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Abstract—Motivated by mitigating potentially harmful impacts
of technologies, the AI community has formulated and accepted
mathematical definitions for certain pillars of accountability: e.g.
privacy, fairness, and model transparency. Yet, we argue this is
fundamentally misguided because these definitions are imperfect,
siloed constructions of the human values they hope to proxy,
while giving the guise that those values are sufficiently embedded
in our technologies. Under popularized methods, tensions arise
when practitioners attempt to achieve each pillar of fairness,
privacy, and transparency in isolation or simultaneously. In
this position paper, we push for redirection. We argue that
the AI community needs to consider all the consequences of
choosing certain formulations of these pillars—not just the
technical incompatibilities, but also the effects within the context
of deployment. We point towards sociotechnical research for
frameworks for the latter, but push for broader efforts into
implementing these in practice.

Index Terms—position, fairness, privacy, transparency, human
values, sociotechnical

I. INTRODUCTION

High profile events continue to spur popular discourse on
the definition of, the need for, and the limitations placed
on “responsible AI.” Ranging from Latanya Sweeney’s re-
identification of individuals with public datasets in 1997 [1]
to ProPublica’s finding that a popular recidivism risk scoring
algorithm was heavily biased towards Black people in 2016
[2], the public has grown increasingly aware that AI systems
need to be held to account [3].

In an effort to incorporate our human values related to
privacy, fairness, and model transparency, the AI community
has adopted automatable, domain-agnostic mathematical for-
mulations. Consider fairness: over the past decade, the fairness
in machine learning community has come up with various defi-
nitions to combat unfavorable imbalances in model predictions
towards minoritized groups [3]. Take privacy: since 2006, the
privacy community has heavily leaned on differential privacy
[4], a probabilistic guarantee that a model or summary statistic
won’t change based on the perturbation of a single data point.
And, perhaps most contentiously within the AI/ML community
itself, consider model transparency: some in the community
have allowed that deployed models’ behavior can be explained
in a black-box, model agnostic way, via interpretable surrogate
models such as LIME or SHAP [5], [6]. Others in the
community argue strongly against this approach as critically
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flawed, instead proposing the top-level intervention that only
inherently interpretable models be deployed [7], [8]. Indeed,
this particular dimension continues to struggle with defining
what makes an explanation “good,” or even what makes an
explanation an explanation [9], [10]. This paper recognizes
that “explainability” is an overloaded term. Thus, “model
transparency” will refer to the techniques for understanding
model decisions, specifically inherent interpretability and post-
hoc explainability techniques. We describe these proxies as
mathematical and technical because measuring their success
is often framed via metrics that can be explicitly calculated
and optimized.

These technical proxies of core value pillars are not only
relevant from a moral or technical standpoint, but also from
a regulatory perspective. We focus the scope of this work on
tensions between human values and their technical proxies,
although we acknowledge that much work needs to be done to
align the research community with the practical considerations
of the goals of regulators and policy makers [11].

We must examine the consequences of our formalizations.

We must acknowledge that implementing these specific
formulations into technologies is a choice, and any choice will
have consequences. We outline three categories of tensions that
arise:

1) Tensions within the value pillar.
2) Tensions with other value pillars.
3) Tensions with the real world context of deployment.
The first is the inherent inconsistencies within the value

pillar that these formalizations warrant. As an example, current
fairness definitions are unable to be simultaneously enforced
in a machine learning model [12] and force practitioners to
choose one. The second source of tension arises from the com-
pounded impossibility of fully operationalizing another value
pillar, such as explainability techniques hindering the privacy
of algorithms [13], while natively interpretable methods may
have adverse impacts on marginalized groups [14]. Figure I
outlines the technical tensions identified within and between
fairness, privacy, and model transparency.

Most importantly, there are the consequences that arise in
the context of deployment. What are the effects of implement-
ing these value choices in real-world sociotechnical systems
involving a complex interplay of technical and human actors?
We recommend frameworks from the Science, Technology,



Figure 1: A summary of the tensions we identify within and between popular proxies of human values. Incorporating any one
of these pillars is itself a challenge, and incorporating them simultaneously requires handling competing priorities.

and Society (STS) field, such as substantive algorithmic fair-
ness [15], contextual integrity [16], and domain-specific trans-
parency methods, to address this vital area of consideration.
However, we also acknowledge that while there are many
resources to address the first two categories of consequences,
there are not enough exemplars of how technologists can
consider the ramifications of the choices they make (which
they often do in siloed, context-agnostic settings). We push
for further inquiries into addressing this last gap. We should
not be examining accountability metrics in theoretical silos,
but rather within specific domains.
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In Section II, we discuss the inconsistencies within popular
technical proxies of fairness, privacy, and transparency and
their human values. In Section III, we survey these pillars
pairwise and discuss how the intersections of these proxies
result in even greater tensions. In Section IV, we examine
the final tension and the implications of understanding the
sociotechnical system a technology may be deployed into. We
motivate the requirement for context-based formulations of our
three pillars, and push for greater research and industry focus
into these areas.

