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ABSTRACT

Conditional flow matching (CFM) has emerged as a powerful framework for train-
ing continuous normalizing flows due to its computational efficiency and effective-
ness. However, standard CFM often produces paths that deviate significantly from
straight-line interpolations between prior and target distributions, making genera-
tion slower and less accurate due to the need for fine discretization at inference.
Recent methods enhance CFM performance by inducing shorter and straighter
trajectories but typically rely on computationally expensive mini-batch optimal
transport (OT). Drawing insights from entropic optimal transport (EOT), we pro-
pose weighted conditional flow matching (W-CFM), a novel approach that mod-
ifies the classical CFM loss by weighting each training pair (x, y) with a Gibbs
kernel. We show that this weighting recovers the entropic OT coupling up to some
bias in the marginals, and we provide conditions under which the marginals re-
main nearly unchanged. Moreover, we establish an equivalence between W-CFM
and the minibatch OT method in the large-batch limit, showing how our method
overcomes computational and performance bottlenecks linked to batch size. Em-
pirically, we test our method on unconditional generation on various synthetic and
real datasets, confirming that W-CFM achieves comparable or superior sample
quality, fidelity, and diversity to other alternative baselines while maintaining the
computational efficiency of vanilla CFM.

1 INTRODUCTION

Generative modeling seeks to learn a parameterized transformation that maps a simple prior (e.g.,
a Gaussian) to a complex data distribution. Continuous normalizing flows (CNFs) instead train a
time-dependent vector field to solve an ordinary differential equation (ODE) that transports base
samples to data samples with exact likelihood computation and invertibility. However, training
CNFs by likelihood maximization suffers from training instability and fails to scale efficiently to
large or high-dimensional datasets (Chen et al., 2018; Grathwohl et al., 2018; Onken et al., 2021).
Flow matching (FM) (Lipman et al., 2023; Albergo et al., 2025; Liu et al., 2023) reframes CNF
training as a simple regression problem: a vector field is learned to match the endpoint displacement
between a prior sample and its paired data point, yielding near-optimal transport trajectories when
the prior is Gaussian. However, the independent pairing of FM cannot ensure that the marginal flow
follows an optimal transport geodesic, leading to suboptimal paths in practice. In its most general
form, conditional flow matching (CFM) (Lipman et al., 2023; Tong et al., 2024) generalizes FM by
learning a vector field that transports samples from an arbitrary transport map, conditioned on paired
source and target samples. This method allows for simulation-free training of continuous normal-
izing flows and can learn conditional generative models from any sampleable source distribution,
extending beyond the Gaussian source.

Thanks to its flexibility, CFM has been applied in many areas of science, such as molecule gen-
eration (Irwin et al., 2024; Geffner et al., 2025), sequence and time-series modeling (Stark et al.,
2024; Zhang et al., 2024; Rohbeck et al., 2025), and text-to-speech translation (Guo et al., 2024). A
refinement of CFM is minibatch CFM (OT-CFM) (Pooladian et al., 2023; Tong et al., 2024), which
uses an entropic or exact plan as the coupling so that each training pair is drawn according to the op-
timal transport solution between the minibatch source and target samples. This yields substantially
straighter, lower-cost trajectories in the learned flow and improves sample quality with fewer inte-
gration steps. However, computing these OT plans—even approximately via Sinkhorn—for every
minibatch incurs substantial per-iteration overhead, scaling cubically with batch size (or quadrati-
cally under entropic regularization). Moreover, requiring well-balanced class representation in each
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batch to approximate the global OT plan makes this approach impractical for large, multi-class
datasets.

As an alternative that addresses these limitations, we introduce weighted conditional flow matching
(W-CFM), which replaces costly batch-level transport computations by simply weighting each inde-
pendently sampled pair (x, y) with the entropic OT (EOT) Gibbs kernel,w(x, y) = exp(−c(x, y)/ε)
(Cuturi, 2013). This importance weighting provably recovers the entropic OT (EOT) plan up to a
controllable bias in the marginals. As a result, the learned flow follows straight paths without ever
explicitly solving an OT problem during training. Moreover, we show that W-CFM matches OT-
CFM in the large-batch limit, thereby not incurring any of the batch size-related limitations or any
extra costs. In practice, W-CFM delivers straight flows and high-quality samples consistently out-
performing CFM and achieving comparable performance to OT-CFM, but with no extra overhead.
In short, our contributions are the following:

• We introduce a novel CFM variant that, inspired by EOT, incorporates a Gibbs kernel weight on
each sample pair and show that our method serves as a new way to approximate the EOT coupling
without any additional cost during training.

• We discuss practical design choices to alleviate the change of the marginals with the new loss
and derive sufficient conditions under which this change becomes trivial, so the true marginals are
approximately preserved.

• We show that as the batch size grows and assuming that the bias in the marginals remains negli-
gible, W-CFM converges to an entropy-regularized version of OT-CFM, retaining some trajectory
straightness without the computational scaling issues associated with the OT plan computations.

• We demonstrate on toy and image-generation benchmarks that W-CFM matches or outperforms
existing CFM and OT-CFM methods in sample quality, fidelity, and diversity under a sensible
choice of the hyperparameter ε in the Gibbs kernel.

2 BACKGROUND

2.1 ENTROPIC OPTIMAL TRANSPORT

We refer the reader to Nutz (2021) for a comprehensive introduction to the topic and only mention
the relevant results for our work. For µ, ν ∈ P(Rd), we recall the definition of the Kullback–Leibler
divergence DKL(µ∥ν) :=

∫
Rd log

dµ
dν (x)dµ(x) if µ ≪ ν and +∞ otherwise. Assume that µ, ν

have finite first moment. We denote the set of couplings between µ and ν by Π(µ, ν) := {π ∈
P(Rd × Rd) : π(Rd, dy) = ν(dy), π(dx,Rd) = µ(dx)}. We consider the following entropic
optimal transport (EOT) problem with parameter ε > 0:

min
π∈Π(µ,ν)

∫
Rd×Rd

c(x, y)dπ(x, y) + εDKL(π∥µ⊗ ν), (1)

where c : Rd ×Rd → R+ denotes a cost function, typically c(x, y) = ∥x− y∥, which is taken such
that equation 1 is finite. When ε = 0, we recover the classical Monge–Kantorovich transportation
problem of moving a distribution µ to a distribution ν by minimizing the transport cost as measured
by c, whose solution is not necessarily unique; we denote by π⋆ ∈ Π(µ, ν) such a solution. EOT
is of significant importance in machine learning and scientific computing (Genevay et al., 2018;
Peyré & Cuturi, 2019), as it approximates the original Monge–Kantorovich transport problem and
can be solved tractably with Sinkhorn’s algorithm (Cuturi, 2013; Altschuler et al., 2017). It is a
classical result (see, e.g., Chapter 4 in Peyré & Cuturi (2019)) that solving equation 1 is equiva-
lent to solving the following projection problem minπ∈Π(µ,ν)DKL(π∥Kε), with the Gibbs kernel
Kε(dx, dy) := e−c(x,y)/εµ(dx)ν(dy). A convexity argument can be made to prove that there ex-
ists a unique minimizer πε ∈ Π(µ, ν) of equation 1. More specifically, this projection formulation
allows us to write the optimal coupling in terms of Kε.
Theorem 1 (Theorem 4.2 in Nutz (2021)). If c(x, y) <∞ µ⊗ ν-almost-surely, for any ε > 0 there
exist measurable functions ϕε, ψε : Rd → R, referred to as EOT potentials, such that the EOT plan
is given by

