

000 WEIGHTED CONDITIONAL FLOW MATCHING
001002
003 **Anonymous authors**

004 Paper under double-blind review

005
006 ABSTRACT
007008 Conditional flow matching (CFM) has emerged as a powerful framework for training
009 continuous normalizing flows due to its computational efficiency and effectiveness.
010 However, standard CFM often produces paths that deviate significantly from
011 straight-line interpolations between prior and target distributions, making genera-
012 tion slower and less accurate due to the need for fine discretization at inference.
013 Recent methods enhance CFM performance by inducing shorter and straighter
014 trajectories but typically rely on computationally expensive mini-batch optimal
015 transport (OT). Drawing insights from entropic optimal transport (EOT), we pro-
016 pose *weighted conditional flow matching* (W-CFM), a novel approach that mod-
017 ifies the classical CFM loss by weighting each training pair (x, y) with a Gibbs
018 kernel. We show that this weighting recovers the entropic OT coupling up to some
019 bias in the marginals, and we provide conditions under which the marginals re-
020 main nearly unchanged. Moreover, we establish an equivalence between W-CFM
021 and the minibatch OT method in the large-batch limit, showing how our method
022 overcomes computational and performance bottlenecks linked to batch size. Em-
023 pirically, we test our method on unconditional generation on various synthetic and
024 real datasets, confirming that W-CFM achieves comparable or superior sample
025 quality, fidelity, and diversity to other alternative baselines while maintaining the
026 computational efficiency of vanilla CFM.
027028 1 INTRODUCTION
029030 Generative modeling seeks to learn a parameterized transformation that maps a simple prior (e.g.,
031 a Gaussian) to a complex data distribution. Continuous normalizing flows (CNFs) instead train a
032 time-dependent vector field to solve an ordinary differential equation (ODE) that transports base
033 samples to data samples with exact likelihood computation and invertibility. However, training
034 CNFs by likelihood maximization suffers from training instability and fails to scale efficiently to
035 large or high-dimensional datasets (Chen et al., 2018; Grathwohl et al., 2018; Onken et al., 2021).
036 Flow matching (FM) (Lipman et al., 2023; Albergo et al., 2025; Liu et al., 2023) reframes CNF
037 training as a simple regression problem: a vector field is learned to match the endpoint displacement
038 between a prior sample and its paired data point, yielding near-optimal transport trajectories when
039 the prior is Gaussian. However, the independent pairing of FM cannot ensure that the marginal flow
040 follows an optimal transport geodesic, leading to suboptimal paths in practice. In its most general
041 form, conditional flow matching (CFM) (Lipman et al., 2023; Tong et al., 2024) generalizes FM by
042 learning a vector field that transports samples from an arbitrary transport map, conditioned on paired
043 source and target samples. This method allows for simulation-free training of continuous normal-
044 izing flows and can learn conditional generative models from any sampleable source distribution,
045 extending beyond the Gaussian source.046 Thanks to its flexibility, CFM has been applied in many areas of science, such as molecule gen-
047 eration (Irwin et al., 2024; Geffner et al., 2025), sequence and time-series modeling (Stark et al.,
048 2024; Zhang et al., 2024; Rohbeck et al., 2025), and text-to-speech translation (Guo et al., 2024). A
049 refinement of CFM is minibatch CFM (OT-CFM) (Pooladian et al., 2023; Tong et al., 2024), which
050 uses an entropic or exact plan as the coupling so that each training pair is drawn according to the op-
051 timal transport solution between the minibatch source and target samples. This yields substantially
052 straighter, lower-cost trajectories in the learned flow and improves sample quality with fewer inte-
053 gration steps. However, computing these OT plans—even approximately via Sinkhorn—for every
minibatch incurs substantial per-iteration overhead, scaling cubically with batch size (or quadrati-
cally under entropic regularization). Moreover, requiring well-balanced class representation in each

batch to approximate the global OT plan makes this approach impractical for large, multi-class datasets.

As an alternative that addresses these limitations, we introduce weighted conditional flow matching (W-CFM), which replaces costly batch-level transport computations by simply weighting each independently sampled pair (x, y) with the entropic OT (EOT) Gibbs kernel, $w(x, y) = \exp(-c(x, y)/\varepsilon)$ (Cuturi, 2013). This importance weighting provably recovers the entropic OT (EOT) plan up to a controllable bias in the marginals. As a result, the learned flow follows straight paths without ever explicitly solving an OT problem during training. Moreover, we show that W-CFM matches OT-CFM in the large-batch limit, thereby not incurring any of the batch size-related limitations or any extra costs. In practice, W-CFM delivers straight flows and high-quality samples consistently outperforming CFM and achieving comparable performance to OT-CFM, but with no extra overhead. In short, our contributions are the following:

- We introduce a novel CFM variant that, inspired by EOT, incorporates a Gibbs kernel weight on each sample pair and show that our method serves as a new way to approximate the EOT coupling without any additional cost during training.
- We discuss practical design choices to alleviate the change of the marginals with the new loss and derive sufficient conditions under which this change becomes trivial, so the true marginals are approximately preserved.
- We show that as the batch size grows and assuming that the bias in the marginals remains negligible, W-CFM converges to an entropy-regularized version of OT-CFM, retaining some trajectory straightness without the computational scaling issues associated with the OT plan computations.
- We demonstrate on toy and image-generation benchmarks that W-CFM matches or outperforms existing CFM and OT-CFM methods in sample quality, fidelity, and diversity under a sensible choice of the hyperparameter ε in the Gibbs kernel.

2 BACKGROUND

2.1 ENTROPIC OPTIMAL TRANSPORT

We refer the reader to Nutz (2021) for a comprehensive introduction to the topic and only mention the relevant results for our work. For $\mu, \nu \in \mathcal{P}(\mathbb{R}^d)$, we recall the definition of the Kullback–Leibler divergence $D_{\text{KL}}(\mu\|\nu) := \int_{\mathbb{R}^d} \log \frac{d\mu}{d\nu}(x) d\mu(x)$ if $\mu \ll \nu$ and $+\infty$ otherwise. Assume that μ, ν have finite first moment. We denote the set of couplings between μ and ν by $\Pi(\mu, \nu) := \{\pi \in \mathcal{P}(\mathbb{R}^d \times \mathbb{R}^d) : \pi(\mathbb{R}^d, dy) = \nu(dy), \pi(dx, \mathbb{R}^d) = \mu(dx)\}$. We consider the following entropic optimal transport (EOT) problem with parameter $\varepsilon > 0$:

$$\min_{\pi \in \Pi(\mu, \nu)} \int_{\mathbb{R}^d \times \mathbb{R}^d} c(x, y) d\pi(x, y) + \varepsilon D_{\text{KL}}(\pi\|\mu \otimes \nu), \quad (1)$$

where $c : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}_+$ denotes a cost function, typically $c(x, y) = \|x - y\|$, which is taken such that equation 1 is finite. When $\varepsilon = 0$, we recover the classical Monge–Kantorovich transportation problem of moving a distribution μ to a distribution ν by minimizing the transport cost as measured by c , whose solution is not necessarily unique; we denote by $\pi^* \in \Pi(\mu, \nu)$ such a solution. EOT is of significant importance in machine learning and scientific computing (Genevay et al., 2018; Peyré & Cuturi, 2019), as it approximates the original Monge–Kantorovich transport problem and can be solved tractably with Sinkhorn’s algorithm (Cuturi, 2013; Altschuler et al., 2017). It is a classical result (see, e.g., Chapter 4 in Peyré & Cuturi (2019)) that solving equation 1 is equivalent to solving the following projection problem $\min_{\pi \in \Pi(\mu, \nu)} D_{\text{KL}}(\pi\|\mathcal{K}_\varepsilon)$, with the Gibbs kernel $\mathcal{K}_\varepsilon(dx, dy) := e^{-c(x, y)/\varepsilon} \mu(dx) \nu(dy)$. A convexity argument can be made to prove that there exists a unique minimizer $\pi_\varepsilon \in \Pi(\mu, \nu)$ of equation 1. More specifically, this projection formulation allows us to write the optimal coupling in terms of \mathcal{K}_ε .

Theorem 1 (Theorem 4.2 in Nutz (2021)). *If $c(x, y) < \infty$ $\mu \otimes \nu$ -almost-surely, for any $\varepsilon > 0$ there exist measurable functions $\phi_\varepsilon, \psi_\varepsilon : \mathbb{R}^d \rightarrow \mathbb{R}$, referred to as EOT potentials, such that the EOT plan is given by*

$$\pi_\varepsilon(dx, dy) = \exp \left(\phi_\varepsilon(x) + \psi_\varepsilon(y) - \frac{c(x, y)}{\varepsilon} \right) \mu(dx) \nu(dy). \quad (2)$$

In other words, we have $\pi_\varepsilon(dx, dy) = f_\varepsilon(x)g_\varepsilon(y)\mathcal{K}_\varepsilon(dx, dy)$ for some positive functions $f_\varepsilon(x) = \exp(\phi_\varepsilon(x))$, $g_\varepsilon(y) = \exp(\psi_\varepsilon(y))$. In particular, the component capturing the dependence in the EOT plan π_ε is exactly given by the Gibbs kernel, which is easy to compute, and one only needs to adjust the marginals independently to obtain π_ε . Entropic optimal transport is the static counterpart of the dynamic Schrödinger bridge problem (Léonard, 2013). The corresponding bridge defines a stochastic process whose drift (i.e., deterministic part) minimizes the energy along the path (Gushchin et al., 2023). In other words, the Gibbs kernel appears naturally in EOT, which is a problem whose dynamic counterpart naturally implies minimizing the energy along trajectories, which incentivizes short and straight paths.

2.2 CONDITIONAL FLOW MATCHING

The flow matching methodology Lipman et al. (2023) is a simulation-free method of training a continuous normalizing flow (Chen et al., 2018), i.e., a smooth vector field $v_\theta(t, x)$, for generating samples from a target distribution $\nu \in \mathcal{P}(\mathbb{R}^d)$ given a source distribution $\mu \in \mathcal{P}(\mathbb{R}^d)$. Assume that there exists a vector field $v_t(x)$ such that the flow given by $dx_t = v_t(x_t)dt$ with initial condition $x_0 \sim \mu$ satisfies $x_1 \sim \nu$. The flow matching loss is given by

$$\mathcal{L}_{\text{FM}}(\theta) := \mathbb{E}_{t \sim \mathcal{U}(0,1), X_t \sim p_t} [\|v_\theta(t, X_t) - v_t(X_t)\|^2], \quad (3)$$

where p_t denotes the distribution of x_t , i.e. a probability path between μ and ν . Under technical assumptions, v_t generates p_t if and only if they satisfy the continuity equation

$$\frac{\partial p_t}{\partial t} + \nabla \cdot (p_t v_t) = 0, \quad p_0 = \mu, \quad p_1 = \nu. \quad (4)$$

Upon finding a minimizer of equation 3, one integrates the ODE $d\tilde{x}_t = v_\theta(t, \tilde{x}_t)dt$ from a source sample $\tilde{x}_0 \sim \mu$, so that \tilde{x}_1 is approximately distributed according to ν . In its most general form, conditional flow matching (Lipman et al., 2023) replaces the intractable FM loss equation 3 by an equivalent loss involving a conditional vector field $v_t(x \mid z)$ and conditional probability path $p_t(x \mid z)$ satisfying equation 4 between $\mu(dx \mid z)$ and $\nu(dx \mid z)$

$$\mathcal{L}_{\text{CFM}}(\theta; q) := \mathbb{E}_{t \sim \mathcal{U}(0,1), Z \sim q} \mathbb{E}_{X_t \sim p_t(\cdot \mid Z)} [\|v_\theta(t, X_t) - v_t(X_t \mid Z)\|^2], \quad (5)$$

where z denotes a latent variable and q the prior distribution, typically choosing $z = x_1$. Tong et al. (2024) have generalized the approach of Lipman et al. (2023) by considering arbitrary latent variables z , showing that minimizing the CFM loss equation 5 is equivalent to minimizing equation 3. Hence, the conditional flow matching method calls for two important design choices:

- The latent variable z and prior q : in this paper we focus on the popular choice of $z = (x_0, x_1)$, and we therefore require q to be a coupling, that is $q \in \Pi(\mu, \nu)$.
- The conditional vector field $v_t(x \mid z)$ and probability path $p_t(x \mid z)$: in this paper we consider the linear interpolation path $X_t = (1-t)X_0 + tX_1$, i.e. $p_t(x \mid x_0, x_1) = \delta_{(1-t)x_0 + tx_1}(x)$ together with $v_t(x \mid x_0, x_1) = x_1 - x_0$, this is the implicit choice made for Rectified Flow (Liu et al., 2023).

