2023c). (Right) The proposed MIA-Bench, which also uses
open-ended responses but focuses on evaluating precise adherence to complex instructions within the
prompt.

(VQA), often with short answers or using a multi-choice QA format; and (ii) free-form conversations
with open-ended responses. Many current benchmarks have adopted the first format, including
VQAv2 (Goyal et al., 2017), TextVQA (Singh et al., 2019b), ScienceQA (Lu et al., 2022), MME (Fu
et al., 2023a), MMBench (Liu et al., 2023d), SEED-Bench (Li et al., 2023a), MathVista (Lu et al.,
2023), and MMMU (Yue et al., 2023). These benchmarks are popular due to their ease of use in
evaluating metrics and presenting model comparisons.

However, as visual assistant models, the ability to engage users in free-form conversations is also
crucial. Benchmarks in this format include LLaVA-Bench (Liu et al., 2023c), MM-Vet (Yu et al.,
2023b), VisIT-Bench (Bitton et al., 2023), InfiMM-Eval (Han et al., 2023), and the most recent
Vibe-Eval (Padlewski et al., 2024) and LLaVA-Bench-Wilder (Li et al., 2024a). Typically, the
free-form model responses are evaluated using external models as the judge. These benchmarks are
closer to daily-life visual chat scenarios; however, the type of “instruction following” examined in
these benchmarks usually gauges a model’s ability to perform tasks in a broad, often loosely defined
manner. Yet, the precise adherence to complex instructions within prompts – a critical aspect for
evaluating LLMs (Chia et al., 2023; Zhou et al., 2023; Qin et al., 2024) – remains less explored in the
context of multimodal LLMs.

To this end, we introduce MIA-Bench,1a new benchmark specifically designed for evaluating strict
“instruction adherence”. Our instruction adherence metric measures the precision with which MLLMs
can execute layered and compositional instructions. This involves not only recognizing the content
of the instructions, but also meticulously executing the detailed demands without deviation (e.g.,
answering in a given number of sentences, including specific elements, etc.). By establishing this
stricter criterion, our benchmark aims to push the boundaries of model precision and reliability in
practical applications, ensuring that outputs not only align with the general intent of the instructions,
but also match the exact specifications provided. An example from MIA-Bench is provided in Figure
1, and its comparison with previous MLLM benchmarks is illustrated in Figure 2.

MIA-Bench consists of 400 meticulously created image-prompt pairs, and encompasses diverse
image contents including animals, food, landmarks, sport, art, landscape, text, etc. to cover a broad
spectrum of real-world scenarios. In constructing this benchmark, we sought not only to evaluate the
current capabilities of state-of-the-art MLLMs, but also to push the boundaries of what these models
can achieve when rigorously tested against structured and layered instructions. The final prompts are
of various complexity levels, and compositional in nature, with five base instruction categories, which

1Abbreviation for Multimodal Instruction Adherence Benchmark.
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Figure 3: Examples from MIA-Bench, with detailed information on the instruction composition, base
instruction weight and type.

are tailored to probe the models’ linguistic dexterity, grammatical accuracy, and descriptive fidelity.
For example, the prompt in Figure 1 is composed of five base categories, including description,
mention, grammar, length limit, and genre.

We evaluate a wide array of MLLMs on the proposed benchmark, ranging from closed-source models
(e.g., GPT-4o (OpenAI, 2024), Gemini Pro (Team, 2023), Claude-3 (Anthropic, 2024), Reka (Team
et al., 2024)) to open-source ones (e.g., LLaVA-NeXT (Liu et al., 2024a), Intern-VL-Chat-1.5 (Chen
et al., 2024b), CogVLM2 (Wang et al., 2023a), Phi-3-Vision (Abdin et al., 2024)). Our investigations
reveal notable variations in model performance, highlighting great opportunities for improvement.

To address these challenges, we further propose to generate training data tailored for supervised fine-
tuning (SFT), where we aim to refine the models’ abilities to process and comply with multifaceted
instructions. Results from our SFT experiments indicate a promising enhancement in the models’
performance to strictly adhere to instructions, without hurting performance on other benchmarks.

Our contributions are summarized as follows. (i) We construct MIA-Bench, a new benchmark to
comprehensively evaluate MLLMs on their capability to strictly adhere to instructions. (ii) We
provide a detailed analysis of popular MLLMs, and suggest training methods for enhanced instruction
following. For this purpose, we created training data and conducted experiments for additional
supervised fine-tuning. MIA-Bench will be open-sourced, and we hope this benchmark can serve as
a useful resource to stimulate further research on multimodal instruction adherence.

2 MIA-BENCH

MIA-Bench consists of 400 image-prompt pairs, with examples shown in Figure 3. The images are
collected from diverse sources, including COCO 2017 validation set (Lin et al., 2015), SBU (Ordonez
et al., 2011), TextVQA (Singh et al., 2019a), and Flickr. Images in the Flickr subset are photos of a
variety of themes, including animals, art, architectures, text, food, math, etc. Images from the other
three sources are randomly sampled from each corresponding source. Figure 4 shows the top 15
image content categories and the distribution of the 8 sub-instruction categories in MIA-Bench. The
image content is labeled using GPT-4v. For each image, we manually write diverse and challenging
instructions that contain multiple sub-instructions.

When constructing the instructions, we follow three principles, detailed below.
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Food 8%Animal 8%

Transport 6% Art 5% Beverage 5% Landscape 5% Book 4%

Interior 4% Nature 2% Urban 2% Sculpture 2% Event 2%

Sport 6%Text 8% Architecture 7%

Top 15 Image Categories in MIA-Bench Sub-instruction Distribution

Figure 4: The top-15 image content categories and the distribution of the 8 sub-instruction categories
in MIA-Bench.

• Correctness. The instruction needs to be answerable by humans. For example, asking about
objects that do not exist in the image makes the prompt unanswerable.

• No answer leakage. The instruction should not contain the answer to itself. ‘What color is the
green object?’ is an example of answer leakage.

• Image-dependent. MMStar (Chen et al., 2024a) pointed out that on some multimodal benchmarks,
MLLMs can generate correct answers without accessing images half of the time. Multi-modal
capabilities are necessary to correctly answer MIA-Bench prompts.