πε(dx, dy) = exp

(
ϕε(x) + ψε(y)−

c(x, y)

ε

)
µ(dx)ν(dy). (2)
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In other words, we have πε(dx, dy) = fε(x)gε(y)Kε(dx, dy) for some positive functions fε(x) =
exp(ϕε(x)), gε(y) = exp(ψε(y)). In particular, the component capturing the dependence in the
EOT plan πε is exactly given by the Gibbs kernel, which is easy to compute, and one only needs
to adjust the marginals independently to obtain πε. Entropic optimal transport is the static coun-
terpart of the dynamic Schrödinger bridge problem (Léonard, 2013). The corresponding bridge
defines a stochastic process whose drift (i.e., deterministic part) minimizes the energy along the
path (Gushchin et al., 2023). In other words, the Gibbs kernel appears naturally in EOT, which is
a problem whose dynamic counterpart naturally implies minimizing the energy along trajectories,
which incentivizes short and straight paths.

2.2 CONDITIONAL FLOW MATCHING

The flow matching methodology Lipman et al. (2023) is a simulation-free method of training a
continuous normalizing flow (Chen et al., 2018), i.e., a smooth vector field vθ(t, x), for generating
samples from a target distribution ν ∈ P(Rd) given a source distribution µ ∈ P(Rd). Assume that
there exists a vector field vt(x) such that the flow given by dxt = vt(xt)dt with initial condition
x0 ∼ µ satisfies x1 ∼ ν. The flow matching loss is given by

LFM(θ) := Et∼U(0,1),Xt∼pt

[
∥vθ(t,Xt)− vt(Xt)∥2

]
, (3)

where pt denotes the distribution of xt, i.e. a probability path between µ and ν. Under technical
assumptions, vt generates pt if and only if they satisfy the continuity equation

∂pt
∂t

+∇ · (ptvt) = 0, p0 = µ, p1 = ν. (4)

Upon finding a minimizer of equation 3, one integrates the ODE dx̃t = vθ(t, x̃t)dt from a source
sample x̃0 ∼ µ, so that x̃1 is approximately distributed according to ν. In its most general form,
conditional flow matching (Lipman et al., 2023) replaces the intractable FM loss equation 3 by
an equivalent loss involving a conditional vector field vt(x | z) and conditional probability path
pt(x | z) satisfying equation 4 between µ(dx | z) and ν(dx | z)

LCFM(θ; q) := Et∼U(0,1),Z∼qEXt∼pt(·|Z)

[
∥vθ(t,Xt)− vt(Xt | Z)∥2

]
, (5)

where z denotes a latent variable and q the prior distribution, typically choosing z = x1. Tong et al.
(2024) have generalized the approach of Lipman et al. (2023) by considering arbitrary latent vari-
ables z, showing that minimizing the CFM loss equation 5 is equivalent to minimizing equation 3.
Hence, the conditional flow matching method calls for two important design choices:

• The latent variable z and prior q: in this paper we focus on the popular choice of z =
(x0, x1), and we therefore require q to be a coupling, that is q ∈ Π(µ, ν).

• The conditional vector field vt(x | z) and probability path pt(x | z): in this paper we
consider the linear interpolation path Xt = (1 − t)X0 + tX1, i.e. pt(x | x0, x1) =
δ(1−t)x0+tx1

(x) together with vt(x | x0, x1) = x1 − x0, this is the implicit choice made
for Rectified Flow (Liu et al., 2023).

Choosing q = µ ⊗ ν in equation 5 leads to the independent conditional flow matching algorithm
(I-CFM), which is straightforward to compute but yields irregular trajectories, requiring fine dis-
cretizations at inference. On the contrary, choosing q = π⋆ (i.e., an optimal transport plan between
the source and target distributions), leads to the optimal transport conditional flow matching algo-
rithm (OT-CFM), which induces straighter trajectories for the learned model vθ(t, x) (Tong et al.,
2024). As π⋆ is a priori difficult to sample from, many works have explored approximations by
computing short distance couplings at the batch level during training (Tong et al., 2024; Pooladian
et al., 2023).

3 WEIGHTED CONDITIONAL FLOW MATCHING

By writing Lθ(t,X, Y ) = ∥vθ(t,Xt)−vt(Xt | X,Y )∥2 whereXt = (1−t)X+tY , the I-CFM loss
can be written as LI−CFM(θ) = Et∼U(0,1),(X,Y )∼µ⊗ν [Lθ(t,X, Y )]. In order to enforce straightness
of the learned velocity field, one would like to bias this loss towards training sample pairs (x, y) that
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are close to each other. OT-CFM achieves this by computing the OT plan between discrete sets of
points within a batch. We propose to introduce a bias directly inside the expectation by considering
modifications of the I-CFM loss function of the form

Lw(θ) := Et∼U(0,1),(X,Y )∼µ⊗ν [w(X,Y )Lθ(t,X, Y )] , (6)

where w : Rd × Rd → R∗
+ denotes a positive weighting function, which should be large whenever

X,Y are close and small when X,Y are far apart. This weighting can be understood in terms
of a change of measure. In particular, by defining πw(dx, dy) ∝ w(x, y)µ(dx)ν(dy) we have
Lw(θ) = Et∼U(0,t),(X,Y )∼πw

[Lθ(t,X, Y )]. In other words, weighting the I-CFM loss yields a
CFM loss with a new prior distribution q = πw. This technique can be thought of as a form of
importance sampling, where the baseline distribution µ ⊗ ν is easy to sample from, and w(x, y)
corresponds to the importance sampling weight.

3.1 APPROXIMATING EOT WITH WEIGHTED CONDITIONAL FLOW MATCHING

Let ε > 0. We propose a new loss function that can be used as a drop-in replacement within
conditional flow matching and call it weighted conditional flow matching (W-CFM). Given the form
of the EOT plan equation 2, and a cost function c : Rd×Rd → R, we consider Lw equation 6 with the
weighting function wε(x, y) := exp(−c(x, y)/ε)f̂ε(x)ĝε(y), where f̂ε(x), ĝε(y) are independent
stochastic estimates of fε(x) and gε(y). We introduce the weighted conditional flow matching loss

LW−CFM(θ; ε) := Et∼U(0,1)E(X,Y )∼µ⊗ν

[
wε(X,Y )∥vθ(t,X)− (Y −X)∥2

]
. (7)

Proposition 1. The W-CFM loss defined in equation 7 satisfies LW−CFM(θ; ε) = ZεLCFM(θ; qε),
where qε is the following prior

qε(dx, dy) := Z−1
ε

E[f̂ε(x)]E[ĝε(y)]
fε(x)gε(y)

πε(dx, dy), (8)

and Zε is the normalizing constant. In particular if for any x, y, f̂ε(x) and ĝε(y) are unbiased
estimates of fε(x) and gε(y) up to constant factors, then, LW−CFM(θ; ε) ∝ LCFM(θ;πε) where πε
is the optimal EOT plan.