Choosing $q = \mu \otimes \nu$ in equation 5 leads to the independent conditional flow matching algorithm (I-CFM), which is straightforward to compute but yields irregular trajectories, requiring fine discretizations at inference. On the contrary, choosing $q = \pi^*$ (i.e., an optimal transport plan between the source and target distributions), leads to the optimal transport conditional flow matching algorithm (OT-CFM), which induces straighter trajectories for the learned model $v_\theta(t, x)$ (Tong et al., 2024). As π^* is *a priori* difficult to sample from, many works have explored approximations by computing short distance couplings at the batch level during training (Tong et al., 2024; Pooladian et al., 2023).

3 WEIGHTED CONDITIONAL FLOW MATCHING

By writing $L_\theta(t, X, Y) = \|v_\theta(t, X_t) - v_t(X_t \mid X, Y)\|^2$ where $X_t = (1-t)X + tY$, the I-CFM loss can be written as $\mathcal{L}_{\text{I-CFM}}(\theta) = \mathbb{E}_{t \sim \mathcal{U}(0,1), (X, Y) \sim \mu \otimes \nu} [L_\theta(t, X, Y)]$. In order to enforce straightness of the learned velocity field, one would like to bias this loss towards training sample pairs (x, y) that

162 are close to each other. OT-CFM achieves this by computing the OT plan between discrete sets of
 163 points within a batch. We propose to introduce a bias directly inside the expectation by considering
 164 modifications of the I-CFM loss function of the form

$$166 \quad \mathcal{L}_w(\theta) := \mathbb{E}_{t \sim \mathcal{U}(0,1), (X,Y) \sim \mu \otimes \nu} [w(X,Y) L_\theta(t, X, Y)], \quad (6)$$

167 where $w : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}_+^*$ denotes a positive weighting function, which should be large whenever
 168 X, Y are close and small when X, Y are far apart. This weighting can be understood in terms
 169 of a change of measure. In particular, by defining $\pi_w(dx, dy) \propto w(x, y) \mu(dx) \nu(dy)$ we have
 170 $\mathcal{L}_w(\theta) = \mathbb{E}_{t \sim \mathcal{U}(0,1), (X,Y) \sim \pi_w} [L_\theta(t, X, Y)]$. In other words, weighting the I-CFM loss yields a
 171 CFM loss with a new prior distribution $q = \pi_w$. This technique can be thought of as a form of
 172 importance sampling, where the baseline distribution $\mu \otimes \nu$ is easy to sample from, and $w(x, y)$
 173 corresponds to the importance sampling weight.

175 3.1 APPROXIMATING EOT WITH WEIGHTED CONDITIONAL FLOW MATCHING

177 Let $\varepsilon > 0$. We propose a new loss function that can be used as a drop-in replacement within
 178 conditional flow matching and call it weighted conditional flow matching (W-CFM). Given the form
 179 of the EOT plan equation 2, and a cost function $c : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}$, we consider \mathcal{L}_w equation 6 with the
 180 weighting function $w_\varepsilon(x, y) := \exp(-c(x, y)/\varepsilon) \hat{f}_\varepsilon(x) \hat{g}_\varepsilon(y)$, where $\hat{f}_\varepsilon(x), \hat{g}_\varepsilon(y)$ are independent
 181 stochastic estimates of $f_\varepsilon(x)$ and $g_\varepsilon(y)$. We introduce the weighted conditional flow matching loss

$$183 \quad \mathcal{L}_{\text{W-CFM}}(\theta; \varepsilon) := \mathbb{E}_{t \sim \mathcal{U}(0,1)} \mathbb{E}_{(X,Y) \sim \mu \otimes \nu} [w_\varepsilon(X, Y) \|v_\theta(t, X) - (Y - X)\|^2]. \quad (7)$$

185 **Proposition 1.** *The W-CFM loss defined in equation 7 satisfies $\mathcal{L}_{\text{W-CFM}}(\theta; \varepsilon) = Z_\varepsilon \mathcal{L}_{\text{CFM}}(\theta; q_\varepsilon)$,
 186 where q_ε is the following prior*

$$188 \quad q_\varepsilon(dx, dy) := Z_\varepsilon^{-1} \frac{\mathbb{E}[\hat{f}_\varepsilon(x)] \mathbb{E}[\hat{g}_\varepsilon(y)]}{\hat{f}_\varepsilon(x) \hat{g}_\varepsilon(y)} \pi_\varepsilon(dx, dy), \quad (8)$$

191 *and Z_ε is the normalizing constant. In particular if for any x, y , $\hat{f}_\varepsilon(x)$ and $\hat{g}_\varepsilon(y)$ are unbiased
 192 estimates of $f_\varepsilon(x)$ and $g_\varepsilon(y)$ up to constant factors, then, $\mathcal{L}_{\text{W-CFM}}(\theta; \varepsilon) \propto \mathcal{L}_{\text{CFM}}(\theta; \pi_\varepsilon)$ where π_ε
 193 is the optimal EOT plan.*

194 Thus, training a CNF model using the W-CFM loss given by equation 7 is equivalent to training a
 195 CNF using the EOT plan as the prior distribution, up to a change (a.k.a. tilt) in the marginals given
 196 by the approximation of f_ε and g_ε . Hence, in the general case $\mathcal{L}_{\text{W-CFM}}$ can be thought of as an
 197 approximation of the following loss function

$$199 \quad \mathcal{L}_{\text{EOT-CFM}}(\theta; \varepsilon) = \mathcal{L}_{\text{CFM}}(\theta; \pi_\varepsilon) = \mathbb{E}_{t \sim \mathcal{U}(0,1)} \mathbb{E}_{(X,Y) \sim \pi_\varepsilon} [\|v_\theta(t, X_t) - (Y - X)\|^2], \quad (9)$$

201 3.2 MARGINAL TILTING UNDER W-CFM

203 Using q_ε for the prior leads to the following tilted marginals, which are obtained by integrating
 204 equation 8 with respect to y and x respectively:

$$206 \quad \tilde{\mu}_\varepsilon(dx) = \tau_{\mu, \varepsilon}(x) \mu(dx), \quad \tilde{\nu}_\varepsilon(dy) = \tau_{\nu, \varepsilon}(y) \nu(dy), \quad (10)$$

207 Using equation 8, the unnormalized densities of the tilted marginals with respect to the original
 208 ones are given by

$$210 \quad \tau_{\mu, \varepsilon}(x) := \frac{d\tilde{\mu}_\varepsilon}{d\mu}(x) \propto \int_{\mathbb{R}^d} e^{-\frac{c(x,y)}{\varepsilon}} \mathbb{E}[\hat{g}_\varepsilon(y)] \nu(dy) \mathbb{E}[\hat{f}_\varepsilon(x)],$$

$$212 \quad \tau_{\nu, \varepsilon}(y) := \frac{d\tilde{\nu}_\varepsilon}{d\nu}(y) \propto \int_{\mathbb{R}^d} e^{-\frac{c(x,y)}{\varepsilon}} \mathbb{E}[\hat{f}_\varepsilon(x)] \mu(dx) \mathbb{E}[\hat{g}_\varepsilon(y)]. \quad (11)$$

214 Consequently, training a CNF using the W-CFM loss induces a vector field mapping $\tilde{\mu}_\varepsilon$ to $\tilde{\nu}_\varepsilon$. We
 215 formalize this result in the following proposition.

216 **Proposition 2** (Marginal tilting and continuity equation). *Assume $\mu, \nu \in \mathcal{P}(\mathbb{R}^d)$ have finite second
217 moment. Consider the variational problem*

$$219 \quad \min_v \mathbb{E}_{t \sim \mathcal{U}(0,1)} \mathbb{E}_{(X,Y) \sim \mu \otimes \nu} [w_\varepsilon(X, Y) \|v(t, X_t) - (Y - X)\|^2], \quad X_t = (1-t)X + tY. \quad (12)$$

220 *Let ρ_t denote the law of X_t under $(X, Y) \sim q_\varepsilon$. Then, equation 12 admits a minimizer $v_\varepsilon \in$
221 $L^2([0, 1] \times \mathbb{R}^d; \rho_t(dx)dt)$, which is unique in that space. Moreover (ρ, v_ε) solve the continuity
222 equation in the weak sense*

$$224 \quad \partial_t \rho_t + \nabla \cdot (\rho_t v_\varepsilon) = 0, \quad \rho_0 = \tilde{\mu}_\varepsilon, \quad \rho_1 = \tilde{\nu}_\varepsilon.$$

226 In other words, under mild regularity conditions, the flow generated by v_ε pushes $\tilde{\mu}_\varepsilon$ forward onto $\tilde{\nu}_\varepsilon$.
227 We now present a way to evaluate the marginal tilting. These densities can be estimated by Monte
228 Carlo sampling. If $\tau_{\mu, \varepsilon}(x)$ is constant μ almost-everywhere, then one is guaranteed that the source
229 marginal is preserved, i.e., that $\tilde{\mu}_\varepsilon = \mu$. Similarly, if $\tau_{\nu, \varepsilon}(y)$ is constant ν almost-everywhere, then
230 $\tilde{\nu}_\varepsilon = \nu$. **Computing unbiased low-variance approximations of f_ε and g_ε is a notorious challenge in**
231 **EOT, and is typically done using the Sinkhorn algorithm (Cuturi, 2013).** We give an example which
232 induces a preservation of the ν marginal under a naive constant approximation of \hat{f}_ε and \hat{g}_ε .

233 **Proposition 3.** *Let $\mathbb{S}_R^{d-1} = \{z \in \mathbb{R}^d : \|z\| = R\}$. Assume $c(x, y) = \|x - y\|$, and that μ is a
234 rotation-invariant measure, for instance $\mu = \mathcal{N}(0, \sigma^2 I)$. Take $w_\varepsilon(x, y) = \exp(-c(x, y)/\varepsilon)$. Then,
235 $\tau_{\nu, \varepsilon}(y) \equiv C(R, \varepsilon)$ for all $y \in \mathbb{S}_R^{d-1}$, where $C(R, \varepsilon)$ is a nonnegative constant. In particular, if ν is
236 supported on \mathbb{S}_R^{d-1} , then $\tilde{\nu}_\varepsilon = \nu$.*

237 Proposition 3 implies that using W-CFM with an isotropic distribution as the source, a target distribution
238 which is supported on a $d - 1$ -dimensional sphere of fixed radius, and trivial approximation
239 of the ratios, will induce a coupling that does not tilt the target marginal. In particular, when using a
240 smooth cost and an appropriate ε , we expect that the target distribution will not be tilted significantly
241 provided that its mass is concentrated on a thin annulus, which typically happens when normalizing
242 high-dimensional data. The proofs of all the above Propositions can be found in Appendix A.