2.1 INSTRUCTION CATEGORIES

In this paper, we use instruction to refer to the entire textual input, which in MIA-Bench can
generally be viewed as a composition of multiple individual requests or constraints. We refer to these
individual components as sub-instruction. Instructions in MIA-Bench are of diverse complexity, and
sub-instructions contained are of multiple categories, summarized in Figure 4.

The sub-instructions in MIA-Bench can be categorized into description, length limit, mention, genre,
grammar, math, perspective, and OCR, detailed below.

• ‘description’ refers to describing a certain part of the image, with the exception of text-rich parts of
the image, which falls under the ‘OCR’;

• ‘length limit’ refers to the limitation of response length (e.g., in exactly two sentences, using exactly
60 words);

• ‘mention’ refers to mentioning or not mentioning certain objects or entities (e.g., highlighting two
similarities and one difference, comparing and contrasting the condition of the buildings with the
activity on the street);

• ‘genre’ refers to requests for a specific written form (e.g., write a poem, write a narrative, with at
least one pun included, all while weaving in a subtle theme of change);

• ‘grammar’ refers to grammatical requirements (e.g., use present tense, use capitalized letters, use
integers);

• ‘math’ refers to requirements to come up with a solution to math problems, or to identify errors in
solutions to math problems, or to generate a valid math problem given table, charts, etc.;

• ‘perspective’ refers to requirements specifying the viewpoint of an object or person in the image.
This requires MLLMs to correctly identify what can or cannot be seen from the specified position,

4
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and understand the spatial relationship of objects in its surrounding with itself (e.g., imagine you
are the lady in the image, describe what you can see without turning your head around);

• ‘OCR’ refers to requirements related to understanding OCR information in text-rich images such as
menus, tickets, bills, etc. For example, given a photo of a ticket, the sub-instruction asking about
the price printed on the ticket falls into this category.

Figure 5: The most frequently used verbs and
co-occurring nouns in MIA-Bench.

Figure 5 shows the most frequently used verbs and
co-occurring nouns in MIA-Bench. To guarantee
the diversity of prompts, when writing the instruc-
tions, we contribute instructions of various levels of
complexity: basic, intermediate, advanced, creative,
and complex. The basic category is the simplest; the
instructions normally only contain one or two sub-
instructions, such as “What is the color of the cat?”,
or “Describe the sofa in two words.”. The interme-
diate category consists of instructions that contain
three or more sub-instructions, but are in general easy
for MLLMs to follow. The advanced category con-
tains instructions that are challenging and contain
three or more sub-instructions. The creative cate-
gory contains instructions that instruct MLLMs to
generate creative pieces of text, such as poems. The
complex category is a combination of the previous
two categories; the instructions in this category are
the most complicated as they usually contain multiple
challenging sub-instructions. While we found these
categories useful to elicit a diverse instruction set, we
also found that practical examples were often difficult to categorize objectively. As a result, we only
used these categories for data collection, but are not reporting per-category results.

2.2 RESPONSE EVALUATION METHOD

We adopt GPT-4o (OpenAI, 2024) to score MLLMs’ responses on each instruction and return a total
score using the following prompt:

Here is the instruction for a multimodal LLM: {instruction} You need to grade if the response from the model follows each 
component of the instruction. The first component is: {sub-instruction 1}, and the second component is: {sub-instruction 
2}, …  , and the Nth component is: {sub-instruction N}. The response is:  {response} You need to score the response and be 
strict. The total score ranges from 0 to 10, depending on if the response follows the instruction. The first, second, …, and 
Nth component is each worth {weight 1}, {weight 2}, …, and {weight N} scores. List scores of each component, and the total 
score in one sentence in this format: score of component 1: x/2, score of component 2: y/8, total score: z/10. Then explain 

Each response is graded by first assessing how well it follows each sub-instruction, then computing
the total score. Figure 6 shows an example of how responses from different MLLMs are evaluated
and scored. Each sub-instruction in an instruction is assigned a maximum score ranging from 1 to 10;
sum of the weight of all sub-instructions in an instruction is 10. The scoring system was carefully
designed to reflect the complexity and importance of each task. For example, length limits are often
binary in nature—either met or not met—hence the single point allocation. In contrast, a description
task may require the model to handle multiple layers of complexity, including accuracy, detail, and
relevance, which justified a higher score. For the example in Figure 6, there are 4 sub-instructions
(denoted from S1 to S4); the first is worth 4 points and the rest is worth 2 points each. The response
from GPT-4o partially follows the first sub-instruction which requires the response to be from the
perspective of the dog, as the dog should not be able to see the car behind the man without turning
around. The dog should be able to see the guitar, thus GPT-4o gets 2 points out of 4 for the first
sub-instruction. It successfully follows the other 3 sub-instructions, achieving full score for them.
Thus, the final score GPT-4o reaches is 8 out of 10. We always assign larger weight (6 if there are two
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GPT-4o (8 points):  
• Guitar with a brown and white finish

• Car with a visible license plate

S1❌ the dog can’t see the car (2/4); S2✅  (2/2); S3✅  (2/2); S4✅  (2/2)


Instruction: 
Imagine you are the dog in the image, list 2 objects you can see without

moving your head. Respond in bullet points, within 20 words.

LLaVA-1.6-34b (10 points):  
• Microphone stand

• Guitar

S1✅  (4/4); S2✅  (2/2); S3✅  (2/2); S4✅  (2/2)

InternVL-Chat-V1.5 (8 points):  
• The person holding me is playing a guitar.

• There's a black case in front of the person.

S1✅  (4/4); S2❌ response contains 3 objects instead of 2 (0/2); S3✅  (2/2); S4✅  (2/2)


XComposer2 (8 points):  
2 objects: the guitar and person playing it.