Thus, training a CNF model using the W-CFM loss given by equation 7 is equivalent to training a
CNF using the EOT plan as the prior distribution, up to a change (a.k.a. tilt) in the marginals given
by the approximation of fε and gε. Hence, in the general case LW−CFM can be thought of as an
approximation of the following loss function

LEOT−CFM(θ; ε) = LCFM(θ;πε) = Et∼U(0,1)E(X,Y )∼πε

[
∥vθ(t,Xt)− (Y −X)∥2

]
, (9)

3.2 MARGINAL TILTING UNDER W-CFM

Using qε for the prior leads to the following tilted marginals, which are obtained by integrating
equation 8 with respect to y and x respectively:

µ̃ε(dx) = τµ,ε(x)µ(dx), ν̃ε(dy) = τν,ε(y)ν(dy), (10)

Using equation 8, the unnormalized densities of the tilted marginals with respect to the original
ones are given by

τµ,ε(x) :=
dµ̃ϵ

dµ
(x) ∝

∫
Rd

e−
c(x,y)

ε E [ĝε(y)] ν(dy)E
[
f̂ε(x)

]
,

τν,ε(y) :=
dν̃ϵ
dν

(y) ∝
∫
Rd

e−
c(x,y)

ε E
[
f̂ε(x)

]
µ(dx)E[ĝε(y)].

(11)

Consequently, training a CNF using the W-CFM loss induces a vector field mapping µ̃ε to ν̃ε. We
formalize this result in the following proposition.
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Proposition 2 (Marginal tilting and continuity equation). Assume µ, ν ∈ P(Rd) have finite second
moment. Consider the variational problem

min
v

Et∼U(0,1) E(X,Y )∼µ⊗ν

[
wε(X,Y ) ∥v(t,Xt)− (Y −X)∥2

]
, Xt = (1− t)X + t Y. (12)

Let ρt denote the law of Xt under (X,Y ) ∼ qε. Then, equation 12 admits a minimizer vε ∈
L2([0, 1] × Rd; ρt(dx)dt), which is unique in that space. Moreover (ρ, vε) solve the continuity
equation in the weak sense

∂tρt +∇· (ρt vε) = 0, ρ0 = µ̃ε, ρ1 = ν̃ε.

In other words, under mild regularity conditions, the flow generated by vε pushes µ̃ε forward onto ν̃ε.
We now present a way to evaluate the marginal tilting. These densities can be estimated by Monte
Carlo sampling. If τµ,ε(x) is constant µ almost-everywhere, then one is guaranteed that the source
marginal is preserved, i.e., that µ̃ε = µ. Similarly, if τν,ε(y) is constant ν almost-everywhere, then
ν̃ε = ν. Computing unbiased low-variance approximations of fε and gε is a notorious challenge in
EOT, and is typically done using the Sinkhorn algorithm (Cuturi, 2013). We give an example which
induces a preservation of the ν marginal under a naive constant approximation of f̂ε and ĝε.

Proposition 3. Let Sd−1
R = {z ∈ Rd : ∥z∥ = R}. Assume c(x, y) = ∥x − y∥, and that µ is a

rotation-invariant measure, for instance µ = N (0, σ2I). Take wε(x, y) = exp(−c(x, y)/ε). Then,
τν,ε(y) ≡ C(R, ε) for all y ∈ Sd−1

R , where C(R, ε) is a nonnegative constant. In particular, if ν is
supported on Sd−1

R , then ν̃ε = ν.

Proposition 3 implies that using W-CFM with an isotropic distribution as the source, a target distri-
bution which is supported on a d − 1-dimensional sphere of fixed radius, and trivial approximation
of the ratios, will induce a coupling that does not tilt the target marginal. In particular, when using a
smooth cost and an appropriate ε, we expect that the target distribution will not be tilted significantly
provided that its mass is concentrated on a thin annulus, which typically happens when normalizing
high-dimensional data. The proofs of all the above Propositions can be found in Appendix A.

3.2.1 ON THE CHOICE OF ε

The entropy regularization constant ε controls the trade-off between geometric bias (shorter,
straighter flows) and marginal distortion (changing µ, ν into µ̃ε, ν̃ε). As suggested in the previ-
ous section, equation 11 can be used to build a proxy to identify sensible values for ε. In particular,
if τµ,ε, τν,ε are approximately constant over the supports of µ and ν respectively, the tilted marginals
µ̃ε and ν̃ε remain close to the original ones. In this case, the W-CFM loss in equation 7 closely ap-
proximates the EOT-CFM loss in equation 9. To quantify this, we estimate τµ,ε and τν,ε by Monte
Carlo sampling over a small number of batches and compute their relative variance, defined as
Var(τµ,ε(X))

E[τµ,ε(X)]2 —and analogously for τν,ε. This metric measures how close the functions are to being
constant and is invariant to scaling by a constant factor. This invariance ensures the metric is com-
parable across datasets, allowing consistent evaluation of how much the importance weights distort
the marginals. Low relative variance indicates that the induced marginals are close to µ and ν, sug-
gesting that the selected ε yields a good approximation. A formal algorithm describing this heuristic
can be found in Appendix D.

As an initial heuristic for choosing ε in high-dimensional settings (e.g., images or language em-
beddings) with Euclidean cost c(x, y) = ∥x − y∥, we rely on the observation that normalized
high-dimensional data typically concentrates near a thin spherical shell of radius

√
d, where d is

the data dimension (see concentration of measures in Vershynin (2018)). Consequently, the typical
inter-sample distance (and hence the typical value of the L2 cost function) is O(

√
d). Selecting ε on

this same scale ensures that the ratio inside the exponential of the weighting function in equation 7
is O(1)1. In this way, the kernel varies slowly with respect to typical data variations since most pair-
wise distances become comparable to ε. This reasoning is similar to the heuristic commonly used
in kernel methods (e.g., SVMs), where the Gaussian kernel width is set proportional to the median
pairwise distance between points (Christianini et al., 2000).

1The same logic applies for different cost functions, e.g., when the cost function is the squared Euclidean
norm, then our epsilon should be O(d).
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Following this rationale, in all our experiments we set ε = κ
√
d, with the scalar κ tuned efficiently

(within seconds and a few lines of code) using the relative variance proxy described previously.
Specifically, we search over a grid of κ values spaced uniformly in log scale and select the smallest
value for which the relative variance starts flattening, following an ”elbow rule” heuristic akin to the
selection of the number of principal components in PCA (Jolliffe, 2002). Across high-dimensional
experiments, we consistently find that the optimal values of the constant κ satisfy κ << 1. Addi-
tionally, we experimented with various schedulers for ε (including cosine, exponential, and linear),
none of which showed a significant improvement over a fixed constant ε. The exact values of ε we
used are reported along with the results in Section 5.