244 3.2.1 ON THE CHOICE OF ε

246 The entropy regularization constant ε controls the trade-off between geometric bias (shorter,
247 straighter flows) and marginal distortion (changing μ, ν into $\tilde{\mu}_\varepsilon, \tilde{\nu}_\varepsilon$). As suggested in the previous
248 section, equation 11 can be used to build a proxy to identify sensible values for ε . In particular,
249 if $\tau_{\mu, \varepsilon}, \tau_{\nu, \varepsilon}$ are approximately constant over the supports of μ and ν respectively, the tilted marginals
250 $\tilde{\mu}_\varepsilon$ and $\tilde{\nu}_\varepsilon$ remain close to the original ones. In this case, the W-CFM loss in equation 7 closely approximates the EOT-CFM loss in equation 9. To quantify this, we estimate $\tau_{\mu, \varepsilon}$ and $\tau_{\nu, \varepsilon}$ by Monte
251 Carlo sampling over a small number of batches and compute their relative variance, defined as
252 $\frac{\text{Var}(\tau_{\mu, \varepsilon}(X))}{\mathbb{E}[\tau_{\mu, \varepsilon}(X)]^2}$ —and analogously for $\tau_{\nu, \varepsilon}$. This metric measures how close the functions are to being
253 constant and is invariant to scaling by a constant factor. This invariance ensures the metric is comparable
254 across datasets, allowing consistent evaluation of how much the importance weights distort
255 the marginals. Low relative variance indicates that the induced marginals are close to μ and ν , suggesting
256 that the selected ε yields a good approximation. **A formal algorithm describing this heuristic
257 can be found in Appendix D.**

258 As an initial heuristic for choosing ε in high-dimensional settings (e.g., images or language embeddings)
259 with Euclidean cost $c(x, y) = \|x - y\|$, we rely on the observation that normalized high-dimensional data
260 typically concentrates near a thin spherical shell of radius \sqrt{d} , where d is the data dimension (see concentration of measures in Vershynin (2018)). Consequently, the typical
261 inter-sample distance (and hence the typical value of the L^2 cost function) is $\mathcal{O}(\sqrt{d})$. Selecting ε on
262 this same scale ensures that the ratio inside the exponential of the weighting function in equation 7
263 is $\mathcal{O}(1)$ ¹. In this way, the kernel varies slowly with respect to typical data variations since most pairwise
264 distances become comparable to ε . This reasoning is similar to the heuristic commonly used
265 in kernel methods (e.g., SVMs), where the Gaussian kernel width is set proportional to the median
266 pairwise distance between points (Christianini et al., 2000).

267 ¹The same logic applies for different cost functions, e.g., when the cost function is the squared Euclidean
268 norm, then our epsilon should be $\mathcal{O}(d)$.

Following this rationale, in all our experiments we set $\varepsilon = \kappa\sqrt{d}$, with the scalar κ tuned efficiently (within seconds and a few lines of code) using the relative variance proxy described previously. Specifically, we search over a grid of κ values spaced uniformly in log scale and select the smallest value for which the relative variance starts flattening, following an "elbow rule" heuristic akin to the selection of the number of principal components in PCA (Jolliffe, 2002). **Across high-dimensional experiments, we consistently find that the optimal values of the constant κ satisfy $\kappa \ll 1$.** Additionally, we experimented with various schedulers for ε (including cosine, exponential, and linear), none of which showed a significant improvement over a fixed constant ε . The exact values of ε we used are reported along with the results in Section 5.

3.3 EQUIVALENCE TO OT-CFM IN THE LARGE BATCH LIMIT

OT-CFM relies on solving a mini-batch optimal transport problem for each batch, which (i) requires batch sizes large enough to represent every mode or class—otherwise the empirical OT plan might be a poor approximation of the true OT plan—and (ii) incurs at least cubic (or quadratic for the entropic approximation) cost in the batch size. By contrast, W-CFM uses a simple and virtually free per-pair Gibbs weight $w_\varepsilon(x, y) = \exp(-c(x, y)/\varepsilon) \hat{f}_\varepsilon(x) \hat{g}_\varepsilon(y)$, avoiding any coupling step. Under regularity assumptions (no marginal tilt, bounded support), one can show that as the batch size goes to infinity, the batch-level EOT-CFM loss converges to a limit which is proportional to the W-CFM loss. We formalize this in Proposition 4 below—proof is given in Appendix A. A more detailed discussion can be found in Appendix B.

Proposition 4. *Let $\varepsilon > 0$. Suppose that μ, ν, c are such that equation 1 is finite and μ, ν have bounded support. Let $(t_n, x_n, y_n)_{n \geq 1}$ be iid samples of $\mathcal{U}(0, 1) \otimes \mu \otimes \nu$. Assume that $\hat{\mu}_\varepsilon = \mu$ and $\hat{\nu}_\varepsilon = \nu$. Let π_ε be the EOT plan between μ and ν . Let π_ε^n be the EOT plan between the empirical distributions $\mathbf{x}_n = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}$ and $\mathbf{y}_n = \frac{1}{n} \sum_{i=1}^n \delta_{y_i}$. Then, $\pi_\varepsilon^n \rightarrow \pi_\varepsilon$ almost surely as $n \rightarrow \infty$ in the weak sense. In particular, if $\mathcal{B}_n = \{(t_i, x_i, y_i) : 1 \leq i \leq n\}$ and $v_\theta(t, z)$ is uniformly square-integrable in $t \in [0, 1]$, continuous in $z \in \mathbb{R}^d$, we have, for any θ*

$$\mathbb{E}[L_{\text{EOT-CFM}}(\mathcal{B}_n, \theta; \varepsilon)] \rightarrow l(\theta; \varepsilon) \propto \mathcal{L}_{\text{W-CFM}}(\theta; \varepsilon), \text{ as } n \rightarrow \infty,$$

where the expectation is taken over the random batch \mathcal{B}_n and

$$L_{\text{EOT-CFM}}(\mathcal{B}_n, \theta; \varepsilon) = \frac{1}{n} \sum_{i,j=1}^n \pi_\varepsilon^n(x_i, y_j) \|v_\theta(t_i, (1-t_i)x_i + t_i y_j) - (y_j - x_i)\|^2.$$

4 RELATED WORK

Straightening Sample Paths with Optimal Transport. We review the existing literature on techniques to learn straighter sample paths for flow-based models. Including OT priors within the maximum likelihood training of CNFs has been considered by Onken et al. (2021). Zhang et al. (2025b) propose to learn an acceleration field to capture a random vector field, thereby allowing sample trajectories to cross and leading to straighter trajectories. As highlighted above, our work is closely related to the minibatch optimal transport method proposed by Lipman et al. (2023) and Pooladian et al. (2023) concurrently, which leads to OT-CFM. Within OT-CFM, Klein et al. (2025) have advocated for using the Sinkhorn algorithm (hence computing EOT) to scale to larger batch sizes. Other works have explored an adaptation of OT-CFM to conditional generation through conditional optimal transport (Kerrigan et al., 2024; Cheng & Schwing, 2025). Finally, recent efforts have been made to learn straighter marginal probability paths directly using Wasserstein gradient flows and the JKO scheme (Choi et al., 2024). Compared to OT-CFM, our method has no issue scaling with the batch size, see the discussion in Section 3.3.

Other Approaches for Faster Inference. One important line of research has been to distill existing models (Luhman & Luhman, 2021; Salimans & Ho, 2022), either diffusion or flow-based, and learn the corresponding flow maps so that inference can be done in very few steps. Liu et al. (2023) propose to learn straighter trajectories via ReFlow steps, where one trains a student model using couplings generated by a base teacher model trained by flow matching. The ReFlow paradigm is still of interest and continues to be improved Kim et al. (2025). Consistency models Song et al. (2023) were developed to overcome the cost of discretizing the probability flow ODE in diffusion

324 models, by using the self-consistency property of the underlying flow map. This approach has been
 325 translated to flow matching models by Yang et al. (2024). Finally, some great effort has been put
 326 into using efficient integrators tailored for these models (Lu et al., 2022; Liu et al., 2022; Zhang &
 327 Chen, 2023; Sabour et al., 2024; Williams et al., 2024). Compared to ReFlow, our method does not
 328 rely on synthetic data for training and does not require integrating a base neural ODE to generate
 329 the training pairs.

330
 331 **Biasing Flow Matching via Weighting** Prior works have explored some form of weighted flow
 332 matching for different purposes. Energy-weighted conditional flow matching (Zhang et al., 2025a)
 333 is motivated by learning a model that directly samples from a tilted target distribution, where the
 334 tilting is known beforehand, whereas we try to generate straighter paths for a base model by relying
 335 on the a priori unknown EOT plan. Moreover, the energy functional considered by Zhang et al.
 336 (2025a) is only applied to the target sample and has little to no effect on the geometry of the path.
 337 In our case, we are introducing a weighting scheme that takes as input both endpoints, and leads to
 338 a straightening of the paths, while minimizing the tilting. Similarly, flow matching has been used in
 339 reinforcement learning to sample from complex policies. The flow matching loss can be computed
 340 using a weighting scheme given by the learned advantage function, akin to advantage-weighted
 341 regression (Peters & Schaal, 2007; Peng et al., 2019), which biases the model to sample actions with
 342 high advantage (Park et al., 2025).
 343

344 5 EXPERIMENTS

345 We evaluate our flow matching framework across three complementary domains: 2D toy transports,
 346 unconditional image generation, and a fidelity and diversity analysis of the generated samples. In
 347 these experiments, we demonstrate our framework’s performance and competitiveness in compari-
 348 son to well-established baselines.
 349

350 5.1 EXPERIMENTAL SETUP

351 To visually probe the benefits of our weighted loss, we design similar low-dimensional transport
 352 benchmarks as in Tong et al. (2024). First, we focus on mapping a distribution concentrated on an
 353 annulus to a configurable Mixture of Gaussians (MoG). The second setup consists of recovering
 354 the moons 2D dataset from a MoG source. We compare W-CFM for different choices of ε with
 355 the cost $c(x, y) = \|x - y\|$ against both OT-CFM and I-CFM, training a two-layer ELU-MLP with
 356 64 hidden units per layer via Adam with a learning rate of 10^{-3} for 60,000 iterations with a default
 357 batch size of 64. We evaluate sample quality, path straightness, and marginal density estimates using
 358 KDE contours. When using W-CFM, the training loss is a sample average of equation 7, rescaled
 359 by a Monte-Carlo approximation of Z_ε^{-1} computed over a single epoch as a preprocessing step. **For**
 360 **the models trained with OT-CFM, we use a version where the exact OT plan is computed for each**
 361 **minibatch.**

362 To validate our approach in higher-dimensional settings, we evaluate on CIFAR-10, CelebA64, and
 363 ImageNet64-10—a 64×64 version of 10 ImageNet classes (Deng et al., 2009). We use a UNet
 364 backbone (Ronneberger et al., 2015) adapted to each dataset: for CIFAR-10, a smaller model with
 365 two residual blocks, 64 base channels, and 16×16 attention; for the rest of the datasets, a deeper
 366 UNet with three residual blocks, 128 base channels, a [1, 2, 2, 4] channel multiplier, and additional
 367 attention at 32×32 for ImageNet64-10, Food20, and Intel. All models are trained with Adam, a
 368 learning rate of 2×10^{-4} , cosine learning rate scheduling with 5,000 warmup steps, and EMA (decay
 369 0.9999), for 400,000 steps using batch sizes of 128 for CIFAR-10, 64 for CelebA and ImageNet64-
 370 10, and 48 for Food20 and Intel. Our goal is not to reach state-of-the-art performance, but to compare
 371 flow matching variants under matched computational budgets and architectures.
 372