II. TENSIONS WITHIN PILLARS

A. Fairness

Popular formulations target different notions of fairness and
do not work together.

In response to concerns over potential discriminatory im-

pacts of algorithmic decision making, over 21 technical for-
mulations of fairness have been defined [17], [18]. Table I in
Appendix A outlines five popular metrics. These formulations
aim for different notions of fairness, largely categorized as
independence, separation, and sufficiency. Unfortunately, these
criteria cannot all be achieved in a single model without either
having a perfect or trivial classifier [3], [12]. This finding is
fundamentally concerning. Each of these notions of fairness
embeds a specific way in which the human value of fairness
is conceptualized. And if it is impossible to achieve multiple
forms of fairness at the same time, then can any system ever
be considered fully fair? And if this is the case, then why are
these still the metrics that we use for evaluation.

Fairness interventions can cause harm.

These criteria are not implemented in vacuums, but rather
in dynamic, real world systems. When these fairness interven-
tions are put in place, they may be “overeager” and propagate
long-term harms to the underserved groups they hope to
benefit due to a lack of consideration of long-term well-being
[19]. Moreover, [20] shows that causal notions of fairness,
including equalized odds, are Pareto dominated in a system,
meaning that for each fairness definition there exists a better
classifier that achieves better accuracy and better outcomes for
protected groups.

There are alarming mismatches with nontechnical concep-
tions of fairness.

These fairness definitions do not always resonate with
how people outside of the AI community—most of the
population—think about practical fairness. We must recognize



that the tools we build affect everyone, and this necessitates
a democratic duty to consider value pillars with public com-
prehension and sentiment in mind. Public understanding and
acceptance of formalizations of “what is ethical?” should be
more highly prioritized. When non-technologists are asked
how they feel about these definitions, not only do they have
trouble fully comprehending them [21], but they also do not
agree with all of them [22]. In fact, in some cases, greater com-
prehension of the fairness metrics, specifically demographic
parity, is actually associated with increased negative sentiment
about that metric [21].

Of course, AI researchers are not the first to be invested
in conceptualizing what it means for something to be fair.
Philosophers have a long history of grappling with fairness
[23], and economists have been forced to examine the im-
plications of equity in practice [24]. When fair ML research
is surveyed under the lens of political philosophy [25], mis-
matches are noted in how the community conflates terms like
“discriminatory” and “unfair”, and how even the use of the
term “fairness” functions as a catchall for a diverse set of
“normative egalitarian considerations.”

B. Privacy

Born out of a necessity to reveal statistics about a population
without allowing access to information about individuals [4],
differential privacy has become the canonical notion of privacy
in the AI community. Once achieved for some ϵ, differential
privacy provides a probabilistic guarantee that a machine
learning model will perform the same if a single data point
is removed or replaced. Appendix B outlines these formal
technical definitions.

Although differential privacy offers a rigorous guarantee on
an individual data point’s privacy, it does have its limitations.
Even for a model that achieves differential privacy, the more
the model overfits, the more susceptible it is to membership
and attribute inference attacks [26]. Also, data points that are
not represented well in a dataset, such as outliers, either incur
large privacy costs (i.e. large ϵ) [27] or are memorized by the
model and can be exposed much more easily given certain
prompts [28].

There are conflicts with nontechnical notions of privacy.

Differential privacy is a very specific notion of privacy that
the AI community has adopted as a gold standard. However,
it is not a complete account of privacy, and does not address
issues of collection and usage of personal data. In fact,
according to a Pew Research poll, 64% of US adults are not
too or not at all comfortable with their personal data being
shared with outside research groups for the improvement of
society [29]. The ML research community’s conceptualizations
of privacy do not consider how this term is used publicly.
Furthermore, there is limited transparency and understanding
of privacy techniques and policies. According to the same
PEW research poll, a majority of Americans say they have

little to no understanding of existing data protection techniques
or laws [29].