3.3 EQUIVALENCE TO OT-CFM IN THE LARGE BATCH LIMIT

OT–CFM relies on solving a mini-batch optimal transport problem for each batch, which (i) requires
batch sizes large enough to represent every mode or class—otherwise the empirical OT plan might
be a poor approximation of the true OT plan—and (ii) incurs at least cubic (or quadratic for the
entropic approximation) cost in the batch size. By contrast, W-CFM uses a simple and virtually free
per-pair Gibbs weight wε(x, y) = exp(−c(x, y)/ε)f̂ε(x)ĝε(y), avoiding any coupling step. Under
regularity assumptions (no marginal tilt, bounded support), one can show that as the batch size goes
to infinity, the batch-level EOT-CFM loss converges to a limit which is proportional to the W-CFM
loss. We formalize this in Proposition 4 below—proof is given in Appendix A. A more detailed
discussion can be found in Appendix B.
Proposition 4. Let ε > 0. Suppose that µ, ν, c are such that equation 1 is finite and µ, ν have
bounded support. Let (tn, xn, yn)n≥1 be iid samples of U(0, 1) ⊗ µ ⊗ ν. Assume that µ̃ε = µ and
ν̃ε = ν. Let πε be the EOT plan between µ and ν. Let πn

ε be the EOT plan between the empirical
distributions xn = 1

n

∑n
i=1 δxi

and yn = 1
n

∑n
i=1 δyi

. Then, πn
ε → πε almost surely as n → ∞

in the weak sense. In particular, if Bn = {(ti, xi, yi) : 1 ≤ i ≤ n} and vθ(t, z) is uniformly
square-integrable in t ∈ [0, 1], continuous in z ∈ Rd, we have, for any θ

E [LEOT−CFM(Bn, θ; ε)] → l(θ; ε) ∝ LW−CFM(θ; ε), as n→ ∞,

where the expectation is taken over the random batch Bn and

LEOT−CFM(Bn, θ; ε) =
1

n

n∑
i,j=1

πn
ε (xi, yj)∥vθ(ti, (1− ti)xi + tiyj)− (yj − xi)∥2.

4 RELATED WORK

Straightening Sample Paths with Optimal Transport. We review the existing literature on tech-
niques to learn straighter sample paths for flow-based models. Including OT priors within the maxi-
mum likelihood training of CNFs has been considered by Onken et al. (2021). Zhang et al. (2025b)
propose to learn an acceleration field to capture a random vector field, thereby allowing sample tra-
jectories to cross and leading to straighter trajectories. As highlighted above, our work is closely
related to the minibatch optimal transport method proposed by Lipman et al. (2023) and Pooladian
et al. (2023) concurrently, which leads to OT-CFM. Within OT-CFM, Klein et al. (2025) have advo-
cated for using the Sinkhorn algorithm (hence computing EOT) to scale to larger batch sizes. Other
works have explored an adaptation of OT-CFM to conditional generation through conditional op-
timal transport (Kerrigan et al., 2024; Cheng & Schwing, 2025). Finally, recent efforts have been
made to learn straighter marginal probability paths directly using Wasserstein gradient flows and the
JKO scheme (Choi et al., 2024). Compared to OT-CFM, our method has no issue scaling with the
batch size, see the discussion in Section 3.3.

Other Approaches for Faster Inference. One important line of research has been to distill ex-
isting models (Luhman & Luhman, 2021; Salimans & Ho, 2022), either diffusion or flow-based,
and learn the corresponding flow maps so that inference can be done in very few steps. Liu et al.
(2023) propose to learn straighter trajectories via ReFlow steps, where one trains a student model
using couplings generated by a base teacher model trained by flow matching. The ReFlow paradigm
is still of interest and continues to be improved Kim et al. (2025). Consistency models Song et al.
(2023) were developed to overcome the cost of discretizing the probability flow ODE in diffusion
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models, by using the self-consistency property of the underlying flow map. This approach has been
translated to flow matching models by Yang et al. (2024). Finally, some great effort has been put
into using efficient integrators tailored for these models (Lu et al., 2022; Liu et al., 2022; Zhang &
Chen, 2023; Sabour et al., 2024; Williams et al., 2024). Compared to ReFlow, our method does not
rely on synthetic data for training and does not require integrating a base neural ODE to generate
the training pairs.

Biasing Flow Matching via Weighting Prior works have explored some form of weighted flow
matching for different purposes. Energy-weighted conditional flow matching (Zhang et al., 2025a)
is motivated by learning a model that directly samples from a tilted target distribution, where the
tilting is known beforehand, whereas we try to generate straighter paths for a base model by relying
on the a priori unknown EOT plan. Moreover, the energy functional considered by Zhang et al.
(2025a) is only applied to the target sample and has little to no effect on the geometry of the path.
In our case, we are introducing a weighting scheme that takes as input both endpoints,and leads to
a straightening of the paths,while minimizing the tilting. Similarly, flow matching has been used in
reinforcement learning to sample from complex policies. The flow matching loss can be computed
using a weighting scheme given by the learned advantage function, akin to advantage-weighted
regression (Peters & Schaal, 2007; Peng et al., 2019), which biases the model to sample actions with
high advantage (Park et al., 2025).

5 EXPERIMENTS

We evaluate our flow matching framework across three complementary domains: 2D toy transports,
unconditional image generation, and a fidelity and diversity analysis of the generated samples. In
these experiments, we demonstrate our framework’s performance and competitiveness in compari-
son to well-established baselines.

5.1 EXPERIMENTAL SETUP

To visually probe the benefits of our weighted loss, we design similar low-dimensional transport
benchmarks as in Tong et al. (2024). First, we focus on mapping a distribution concentrated on an
annulus to a configurable Mixture of Gaussians (MoG). The second setup consists of recovering
the moons 2D dataset from a MoG source. We compare W-CFM for different choices of ε with
the cost c(x, y) = ∥x − y∥ against both OT-CFM and I-CFM, training a two-layer ELU-MLP with
64 hidden units per layer via Adam with a learning rate of 10−3 for 60,000 iterations with a default
batch size of 64. We evaluate sample quality, path straightness, and marginal density estimates using
KDE contours. When using W-CFM, the training loss is a sample average of equation 7, rescaled
by a Monte-Carlo approximation of Z−1

ε computed over a single epoch as a preprocessing step. For
the models trained with OT-CFM, we use a version where the exact OT plan is computed for each
minibatch.

To validate our approach in higher-dimensional settings, we evaluate on CIFAR-10, CelebA64, and
ImageNet64-10—a 64×64 version of 10 ImageNet classes (Deng et al., 2009). We use a UNet
backbone (Ronneberger et al., 2015) adapted to each dataset: for CIFAR-10, a smaller model with
two residual blocks, 64 base channels, and 16×16 attention; for the rest of the datasets, a deeper
UNet with three residual blocks, 128 base channels, a [1, 2, 2, 4] channel multiplier, and additional
attention at 32×32 for ImageNet64-10, Food20, and Intel. All models are trained with Adam, a
learning rate of 2×10−4, cosine learning rate scheduling with 5,000 warmup steps, and EMA (decay
0.9999), for 400,000 steps using batch sizes of 128 for CIFAR-10, 64 for CelebA and ImageNet64-
10, and 48 for Food20 and Intel. Our goal is not to reach state-of-the-art performance, but to compare
flow matching variants under matched computational budgets and architectures.