373 5.2 ILLUSTRATIVE COMPARISON ON TOY DATASETS

374 **Sample Trajectories on Mixture of Gaussians.** We consider the task of mapping a mixture of
 375 many low-variance Gaussians, whose support is concentrated on an annulus, to a target distri-
 376 bution consisting of a mixture of five low-variance Gaussians. We train W-CFM with $\varepsilon = 0.2$
 377 (small ε) and $\varepsilon = 0.4$ (large ε) and use $\hat{f}_\varepsilon = \hat{g}_\varepsilon = 1$. A specific instance where OT-CFM

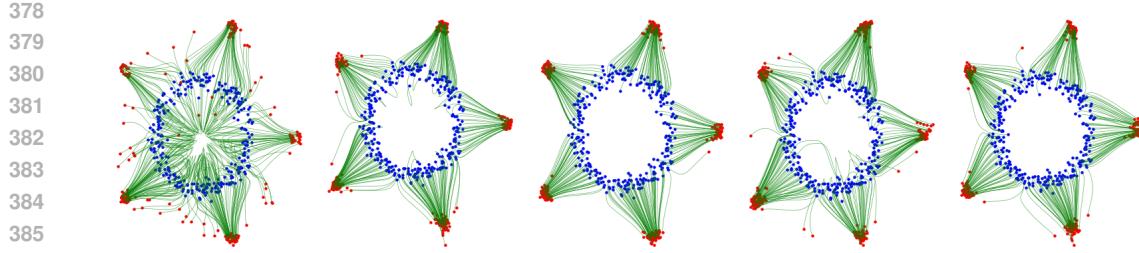


Figure 1: Sample trajectories for circular MoG \rightarrow 5 Gaussians. Left to right, the models used are trained with: I-CFM, W-CFM ($\varepsilon = 0.4$), W-CFM ($\varepsilon = 0.2$), OT-CFM (batch size 16), and OT-CFM.

faces challenges is when a typical batch is not representative of the true target distribution (Kornilov et al., 2024; Klein et al., 2025). Hence, on top of training OT-CFM with the default parameters, we train OT-CFM with a smaller batch size to emulate a scenario with a high number of clusters to batch size ratio (we compensate for the smaller batch size by increasing the number of iterations for this version). We plot sample trajectories of the trained models in Figure 1, and report the performance of the models in Table 1. We use the W_2^2 distance between generated samples and the true target for overall sample quality, and compute the normalized path energy $NPE(\theta) = W_2^{-2}(\mu, \nu) \left| \mathbb{E} \left[\int_0^1 \|v_\theta(t, x_t)\|^2 dt \right] - W_2^2(\mu, \nu) \right|$ for straightness of the trajectories (Tong et al., 2024). Overall, W-CFM leads to better sample quality than OT-CFM with trajectories of similar straightness. We also observe a reduction in straightness for some of the paths when training OT-CFM with a smaller batch size. The W-CFM method outperforms OT-CFM and I-CFM in

Table 1: Comparison of CFM training algorithms’ performance on 2D datasets generation on 5 random seeds. W_2^2 measures the overall quality of sample generation (lower is better), NPE measures the straightness of trajectories (lower is better), using the true optimal transport cost as a reference. **We also report the average time per training iteration in ms, which includes any preprocessing step. Best is in bold, second-best is underlined.**

Dataset \rightarrow	Circular MoG \rightarrow 5 Gaussians			8 Gaussians \rightarrow moons				
	Algorithm \downarrow	Metric \rightarrow	W_2^2 (\downarrow)	NPE (\downarrow)	t/it (ms)	W_2^2 (\downarrow)	NPE (\downarrow)	t/it (ms)
I-CFM			0.091 ± 0.071	1.703 ± 0.107	1.274	0.680 ± 0.146	1.033 ± 0.070	0.894
OT-CFM			0.029 ± 0.011	0.032 ± 0.019	<u>3.751</u>	0.232 ± 0.043	0.125 ± 0.011	<u>1.787</u>
OT-CFM ($B = 16$)			0.041 ± 0.014	0.188 ± 0.041	<u>3.466</u>	0.564 ± 0.125	0.067 ± 0.024	<u>1.415</u>
W-CFM (small ε)			0.018 ± 0.008	0.086 ± 0.021	<u>1.229</u>	0.786 ± 0.324	0.162 ± 0.068	<u>1.124</u>
W-CFM (large ε)			0.029 ± 0.011	0.097 ± 0.024	1.206	0.432 ± 0.135	0.915 ± 0.085	1.133

terms of sample quality, and it exhibits straightness on par with OT-CFM. In particular, we observe that the trajectories of W-CFM are straighter than those in OT-CFM with a small batch size. Overall, this suggests that our method can be well-suited for unconditional generation involving a target distribution with many clusters.

Marginal Tilting on Moons Generation. As highlighted above, our method might induce a tilting of the marginal distributions, requiring a better approximation of f_ε and g_ε . We investigate this phenomenon when generating moons from a mixture of 8 Gaussians, and training W-CFM with $\varepsilon = 2$ (small ε) and $\varepsilon = 10$ (large ε). **We use pre-computed Monte Carlo approximations for $\hat{f}_\varepsilon(x)$ and $\hat{g}_\varepsilon(y)$, as using $\hat{f}_\varepsilon = \hat{g}_\varepsilon = 1$ yields a significant tilting of the marginals (details are given in Appendix C). This is equivalent to performing a single iteration of the Sinkhorn algorithm.** As seen in Figure 2, using W-CFM leads to straighter paths compared to I-CFM as measured by NPE, even for a large value of ε , and provides a better sample quality for a careful choice of ε . We present results for $\varepsilon \in \{2, 4, 6, 8, 10\}$ for further validation of this tradeoff in Appendix E.

5.3 COMPARISON ON IMAGE DATASETS

To evaluate the generation capabilities of W-CFM beyond low-dimensional toy examples, we conducted unconditional image generation experiments across five different benchmarks: CIFAR-10,

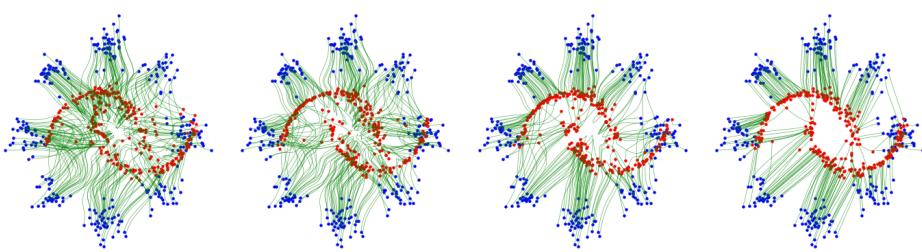


Figure 2: Sample trajectories for moons generation. Source samples are in blue, generated samples are in red. From left to right, we use: I-CFM, W-CFM ($\varepsilon = 10$), W-CFM ($\varepsilon = 2$), and OT-CFM. Here, we use a variant of W-CFM where $\hat{f}_\varepsilon = \hat{f}_{\varepsilon, \text{MC}}$, $\hat{g}_\varepsilon = \hat{g}_{\varepsilon, \text{MC}}$ (see Appendix C).

Figure 3: Contour plots of learned density for moons (using 50,000 generated samples). The leftmost plot corresponds to the true target distribution. Then, from left to right, the models used are trained with: I-CFM, W-CFM ($\varepsilon = 10$), W-CFM ($\varepsilon = 2$), and OT-CFM.

CelebA64, ImageNet64-10, Intel Image Classification, and Food20 (a subset of Food101 (Bossard et al., 2014)). Table 2 summarizes the Fréchet Inception Distance (FID, Heusel et al. (2017)) scores obtained by our proposed W-CFM method compared to I-CFM and OT-CFM with an adaptive solver. W-CFM consistently matches or outperforms the baselines, achieving the best FID scores on CIFAR-10, ImageNet64-10, Intel, and Food20, while remaining competitive on CelebA64. The slightly better performance of OT-CFM on CelebA64 is likely explained by the relatively unimodal nature of the dataset (Zhang, 2023), which alleviates the mode representation issues intrinsic to minibatch OT methods (as discussed in Section 3.3). Conversely, the multimodal structure of datasets like CIFAR-10, ImageNet64-10, Intel, and Food20 highlights the advantage of W-CFM. Batch sizes were 128 for CIFAR-10, 64 for ImageNet64-10 and CelebA64, and 48 for the remaining datasets. Applying the proxy described in Section 3.2.1 for selecting ε , we used $\varepsilon = 5$ for CIFAR-10, $\varepsilon = 13$ for CelebA64, $\varepsilon = 14$ for ImageNet64-10, $\varepsilon = 14$ for Intel, and $\varepsilon = 15$ for Food20. [We use the naive \$\hat{f}_\varepsilon = \hat{g}_\varepsilon = 1\$, a choice motivated by the remark at the end of Section 3.2.](#)

Table 2: FID \downarrow (lower is better) across datasets for different flow matching models with Dopri5.

Model	CIFAR-10	CelebA64	ImageNet64-10	Intel	Food20
I-CFM	7.44	21.99	13.86	27.54	8.15
OT-CFM	7.60	20.93	14.39	25.63	8.23
W-CFM	7.33	21.96	13.56	25.22	7.93

We further assessed model efficiency by comparing FID scores at various numbers of neural function evaluations (NFEs) during Euler integration. Table 3 shows that W-CFM consistently achieves lower or comparable FID scores at fewer NFEs compared to both I-CFM and OT-CFM. On CelebA64, OT-CFM outperforms both models, which again reflects the dataset’s unimodal structure that mitigates OT-CFM’s batch limitations. Appendix E shows example samples for each dataset. [Remarkably, although the chosen values of \$\varepsilon\$ are always an order of magnitude smaller than \$\sqrt{d}\$, we still obtain good sample quality, suggesting that the marginal tilting is benign in these high-dimensional settings.](#)

5.4 FIDELITY AND DIVERSITY OF THE GENERATED SAMPLES

A natural concern with the importance weighting in W-CFM is that it could skew the learned flow toward easier-to-transport pairs, potentially under-representing low-probability modes or degrading sample quality in certain regions of the data manifold. To test this, we evaluate sample fidelity

486 Table 3: FID \downarrow at varying number of neural function evaluations (NFE) using Euler discretization.
 487 Each column reports FID at 50, 100, and 120 NFE.