Differential privacy is not suited for non-tabular data.

Much of the limitations of differential privacy that we have
described thus far pertain to tabular data. But what about other
data types? Let’s take unstructured text as an example. Al-
though there has been some success in building differentially
private large language models (LLMs) [30], the very notion
of what privacy means for an LLM is ill-defined. An initial
definition for LLM privacy is “[t]o claim a language model
is privacy preserving, it must only reveal private information
(aka “secrets”) in the right contexts and to the right people”
[31]. The idea of privacy for language requires knowing who is
receiving information, who is giving information, the context
around why information has to be secret, and how a secret
relates to all individuals involved either directly or indirectly.
Thus, if we hope to extend privacy to other data domains,
such as language, we need to have more robust and contextual
definitions of privacy.

C. Model Transparency

Transparency refers to approaches or techniques devised
to build trust and understanding in a model’s decisions [32].
Using a simple and interpretable model, when possible, offers
a layer of transparency beyond datasheets and model cards
[33], [34], because having an understanding of a model via
interpretable model weights makes detecting and mitigating
issues of performance and fairness easier.

Transparency of black boxes is an inherent fiction using
rough local approximation.

Using a black-box model and explaining it post-hoc has
become an increasingly popular approach in “explainable AI”
(XAI) because all that is needed is the model’s inputs and
outputs [5], [6]. However, there is significant debate as to
how “transparent” it really is to explain a model this way.
All of these methods “explain” by fitting a local surrogate
model, drawing conclusions about the black-box model from
the surrogate. These are all merely different types of local-
function approximation. It has been proven that the locality of
these explanations constrains them from being able to generate
optimal global explanations [35]. There is no way to have a
“ground truth” explanation if there can be no guarantees of
these explanations representing the black-box completely and
with fidelity [7].

But why are black-box models and post-hoc explainabil-
ity techniques prevalently used? First there is a notion of
a tradeoff betweeen interpretability and model performance
(although, the existence of such a tradeoff is questioned
[36]). Second, many practitioners perceive hard-to-interpret
models as easier to use off-the-shelf, even though interpretable
alternatives exist [37]. This normalizes stakeholders to non-
interpretable models [7]. However, “inherently interpretable”
models can have their own challenges. They can have an



over-abundance of features or over-engineered features that
make them hard to directly interpret [8]. But they should be
considered more often due to the accountability they provide,
and black-box models should be treated with more skepticism
despite the supposed post-hoc “transparency.”

We don’t know what is actually needed from transparency.

There are a range of downstream tasks that transparency
should enable for model designers, such as debugging, ensur-
ing compliance with regulations, and generating hypotheses
[38], [39]. Human-centered evaluations focus on user studies
to examine whether explanations are actually helpful for
humans in practical real-world use cases [40], [41].

The meaning of “transparency” has extended into communi-
cating how and why a model transforms particular inputs into
the resulting outputs [9], [10], [32]. One could explain a neural
network by reporting all of its weights, or one could explain
it by visualizing activations of hidden layers [42]. When these
methods provide too much information, simpler, contrastive,
and sparse outputs are needed for comprehensibility [10].
Overall, there are insufficient formalisms at the moment for
measuring the quality of explanations for practical use in
machine learning.

Transparency can mislead.

Explanation methods can mislead their intended audience,
even when they are properly trained, by providing explanations
that align with user’s opinions. This leads to misplaced trust
in faulty models due to confirmation bias—data scientists may
overtrust and misuse interpretability tools without an accurate
understanding of their output [43]. In addition, transparency
can mislead when the explanation algorithm distracts from
what the model is directly doing. For example, using attention
mechanisms may highlight associations entirely unrelated to
a model’s output [44]. Finally, some claim this whole pursuit
of post-hoc explainability is completely misguided [7], since
explanations can never be completely faithful to the black box
without being equal to the black box. They liken the practice of
dissecting the meanings of explanations we don’t understand
to reading tea leaves [45].

III. TENSIONS BETWEEN PILLARS

A. Fairness and Privacy

Promoting privacy can harm fairness and vice versa.

Differential privacy practices can amplify model unfair-
ness [46] by reducing the accuracy disproportionately for
underrepresented classes. Likewise, when models are fairness
constrained, the data of minority groups in the training set can
have a disproportionate impact on the model’s behavior and
are thus often more susceptible to information leakage [47].