5.2 ILLUSTRATIVE COMPARISON ON TOY DATASETS

Sample Trajectories on Mixture of Gaussians. We consider the task of mapping a mixture of
many low-variance Gaussians, whose support is concentrated on an annulus, to a target distri-
bution consisting of a mixture of five low-variance Gaussians. We train W-CFM with ε = 0.2

(small ε) and ε = 0.4 (large ε) and use f̂ε = ĝε = 1. A specific instance where OT-CFM
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Figure 1: Sample trajectories for circular MoG → 5 Gaussians. Left to right, the models used are
trained with: I-CFM, W-CFM (ε = 0.4), W-CFM (ε = 0.2), OT-CFM (batch size 16), and OT-CFM.

faces challenges is when a typical batch is not representative of the true target distribution (Ko-
rnilov et al., 2024; Klein et al., 2025). Hence, on top of training OT-CFM with the default pa-
rameters, we train OT-CFM with a smaller batch size to emulate a scenario with a high number
of clusters to batch size ratio (we compensate for the smaller batch size by increasing the num-
ber of iterations for this version). We plot sample trajectories of the trained models in Figure 1,
and report the performance of the models in Table 1. We use the W 2

2 distance between gener-
ated samples and the true target for overall sample quality, and compute the normalized path en-
ergy NPE(θ) = W−2

2 (µ, ν)
∣∣∣E [∫ 1

0
∥vθ(t, xt)∥2dt

]
−W 2

2 (µ, ν)
∣∣∣ for straightness of the trajectories

(Tong et al., 2024). Overall, W-CFM leads to better sample quality than OT-CFM with trajectories
of similar straightness. We also observe a reduction in straightness for some of the paths when train-
ing OT-CFM with a smaller batch size. The W-CFM method outperforms OT-CFM and I-CFM in

Table 1: Comparison of CFM training algorithms’ performance on 2D datasets generation on 5 ran-
dom seeds. W 2

2 measures the overall quality of sample generation (lower is better), NPE measures
the straightness of trajectories (lower is better), using the true optimal transport cost as a reference.
We also report the average time per training iteration in ms, which includes any preprocessing step.
Best is in bold, second-best is underlined.

Dataset → Circular MoG → 5 Gaussians 8 Gaussians → moons

Algorithm ↓ Metric → W 2
2 (↓) NPE (↓) t/it (ms) W 2

2 (↓) NPE (↓) t/it (ms)

I-CFM 0.091 ± 0.071 1.703 ± 0.107 1.274 0.680 ± 0.146 1.033 ± 0.070 0.894
OT-CFM 0.029 ± 0.011 0.032 ± 0.019 3.751 0.232 ± 0.043 0.125 ± 0.011 1.787
OT-CFM (B = 16) 0.041 ± 0.014 0.188 ± 0.041 3.466 0.564 ± 0.125 0.067 ± 0.024 1.415
W-CFM (small ε) 0.018 ± 0.008 0.086 ± 0.021 1.229 0.786 ± 0.324 0.162 ± 0.068 1.124
W-CFM (large ε) 0.029 ± 0.011 0.097 ± 0.024 1.206 0.432 ± 0.135 0.915 ± 0.085 1.133

terms of sample quality, and it exhibits straightness on par with OT-CFM. In particular, we observe
that the trajectories of W-CFM are straighter than those in OT-CFM with a small batch size. Over-
all, this suggests that our method can be well-suited for unconditional generation involving a target
distribution with many clusters.

Marginal Tilting on Moons Generation. As highlighted above, our method might induce a tilting
of the marginal distributions, requiring a better approximation of fε and gε. We investigate this
phenomenon when generating moons from a mixture of 8 Gaussians, and training W-CFM with
ε = 2 (small ε) and ε = 10 (large ε). We use pre-computed Monte Carlo approximations for f̂ε(x)
and ĝε(y), as using f̂ε = ĝε = 1 yields a significant tilting of the marginals (details are given in
Appendix C). This is equivalent to performing a single iteration of the Sinkhorn algorithm. As seen
in Figure 2, using W-CFM leads to straighter paths compared to I-CFM as measured by NPE, even
for a large value of ε, and provides a better sample quality for a careful choice of ε. We present
results for ε ∈ {2, 4, 6, 8, 10} for further validation of this tradeoff in Appendix E.

5.3 COMPARISON ON IMAGE DATASETS

To evaluate the generation capabilities of W-CFM beyond low-dimensional toy examples, we con-
ducted unconditional image generation experiments across five different benchmarks: CIFAR-10,

8
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Figure 2: Sample trajectories for moons generation. Source samples are in blue, generated samples
are in red. From left to right, we use: I-CFM, W-CFM (ε = 10), W-CFM (ε = 2), and OT-CFM.
Here, we use a variant of W-CFM where f̂ε = f̂ε,MC, ĝε = ĝε,MC (see Appendix C).

Figure 3: Contour plots of learned density for moons (using 50,000 generated samples). The leftmost
plot corresponds to the true target distribution. Then, from left to right, the models used are trained
with: I-CFM, W-CFM (ε = 10), W-CFM (ε = 2), and OT-CFM.

CelebA64, ImageNet64-10, Intel Image Classification, and Food20 (a subset of Food101 (Bossard
et al., 2014)). Table 2 summarizes the Fréchet Inception Distance (FID, Heusel et al. (2017)) scores
obtained by our proposed W-CFM method compared to I-CFM and OT-CFM with an adaptive solver.
W-CFM consistently matches or outperforms the baselines, achieving the best FID scores on CIFAR-
10, ImageNet64-10, Intel, and Food20, while remaining competitive on CelebA64. The slightly bet-
ter performance of OT-CFM on CelebA64 is likely explained by the relatively unimodal nature of
the dataset (Zhang, 2023), which alleviates the mode representation issues intrinsic to minibatch OT
methods (as discussed in Section 3.3). Conversely, the multimodal structure of datasets like CIFAR-
10, ImageNet64-10, Intel, and Food20 highlights the advantage of W-CFM. Batch sizes were 128
for CIFAR-10, 64 for ImageNet64-10 and CelebA64, and 48 for the remaining datasets. Applying
the proxy described in Section 3.2.1 for selecting ε, we used ε = 5 for CIFAR-10, ε = 13 for
CelebA64, ε = 14 for ImageNet64-10, ε = 14 for Intel, and ε = 15 for Food20. We use the naive
f̂ε = ĝε = 1, a choice motivated by the remark at the end of Section 3.2, .

Table 2: FID ↓ (lower is better) across datasets for different flow matching models with Dopri5.

Model CIFAR-10 CelebA64 ImageNet64-10 Intel Food20
I-CFM 7.44 21.99 13.86 27.54 8.15
OT-CFM 7.60 20.93 14.39 25.63 8.23
W-CFM 7.33 21.96 13.56 25.22 7.93

We further assessed model efficiency by comparing FID scores at various numbers of neural function
evaluations (NFEs) during Euler integration. Table 3 shows that W-CFM consistently achieves lower
or comparable FID scores at fewer NFEs compared to both I-CFM and OT-CFM. On CelebA64, OT-
CFM outperforms both models, which again reflects the dataset’s unimodal structure that mitigates
OT-CFM’s batch limitations. Appendix E shows example samples for each dataset. Remarkably,
although the chosen values of ε are always an order of magnitude smaller than

√
d, we still obtain

good sample quality, suggesting that the marginal tilting is benign in these high-dimensional settings.