Dataset	FID @ NFE								
	I-CFM			OT-CFM			W-CFM		
	50	100	120	50	100	120	50	100	120
CIFAR-10	10.87	9.76	8.68	11.03	9.89	8.53	10.53	9.28	8.08
CelebA64	29.49	25.26	24.50	27.76	23.86	22.93	29.32	25.22	24.37
ImageNet64-10	14.94	13.91	13.86	15.67	14.78	14.68	15.82	14.17	13.71
Intel	26.72	26.40	26.20	25.45	25.98	24.26	25.01	24.47	24.08
Food20	10.10	8.98	8.85	10.16	9.17	8.95	10.01	8.97	8.57

496
 497 and diversity using the precision-recall-density-coverage (PRDC) suite of metrics (Naeem et al.,
 498 2020) on 10,000 generated samples and 5,000 held-out real images per dataset. Precision measures
 499 the fraction of generated samples near the real data manifold, recall assesses coverage of the real
 500 distribution, and density and coverage estimate support concentration and breadth, respectively. F1
 501 summarizes the trade-off via the harmonic mean of precision and recall.
 502

503 Table 4: Sample quality and diversity metrics on **ImageNet64-10**.
 504

Model	Precision (\uparrow)	Recall (\uparrow)	Density (\uparrow)	Coverage (\uparrow)	F1 (\uparrow)
I-CFM	0.75	0.69	0.91	0.94	0.72
OT-CFM	0.74	0.67	0.91	0.96	0.71
W-CFM	0.75	0.68	0.94	0.92	0.72

505 Table 4 reports the results on ImageNet64-10, showing that W-CFM maintains comparable or better
 506 recall, F1, and density than both I-CFM and OT-CFM, without sacrificing coverage or precision.
 507 We observe the same qualitative trends across the remaining datasets, with all three methods ex-
 508 hibiting nearly identical PRDC metrics. For completeness, we also include the corresponding tables
 509 for CIFAR-10 and CelebA64 in Appendix E. These results confirm that W-CFM does not impair
 510 diversity or mode coverage, even when trained with independent pairwise weighting.
 511

512 6 CONCLUSION

513 In this work, we introduced weighted conditional flow matching (W-CFM), a novel method that
 514 leverages insights from entropic optimal transport (EOT) to efficiently improve path straightness
 515 and sample quality in continuous normalizing flows. By weighting each training pair using a Gibbs
 516 kernel, our approach approximates the EOT plan without incurring the computational cost of OT
 517 plan computations and without being limited by the batch size when solving the optimal transport
 518 problem. We derived theoretical conditions under which our approximation preserves the original
 519 marginals and provide a practical numerical scheme to mitigate the tilting. We establish equiva-
 520 lence with OT-CFM in the large-batch limit, given that the marginals remain unchanged. Empir-
 521 ical evaluations across low-dimensional toy problems, unconditional image generation tasks, and
 522 fidelity-diversity analyses confirm that W-CFM achieves performance competitive with OT-CFM
 523 while maintaining the computational efficiency of standard CFM.
 524

525 REFERENCES

526 Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
 527 framework for flows and diffusions. *Journal of Machine Learning Research*, 2025.

528 Jason Altschuler, Jonathan Niles-Weed, and Philippe Rigollet. Near-linear time approximation algo-
 529 rithms for optimal transport via sinkhorn iteration. In *Advances in Neural Information Processing
 530 Systems*, 2017.

531 Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 – mining discriminative com-
 532 ponents with random forests. In *European Conference on Computer Vision*, 2014.

533 Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
 534 differential equations. In *Advances in Neural Information Processing Systems*, 2018.

540 Ho Kei Cheng and Alexander Schwing. The curse of conditions: Analyzing and improving optimal
 541 transport for conditional flow-based generation. *arXiv preprint arXiv:2503.10636*, 2025.
 542

543 Jaemoo Choi, Jaewoong Choi, and Myungjoo Kang. Scalable wasserstein gradient flow for generative
 544 modeling through unbalanced optimal transport. *arXiv preprint arXiv:2402.05443*, 2024.
 545

546 Nello Christianini, John Shawe-Taylor, et al. *An introduction to support vector machines and other
 547 kernel-based learning methods*. Cambridge university press Cambridge, 2000.
 548

549 Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In *Advances in
 550 Neural Information Processing Systems*, 2013.
 551

552 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
 553 archical image database. In *2009 IEEE Conference on Computer Vision and Pattern Recognition*,
 554 2009.
 555

556 Tomas Geffner, Kieran Didi, Zuobai Zhang, Danny Reidenbach, Zhonglin Cao, Jason Yim, Mario
 557 Geiger, Christian Dallago, Emine Kucukbenli, Arash Vahdat, et al. Proteina: Scaling flow-based
 558 protein structure generative models. *arXiv preprint arXiv:2503.00710*, 2025.
 559

560 Aude Genevay, Gabriel Peyre, and Marco Cuturi. Learning generative models with sinkhorn diver-
 561 gences. In *International Conference on Artificial Intelligence and Statistics*, 2018.
 562

563 Promit Ghosal, Marcel Nutz, and Espen Bernton. Stability of entropic optimal transport and
 564 schrödinger bridges. *Journal of Functional Analysis*, 2022.
 565

566 Will Grathwohl, Ricky TQ Chen, Jesse Bettencourt, Ilya Sutskever, and David Duvenaud. Ffjord:
 567 Free-form continuous dynamics for scalable reversible generative models. *arXiv preprint
 568 arXiv:1810.01367*, 2018.
 569

570 Yiwei Guo, Chenpeng Du, Ziyang Ma, Xie Chen, and Kai Yu. Voiceflow: Efficient text-to-speech
 571 with rectified flow matching. In *ICASSP 2024-2024 IEEE International Conference on Acoustics,
 572 Speech and Signal Processing (ICASSP)*, 2024.
 573

574 Nikita Gushchin, Alexander Kolesov, Alexander Korotin, Dmitry P Vetrov, and Evgeny Burnaev.
 575 Entropic neural optimal transport via diffusion processes. *Advances in Neural Information Pro-
 576 cessing Systems*, 36:75517–75544, 2023.
 577

578 Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
 579 Gans trained by a two time-scale update rule converge to a local nash equilibrium. In *Advances
 580 in Neural Information Processing Systems*, 2017.
 581

582 Ross Irwin, Alessandro Tibo, Jon Paul Janet, and Simon Olsson. Efficient 3d molecular genera-
 583 tion with flow matching and scale optimal transport. In *International Conference on Machine
 584 Learning*, 2024.
 585

586 I.T. Jolliffe. *Principal Component Analysis*. Springer Series in Statistics. Springer, 2002.
 587

588 Gavin Kerrigan, Giosue Migliorini, and Padhraic Smyth. Dynamic conditional optimal transport
 589 through simulation-free flows. In *Advances in Neural Information Processing Systems*, 2024.
 590

591 Beomsu Kim, Yu-Guan Hsieh, Michal Klein, Marco Cuturi, Jong Chul Ye, Bahjat Kawar, and James
 592 Thornton. Simple reflow: Improved techniques for fast flow models. In *International Conference
 593 on Learning Representations*, 2025.
 594

595 Michal Klein, Alireza Mousavi-Hosseini, Stephen Zhang, and Marco Cuturi. On fitting flow models
 596 with large sinkhorn couplings. *arXiv preprint arXiv:2506.05526*, 2025.
 597

598 Nikita Kornilov, Petr Mokrov, Alexander Gasnikov, and Aleksandr Korotin. Optimal flow matching:
 599 Learning straight trajectories in just one step. In *Advances in Neural Information Processing
 600 Systems*, 2024.
 601

602 Christian Léonard. A survey of the Schrödinger problem and some of its connections with optimal
 603 transport. *arXiv preprint arXiv:1308.0215*, 2013.
 604

594 Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 595 for generative modeling. In *International Conference on Learning Representations*, 2023.
 596

597 Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models on
 598 manifolds. In *International Conference on Learning Representations*, 2022.

599 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
 600 transfer data with rectified flow. In *International Conference on Learning Representations*, 2023.
 601

602 Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast
 603 ode solver for diffusion probabilistic model sampling in around 10 steps. In *Advances in Neural*
 604 *Information Processing Systems*, 2022.

605 Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for improved
 606 sampling speed. *arXiv preprint arXiv:2101.02388*, 2021.
 607

608 Muhammad Ferjad Naeem, Seong Joon Oh, Youngjung Uh, Yunjey Choi, and Jaejun Yoo. Reliable
 609 fidelity and diversity metrics for generative models. In *International Conference on Machine*
 610 *Learning*, 2020.

611 Marcel Nutz. Introduction to entropic optimal transport. *Lecture notes, Columbia University*, 2021.
 612

613 Derek Onken, Samy Wu Fung, Xingjian Li, and Lars Ruthotto. Ot-flow: Fast and accurate continu-
 614 ous normalizing flows via optimal transport. In *Proceedings of the AAAI Conference on Artificial*
 615 *Intelligence*, 2021.

616 Seohong Park, Qiyang Li, and Sergey Levine. Flow q-learning. In *Forty-second International*
 617 *Conference on Machine Learning*, 2025. URL <https://openreview.net/forum?id=KVF2SFL1pi>.
 618

619 Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
 620 Simple and scalable off-policy reinforcement learning. *arXiv preprint arXiv:1910.00177*, 2019.
 621

622 Jan Peters and Stefan Schaal. Reinforcement learning by reward-weighted regression for operational
 623 space control. In *International Conference on Machine learning*, 2007.

625 Gabriel Peyré and Marco Cuturi. *Computational Optimal Transport: With Applications to Data*
 626 *Science*. Now Publishers, Inc., 2019.
 627

628 Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles Domingo-Enrich, Brandon Amos, Yaron Lip-
 629 man, and Ricky T. Q. Chen. Multisample flow matching: Straightening flows with minibatch
 630 couplings. In *International Conference on Machine Learning*, 2023.

631 Martin Rohbeck, Charlotte Bunne, Edward De Brouwer, Jan-Christian Huetter, Anne Biton,
 632 Kelvin Y. Chen, Aviv Regev, and Romain Lopez. Modeling complex system dynamics with flow
 633 matching across time and conditions. In *International Conference on Learning Representations*,
 634 2025.

635 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
 636 image segmentation. In *Medical Image Computing and Computer-Assisted Intervention-MICCAI* 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18. Springer, 2015.
 637

640 Amirmojtaba Sabour, Sanja Fidler, and Karsten Kreis. Align your steps: Optimizing sampling
 641 schedules in diffusion models. In *International Conference on Machine Learning*, 2024.

642 Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. *arXiv*
 643 *preprint arXiv:2202.00512*, 2022.
 644

645 Filippo Santambrogio. *Optimal Transport for Applied Mathematicians*. Springer, 2015.
 646

647 Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. In *International*
 648 *Conference on Machine Learning*, 2023.

648 Hannes Stark, Bowen Jing, Chenyu Wang, Gabriele Corso, Bonnie Berger, Regina Barzilay, and
 649 Tommi Jaakkola. Dirichlet flow matching with applications to dna sequence design. *arXiv*
 650 *preprint arXiv:2402.05841*, 2024.

651

652 Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
 653 Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
 654 with minibatch optimal transport. *Transactions on Machine Learning Research*, 2024.

655 Veeravalli S Varadarajan. On the convergence of sample probability distributions. *Sankhyā: The*
 656 *Indian Journal of Statistics (1933-1960)*, 1958.

657

658 Roman Vershynin. *High-Dimensional Probability: An Introduction with Applications in Data Sci-
 659 ence*. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press,
 660 2018.

661 Christopher Williams, Andrew Campbell, Arnaud Doucet, and Saifuddin Syed. Score-optimal dif-
 662 fusion schedules. In *Advances in Neural Information Processing Systems*, 2024.

663

664 Ling Yang, Zixiang Zhang, Zhilong Zhang, Xingchao Liu, Minkai Xu, Wentao Zhang, Chenlin
 665 Meng, Stefano Ermon, and Bin Cui. Consistency flow matching: Defining straight flows with
 666 velocity consistency. *arXiv preprint arXiv:2407.02398*, 2024.

667

668 Na Zhang. A study on the impact of face image quality on face recognition in the wild. *arXiv*
 669 *preprint arXiv:2307.02679*, 2023.

670

671 Qinsheng Zhang and Yongxin Chen. Fast sampling of diffusion models with exponential integrator.
 In *International Conference on Learning Representations*, 2023.

672

673 Shiyuan Zhang, Weitong Zhang, and Quanquan Gu. Energy-weighted flow matching for offline
 674 reinforcement learning. In *International Conference on Learning Representations*, 2025a. URL
<https://openreview.net/forum?id=HA0oLUvuGI>.

675

676 Xi Nicole Zhang, Yuan Pu, Yuki Kawamura, Andrew Loza, Yoshua Bengio, Dennis Shung, and
 677 Alexander Tong. Trajectory flow matching with applications to clinical time series modelling. In
 678 *Advances in Neural Information Processing Systems*, 2024.

679

680 Yichi Zhang, Yici Yan, Alex Schwing, and Zhizhen Zhao. Towards hierarchical rectified flow. In
 681 *International Conference on Learning Representations*, 2025b.