There are also theoretical incompatibilities between fairness
and privacy. In [48], the authors show that under the constraints

of differential privacy, exact statistical notions of fairness
(Equality of False Positives and Equality of False Negatives)
are unattainable. In [49] an impossibility theorem is intro-
duced, proving that attempts to create a binary classifier that
satisfies ϵ-differential privacy and popular notions of fairness
(Demographic Parity, Equalized Odds, and Equal Opportunity)
could only result in a trivial classifier.

Implementing differential privacy can negatively impact
minority communities.

Implementing differential privacy techniques has been
shown to disproportionately impact minority communities.
This exact scenario arose with the inaugural employment of
differential privacy for the 2020 US Census [50]. Published
Census data has real-world consequences in the apportionment
of over hundreds of billions of dollars in federal funding
[51], our understanding of health disparities [52], and national
confidence in governmental procedures due to historic under-
sampling of minority communities [53]. The implementation
of differential privacy was found to decrease the population
of Native American reservations with fewer than 5000 people
by an average of 34 percent [54]. The error between actual
and differentially-privately-reported populations can result in
dramatic differences in their allotment of federal funding, and
could decide whether they are able to ascertain the funding
for a road to a nearby town, or even a new school [55].
These smaller communities being subject to more erroneous
representation has downstream allocation and representation
implications, which is inherently an issue of equity and equal
representation.

Legally and practically, notions of privacy and fairness can
be at odds. The Equal Credit Opportunity Act (ECOA) and
associated Regulation B control how a creditor can collect
data on individuals. Namely, a creditor is not allowed to collect
demographic information related to a credit transaction [11].
”Protecting” sensitive attributes by not collecting them (similar
to the idea of fairness through unawareness) actually supports
discrimination in the mortgage industry today. In [56], the
authors outline how the fear of re-identification attacks has
banned the collection of credit scores, which results in ongoing
racial discrimination as seen via the public data mandates of
the Home Mortgage Disclosure Act.

B. Privacy and Explainability

Privacy and Transparency have opposite goals.

There are inherent tensions between an individual’s right to
privacy and transparency. In a responsible algorithmic system,
a single user expects their data to be accessible by them, but to
be secure or obfuscated to others. However, they also expect
the ability to understand how their data was used to make
decisions about them [57].

Explanations and interpretations inherently reveal informa-
tion, and there are privacy tradeoffs when these are surfaced to
external stakeholders. Comparisons can be drawn to privacy



and transparency in clinical studies, where researchers want
to present trustworthy results while protecting patient trial
information [58]. Providing explanations for subsets of people,
or even unique individuals, illuminates model behavior at the
cost of exposing sensitive information.

Ensuring trustworthiness in explanations can be difficult in
systems that maintain privacy through data obfuscation. Mask-
ing sensitive attributes or adding noise to features inherently
obscure data to human stakeholders, which could be seen as
techniques used to manipulate results or change explanations.
Recent research has supported the existence of a trade off
between user privacy and model transparency [59]–[61].

Post-hoc explainers make models more susceptible to pri-
vacy attacks.

Research has shown how providing model predictions along
with feature based explanations leaves models vulnerable to
membership inference attacks [62]. Additionally, adversaries
can use gradient-based [63] or counterfactual [64] explanations
to help them build highly faithful replicas of the models.

Moreover, Shapley values have been used to identify rele-
vant features for model agnostic backdoor poisoning attacks
[65]. One paper introduced three counterfactual explanation
techniques to perform adversarial, membership inference, poi-
soning, and model extraction attacks on real world data sets
and models [66]. Alarmingly, explanations can also be used
to construct attacks against ML based identity authentication
protocols such as host fingerprinting and biometric-based
systems [67].

C. Explainability and Fairness

Post-hoc explainers should be useful for diagnosing unfair-
ness, but often are not.

The major tensions between these domains stems from the
utilization of one in an effort to achieve the other. Specifically,
explanations as a form of transparency and trust should be
intuitive indicators for whether a system is fair [68]. Adverse
action notices, explanations of adverse credit scoring decisions
for consumers, are justified in regulations as a method of
preventing discrimination [69]. However, the reliability of
explainers for this pursuit is a subject of debate with recent
work [70] outlining how they are undependable indicators of
fairness. This is also affected by the difficult choice of which
explainer to use [71]. Furthermore, explanations can fairwash,
or promote the false perception that an ML model respects
ethical values [72]. This would essentially leave affected
groups not only discriminated against, but also with no path
to use explanations to contest the outcome [73]. Recent work
has shown it is possible to train a model to explicitly commit
fairwashing and conceal discriminatory behavior from being

picked up by LIME or SHAP [74].