5.4 FIDELITY AND DIVERSITY OF THE GENERATED SAMPLES

A natural concern with the importance weighting in W-CFM is that it could skew the learned flow
toward easier-to-transport pairs, potentially under-representing low-probability modes or degrading
sample quality in certain regions of the data manifold. To test this, we evaluate sample fidelity

9
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Table 3: FID ↓ at varying number of neural function evaluations (NFE) using Euler discretization.
Each column reports FID at 50, 100, and 120 NFE.

FID @ NFE
Dataset I-CFM OT-CFM W-CFM

50 100 120 50 100 120 50 100 120

CIFAR-10 10.87 9.76 8.68 11.03 9.89 8.53 10.53 9.28 8.08
CelebA64 29.49 25.26 24.50 27.76 23.86 22.93 29.32 25.22 24.37
ImageNet64-10 14.94 13.91 13.86 15.67 14.78 14.68 15.82 14.17 13.71
Intel 26.72 26.40 26.20 25.45 25.98 24.26 25.01 24.47 24.08
Food20 10.10 8.98 8.85 10.16 9.17 8.95 10.01 8.97 8.57

and diversity using the precision-recall-density-coverage (PRDC) suite of metrics (Naeem et al.,
2020) on 10,000 generated samples and 5,000 held-out real images per dataset. Precision measures
the fraction of generated samples near the real data manifold, recall assesses coverage of the real
distribution, and density and coverage estimate support concentration and breadth, respectively. F1
summarizes the trade-off via the harmonic mean of precision and recall.

Table 4: Sample quality and diversity metrics on ImageNet64-10.

Model Precision (↑) Recall (↑) Density (↑) Coverage (↑) F1 (↑)

I-CFM 0.75 0.69 0.91 0.94 0.72
OT-CFM 0.74 0.67 0.91 0.96 0.71
W-CFM 0.75 0.68 0.94 0.92 0.72

Table 4 reports the results on ImageNet64-10, showing that W-CFM maintains comparable or better
recall, F1, and density than both I-CFM and OT-CFM, without sacrificing coverage or precision.
We observe the same qualitative trends across the remaining datasets, with all three methods ex-
hibiting nearly identical PRDC metrics. For completeness, we also include the corresponding tables
for CIFAR-10 and CelebA64 in Appendix E. These results confirm that W-CFM does not impair
diversity or mode coverage, even when trained with independent pairwise weighting.

6 CONCLUSION

In this work, we introduced weighted conditional flow matching (W-CFM), a novel method that
leverages insights from entropic optimal transport (EOT) to efficiently improve path straightness
and sample quality in continuous normalizing flows. By weighting each training pair using a Gibbs
kernel, our approach approximates the EOT plan without incurring the computational cost of OT
plan computations and without being limited by the batch size when solving the optimal transport
problem. We derived theoretical conditions under which our approximation preserves the original
marginals and provide a practical numerical scheme to mitigate the tilting. We establish equiva-
lence with OT-CFM in the large-batch limit, given that the marginals remain unchanged. Empir-
ical evaluations across low-dimensional toy problems, unconditional image generation tasks, and
fidelity-diversity analyses confirm that W-CFM achieves performance competitive with OT-CFM
while maintaining the computational efficiency of standard CFM.
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A PROOFS OF THEORETICAL RESULTS

A.1 PROOF OF PROPOSITION 1

We assume that, for any x, y, f̂ε(x) and ĝε(y) are independent integrable random variables. More-
over, we assume there exists measurable functions Fε and Gε such that Fε(x) = E[f̂ε(x)], Gε(y) =
E[ĝε(y)] and we assume that for X ∼ µ, Y ∼ ν, Fε(X), Gε(Y ) are integrable random variables.
Then, by denoting E the expectation taken with respect to t ∼ U(0, 1), (X,Y ) ∼ µ ⊗ ν and the
randomness of f̂ε, ĝε

LW−CFM(θ; ε) = E
[
wε(X,Y ) ∥vθ(t,X)− (Y −X)∥2

]
= E

[
exp(−c(X,Y )/ε)f̂ε(X)ĝε(Y ) ∥vθ(t,X)− (Y −X)∥2

]
= E

[
E
[
f̂ε(X)ĝε(Y ) | X,Y

]
exp(−c(X,Y )/ε) ∥vθ(t,X)− (Y −X)∥2

]
.

Now, we have

E
[
f̂ε(X)ĝε(Y ) | X,Y

]
= φ(X,Y )

where φ(x, y) = E
[
f̂ε(x)ĝε(y)

]
= E

[
f̂ε(x)

]
E [ĝε(y)] = Fε(x)Gε(y).

Hence

LW−CFM(θ; ε) = E
[
exp(−c(X,Y )/ε)Fε(X)Gε(Y ) ∥vθ(t,Xt)− (Y −X)∥2

]
.

We define the following probability measure

qε(dx, dy) := Z−1
ε

Fε(x)Gε(y)

fε(x)gε(y)
πε(dx, dy) = Z−1

ε exp(−c(x, y)/ε)Fε(x)Gε(y)µ(dx)ν(dy).

By a change of measure, we get

LW−CFM(θ; ε) = ZεEt∼U(0,1),(X,Y )∼qε

[
∥vθ(t,X)− (Y −X)∥2

]
= ZεLCFM(θ; qε),

which ends the proof.

A.2 PROOF OF PROPOSITION 2

Recall the prior defined in equation 8. Recall that ρt denotes the distribution ofXt = (1− t)X+ tY
under (X,Y ) ∼ qε. For any v ∈ L2([0, 1]× Rd; ρt(dx)dt), we have

Et∼U(0,1)E(X,Y )∼µ⊗ν

[
wε(X,Y )∥v(t,Xt)− (Y −X)∥2

]
= Et∼U(0,1)E(X,Y )∼qε

[
d(µ⊗ ν)

dqε
(X,Y ) exp(−c(X,Y )/ε)∥v(t,Xt)− (Y −X)∥2

]
= ZεEt∼U(0,1)E(X,Y )∼qε

[
∥v(t,Xt)− (Y −X)∥2

]
,

where Zε denotes the normalizing constant Zε := E(X,Y )∼µ⊗ν [wε(X,Y )] > 0. Hence the varia-
tional problem given by equation 12 is equivalent to

min
v

Et∼U(0,1)E(X,Y )∼qε

[
∥v(t,Xt)− (Y −X)∥2

]
. (13)

By the L2-projection property of conditional expectations, the variational problem of equation 13 is
solved by the function vε : [0, 1]× Rd → Rd defined by

vε(t, z) = E(X,Y )∼qε [Y −X | Xt = z]. (14)

Note that this definition is unique in L2([0, 1] × Rd; ρt(dx)dt). We now check that vε generates a
valid probability path between µ̃ε and ν̃ε, i.e., that (ρ, vε) satisfy the continuity equation equation 4

14
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in the weak sense. Clearly, vε(t, ·) ∈ L1(Rd, ρt) and
∫ 1

0

∫
Rd |vε(t, x)|p(t, x)dxdt < ∞. By Propo-

sition 4.2 in Santambrogio (2015), it is enough to check that the continuity equation is satisfied in
the sense of distributions. Let ϕ ∈ C1

c ((0, 1)× Rd), then∫ 1

0

∫
Rd

∂tϕ(t, x)ρt(dx)dt+

∫ 1

0

∫
Rd

∇ϕ(t, x) · vε(t, x)ρt(dx)dt

=

∫ t

0

E[∂tϕ(t,Xt) +∇ϕ(t,Xt) · (Y −X)]dt = E[ϕ(1, Y )− ϕ(0, X)] = 0.