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A PROOFS OF THEORETICAL RESULTS**
 703

704 **A.1 PROOF OF PROPOSITION 1**
 705

706 We assume that, for any x, y , $\hat{f}_\varepsilon(x)$ and $\hat{g}_\varepsilon(y)$ are independent integrable random variables. More-
 707 over, we assume there exists measurable functions F_ε and G_ε such that $F_\varepsilon(x) = \mathbb{E}[\hat{f}_\varepsilon(x)]$, $G_\varepsilon(y) =$
 708 $\mathbb{E}[\hat{g}_\varepsilon(y)]$ and we assume that for $X \sim \mu, Y \sim \nu$, $F_\varepsilon(X), G_\varepsilon(Y)$ are integrable random variables.
 709 Then, by denoting \mathbb{E} the expectation taken with respect to $t \sim \mathcal{U}(0, 1)$, $(X, Y) \sim \mu \otimes \nu$ and the
 710 randomness of $\hat{f}_\varepsilon, \hat{g}_\varepsilon$
 711

$$\begin{aligned} \mathcal{L}_{\text{W-CFM}}(\theta; \varepsilon) &= \mathbb{E} \left[w_\varepsilon(X, Y) \|v_\theta(t, X) - (Y - X)\|^2 \right] \\ &= \mathbb{E} \left[\exp(-c(X, Y)/\varepsilon) \hat{f}_\varepsilon(X) \hat{g}_\varepsilon(Y) \|v_\theta(t, X) - (Y - X)\|^2 \right] \\ &= \mathbb{E} \left[\mathbb{E} \left[\hat{f}_\varepsilon(X) \hat{g}_\varepsilon(Y) \mid X, Y \right] \exp(-c(X, Y)/\varepsilon) \|v_\theta(t, X) - (Y - X)\|^2 \right]. \end{aligned}$$

712 Now, we have
 713

$$\begin{aligned} \mathbb{E} \left[\hat{f}_\varepsilon(X) \hat{g}_\varepsilon(Y) \mid X, Y \right] &= \varphi(X, Y) \\ \text{where } \varphi(x, y) &= \mathbb{E} \left[\hat{f}_\varepsilon(x) \hat{g}_\varepsilon(y) \right] = \mathbb{E} \left[\hat{f}_\varepsilon(x) \right] \mathbb{E} \left[\hat{g}_\varepsilon(y) \right] = F_\varepsilon(x) G_\varepsilon(y). \end{aligned}$$

714 Hence
 715

$$\mathcal{L}_{\text{W-CFM}}(\theta; \varepsilon) = \mathbb{E} \left[\exp(-c(X, Y)/\varepsilon) F_\varepsilon(X) G_\varepsilon(Y) \|v_\theta(t, X) - (Y - X)\|^2 \right].$$

716 We define the following probability measure
 717

$$q_\varepsilon(dx, dy) := Z_\varepsilon^{-1} \frac{F_\varepsilon(x) G_\varepsilon(y)}{f_\varepsilon(x) g_\varepsilon(y)} \pi_\varepsilon(dx, dy) = Z_\varepsilon^{-1} \exp(-c(x, y)/\varepsilon) F_\varepsilon(x) G_\varepsilon(y) \mu(dx) \nu(dy).$$

718 By a change of measure, we get
 719

$$\mathcal{L}_{\text{W-CFM}}(\theta; \varepsilon) = Z_\varepsilon \mathbb{E}_{t \sim \mathcal{U}(0, 1), (X, Y) \sim q_\varepsilon} \left[\|v_\theta(t, X) - (Y - X)\|^2 \right] = Z_\varepsilon \mathcal{L}_{\text{CFM}}(\theta; q_\varepsilon),$$

720 which ends the proof. □
 721

722 **A.2 PROOF OF PROPOSITION 2**
 723

724 Recall the prior defined in equation 8. Recall that ρ_t denotes the distribution of $X_t = (1-t)X + tY$
 725 under $(X, Y) \sim q_\varepsilon$. For any $v \in L^2([0, 1] \times \mathbb{R}^d; \rho_t(dx)dt)$, we have
 726

$$\begin{aligned} &\mathbb{E}_{t \sim \mathcal{U}(0, 1)} \mathbb{E}_{(X, Y) \sim \mu \otimes \nu} [w_\varepsilon(X, Y) \|v(t, X_t) - (Y - X)\|^2] \\ &= \mathbb{E}_{t \sim \mathcal{U}(0, 1)} \mathbb{E}_{(X, Y) \sim q_\varepsilon} \left[\frac{d(\mu \otimes \nu)}{dq_\varepsilon}(X, Y) \exp(-c(X, Y)/\varepsilon) \|v(t, X_t) - (Y - X)\|^2 \right] \\ &= Z_\varepsilon \mathbb{E}_{t \sim \mathcal{U}(0, 1)} \mathbb{E}_{(X, Y) \sim q_\varepsilon} [\|v(t, X_t) - (Y - X)\|^2], \end{aligned}$$

727 where Z_ε denotes the normalizing constant $Z_\varepsilon := \mathbb{E}_{(X, Y) \sim \mu \otimes \nu} [w_\varepsilon(X, Y)] > 0$. Hence the variational
 728 problem given by equation 12 is equivalent to
 729

$$\min_v \mathbb{E}_{t \sim \mathcal{U}(0, 1)} \mathbb{E}_{(X, Y) \sim q_\varepsilon} [\|v(t, X_t) - (Y - X)\|^2]. \quad (13)$$

730 By the L^2 -projection property of conditional expectations, the variational problem of equation 13 is
 731 solved by the function $v_\varepsilon : [0, 1] \times \mathbb{R}^d \rightarrow \mathbb{R}^d$ defined by
 732

$$v_\varepsilon(t, z) = \mathbb{E}_{(X, Y) \sim q_\varepsilon} [Y - X \mid X_t = z]. \quad (14)$$

733 Note that this definition is unique in $L^2([0, 1] \times \mathbb{R}^d; \rho_t(dx)dt)$. We now check that v_ε generates a
 734 valid probability path between $\tilde{\mu}_\varepsilon$ and $\tilde{\nu}_\varepsilon$, i.e., that (ρ, v_ε) satisfy the continuity equation equation 4
 735

756 in the weak sense. Clearly, $v_\varepsilon(t, \cdot) \in L^1(\mathbb{R}^d, \rho_t)$ and $\int_0^1 \int_{\mathbb{R}^d} |v_\varepsilon(t, x)| p(t, x) dx dt < \infty$. By Proposition 4.2 in Santambrogio (2015), it is enough to check that the continuity equation is satisfied in the sense of distributions. Let $\phi \in C_c^1((0, 1) \times \mathbb{R}^d)$, then

$$\begin{aligned} & \int_0^1 \int_{\mathbb{R}^d} \partial_t \phi(t, x) \rho_t(dx) dt + \int_0^1 \int_{\mathbb{R}^d} \nabla \phi(t, x) \cdot v_\varepsilon(t, x) \rho_t(dx) dt \\ &= \int_0^t \mathbb{E}[\partial_t \phi(t, X_t) + \nabla \phi(t, X_t) \cdot (Y - X)] dt = \mathbb{E}[\phi(1, Y) - \phi(0, X)] = 0. \end{aligned}$$

□

767 A.3 PROOF OF PROPOSITION 3

768 Let $y_2, y_2 \in \mathbb{S}_R^{d-1}$. We can get hold of $\varphi \in O(d)$ (i.e. a distance-preserving transformation in \mathbb{R}^d)
769 such that $\varphi(y_1) = y_2$. Since $\|\varphi(y_1) - \varphi(x)\| = \|y_1 - x\|$ for all $x \in \mathbb{R}^d$, we have

$$\begin{aligned} \int_{\mathbb{R}^d} \exp\left(-\frac{\|y_2 - x\|}{\varepsilon}\right) \mu(dx) &= \int_{\mathbb{R}^d} \exp\left(-\frac{\|\varphi(y_1) - x\|}{\varepsilon}\right) \mu(dx) \\ &= \int_{\varphi^{-1}(\mathbb{R}^d)} \exp\left(-\frac{\|\varphi(y_1) - \varphi(x)\|}{\varepsilon}\right) (\varphi_{\#}^{-1} \mu)(dx) \\ &= \int_{\varphi^{-1}(\mathbb{R}^d)} \exp\left(-\frac{\|y_1 - x\|}{\varepsilon}\right) (\varphi_{\#}^{-1} \mu)(dx) \\ &= \int_{\mathbb{R}^d} \exp\left(-\frac{\|y_1 - x\|}{\varepsilon}\right) \mu(dx), \end{aligned}$$

781 which directly implies that $\tau_{\mu, \varepsilon}(y_2) = \tau_{\mu, \varepsilon}(y_1)$

□

783 A.4 PROOF OF PROPOSITION 4

785 Let $\varepsilon > 0$. Recall that $(t_n, x_n, y_n)_{n \geq 1}$ are iid samples of $\mathcal{U}(0, 1) \otimes \mu \otimes \nu$, and that we assume
786 $\hat{\mu}_\varepsilon = \mu$ and $\hat{\nu}_\varepsilon = \nu$. Let π_ε be the optimal EOT plan between μ and ν . Let π_ε^n be the optimal EOT
787 plan between $\mathbf{x}_n = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}$ and $\mathbf{y}_n = \frac{1}{n} \sum_{i=1}^n \delta_{y_i}$. In this proof, the convergence of probability
788 measures is understood in the weak sense.

789 First, the almost-sure convergences $\mathbf{x}_n \rightarrow \mu$ and $\mathbf{y}_n \rightarrow \nu$ come from a classical result in probability
790 theory on the convergence of empirical distributions to the true distribution, see Varadarajan (1958).

792 Since the minimization problem of equation 1 is non-trivial, an application of Theorem 1.4 in Ghosal
793 et al. (2022) shows that the empirical EOT plan satisfies $\pi_\varepsilon^n \rightarrow \pi_\varepsilon$ almost surely. Now, for any $n \geq 1$,
794 we have

$$\begin{aligned} \mathbb{E}[L_{\text{EOT-CFM}}(\mathcal{B}_n, \theta; \varepsilon)] &= \mathbb{E}\left[\int_{\mathbb{R}^d \times \mathbb{R}^d} \int_0^1 \|v_\theta(t, (1-t)x + ty) - (y - x)\|^2 dt \pi_\varepsilon^n(dx, dy)\right] \\ &= \mathbb{E}\left[\int_{s(\mu) \times s(\nu)} \int_0^1 \|v_\theta(t, (1-t)x + ty) - (y - x)\|^2 dt \pi_\varepsilon^n(dx, dy)\right], \end{aligned}$$

802 where $s(\mu), s(\nu)$ denote the support of μ and ν respectively, which are assumed to be bounded.
803 Since $(x, y) \mapsto \int_0^1 \|v_\theta(t, (1-t)x + ty) - (y - x)\|^2 dt$ is continuous and bounded on $s(\mu) \times s(\nu)$
804 by our assumption on v_θ , we have

$$\begin{aligned} & \int_{s(\mu) \times s(\nu)} \left(\int_0^1 \|v_\theta(t, (1-t)x + ty) - (y - x)\|^2 dt \right) \pi_\varepsilon^n(dx, dy) \\ & \rightarrow \int_{s(\mu) \times s(\nu)} \left(\int_0^1 \|v_\theta(t, (1-t)x + ty) - (y - x)\|^2 dt \right) \pi_\varepsilon(dx, dy) \end{aligned}$$

810 almost surely as $n \rightarrow \infty$. Now, by uniform integrability, this convergence also holds in expectation,
 811 i.e.