S1✅  (4/4); S2✅  (2/2); S3❌not in bullet points (0/2); S4✅  (2/2)

Four Sub-instructions (10 points):  
S1: Answer from the dog’s perspective, without moving its head, 4 points
S2: List 2 objects, 2 points
S3: Respond in bullet points, 2 points
S4: Limit response in 20 words, 2 points

Figure 6: An example with responses from four MLLMs and their evaluation scores.

sub-instructions, 4 if there are three or more sub-instructions) to the sub-instruction in the description
category unless this category is absent in some cases, as usually a major part of the response is
addressing this sub-instruction. For each MLLM, we compute the average score it gets on all 400
responses, and represent the ratio of the average score divided by 10 using percentage. We also
compute the average score for each instruction category.

3 EXPERIMENTS

In this section, we first present results of different MLLMs on MIA-Bench in Section 3.1, with
additional supervised fine-tuning exploration in Section 3.2.

3.1 BENCHMARK RESULTS

In total, we have evaluated 29 popular MLLMs on MIA-Bench. Results are reported in Table 1.
Observations are summarized as follows.

• Overall, the best performance was achieved by GPT-4o (OpenAI, 2024), with a score 88.58,
showcasing its superiority across different categories of instruction adherence.

• The ability to describe content accurately was best exhibited by Reka (Team et al., 2024). Other
models like Claude-3-Opus (Anthropic, 2024), GPT-4v (Achiam et al., 2023) and GPT-4o also
achieved scores higher than 90. This suggests that these models are good at generating coherent
and contextually appropriate text.

• In the genre category, the highest proficiency was shown by GPT-4v and GPT-4o with scores above
94, suggesting an exceptional grasp of language nuances. Among open-source models, Phi-3-
Vision (Abdin et al., 2024) and LLaVA-NeXT-34b (Liu et al., 2024a) show strong performance
with scores of 86.52 and 86.58, respectively. The lowest score on this metric was by Kosmos-
2 (Peng et al., 2023a), with a mere 11.55, pointing to difficulties in understanding or generating
linguistically complex sentences.

• GPT-4o excelled in grammar with a score of 85.70, which indicates superior ability in syntax
correctness and sentence structuring that matches specific requirements in the instruction. Among
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Model Meta-Avg Description Len-Limit Genre Grammar Mention Math Perspective OCR

Open Source 1b-8b

Fuyu-8b (Bavishi et al., 2023) 24.52 52.06 24.52 17.06 17.18 36.43 22.62 66.67 33.09

Kosmos-2 (Peng et al., 2023a) 26.06 50.95 38.52 11.55 19.78 28.70 17.26 50.83 41.88

Sphinx (Lin et al., 2023b) 50.99 75.33 53.51 60.45 48.28 57.75 47.41 70.00 61.04

Idefics-2-8b (Laurençon et al., 2024) 51.42 59.37 62.73 48.07 64.09 46.20 46.51 48.33 61.97

mPLUG-Owl2 (Ye et al., 2023b) 57.86 75.01 65.25 63.39 60.26 57.70 57.22 65.00 62.08

CogVLM-Chat (Wang et al., 2023a) 58.95 60.42 57.86 67.94 60.55 62.92 36.67 60.83 61.87

ShareGPT4V (Chen et al., 2023b) 59.41 81.08 63.49 63.88 58.46 62.49 52.98 82.50 72.29

DeepSeek-VL-7b-chat (Lu et al., 2024) 60.96 86.31 63.26 72.11 54.79 63.75 67.39 74.17 77.85

LLaVA-1.5-7b (Liu et al., 2023c) 62.18 78.00 68.60 63.95 64.18 65.89 47.31 86.67 60.75

LLaVA-NeXT-7b-vicuna (Liu et al., 2024a) 62.27 79.21 68.01 65.63 60.95 63.33 46.67 90.00 65.54

Qwen-VL-Chat (Bai et al., 2023) 63.09 80.51 74.22 66.95 63.11 63.01 45.00 75.83 66.01

XComposer2-7b (Dong et al., 2024a) 67.71 83.47 76.16 73.66 67.69 67.01 48.61 77.50 68.06

CogVLM2 (Wang et al., 2023a) 73.43 87.60 74.52 83.47 71.97 77.01 71.53 90.83 87.16

Phi-3-vision (Abdin et al., 2024) 76.02 84.90 84.46 86.52 67.93 74.70 78.16 74.17 83.96

MiniCPM-Llama3-v2.5 (Hu et al., 2023) 76.27 84.12 79.44 80.33 81.25 76.99 64.08 81.67 76.59

Open Source 8b-13b

InstructBLIP-13b (Dai et al., 2023) 38.16 50.54 39.57 29.34 38.43 42.28 12.50 50.00 30.42

LLaVA-1.5-13b (Liu et al., 2023c) 63.55 80.98 70.15 64.54 59.30 67.42 45.11 69.17 76.28

LLaVA-NeXT-13b-vicuna (Liu et al., 2024a) 69.16 86.75 69.88 82.07 64.77 74.99 48.56 77.50 75.83

Open Source 13b-110b

Yi-VL-34b (AI et al., 2024) 53.90 74.89 52.05 59.09 55.91 57.25 54.17 41.85 70.09

InternVL-Chat-v1.5 (Chen et al., 2024b) 75.42 89.13 78.21 79.92 78.16 77.54 76.11 87.50 80.92

LLaVA-NeXT-34b (Liu et al., 2024a) 75.61 88.02 83.50 86.58 71.57 75.83 68.06 87.50 80.26

LLaVA-NeXT-110b (Liu et al., 2024a) 79.84 86.99 84.86 82.49 79.04 80.10 71.94 80.83 75.45

Proprietary

Gemini-1.0-Pro (Team, 2023) 70.63 82.77 72.83 78.76 76.91 71.67 81.45 89.29 84.11

Reka-Core (Team et al., 2024) 76.95 91.05 79.91 85.16 78.98 82.08 82.53 77.50 81.08

Claude-3-Haiku (Anthropic, 2024) 78.25 86.86 77.53 90.27 73.41 82.62 82.22 57.50 86.49

Claude-3-Sonnet (Anthropic, 2024) 79.44 88.06 82.71 90.54 79.60 82.05 82.22 76.67 84.43

Claude-3-Opus (Anthropic, 2024) 84.50 90.50 86.03 91.19 83.82 85.49 85.92 65.00 86.84

GPT-4v (Achiam et al., 2023) 86.11 90.03 87.61 94.59 80.12 89.37 85.63 59.17 85.26

GPT-4o (OpenAI, 2024) 88.58 90.82 92.73 94.29 85.70 90.66 87.07 92.50 86.54

Table 1: Evaluation results of a wide array of MLLMs on MIA-Bench.

the open-source models, MiniCPM-Llama3-V-2.5 (Hu et al., 2023) is notable with a score of
81.25. Contrastingly, Fuyu-8b (Bavishi et al., 2023) scored the lowest with 17.18, reflecting major
challenges in grammar adherence.