A.3 PROOF OF PROPOSITION 3

Let y2, y2 ∈ Sd−1
R . We can get hold of φ ∈ O(d) (i.e. a distance-preserving transformation in Rd)

such that φ(y1) = y2. Since ∥φ(y1)− φ(x)∥ = ∥y1 − x∥ for all x ∈ Rd, we have∫
Rd

exp

(
−∥y2 − x∥

ε

)
)µ(dx) =

∫
Rd

exp

(
−∥φ(y1)− x∥

ε

)
)µ(dx)

=

∫
φ−1(Rd)

exp

(
−∥φ(y1)− φ(x)∥

ε

)
(φ−1

# µ)(dx)

=

∫
φ−1(Rd)

exp

(
−∥y1 − x∥

ε

)
(φ−1

# µ)(dx)

=

∫
Rd

exp

(
−∥y1 − x∥

ε

)
µ(dx),

which directly implies that τµ,ε(y2) = τµ,ε(y1)

A.4 PROOF OF PROPOSITION 4

Let ε > 0. Recall that (tn, xn, yn)n≥1 are iid samples of U(0, 1) ⊗ µ ⊗ ν, and that we assume
µ̃ε = µ and ν̃ε = ν. Let πε be the optimal EOT plan between µ and ν. Let πn

ε be the optimal EOT
plan betwen xn = 1

n

∑n
i=1 δxi and yn = 1

n

∑n
i=1 δyi . In this proof, the convergence of probability

measures is understood in the weak sense.

First, the almost-sure convergences xn → µ and yn → ν come from a classical result in probability
theory on the convergence of empirical distributions to the true distribution, see Varadarajan (1958).

Since the minimization problem of equation 1 is non-trivial, an application of Theorem 1.4 in Ghosal
et al. (2022) shows that the empirical EOT plan satisfies πn

ε → πε almost surely. Now, for any n ≥ 1,
we have

E [LEOT−CFM(Bn, θ; ε)] = E
[∫

Rd×Rd

∫ 1

0

∥vθ(t, (1− t)x+ ty)− (y − x)∥2 dtπn
ε (dx, dy)

]
= E

[∫
s(µ)×s(ν)

∫ 1

0

∥vθ(t, (1− t)x+ ty)− (y − x)∥2 dtπn
ε (dx, dy)

]
,

where s(µ), s(ν) denote the support of µ and ν respectively, which are assumed to be bounded.
Since (x, y) 7→

∫ 1

0
∥vθ(t, (1− t)x+ ty)− (y − x)∥2 dt is continuous and bounded on s(µ)× s(ν)

by our assumption on vθ, we have∫
s(µ)×s(ν)

(∫ 1

0

∥vθ(t, (1− t)x+ ty)− (y − x)∥2 dt
)
πn
ε (dx, dy)

→
∫
s(µ)×s(ν)

(∫ 1

0

∥vθ(t, (1− t)x+ ty)− (y − x)∥2 dt
)
πε(dx, dy)

15
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almost surely as n→ ∞. Now, by uniform integrability, this convergence also holds in expectation,
i.e.

E [LEOT−CFM(Bn, θ; ε)] →
∫

s(µ)×s(ν)

(∫ 1

0

∥vθ(t, (1− t)x+ ty)− (y − x)∥2 dt
)
πε(dx, dy).

Finally, we want to prove that this integral is proportional to LW−CFM(θ; ε). Since we assume no
tilting of the marginals, i.e. qε = πε, we have

LW−CFM(θ; ε) = ZεEt∼U(0,1),(X,Y )∼πε

[
∥vθ(t,Xt)− (Y −X)∥2

]
= Zε

∫
s(µ)×s(ν)

(∫ 1

0

∥vθ(t, (1− t)x+ ty)− (y − x)∥2 dt
)
πε(dx, dy).

by using the same change of measure argument as in the proof of Proposition 2.

B DETAILS ON THE EQUIVALENCE TO OT-CFM IN THE LARGE BATCH
LIMIT

We recall the mini-batch optimal transport technique that is central in the OT-CFM algorithm of
Tong et al. (2024). Given a batch of i.i.d. samples B = {(ti, xi, yi) : i = 1, . . . , B}, where ti are
i.i.d. according to U(0, 1), xi are i.i.d. according to µ, yi are i.i.d. according to ν, and ti, xi, yi are
drawn independently, one can compute the optimal transport plan between the two corresponding
discrete distribution, i.e. one computes

πB ∈ arg min
π∈ΠB

B∑
i=1

B∑
j=1

c(xi, yj)π(xi, yj), (15)

where ΠB is the set of couplings between the empirical measures

xB =
1

B

B∑
i=1

δxi , yB =
1

B

B∑
i=1

δyi .

In particular, any π ∈ ΠB must satisfy
∑

j π(xi, yj) =
∑

i π(xi, yj) =
1
B . Then, given an optimal

πB, one computes the following

LOT−CFM(B, θ) = 1

B

B∑
i=1

(vθ(ti, (1− ti)xi + tiyσ(i))− (yσ(i) − xi))
2, (16)

where σ is a permutation corresponding to a Monge map for the problem equation 15, i.e., for some
T : {xi : i = 1, . . . , B} → {yi : i = 1, . . . , B} such that T (xi) = yσ(i) and πB := (Id, T )#xB is a
solution to equation 15 (Peyré & Cuturi, 2019). This sample loss is used as an approximation of the
following OT-CFM loss

LOT−CFM(θ) := Et∼U(0,1)E(X,Y )∼π⋆

[
∥vθ(t,Xt)− (Y −X)∥2

]
, (17)

where π⋆ solves the unregularized optimal transport problem, that is equation 1 with ε = 0.

The sample OT-CFM loss in equation 16 is a low bias approximation of equation 17 only when the
batch size is large enough. The actual samples for which we compute equation 16 are not exactly
distributed according to a genuine OT plan between µ and ν, since the OT plan π⋆ and the product
measures µ ⊗ ν might be mutually singular. Additionally, computing the exact batch OT plan
becomes prohibitively expensive as the batch size grows. A solution is to compute an approximate
OT plan, by using the Sinkhorn algorithm (Cuturi, 2013), which is an efficient way of computing
the entropic OT plan between two discrete sets of measures. In that case, as the batch size increases,
the sample OT-CFM loss equation 16 approximates LEOT−CFM given by equation 9. Nevertheless,
approximating the OT at the batch level is particularly challenging in datasets with multiple modes,
as it becomes unrealistic to faithfully approximate the global OT if not all modes are adequately
represented within each (or the average) batch. Consequently, the batch size must scale with the
number of models or classes present in the dataset.

Our method does not have these scaling issues with the batch size, since it only involves computing
a simple weighting factor wε(xi, yi) = exp(−c(xi, yi)/ε) for every training sample pair (xi, yi) in
a batch. In other words, if one assumes that the weight does not tilt the marginals, the weighted
CFM method corresponds to a large batch limit of OT-CFM (where batch EOT is used).