$$812 \mathbb{E} [L_{\text{EOT-CFM}}(\mathcal{B}_n, \theta; \varepsilon)] \rightarrow \int_{s(\mu) \times s(\nu)} \left(\int_0^1 \|v_\theta(t, (1-t)x + ty) - (y - x)\|^2 dt \right) \pi_\varepsilon(dx, dy).$$

815 Finally, we want to prove that this integral is proportional to $\mathcal{L}_{\text{W-CFM}}(\theta; \varepsilon)$. Since we assume no
 816 tilting of the marginals, i.e. $q_\varepsilon = \pi_\varepsilon$, we have

$$817 \mathcal{L}_{\text{W-CFM}}(\theta; \varepsilon) = Z_\varepsilon \mathbb{E}_{t \sim \mathcal{U}(0,1), (X, Y) \sim \pi_\varepsilon} [\|v_\theta(t, X_t) - (Y - X)\|^2] \\ 818 = Z_\varepsilon \int_{s(\mu) \times s(\nu)} \left(\int_0^1 \|v_\theta(t, (1-t)x + ty) - (y - x)\|^2 dt \right) \pi_\varepsilon(dx, dy).$$

820 by using the same change of measure argument as in the proof of Proposition 2. \square

823 B DETAILS ON THE EQUIVALENCE TO OT-CFM IN THE LARGE BATCH 824 LIMIT

826 We recall the mini-batch optimal transport technique that is central in the OT-CFM algorithm of
 827 Tong et al. (2024). Given a batch of i.i.d. samples $\mathcal{B} = \{(t_i, x_i, y_i) : i = 1, \dots, B\}$, where t_i are
 828 i.i.d. according to $\mathcal{U}(0, 1)$, x_i are i.i.d. according to μ , y_i are i.i.d. according to ν , and t_i, x_i, y_i are
 829 drawn independently, one can compute the optimal transport plan between the two corresponding
 830 discrete distribution, i.e. one computes

$$831 \pi_{\mathcal{B}} \in \arg \min_{\pi \in \Pi_{\mathcal{B}}} \sum_{i=1}^B \sum_{j=1}^B c(x_i, y_j) \pi(x_i, y_j), \quad (15)$$

834 where $\Pi_{\mathcal{B}}$ is the set of couplings between the empirical measures

$$835 \mathbf{x}_{\mathcal{B}} = \frac{1}{B} \sum_{i=1}^B \delta_{x_i}, \quad \mathbf{y}_{\mathcal{B}} = \frac{1}{B} \sum_{i=1}^B \delta_{y_i}.$$

838 In particular, any $\pi \in \Pi_{\mathcal{B}}$ must satisfy $\sum_j \pi(x_i, y_j) = \sum_i \pi(x_i, y_j) = \frac{1}{B}$. Then, given an optimal
 839 $\pi_{\mathcal{B}}$, one computes the following

$$840 L_{\text{OT-CFM}}(\mathcal{B}, \theta) = \frac{1}{B} \sum_{i=1}^B (v_\theta(t_i, (1-t_i)x_i + t_i y_{\sigma(i)}) - (y_{\sigma(i)} - x_i))^2, \quad (16)$$

843 where σ is a permutation corresponding to a Monge map for the problem equation 15, i.e., for some
 844 $T : \{x_i : i = 1, \dots, B\} \rightarrow \{y_i : i = 1, \dots, B\}$ such that $T(x_i) = y_{\sigma(i)}$ and $\pi_{\mathcal{B}} := (\text{Id}, T)_\# \mathbf{x}_{\mathcal{B}}$ is a
 845 solution to equation 15 (Peyré & Cuturi, 2019). This sample loss is used as an approximation of the
 846 following OT-CFM loss

$$847 \mathcal{L}_{\text{OT-CFM}}(\theta) := \mathbb{E}_{t \sim \mathcal{U}(0,1)} \mathbb{E}_{(X, Y) \sim \pi^*} [\|v_\theta(t, X_t) - (Y - X)\|^2], \quad (17)$$

848 where π^* solves the unregularized optimal transport problem, that is equation 1 with $\varepsilon = 0$.

849 The sample OT-CFM loss in equation 16 is a low bias approximation of equation 17 only when the
 850 batch size is large enough. The actual samples for which we compute equation 16 are not exactly
 851 distributed according to a genuine OT plan between μ and ν , since the OT plan π^* and the product
 852 measures $\mu \otimes \nu$ might be mutually singular. Additionally, computing the exact batch OT plan
 853 becomes prohibitively expensive as the batch size grows. A solution is to compute an approximate
 854 OT plan, by using the Sinkhorn algorithm (Cuturi, 2013), which is an efficient way of computing
 855 the entropic OT plan between two discrete sets of measures. In that case, as the batch size increases,
 856 the sample OT-CFM loss equation 16 approximates $\mathcal{L}_{\text{EOT-CFM}}$ given by equation 9. Nevertheless,
 857 approximating the OT at the batch level is particularly challenging in datasets with multiple modes,
 858 as it becomes unrealistic to faithfully approximate the global OT if not all modes are adequately
 859 represented within each (or the average) batch. Consequently, the batch size must scale with the
 860 number of models or classes present in the dataset.

861 Our method does not have these scaling issues with the batch size, since it only involves computing
 862 a simple weighting factor $w_\varepsilon(x_i, y_i) = \exp(-c(x_i, y_i)/\varepsilon)$ for every training sample pair (x_i, y_i) in
 863 a batch. In other words, if one assumes that the weight does not tilt the marginals, the weighted
 CFM method corresponds to a large batch limit of OT-CFM (where batch EOT is used).

864 C MONTE CARLO ESTIMATES FOR \hat{f}_ε AND \hat{g}_ε
865866 C.1 GENERAL METHOD
867868 Whenever the tilting is prominent, as in the 8 Gaussians \rightarrow moons task, using $\hat{f}_\varepsilon = g_\varepsilon = 1$ is
869 no longer sufficient. Instead, we propose the following scheme to compute Monte Carlo estimates
870 $\hat{f}_{\varepsilon, \text{MC}}, \hat{g}_{\varepsilon, \text{MC}}$ as a pre-processing step:
871872

- 873 First, discretize the source distribution, i.e. draw N_μ samples x_1, \dots, x_{N_μ} from the source
874 distribution. Similary, draw N_ν samples y_1, \dots, y_{N_ν} from the target distribution (when
875 either distribution is already discretized, as is the case for the image data in most unconditional
876 image generation tasks, just use all the samples available).
- 877 Then, compute

878
$$\hat{f}_{\varepsilon, \text{MC}}(x_i) = \left(\frac{1}{N_\nu} \sum_{j=1}^{N_\nu} \exp(-c(x_i, y_j)/\varepsilon) \right)^{-1}, \quad i = 1, \dots, N_\mu,$$

879
880
$$\hat{g}_{\varepsilon, \text{MC}}(y_i) = \left(\frac{1}{N_\mu} \sum_{i=1}^{N_\mu} \exp(-c(x_i, y_j)/\varepsilon) \right)^{-1}, \quad j = 1, \dots, N_\nu,$$

881
882
883

884 that is, for every point in the discretized source (resp. every point in the discretized target)
885 compute a Monte Carlo approximation proportional to the true weight f_ε (resp. g_ε) using
886 all the points in the discretized target (resp. using all the points in the discretized source).
887888 Then, during training, sample pairs of point independently from the discretized distributions, and
889 use the weight $w_\varepsilon(x_i, y_j) = \exp(-c(x_i, y_j)/\varepsilon) \hat{f}_{\varepsilon, \text{MC}}(x_i) \hat{g}_{\varepsilon, \text{MC}}(y_j)$.
890891 C.2 APPLICATION TO MOONS GENERATION
892893 In order to assess the effectiveness of the scheme described above, we plot trajectories in Figure 4
894 and report performance in terms of squared 2-Wasserstein distance and NPE in Table 5. We train
895 using W-CFM with different values of ε , and for each value of ε , we train a model with naive
896 $\hat{f}_\varepsilon = \hat{g}_\varepsilon = 1$ and compare against MC estimates $\hat{f}_\varepsilon = \hat{f}_{\varepsilon, \text{MC}}, \hat{g}_\varepsilon = \hat{g}_{\varepsilon, \text{MC}}$. As measured by W_2^2 ,
897 the MC approach yields a significant improvement over the naive approach accross all considered
898 values of ε . Here, the validity of NPE as a measure of path straightness is arguable, especially for
899 the small ε naive variant, as the generated distribution is significantly tilted.
900901 Table 5: Comparison of variants of W-CFM on **8 Gaussians \rightarrow moons** on 5 random seeds. W_2^2
902 measures the overall quality of sample generation (lower is better), NPE measures the straightness
903 of trajectories (lower is better), using the true optimal transport cost as a reference. For each ε , we
904 compare the naive approach ($\hat{f}_\varepsilon = \hat{g}_\varepsilon = 1$) against the MC approach ($\hat{f}_\varepsilon = \hat{f}_{\varepsilon, \text{MC}}, \hat{g}_\varepsilon = \hat{g}_{\varepsilon, \text{MC}}$)
905

Variant \rightarrow	Naive $\hat{f}_\varepsilon = \hat{g}_\varepsilon = 1$		MC $\hat{f}_\varepsilon = \hat{f}_{\varepsilon, \text{MC}}, \hat{g}_\varepsilon = \hat{g}_{\varepsilon, \text{MC}}$	
Algorithm \downarrow Metric \rightarrow	W_2^2 (\downarrow)	NPE (\downarrow)	W_2^2 (\downarrow)	NPE (\downarrow)
W-CFM ($\varepsilon = 2$)	1.823 ± 0.166	0.289 ± 0.008	0.786 ± 0.324	0.162 ± 0.068
W-CFM ($\varepsilon = 4$)	1.476 ± 0.167	0.033 ± 0.023	0.564 ± 0.337	0.439 ± 0.105
W-CFM ($\varepsilon = 6$)	0.960 ± 0.186	0.220 ± 0.050	0.484 ± 0.128	0.627 ± 0.118
W-CFM ($\varepsilon = 8$)	0.888 ± 0.217	0.365 ± 0.076	0.562 ± 0.181	0.833 ± 0.031
W-CFM ($\varepsilon = 10$)	0.843 ± 0.321	0.463 ± 0.061	0.432 ± 0.135	0.915 ± 0.085

914
915
916
917

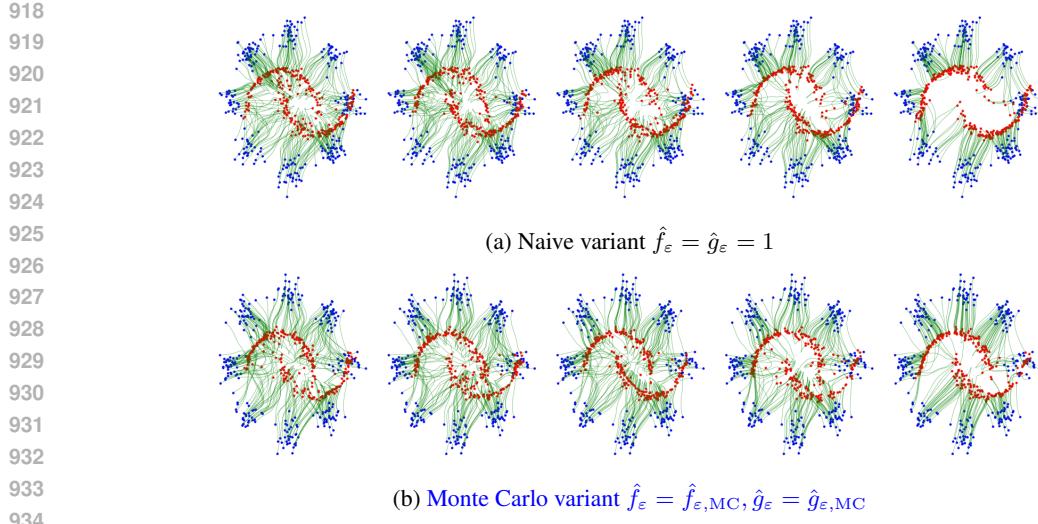


Figure 4: Sample trajectories on **8 Gaussians** → **moons** with different variants of W-CFM. From left to right, the models used are trained with the following values of ε : 10,8,6,4,2.