• GPT-4o also showed the best performance with a score of 92.73 in respecting prescribed length
limits, which is crucial for tasks requiring concise and precise answers. Among open-source
models, LLaVA-NeXT-110b (Liu et al., 2024a) stands out with a score of 84.86.

• Results from LLaVA series also suggest a strong correlation between LLM size and MIA-Bench
performance across metrics.

Correlation with other benchmarks. In Table 2, we compare the ranking of 5 state-of-the-art
MLLMs on MIA-Bench as well as their meta ranking on MME (Fu et al., 2023a), MMMU (Yue
et al., 2023) , MMBench (Liu et al., 2024b), MMVet (Yu et al., 2023b), HallusionBench (Guan et al.,
2023), and MathVista (Lu et al., 2023) (meta ranking is computed by averaging rankings across
these benchmarks). Our findings reveal a discrepancy between the two sets of rankings. Notably,
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Model MME MMMU MMB MMVet HallB
Math Meta

MIA
MIA

Vista Ranking Ranking

GPT-4o (OpenAI, 2024) 2328.7 69.1 83.3/82.1 66.5 67.5 63.8 1 88.58 1

GPT-4v (Achiam et al., 2023) 1926.6 56.8 77/74.4 67.6 46.5 49.9 3 86.11 2

Gemini-1.0-Pro (Team, 2023) 1933.4 47.9 73.6/74.3 64.3 45.2 45.2 5* 70.63 6

Claude-3-Opus (Anthropic, 2024) 1586.8 59.4 63.3/59.2 58.1 37.8 50.5 5* 84.50 3

InternVL-Chat-V1-5 (Chen et al., 2024b) 2187.8 45.2 82.2/82 62.8 49.3 53.5 2 75.42 5

LLaVA-NeXT-34b (Li et al., 2024a) 2028 51.1 81.1/79 48.9 47.6 47.7 4 75.61 4

Table 2: Meta ranking of five state-of-the-art MLLMs on existing multimodal benchmarks compared
with their ranking on MIA-Bench.

Model Total Score Description Length Limit Genres Grammar Mention Math Perspective OCR

LLaVA-NeXT-13b (Liu et al., 2024a) 69.16 86.75 69.88 82.07 64.77 74.99 48.56 77.50 75.83

+ DIT 78.85 86.90 86.80 88.02 71.34 81.01 60.87 84.17 72.65

+ DIT + LLaVA-Instruct150k 78.90 88.59 74.67 79.95 74.17 66.39 53.70 100.00 80.83

Table 3: Detailed results of LLaVA-NeXT-13b (Liu et al., 2024a) on MIA-Bench before and after
supervised fine-tuning on additional constructed diverse instruction-tuning (DIT) data, and the mixture
of DIT and LLaVA-Instruct150k. We re-ran the baseline.

InternVL-Chat-V1.5 (Chen et al., 2024b), which holds the highest meta-ranking among the five
MLLMs on the other benchmarks, ranks the lowest on MIA-Bench. Conversely, Claude-3-Opus,
which has the lowest meta-ranking, secures the second position on the MIA-Bench. This indicates
that excelling in tasks evaluated by existing benchmarks does not necessarily translate to superior
instruction adherence capability assessed by MIA-Bench.

Correlation with LLM backbone performance. To determine if the performance on MIA-Bench is
attributable solely to the underlying LLMs, we also evaluate several MLLMs on IFEval (Qin et al.,
2024), a benchmark that assesses the instruction adherence capability of LLMs, and compare their
ranking with that on MIA-Bench. This comparison is shown in Appendix, which shows that the
instruction adherence capabilities of MLLMs do not consistently align with their LLMs’ adherence
capability.

Other external models as the judge. Since the evaluation uses GPT-4o as the judge, it is natural
to conjecture that GPT-4o may favorably score its own responses. To alleviate this concern, we use
Claude-3, a strong performer in Table 1, to evaluate responses from GPT-4o and itself, and compare
their scores with each other. The prompt used to grade responses is the same as the one used in
GPT-4o grading. We find that even using Claude-3 Opus to score its own and GPT-4o’s responses,
GPT-4o still achieves a superior score. When scored by Claude-3-Opus, GPT-4o achieves 89.84 score
in contrast to Claude-3-Opus’ 85.89. Based on this observation, we use GPT-4o for evaluation by
default, and observe that results from multiple runs may have around 1% variation.

3.2 SUPERVISED FINE-TUNING (SFT)

The performance of small-scale models such as LLaVA-NeXT-13b is less ideal on MIA-Bench. In
this section, we study the use of supervised fine-tuning to enhance model performance.

Additional SFT data construction. First, we randomly sample 1000 images from COCO 2017
training set, and use GPT-4v to generate five instructions for each image, using the prompt below.

Sometimes multimodal LLM doesn't follow user's instruction. For example, when I ask a model to use three sentences to 
answer my question, it might answer in four sentences. I want to evaluate models' ability to strictly follow instructions. 
Help me compose instructions that are of five levels of difficulty to follow, for this image. 
The five levels are 'Basic Instruction, Intermediate Instruction, Advanced Instruction, Creative Instruction, Complex 
Instruction'. Diversify when composing instructions. After each of your instructions, add ***. 
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Model MMBench TextVQA VQA2 LLaVA-itw POPE VizWiz MIA-Bench

LLaVA-NeXT-13b (Liu et al., 2024a) 70.6 64.26 82.80 85.8 87.7 60.41 69.16

+ DIT 68.6 63.20 82.58 83.4 86.9 59.72 78.85

+ DIT + LLaVA-Instruct150k 67.27 54.24 77.92 75.8 87.8 58.87 78.90

Table 4: Results of LLaVA-NeXT-13b (Liu et al., 2024a) on MIA-Bench and other major multimodal
benchmarks supervised fine-tuning on additional constructed diverse instruction-tuning (DIT) data,
and the mixture of DIT and LLaVA-Instruct150k. We re-ran the baseline.