Post-hoc explanation methods themselves can be unfair.

Further questions arise when the fairness of the produced
explanations is examined. Specifically, explainability methods
may exacerbate the unfairness behind algorithms by working
better for certain subpopulations than others [75], [76]. Fur-
ther, these explanations do not necessarily preserve the fairness
definitions the model is trained on [77].

IV. CONTEXT-DEPENDENT CONSEQUENCES

A. What’s missing? A contextual understanding.

Hitherto, we’ve described three pillars of accountability
and their technical cracks: inconsistencies within themselves,
mismatches with human values, and unintended consequences
when they are operationalized. Furthermore, these pillars don’t
work well together. We’ve described the compounded incom-
patibilities that result when multiple pillars are employed.
These formulas are attempts to concretize specific subjective
notions of human values. They were formulated, tested, and
adopted by the AI research community, a miniscule population
compared to the 8 billion people on Earth [78] who may
be affected by algorithmic decision-making. Ethics are fuzzy,
and determining “what is ethical” is inherently a disputable
endeavor. Our mathematical formulations have deceived us
into believing the morality of a technology is a measurable
construct. While we may be able to achieve 100% on a
Demographic Parity score, there is no such thing as an ethics
score that can be achieved at 100%.

In fact, in our communal endeavour of codifying proxies
for human values, we have failed to properly acknowledge that
there is no universally agreed upon set of moral, human values.
Rather, calculating these notions through technical formulas
and mathematical proofs has deceived us [79] into believing
that we can avoid this (and other complexities of reality) under
the veil of scientific objectivity [80]. How do we meaningfully
grapple with our shortcomings without falling into the abyss
of relativist debate? The first step is to acknowledge that every
assumption, every decision in implementing these formulations
is a choice. We must become aware of the assumptions
underlying our production and claims of knowledge. These
choices can only be properly evaluated when considering them
within their context of deployment.

Ethical solutions should not be domain agnostic.

For this piece, we define context as the setting in which a
technology is to be deployed, and the social, political, institu-
tional, financial, and historical influences at play in the setting.
How can context-based evaluation be accomplished when,
alarmingly, every discussed definition described in every pillar
is domain agnostic? Every mathematical formulation does not
take into account any aspects of the context under which it is
being utilized. Assuming that the same fundamental property



should be optimized no matter the context oversimplifies the
complicated nature of reality. The inconsistencies previously
described between the intended real-world outcomes and ac-
tualized real world behavior are in part due to the lack of
domain consideration allotted in these formalizations. They
fail to acknowledge the trade-offs, consequences, and ethical
choices that are implicitly being made. Just because a property
can be uniformly calculated in every scenario does not mean
that it should be optimized in every scenario. In [81], the
authors describe this development of context-agnostic ethical
notions as the portability trap.

We must examine the ramifications of our choices in
context. We cannot absolve ourselves of grappling with the
societal impacts of the technology we build by simply imple-
menting popular definitions of value proxies in our technical
silos of academia and industry. Context is the material that
maps decisions to consequences.

Context is already heavily considered in other fields of
ethics.

The importance of context in navigating ethical decisions
has precedent in more developed areas of study. Fields of
bioethics, biomedical ethics, and medical ethics are built on
contextual considerations. For example, the types of patient
information a doctor can access are different depending on the
physical context the doctor is in—if they are in a hospital ver-
sus in their car on the way to the hospital. Capturing biometric
data has different ethical concerns depending on the social and
institutional context of that action—is it physiological function
monitoring for a patient in the ICU or the passive collection
of mass amounts of physiological and behavior indicators
from smartphones and digital wearables for digital phenotyp-
ing [82]. In medical ethics, contextual features—professional,
family, religious, financial, and institutional factors—affect
what clinical decisions are made. In their training, clinicians
are specifically taught to consider these as they formulate
treatment plans [83].

While there is much precedent for exploring tensions within
pillars (Section II) and between pillars (Section III), there is a
huge gap in the technical research corpus for understanding the
contextual consequences that arise. We begin to address this
gap by outlining key areas of consideration, highlighting three
useful sociotechnical frameworks, and posing open questions
for practical implementation. We push for greater contextual
understandings of the impacts of technological embeddings in
academia and industry.