16
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C MONTE CARLO ESTIMATES FOR f̂ε AND ĝε

C.1 GENERAL METHOD

Whenever the tilting is prominent, as in the 8 Gaussians → moons task, using f̂ε = gε = 1 is
no longer sufficient. Instead, we propose the following scheme to compute Monte Carlo estimates
f̂ε,MC, ĝε,MC as a pre-processing step:

• First, discretize the source distribution, i.e. draw Nµ samples x1, . . . , xNµ
from the source

distribution. Similary, draw Nν samples y1, . . . , yNν
from the target distribution (when

either distribution is already discretized, as is the case for the image data in most uncondi-
tional image generation tasks, just use all the samples available).

• Then, compute

f̂ε,MC(xi) =

 1

Nν

Nν∑
j=1

exp(−c(xi, yj)/ε)

−1

, i = 1, . . . , Nµ,

ĝε,MC(yi) =

 1

Nµ

Nµ∑
i=1

exp(−c(xi, yj)/ε)

−1

, j = 1, . . . , Nν ,

that is, for every point in the discretized source (resp. every point in the discretized target)
compute a Monte Carlo approximation proportional to the true weight fε (resp. gε) using
all the points in the discretized target (resp. using all the points in the discretized source).

Then, during training, sample pairs of point independently from the discretized distributions, and
use the weight wε(xi, yj) = exp(−c(xi, yj)/ε)f̂ε,MC(xi)ĝε,MC(yj).

C.2 APPLICATION TO MOONS GENERATION

In order to assess the effectiveness of the scheme described above, we plot trajectories in Figure 4
and report performance in terms of squared 2-Wasserstein distance and NPE in Table 5. We train
using W-CFM with different values of ε, and for each value of ε, we train a model with naive
f̂ε = ĝε = 1 and compare against MC estimates f̂ε = f̂ε,MC, ĝε = ĝε,MC. As measured by W 2

2 ,
the MC approach yields a significant improvement over the naive approach accross all considered
values of ε. Here, the validity of NPE as a measure of path straightness is arguable, especially for
the small ε naive variant, as the generated distribution is significantly tilted.

Table 5: Comparison of variants of W-CFM on 8 Gaussians → moons on 5 random seeds. W 2
2

measures the overall quality of sample generation (lower is better), NPE measures the straightness
of trajectories (lower is better), using the true optimal transport cost as a reference. For each ε, we
compare the naive approach (f̂ε = ĝε = 1) against the MC approach (f̂ε = f̂ε,MC, ĝε = ĝε,MC)

Variant → Naive f̂ε = ĝε = 1 MC f̂ε = f̂ε,MC, ĝε = ĝε,MC

Algorithm ↓ Metric → W 2
2 (↓) NPE (↓) W 2

2 (↓) NPE (↓)

W-CFM (ε = 2) 1.823 ± 0.166 0.289 ± 0.008 0.786 ± 0.324 0.162 ± 0.068
W-CFM (ε = 4) 1.476 ± 0.167 0.033 ± 0.023 0.564 ± 0.337 0.439 ± 0.105
W-CFM (ε = 6) 0.960 ± 0.186 0.220 ± 0.050 0.484 ± 0.128 0.627 ± 0.118
W-CFM (ε = 8) 0.888 ± 0.217 0.365 ± 0.076 0.562 ± 0.181 0.833 ± 0.031
W-CFM (ε = 10) 0.843 ± 0.321 0.463 ± 0.061 0.432 ± 0.135 0.915 ± 0.085
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(a) Naive variant f̂ε = ĝε = 1

(b) Monte Carlo variant f̂ε = f̂ε,MC, ĝε = ĝε,MC

Figure 4: Sample trajectories on 8 Gaussians → moons with different variants of W-CFM. From
left to right, the models used are trained with the following values of ε: 10,8,6,4,2.

D ALGORITHM FOR DETERMINING ε

Algorithm 1 Choosing ε by controlling the variability of the kernel-induced marginal tilts

Require: Dataset {yj}Nj=1 ∼ ν, prior sampler for µ, number of source points M , candidate scales
{εℓ}Lℓ=1

1: for ℓ = 1, . . . , L do ▷ Evaluate one candidate εℓ
2: Sample {xi}Mi=1 ∼ µ

3: Define Gibbs kernel

K
(ℓ)
ij = exp

(
− c(xi,yj)

εℓ

)
, 1 ≤ i ≤M, 1 ≤ j ≤ N

4: Monte Carlo estimates of the marginal tilting factors in equation 11 (with f̂ε = ĝε ≡ 1):

τ̂µ,εℓ(xi) =
1

N

N∑
j=1

K
(ℓ)
ij , τ̂ν,εℓ(yj) =

1

M

M∑
i=1

K
(ℓ)
ij .

5: Compute relative variances of the empirical tilts

RVµ(εℓ) =
Vari[τ̂µ,εℓ(xi)]

(Ei[τ̂µ,εℓ(xi)])
2
, RVν(εℓ) =

Varj [τ̂ν,εℓ(yj)]

(Ej [τ̂ν,εℓ(yj)])
2
.

6: end for
7: Choose ε⋆ according to a selection rule, e.g.

ε⋆ = min
{
εℓ : RVµ(εℓ) ≤ δ and RVν(εℓ) ≤ δ

}
,

for some tolerance δ, or via an “elbow” in the curves RVµ(εℓ),RVν(εℓ).
8: return ε⋆

Using Algorithm 1, we determined the values of ε used in the high-dimensional experiments in
Section 5. In particular, we set the tolerance threshold δ for the relative variance to be on the order
of 10−2, confirming that, for these datasets, the potentials are indeed approximately constant.

18
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E ADDITIONAL RESULTS

Figure 5: Contour plots of learned target density for 8 Gaussians → moons. The leftmost plot
corresponds to the true target distribution. Then, from left to right, the models used are trained with
the following values of ε: 10,8,6,4,2.

ε FID ↓
1.0 14.01
2.0 8.89
3.0 7.65
5.0 7.33
7.5 7.42

Table 6: FID scores on CIFAR-10 for different ε.

Figure 6: Generated samples from W-CFM trained on CIFAR-10.

Table 7: Sample quality and diversity metrics on CIFAR-10.

Model Precision (↑) Recall (↑) Density (↑) Coverage (↑) F1 (↑)

I-CFM 0.83 0.75 0.98 0.91 0.78
OT-CFM 0.80 0.75 1.00 0.92 0.77
W-CFM 0.81 0.76 0.94 0.91 0.78
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Figure 7: Generated samples from W-CFM trained on CelebA64.

Figure 8: Generated samples from W-CFM trained on ImageNet-10.
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Figure 9: Generated samples from W-CFM trained on Food-101.

Figure 10: Generated samples from W-CFM trained on Intel Image Classification.
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Table 8: Sample quality and diversity metrics on CelebA64.

Model Precision (↑) Recall (↑) Density (↑) Coverage (↑) F1 (↑)

I-CFM 0.86 0.66 1.26 0.98 0.74
OT-CFM 0.84 0.65 1.23 0.96 0.73
W-CFM 0.83 0.66 1.19 0.98 0.74
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