LLaVA 1.6 + SFT:  
In a field of white, the child stands tall, / A winter's day, a chill in the air, / With skis on feet, a silent call, / 
To conquer the slopes, a winter's dare. length limit         description         mention

Instruction: 
Create a 「short, four-line」 「rhyming poem that conveys the atmosphere of the scene and hints at the 


       length limit                            description                            

person’s determination」 「without directly mentioning snow or skiing」.


                           mentionLLaVA 1.6:  
The snowy hill, a winter wonderland / A skier in pursuit, with gear in hand. / The crisp air whispers, 

“Challenge met,” / As she glides down, her spirit set. length limit         description         mention


LLaVA 1.6 + SFT:  
The image is a vintage advertisement for soap, akin to a time-worn parchment that whispers tales of a 
bygone era. The text, like a beacon of hope, promises to cleanse the hands of the weary traveler, offering a 
respite from the grime of daily life. OCR          genre           length limit  

Instruction: 
「Identify the message conveyed in the image」 「using only metaphors」, 「in exactly two sentences」.


                      OCR                                                        genre                                 length limit
LLaVA 1.6: 
The image is a vintage advertisement for a soap that promises to be a "wonderful" and "beautiful" 
product. The text is written in a font that is reminiscent of the old-fashioned style, and it emphasizes the 
soap's ability to cleanse without causing any harm to the user's skin. The soap is described as a "nine-
colored shape novelty," suggesting that it is visually appealing. OCR          genre           length limit  

🙂

🙂

☹

☹

Figure 7: Examples of LLaVA-NeXT-13b responses before and after supervised fine-tuning on
additional diverse instruction-tuning data.

We then manually process the generated instructions. The cleaned data for SFT consists of 5000
image-prompt pairs.

Then, we use GPT-4v to generate responses to the constructed prompts. To evaluate the quality of
these responses, we sampled 100 responses and manually checked if they adhere to the instructions.
We find that 90% of the responses successfully followed all instructions in the prompt, serving as a
proper ground-truth response for model training. Examples of this additional training data is provided
in the Appendix.

Results. Using LLaVA-NeXT-13b as the backbone, we train the model for 1 epoch on the constructed
diverse instruction-tuning (DIT) data. We also performed SFT using the combination of LLaVA
Visual Instruct 150K dataset and our diverse instruction-tuning dataset, to examine which data mixture
leads to better performance. Results on MIA-Bench and other benchmarks are summarized in Table
4, with detailed results on MIA-Bench reported in Table 3. The performance of the model after
finetuning on the DIT data alone on MIA-Bench has been significantly improved by around 10 points,
at the cost of minor regressions across other benchmarks. This supports our hypothesis that using the
small amount of DIT data, we can enhance the model with better instruction following capability. On
the other hand, further adding LLaVA Visual Instruct 150K data did not significantly improve model
performance on the tested benchmarks. Examples are shown in Figure 7 to compare responses from
LLaVA-NeXT-13b before and after SFT.

4 RELATED WORK

Multimodal LLMs and Benchmarks. Multimodal Large Language Models (MLLMs) have recently
emerged as a significant research focus. LLaVA (Liu et al., 2023c) and MiniGPT-4 (Zhu et al.,
2023) pioneered visual instruction tuning, and the past year has witnessed a boom of open-source
MLLMs based on this concept. Prominent examples include InstructBLIP (Dai et al., 2023), mPLUG-
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Owl(-2/Doc) (Ye et al., 2023b;c;a), Qwen-VL (Bai et al., 2023), CogVLM (Wang et al., 2023a),
SPHINX(-X) (Lin et al., 2023b; Gao et al., 2024), InternLM-XComposer2-VL (Dong et al., 2024b),
InternVL(-1.5) (Chen et al., 2023c; 2024b), VILA (Lin et al., 2023a), MM1 (McKinzie et al.,
2024), Mini-Gemini (Li et al., 2024b), Idefics2 (Laurençon et al., 2024), Phi-3-vision (Abdin et al.,
2024), to name a few. There is also a rich body of literature on enabling MLLMs for referring and
grounding (Peng et al., 2023b; Chen et al., 2023a; You et al., 2024a; Wang et al., 2023b; Lai et al.,
2023; Zhang et al., 2023; 2024; You et al., 2024b), image generation and editing (Koh et al., 2023;
Sun et al., 2023a; Fu et al., 2023b), etc.

Various benchmarks have been proposed to evaluate the performance of MLLMs across different
dimensions. Benchmarks like VQAv2 (Goyal et al., 2017), TextVQA (Singh et al., 2019a), Sci-
enceQA (Lu et al., 2022), MME (Fu et al., 2023a), MMbench (Liu et al., 2024b), SEED-Bench (Li
et al., 2023a), MathVista (Lu et al., 2023), and MMMU (Yue et al., 2023) aim to assess comprehensive
multimodal understanding abilities. Additionally, there are benchmarks that specifically study model
hallucination, including POPE (Li et al., 2023b), MHalDetect (Gunjal et al., 2024), GAVIE (Liu
et al., 2023a), HallusionBench (Guan et al., 2023), and MAD-Bench (Qian et al., 2024). Many of
these benchmarks have gained popularity within the community due to their use of multiple-choice
evaluations. However, they do not accurately reflect the common use cases for MLLMs, where user
interactions are typically open-ended. To address this, benchmarks like LLaVA-Bench (Liu et al.,
2023c), MM-Vet (Yu et al., 2023b), and Vibe-Eval (Padlewski et al., 2024) have been proposed.
Our MIA-Bench also falls into this category; however, we focus on studying the exact instruction
adherence of MLLMs, a metric that previous benchmarks have only loosely measured.