B. Examining the Real World Impact

We must recognize that our modeling assumptions do not
justly reflect reality.

The first set of choices to examine are the assumptions made
by our modeling approaches. For instance, most fairness work
considers a static world, with one population being passed
through one model during one time period. This does not

account for feedback loops or long-term effects. Dynamical
systems offer a potential approach to understanding long term
implications, by modeling the evolution and effects of fairness
on a particular system over multiple time steps [84]–[86].
Dynamical modeling explicitly expands assumptions to more
closely align with how real-world algorithmic systems might
shape their environments over time.

Additionally, most fairness work either considers privilege
as a binary (either you belong to the privileged group or
you do not) or views it in a siloed fashion along only one
demographic axis (e.g. optimizing along gender, or along
race). Work in subgroup fairness helps to outline some of the
limitations in this approach [87], however, to fully embrace the
intersectionalist nature of individuals, we can further question
these classification systems, especially that of the male/female
binary [88]. This succeeds only in tandem with greater socio-
cultural data collection [89] and data disaggregation [90] to
allow a broader range of demographic identities to be captured
in data collection stages of the machine learning pipeline [91].

We need to embrace viewing technology through the lens of
sociotechnical systems.

More broadly, to have full contextual impact awareness,
we must actively consider the contexts that we deploy our
technology in as relevant parts of the design process and under-
stand the needs and wants of all of the system’s stakeholders.
Science and Technology Studies examines the social contexts
in which technology is produced, evaluated, and deployed.
The term sociotechnical system aims to describe the complex
interplay between technical and human actors in real world
arrangements [92]. Through the lens of sociotechnical systems,
we can more meaningfully consider the ramifications and
effectiveness of our technical solutions. This means asking
questions like: Who are the different stakeholders in each
system—the users, the practitioners, the affected communities?
What does each stakeholder want from the technology? How
is our technology being utilized differently by the different
human stakeholders? What is the relevant historical and cul-
tural context? Below, we outline a few useful frameworks. We
acknowledge that this is not an exhaustive list, but one that
sets the groundwork for the future we want to see.

Three context-first reformulations already exist.

The fairness definitions described so far restrict
analysis to isolated decisions. Instead, [15] proposes
substantive algorithmic fairness. This involves identifying
structural responses for embedding fairness and analysing the
hierarchies and institutional structures that surround particular
decision points. Specifically, this is composed of three steps:
“1) diagnosing the substance of the inequalities in question,
2) identifying what reforms can remediate the substantive
inequalities, and 3) considering whether algorithms can
enhance the desired reforms.”

Contextual Integrity reimagines what it means to ensure



privacy. The theory defines privacy as the “appropriate flow of
information,” where what is appropriate entirely depends on
the context being considered. To determine what is private,
one must understand who the stakeholders involved in the
flow of information are, what types of information are being
transmitted, and how they are being transmitted [16].

To address issues with transparency, we must build
domain-specific transparency methods. In every context,
we must first understand what types of transparency are useful
and relevant and acknowledge how this answer varies for
each stakeholder [38]. Then, appropriate forms of transparency
should be designed according to situational needs. These
methods must then be explicitly evaluated for comprehension
and utility through practitioner user studies, think-aloud in-
terviews, and feedback from relevant stakeholders [93]. Only
through more deeply considering the context of deployment
can human-centered methods be developed [39]. These are
already the norm in settings such as healthcare and life
sciences, where methods must be developed to explain models
to domain experts in very specific ways to ensure trust and
adoption [94].

While we found many resources from the computer science
literature aimed at analysing technical tensions within and
between pillars, to our knowledge, we were not able to
identify examples of real-world rigorous contextual impact
assessments. Many of these frameworks are not new (e.g.
Contextual Integrity was introduced in 2010 [16]), but there are
gaps in the acceptance and employment of these strategies in
practice. We push for these gaps to be reconciled and advocate
for continued collaboration with sociotechnical scholars.

C. Open Questions for Practical Implementation

We’ve highlighted a few frameworks from academic lit-
erature, but how can we practically develop and implement
contextually aware tools? To tackle this question, we identify
key engineering challenges that will need to be addressed. This
is not an exhaustive list of concerns, but a starting point for
broader context-forward redirections.