D ALGORITHM FOR DETERMINING ε

Algorithm 1 Choosing ε by controlling the variability of the kernel-induced marginal tilts

Require: Dataset $\{y_j\}_{j=1}^N \sim \nu$, prior sampler for μ , number of source points M , candidate scales $\{\varepsilon_\ell\}_{\ell=1}^L$

1: **for** $\ell = 1, \dots, L$ **do** ▷ Evaluate one candidate ε_ℓ
 2: Sample $\{x_i\}_{i=1}^M \sim \mu$
 3: Define Gibbs kernel

$$K_{ij}^{(\ell)} = \exp\left(-\frac{c(x_i, y_j)}{\varepsilon_\ell}\right), \quad 1 \leq i \leq M, 1 \leq j \leq N$$

 4: Monte Carlo estimates of the marginal tilting factors in equation 11 (with $\hat{f}_\varepsilon = \hat{g}_\varepsilon \equiv 1$):

$$\hat{\tau}_{\mu, \varepsilon_\ell}(x_i) = \frac{1}{N} \sum_{j=1}^N K_{ij}^{(\ell)}, \quad \hat{\tau}_{\nu, \varepsilon_\ell}(y_j) = \frac{1}{M} \sum_{i=1}^M K_{ij}^{(\ell)}.$$

 5: Compute relative variances of the empirical tilts

$$\text{RV}_\mu(\varepsilon_\ell) = \frac{\text{Var}_i[\hat{\tau}_{\mu, \varepsilon_\ell}(x_i)]}{(\mathbb{E}_i[\hat{\tau}_{\mu, \varepsilon_\ell}(x_i)])^2}, \quad \text{RV}_\nu(\varepsilon_\ell) = \frac{\text{Var}_j[\hat{\tau}_{\nu, \varepsilon_\ell}(y_j)]}{(\mathbb{E}_j[\hat{\tau}_{\nu, \varepsilon_\ell}(y_j)])^2}.$$

 6: **end for**
 7: Choose ε^* according to a selection rule, e.g.

$$\varepsilon^* = \min \left\{ \varepsilon_\ell : \text{RV}_\mu(\varepsilon_\ell) \leq \delta \text{ and } \text{RV}_\nu(\varepsilon_\ell) \leq \delta \right\},$$

 for some tolerance δ , or via an “elbow” in the curves $\text{RV}_\mu(\varepsilon_\ell), \text{RV}_\nu(\varepsilon_\ell)$.
 8: **return** ε^*

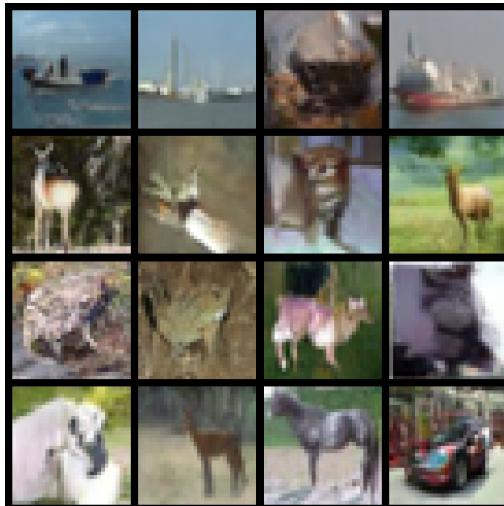
Using Algorithm 1, we determined the values of ε used in the high-dimensional experiments in Section 5. In particular, we set the tolerance threshold δ for the relative variance to be on the order of 10^{-2} , confirming that, for these datasets, the potentials are indeed approximately constant.

972
973
974
975
976
977
978
979
E ADDITIONAL RESULTS
980

980 Figure 5: Contour plots of learned target density for **8 Gaussians \rightarrow moons**. The leftmost plot
981 corresponds to the true target distribution. Then, from left to right, the models used are trained with
982 the following values of ε : 10,8,6,4,2.
983

ε	FID \downarrow
1.0	14.01
2.0	8.89
3.0	7.65
5.0	7.33
7.5	7.42

990 Table 6: FID scores on CIFAR-10 for different ε .
991
992



1010 Figure 6: Generated samples from W-CFM trained on CIFAR-10.
1011
1012

1013 Table 7: Sample quality and diversity metrics on **CIFAR-10**.
1014

Model	Precision (\uparrow)	Recall (\uparrow)	Density (\uparrow)	Coverage (\uparrow)	F1 (\uparrow)
I-CFM	0.83	0.75	0.98	0.91	0.78
OT-CFM	0.80	0.75	1.00	0.92	0.77
W-CFM	0.81	0.76	0.94	0.91	0.78

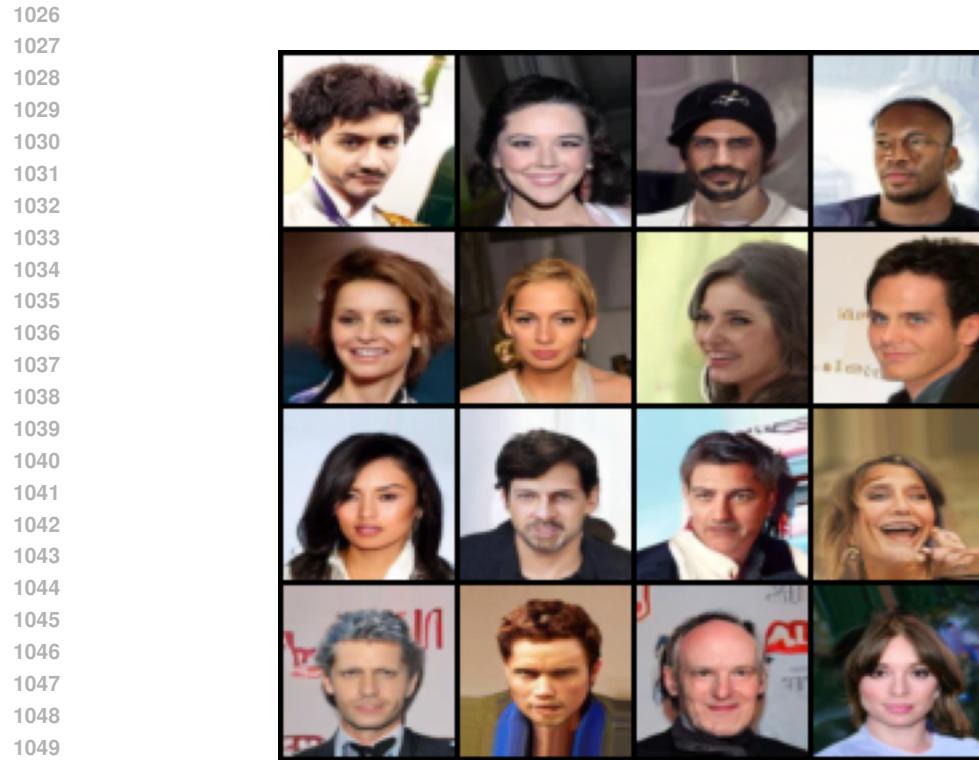


Figure 7: Generated samples from W-CFM trained on CelebA64.

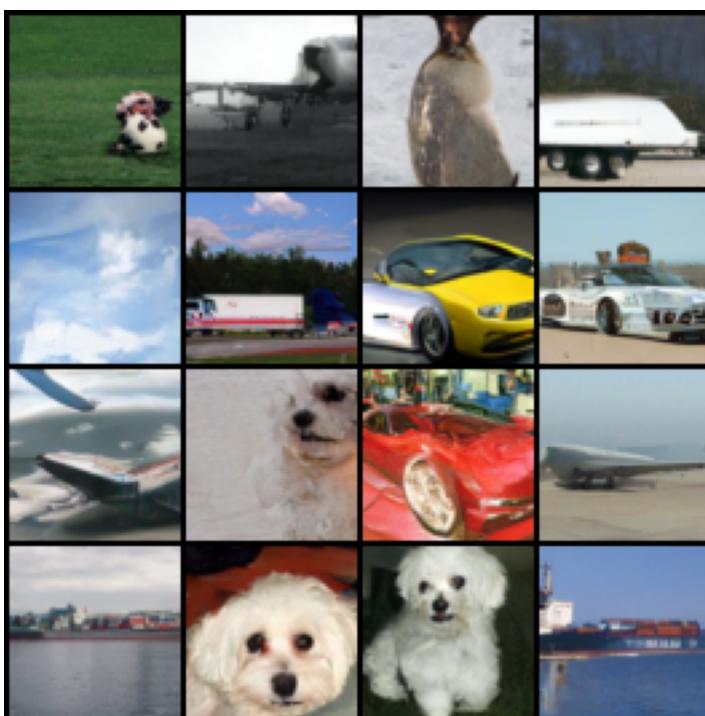


Figure 8: Generated samples from W-CFM trained on ImageNet-10.

Figure 9: Generated samples from W-CFM trained on Food-101.

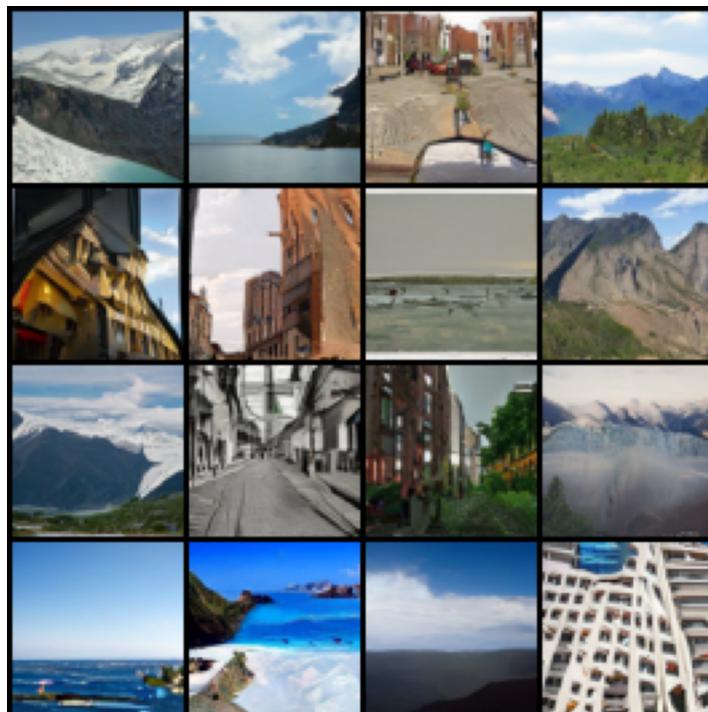


Figure 10: Generated samples from W-CFM trained on Intel Image Classification.

1134
 1135
 1136
 1137
 1138
 1139
 1140
 1141
 1142
 1143
 1144
 1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157

1158 Table 8: Sample quality and diversity metrics on **CelebA64**.
 1159

Model	Precision (\uparrow)	Recall (\uparrow)	Density (\uparrow)	Coverage (\uparrow)	F1 (\uparrow)
I-CFM	0.86	0.66	1.26	0.98	0.74
OT-CFM	0.84	0.65	1.23	0.96	0.73
W-CFM	0.83	0.66	1.19	0.98	0.74

1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187