Instruction Following Benchmarks for LLMs. Several benchmarks have been proposed to measure
the instruction adherence ability of LLMs. Instruction-Following Eval (IFEval) (Zhou et al., 2023)
is a benchmark for assessing LLMs’ adherence ability to the given instructions. Its approach
emphasizes verifiable instructions, which enhance objectivity and reproducibility in evaluations.
IFEval creates 541 prompts spanning 25 instruction types, revealing a significant performance gap in
instruction adherence ability between GPT-4 (Achiam et al., 2023) and PaLM-2 (Anil et al., 2023).
This demonstrates the benchmark’s ability to effectively differentiate between models in adherence
ability. On the other hand, InfoBench (Qin et al., 2024) introduces a new metric called Decomposed
Requirements Following Ratio (DRFR) for assessing the instruction-adherence capabilities of LLMs.
DRFR dissects complex instructions into simpler sub-instructions, allowing for a granular evaluation
of compliance with various task aspects. InfoBench contains 500 diverse instructions consisting of
2,250 decomposed questions in multiple constraint categories. The evaluation of advanced LLMs
using this framework highlights their strengths and areas for improvement, especially in complex
instruction adherence scenarios. Compared with these previous work, we are the first known effort
that specifically focuses on benchmarking the instruction adherence ability of multimodal LLMs.

5 CONCLUSION

This paper introduces MIA-Bench, a benchmark designed to evaluate the ability of MLLMs to strictly
adhere to complex instructions within prompts. Through the analysis of 400 image-prompt pairs
from diverse sources, our findings highlight variability in model performance and much room for
improvement, underscoring a critical need for enhanced training methods to improve instruction
compliance. We further explored supervised fine-tuning (SFT) using LLaVA-NeXT as the backbone,
which yielded promising results. Going forward, future research can expand on both SFT and
alignment methods such as RLHF (Ouyang et al., 2022; Sun et al., 2023b) and DPO (Rafailov et al.,
2024; Yu et al., 2023a), enhancing MLLMs to achieve higher accuracy and reliability in practical
applications across diverse instructional contexts.

LIMITATION

In designing the instructions for our benchmark, we incorporated a wide range of categories to
enhance the diversity of sub-instructions. Nonetheless, the real world presents an infinite variety of
instructions, many of which may pose significant challenges for MLLMs.
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REPRODUCIBILITY STATEMENT

For reproducibility purpose, we release our evaluation code at https://anonymous.
4open.science/r/anonymous-mia-bench-D0F4/evaluation.ipynb and bench-
mark at: https://anonymous.4open.science/r/anonymous-mia-bench-D0F4/
instruction_benchmark_all.json.
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A APPENDIX

A.1 COMPARISON BETWEEN MIA-BENCH AND IFEVAL

Figure 8: Comparison between MIA-Bench and IFEval.

A.2 EXAMPLES OF DIVERSE INSTRUCTION-TUNING DATA USED FOR SFT

Create a short narrative in four sentences that 
personifies one object in the image and expresses its 

supposed emotions about the current situation, avoiding 
the use of pronouns. 

Dawning a grin, the cinnamon sugar shaker stands tall and 
proud beside the steaming bowls of oatmeal. With every 

shake, a sprinkle of sweetness is bestowed upon the warm, 
inviting surface, sparking a dance of flavors. The 

anticipation of blending into the perfect bite fills the air 
with a joyful essence. Today is another day to add a dash 
of delight, a mission fulfilled with every twist of the cap.

😈

As I stretch my legs wide and bend down to reach the cool 
water, I feel a refreshing relief from the parching 

African heat. The delicate balance to quench my thirst is 
an awkward dance I'm all too familiar with, yet it’s as vital 

as it is vulnerable. 

Narrate the scene from the perspective of the main 
subject, expressing its thoughts in the first person 

about what it is doing and how it feels, in exactly two 
sentences. 😈

Figure 9: Examples of diverse instruction-tuning data used for SFT.
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A.3 EXAMPLES OF HOW MLLMS RESPOND TO INSTRUCTIONS IN MIA-BENCH

Instruction: 
Imagine a short story of two sentences about why the animal is in its current 
location, but you must include a weather condition, a time of day, and an emotion. 
components: ["Imagine a short story about why the animal is in its current location", 
"of two sentences", "you must include a weather condition, a time of day, and an 
emotions”], component weight: [4, 3, 3]

LLaVA-NeXT 110b:  
The polar bear is lounging on the rocks by the pool, enjoying the warmth of the sun on its fur. It's a beautiful day at the zoo, and 
the bear seems content in its enclosure. 
Score of component 1: 3/4, score of component 2: 3/3, score of component 3: 2/3, total score: 8/10. 
Reasons: Component 1 (short story about why the animal is in its current location): The response provides context about why the 
polar bear is in its current location (lounging by the pool on a beautiful day at the zoo). However, it could be more detailed in 
explaining why it's there specifically. Component 2 (two sentences): The response is effectively two sentences. Component 3 
(weather condition, time of day, and emotion): The response includes a weather condition (warmth of the sun, beautiful day), a time 
of day (implicitly daytime implied by the sun), and an emotion (content). However, the time of day could be made more explicit. 

GPT-4v:  
Under the harsh midday sun, the polar bear lounged by the water's edge, seeking relief from the sweltering heat. Despite the 
warmth, a glimmer of contentment shone in its eyes as it enjoyed a moment of quiet repose. 
Score of component 1: 4/4, score of component 2: 3/3, score of component 3: 3/3, total score: 10/10. 
Reasons: Component 1: The response explains why the polar bear is at the water's edge, seeking relief from the heat. Full marks. 
Component 2: The response has exactly two sentences. Full marks. Component 3: The response includes a weather condition (harsh 
midday sun), a time of day (midday), and an emotion (contentment). Full marks.

XComposer2-7b:  
On a sunny afternoon, the polar bear, feeling relaxed, lounges on a rock in its 
enclosure, enjoying the warmth of the sun. 
Score of component 1: 4/4, score of component 2: 0/3, score of component 3: 3/3, 
total score: 7/10. 
Reasons: Component 1: The story explains why the polar bear is in its current location 
(lounging on a rock in its enclosure enjoying the warmth of the sun). Full score 
awarded. Component 2: The response is not two sentences long. Component 3: The 
story includes a weather condition (sunny), a time of day (afternoon), and an emotion 
(relaxed). Full score awarded. 