How should information be collected by a contextual sys-
tem?

One way of viewing contextually-aware frameworks is
that they ask researchers and practitioners to build systems
that incorporate more information. The idea being that more
information will help the system adjust to the context accord-
ingly. However, we caution against the immediate assumption
that more data is better. Public distrust in commercial data
collection is strong [29], and the kinds of information that need
to be collected must be justified based on specific framework
requirements.

How should this information be collected and stored? In
a productionalized system, we need to contend with storage
requirements, standardized data formatting, and pipelines.
Moreover, how we collect the data is just as important.
Crafting usability studies to see which methods invoke the

least friction while also designing the requirements for what
a system should do to store such information will be vital.

What types of tools need to be developed?

Through what type of format can one operationalize con-
textual understanding? For inspiration, we look towards tools
developed in the fairness space. These tools formalize consid-
erations in actionable ways: through checklists, thought activi-
ties, and models of understanding that are ready for immediate
integration into industry workflows. Some examples include
frameworks for identifying all sources of bias in machine
learning pipelines [91], DrivenData’s ethics checklist [95],
datasheets for datasets [33], and model cards [34]. Moreover,
we can look to Explainability Case Studies [96] to see how
to incorporate stakeholder feedback, so that, when we design
technologies, user experience aligns with user expectations.

Building frameworks and evaluation methods for contextual
systems will allow us to operationalize such systems, much
like we have already done with current, context-agnostic
formulations. Establishing how we are building and evaluating
context-aware systems could allow us to measure the long term
effects these systems will have. This is extremely important
for mitigating further harm.

How should machine learning systems respond to context?

This is probably the most essential question on this list, and
it can be interpreted and investigated in multiple ways. We can
first read this as: what mechanism should machine learning
systems use to respond to context? Should it be a team that
evaluates and audits a system based on some protocol? Or
maybe it should be a set of triggers that flexibly respond to
context with different definitions? Another way to read this
question is: how should the user experience the response of
the system? This would require user studies on specific system
designs and mechanisms.

For inspiration, we can look towards [97], which offers
a unit testing framework for assessing bias in natural lan-
guage processing systems. This would allow for end users in
collaboration with companies to generate new tests for their
specific use case, that could be used in pre-production or
productionalization. Moving away from static benchmark tests
to curated tests for domain-specific issues is a step in the right
direction.

What aspects of ethical responsibility does each stakeholder
carry?

Technology is built and deployed through complicated sys-
tems involving a variety of stakeholders: technologists, busi-
ness leaders, compliance officials, etc. The types of responsi-
bilities of each level must be identified based on situational
needs. What types of contextual understanding might a model
builder need to have versus a model deployer? These types
of decisions might be in the realm of a new vertical within
industry. Just as chief data ethics officers have been introduced



[98], we may need to build out a workforce that can further
inform domain-specific solutions.

Using Contextual Integrity as Privacy (CI) as an example,
this could look like having an employee who is responsible
for collecting the parameters of CI (sender, recipient, subject,
information type, and transmission principle) and creating a re-
port to inform the types of privacy requirements necessary for
specific projects. This is an overly simplistic implementation
to satisfy CI, but we can imagine a world where the contextual
information collection may be a necessarily manual process.

How can we design inclusively?

During the design process of technology, inclusion needs to
be prioritized. Participatory Design advocates for meaningful
engagement with domain experts, end users, and any other
affected communities, so that their perspectives are thought-
fully reflected throughout the development and deployment
process [99]. It must be ensured that this type of community
involvement is not just exploitative “participation-washing,”
but rather a genuine and long-term collaboration [100].

D. Moving Forward

Why we don’t discuss accuracy tradeoffs.

Throughout this paper, we have chosen to not focus on
potential accuracy tradeoffs with fairness, privacy, or trans-
parency [36], [101], [102]. Debates about the fears of “sacri-
ficing accuracy” miss the point of embedding ethical values
in our systems. It is crucial that more than just accuracy is
optimized as our objective metric. By framing these notions as
a zero-sum game with accuracy, data scientists are not incen-
tivized or expected to meaningfully consider reformulations
as suitable real world solutions [7]. Moreover, target labels
in datasets often represent constructs, such as risk scores for
recidivism, socioeconomic status, etc. These are representa-
tions that cannot be directly measured in the real world, and
as a result, their representation in a dataset is fundamentally
imperfect. This results in a mismatch between the theoretical
understanding of the construct and how it is utilized in practice
[103]. Moreover, claims of accuracy are often unverifiable. It
is impossible to calculate new, independent accuracy values
in impactful algorithmic systems when most or all people are
affected by the results. The counterfactual data on what would
have happened had e.g. someone been given a loan is simply
not available for measuring [104].