Qwen-VL-Chat:  
The polar bear is resting on the rock in the sun because it's a warm summer day. It feels relaxed and comfortable in its natural 
habitat. 
Score of component 1: 4/4, score of component 2: 3/3, score of component 3: 2/3, total score: 9/10. 
Reasons: Component 1: The story does explain why the polar bear is in its current location.  Component 2: The response is exactly 
two sentences in length, fully meeting this requirement. Component 3: The response includes a weather condition ("warm summer 
day") and an emotion ("relaxed and comfortable”). However, it does not clearly specify a time of day, losing 1 point.

Figure 10: An example of how MLLMs respond to instructions in MIA-Bench.
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Instruction: 
Explain the message conveyed by the text on the sign in the image, using exactly two sentences. 
components: ["Explain the message conveyed by the text on the sign in the image", "using 
exactly two sentences"],  component weight: [6, 4]

InternVL-Chat-V1-5:  
The text on the sign in the image conveys a message of stopping and being cautious, as it reads 
"STOP" and "VOLDEMICKY." The word “VOLDEMICKY" is a play on the word "volde-mekky," 
which is a Dutch term for a person who is easily influenced or manipulated. The message 
suggests that one should be careful not to be easily swayed or manipulated by others. 
Score of component 1: 3/6, score of component 2: 0/4, total score: 3/10. 
Reason: Component 1: The response explains the message of stopping and being cautious, but it 
misinterprets "VOLDEMICKY" as "volde-mekky" and provides an incorrect definition. 
Additionally, there seems to be a misunderstanding as "VOLDEMICKY" might be intended as a 
playful reference to a combination of Voldemort and Mickey Mouse, neither of which is 
explained.\n- Component 2: The response uses three sentences instead of the required two, 
hence it does not follow the instruction of using exactly two sentences.

Gemini:  
The sign says "Stop Voldemort!" It is a reference to the Harry Potter series, in which Voldemort is the main antagonist. 
Score of component 1: 6/6, score of component 2: 4/4, total score: 10/10. 
Reason: The response successfully explains the message conveyed by the text on the sign, which is to "Stop Voldemort" and 
relates it to the Harry Potter series where Voldemort is the main antagonist. Additionally, the response adheres to the 
requirement of using exactly two sentences. Therefore, it fulfills both components of the instruction fully. 
GPT-4v:  
The sign is a modification of the traditional stop sign, introducing the words "Stop Violence." This is a call to action to end 
violence and can be interpreted as a public message advocating for peace and safety. 
Score of component 1: 2/6, score of component 2: 4/4, total score: 6/10. 
Reason: The response does follow the second component perfectly by using exactly two sentences. However, it does not correctly 
explain the message on the sign. The sign in the image has the text "Stop Voldemort," not “Stop Violence," indicating a message 
related to a fictional character rather than a general call to end violence. Hence, the response accurately addresses the number 
of sentences but fails significantly in conveying the correct message from the sign. 

Claude Opus:  
The text on the illuminated stop sign conveys an emphatic command to halt or cease movement. The unusual octagonal shape and 
red color of the sign reinforce the urgent, attention-grabbing nature of the message to stop immediately. 
Score of component 1: 4/6, score of component 2: 4/4, total score: 8/10.  
Reason: The response explains the message conveyed by the text on the stop sign effectively, noting both the command to stop 
and the reinforcement by the shape and color of the sign. However, it doesn't address the text "Voldemort" beneath the word 
"STOP," which is a crucial part of the message. The response uses exactly two sentences, fulfilling the second component 
perfectly. 

Figure 11: Another example of how MLLMs respond to instructions in MIA-Bench.
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Instruction: 
Describe the scene shown in the image using exactly ten words. 
components: ["Describe the scene shown in the image", "using exactly ten words"], 
component weight: [6, 4]

InternVL-Chat-V1-5:  
Elephants drinking water in a field. 
Score of component 1: 6/6, score of component 2: 0/4, total score: 6/10.  
Reason: The response accurately describes the scene shown in the image with 
elephants drinking water in a field, fulfilling the first component. However, it does 
not use exactly ten words, thus failing the second component.

LLaVA-NeXT 110b:  
Elephant, water, trees, grass, sky, dirt, hill, clouds, reflection, wildlife, natural. 
Score of component 1: 4/6, score of component 2: 0/4, total score: 4/10. 
Reason: The response describes key elements present in the image, such as "Elephant, water, trees, grass, sky, dirt, hill, clouds, 
reflection, wildlife," but it leaves out some critical relational or scene-setting words that fully describe the image scene, 
resulting in a score of 4/6 for component 1. The response uses eleven words instead of ten ("water, trees, grass, sky, dirt, hill, 
clouds, reflection, wildlife, and natural"), resulting in a score of 0/4 for component 2. 

GPT-4v:  
Elephant drinks at waterhole; herd in African savanna background. 
Score of component 1: 6/6, score of component 2: 0/4, total score: 6/10. 
Reason: The response accurately describes the scene shown in the image (an elephant drinking at a waterhole with a herd in the 
African savanna background). However, the response uses nine words instead of the required ten words. Therefore, full points 
are awarded for the first component, but no points are given for the second component.

Claude Opus:  
Elephant drinking water from shallow pond in grassy African savanna. 
Score of component 1: 6/6, score of component 2: 4/4, total score: 10/10. 
Reason: The description "Elephant drinking water from shallow pond in grassy African savanna." accurately describes the scene 
shown in the image, fulfilling the first component of the instruction. Additionally, the response is exactly ten words, satisfying 
the second component. Therefore, the response fully follows both instructions and earns a perfect score. 

XComposer2-7b:  
A herd of elephants walking through a field. 
Score of component 1: 6/6, score of component 2: 0/4, total score: 6/10. 
Reason: The response correctly describes the scene depicted in the image. The only issue is that the response does not use 
exactly ten words, hence it's not fully compliant with the instruction. 

Figure 12: The third example of how MLLMs respond to instructions in MIA-Bench.
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A.4 COMPARISON OF SCORES AND RANKINGS ACROSS DIFFERENT JUDGE MODELS.