Further, we take aim at the community’s framings of techni-
cal incompatibilities as ”impossibility theorems”. This choice
of language normalizes researchers to view their shortcomings
of accountability with “resigned inevitability” [79].

Technology carries power.

There is urgency in addressing our failures in properly
embedding human values in machine learning systems. Tech-
nology is inherently value-laden and implicitly political [105],

[106]. The use of technological solutions redistributes power—
who gets to make decisions and what information is made
accessible for those decisions.

With stakes this high, we must recognize that technology
is not always the solution. Substantive algorithmic fairness
argues that a key step in a structural ethical response is to criti-
cally consider whether algorithms can enhance or facilitate the
necessary reforms [15]. A failure to recognize the possibility
that the best solution to a problem may not involve technology
leads to the so-called solutionism trap [81]. Yet, technology
can still be extremely valuable in specifically-scoped, context-
aware roles, such as a tool for measuring social problems, for
defining social problems, for clarifying the limits on technical
interventions, and for highlighting social problems in novel
ways [107].

V. CONCLUSION

The current formalisms adopted by the AI community for
embedding ethical values are severely lacking. Popular notions
of fairness, privacy, and model transparency each carry their
own inherent tensions, as well as additional tensions when
multiple pillars are employed in tandem. These pillars also
suffer from a portability trap and a lack of awareness for
the context in which the technology is being implemented
[81]. Because of this, they fail to acknowledge the trade-
offs, consequences, and ethical choices that are implicitly
being made. Context is the material that maps decisions to
consequences. We cannot continue to use these mathematical
formalizations to avoid grappling with the real-world impacts
of technology. We push for greater emphasis on implementing
contextually aware technical interventions for accountability.
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TABLE I
FIVE POPULAR FAIRNESS DEFINITIONS: Y REPRESENTS A BINARY
GROUND TRUTH LABEL, Ŷ REPRESENTS A BINARY PREDICTION, A

REPRESENTS A PROTECTED ATTRIBUTES, AND R REPRESENTS A SCORE.
THE CRITERION TYPE CAPTURES THE CLASS OF FAIRNESS DEFINITION.

Name Probabilistic Definition Criterion Type

Demographic Parity [108] P (Ŷ = 1|A = a) = P (Ŷ = 1|A = b) Independence

80% Rule [109] P (Ŷ =1|A=a)

P (Ŷ =1|A=b)
≥ 0.8 Independence

Equal Opportunity [110] P (Ŷ = 1|Y = 1, A = a) = P (Ŷ = 1|Y = 1, A = b) Separation

Equalized Odds [110]

P (Ŷ = 1|Y = 1, A = a) = P (Ŷ = 1|Y = 1, A = b)

P (Ŷ = 1|Y = 0, A = a) = P (Ŷ = 1|Y = 0, A = b) Separation
Calibration of Groups [111] P (Y = 1|R = r, A = a) = r Sufficiency

APPENDIX

A. Technical Definitions of Fairness

Table I outlines five popular fairness definitions: Y rep-
resents a binary ground truth label, Ŷ represents a binary
prediction, A represents a protected attributes, and R repre-
sents a score. The criterion type captures the class of fairness
definition. We redirect the reader to [17] and [3] for additional
discussion about and formalization of fairness definitions.

B. Technical Definitions of Differential Privacy

Definition A.1 (ϵ-Differential Privacy [4]). For any ϵ > 0,
a randomized algorithm f satisfies ϵ-Differential Privacy if
for any pair of neighboring datasets D, D′ and for all S ⊂
Range(f )

P (f(D) ∈ S) ≤ eϵP (f(D′) ∈ S)

A relaxation of this definition was created soon after, which
loosens the probabilistic restriction of the eϵ.

Definition A.2 ((ϵ, δ)-Differential Privacy [112]). For any
ϵ, δ > 0, a randomized algorithm f satisfies (ϵ, δ)-Differential
Privacy if for any pair of neighboring datasets D, D′ and for
all S ⊂ Range(f )

P (f(D) ∈ S) ≤ eϵP (f(D′) ∈ S) + δ
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