Model
Score by Ranking Score by Ranking by Score by Ranking by Score by Ranking by

chatgpt-4o-latest chatgpt-4o-latest gpt-4o-2024-11-20 gpt-4o-2024-11-20 gpt-4o-2024-05-13 gpt-4o-2024-05-13 gpt-4o-mini-2024-07-18 gpt-4o-mini-2024-07-18

GPT-4o 89.69 1 89.94 1 90.97 1 81.36 1

Claude-3-Opus 86.16 2 84.89 2 85.61 2 78.95 2

Reka 83.09 3 82.68 3 83.99 3 77.70 3

MiniCPM-Llama3-V2.5 78.10 4 78.75 4 79.80 4 73.72 4

Gemini 75.77 5 76.32 5 77.36 5 67.45 5

LLaVA-1.5-13b 66.78 6 66.05 6 68.39 7 61.54 6

ShareGPT4v 66.61 7 65.72 7 68.90 6 60.30 7

Idefics-2-8b 53.51 8 53.61 8 54.18 8 44.28 8

Table 5: Comparison of scores and rankings across different judge models. The ranking is stable.

Model Total Score Description Length Limit Genres Grammar Mention Math Perspective OCR

GPT-4o 0.896893 0.906288 0.917996 0.955952 0.830508 0.867949 0.846667 0.833333 0.896396

Claude-3-Opus 0.861628 0.895363 0.866039 0.927730 0.807018 0.820549 0.857639 0.666667 0.800926

Reka 0.830885 0.869867 0.821685 0.883403 0.795597 0.772894 0.813218 0.675000 0.848485

MiniCPM-Llama3-V2.5 0.780966 0.831197 0.766026 0.796257 0.726190 0.722037 0.691358 0.656250 0.768018

Gemini-1.0-Pro 0.757733 0.793860 0.724138 0.745455 0.854167 0.670349 0.810606 0.822917 0.822581

LLaVA-1.5-7b 0.667826 0.743137 0.638889 0.675287 0.571212 0.594505 0.500000 0.758333 0.596774

ShareGPT4v 0.666092 0.773905 0.661290 0.573904 0.562500 0.570722 0.458333 0.638889 0.695238

Idefics-2-8b 0.535057 0.597963 0.531810 0.483768 0.593056 0.452361 0.326087 0.458333 0.569444

Table 6: Details of model scores evaluated by chatgpt-4o-latest.

Model Total Score Description Length Limit Genres Grammar Mention Math Perspective OCR

GPT-4o 0.813587 0.823910 0.847312 0.965594 0.733660 0.820370 0.775862 0.733333 0.765351

Clause-3-Opus 0.789474 0.805156 0.794086 0.916667 0.697115 0.771364 0.706897 0.629630 0.692308

Reka 0.776965 0.805536 0.807151 0.857904 0.732143 0.740253 0.687500 0.600000 0.689189

MiniCPM-Llama3-V2.5 0.737190 0.715403 0.799068 0.849505 0.735294 0.711585 0.637931 0.716667 0.693694

Gemini-1.0-Pro 0.674504 0.676852 0.764286 0.768350 0.697695 0.615801 0.683333 0.611111 0.588235

LLaVA-1.5-13b 0.615427 0.663542 0.643424 0.643873 0.423077 0.619357 0.359195 0.666667 0.449561

ShareGPT4v 0.602989 0.674028 0.601496 0.625556 0.538462 0.560248 0.456897 0.555556 0.547619

Idefics-2-8b 0.442778 0.437893 0.494687 0.461218 0.520408 0.436042 0.276786 0.458333 0.412162

Table 7: Details of model scores evaluated by gpt-4o-mini-2024-07-18.
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Model Total Score Description Length Limit Genres Grammar Mention Math Perspective OCR

GPT-4o 0.909704 0.927875 0.912371 0.942057 0.862434 0.900441 0.857143 0.916667 0.882883

Clause-3-Opus 0.856077 0.890721 0.868490 0.917070 0.774590 0.819386 0.861111 0.725000 0.809524

Reka 0.839905 0.894752 0.785088 0.905643 0.713661 0.801667 0.925926 0.657407 0.828571

MiniCPM-Llama3-V2.5 0.798023 0.828916 0.771795 0.823087 0.751944 0.763976 0.721264 0.816667 0.841880

Gemini-1.0-Pro 0.773569 0.817422 0.735470 0.788911 0.797814 0.683020 0.866071 0.870370 0.806373

LLaVA-1.5-7b 0.683947 0.758817 0.703750 0.674046 0.630208 0.617620 0.425287 0.800000 0.602564

ShareGPT4v 0.689046 0.800461 0.657738 0.608733 0.654762 0.601754 0.500000 0.800000 0.743056

Idefics-2-8b 0.541755 0.560243 0.619318 0.489276 0.646825 0.455342 0.405556 0.375000 0.627193

Table 8: Details of model scores evaluated by gpt-4o-2024-05-13.

Model Total Score Description Length Limit Genres Grammar Mention Math Perspective OCR

GPT-4o 0.899410 0.909379 0.916204 0.969395 0.854885 0.861247 0.920290 0.907407 0.878378

Clause-3-Opus 0.848949 0.861543 0.871686 0.896552 0.797170 0.808777 0.846154 0.645833 0.865741

Reka 0.826844 0.881841 0.809259 0.873276 0.725309 0.770225 0.814103 0.750000 0.819444

MiniCPM-Llama3-V2.5 0.787537 0.818813 0.790246 0.795796 0.768182 0.736359 0.676667 0.716667 0.828125

Gemini-1.0-Pro 0.763240 0.814379 0.750000 0.785159 0.757682 0.672255 0.758333 0.785714 0.776042

LLaVA-1.5-7b 0.660472 0.751873 0.661822 0.649851 0.498512 0.572719 0.516667 0.750000 0.571429

ShareGPT4v 0.657186 0.765309 0.632682 0.575578 0.583333 0.545104 0.464286 0.675000 0.717742

Idefics-2-8b 0.536134 0.589964 0.541887 0.455882 0.611582 0.449821 0.406667 0.527778 0.576190

Table 9: Details of model scores evaluated by gpt-4o-2024-11-20.
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