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ABSTRACT

Denoising is intuitively related to projection. Indeed, under the manifold hypothe-
sis, adding random noise is approximately equivalent to orthogonal perturbation.
Hence, learning to denoise is approximately learning to project. In this paper,
we use this observation to reinterpret denoising diffusion models as approximate
gradient descent applied to the Euclidean distance function. We then provide
straight-forward convergence analysis of the DDIM sampler under simple assump-
tions on the projection-error of the denoiser. Finally, we propose a new sampler
based on two simple modifications to DDIM using insights from our theoretical
results. In as few as 5-10 function evaluations, our sampler achieves state-of-the-art
FID scores on pretrained CIFAR-10 and CelebA models and can generate high
quality samples on latent diffusion models.

1 INTRODUCTION

Diffusion models achieve state-of-the-art quality on many image generation tasks (Ramesh et al.,
2022; Rombach et al., 2022; Saharia et al., 2022). They are also successful in text-to-3D generation
(Poole et al., 2022) and novel view synthesis (Liu et al., 2023). Outside the image domain, they have
been used for robot path-planning (Chi et al., 2023), prompt-guided human animation (Tevet et al.,
2022), and text-to-audio generation (Kong et al., 2020).

Diffusion models are presented as the reversal of a stochastic process that corrupts clean data with
increasing levels of random noise (Sohl-Dickstein et al., 2015; Ho et al., 2020). This reverse process
can also be interpreted as likelihood maximization of a noise-perturbed data-distribution using
learned gradients (called score functions) (Song & Ermon, 2019; Song et al., 2020b). While these
interpretations are inherently probabilistic, samplers widely used in practice (e.g. Song et al. (2020a))
are often deterministic. In this paper, we tackle this divide and provide a deterministic framework for
reasoning about, improving and potentially discovering new applications of diffusion models.

For our first contribution, we reinterpret diffusion models as projection onto the support of the
training-set distribution, discarding the underlying measure. This deterministic interpretation is based
on an approximate correspondence between denoising and projection (noted in Chung et al. (2022);
Rick Chang et al. (2017)) that we make rigorous in Section 3, assuming the manifold hypothesis.
We then reinterpret sampling as approximate gradient descent on the Euclidean distance-function
and perform convergence analysis under a simple error model relating denoising and projection
(Section 4). This analysis also provides rigorous justification for log-linear noise schedules. Finally,
we leverage properties of the distance function to design a high-order sampler that aggregates previous
denoiser outputs to reduce error (Section 5).

We conclude with computational evaluation of our sampler (Section 6) that demonstrates state-of-
the-art FID scores on pretrained CIFAR-10 and CelebA datasets and comparable results to the best
samplers for high-resolution latent models such as Stable Diffusion (Rombach et al., 2022) (Figure 1).
Section 7 provides novel interpretations of existing techniques under the framework of distance
functions and outlines directions for future research.
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Ours UniPC DPM++ PNDM DDIM
(Zhao et al., 2023) (Lu et al., 2022b) (Liu et al., 2022) (Song et al., 2020a)

FID 13.77 15.59 15.43 19.43 14.06

Figure 1: Outputs of our sampler on text-to-image Stable Diffusion compared to other commonly used
samplers, when limited to N = 10 function evaluations. We also report FID scores for text-to-image
generation on MS-COCO 30K.

2 BACKGROUND

Denoising diffusion models (along with all other generative models) treat datasets as samples from a
probability distribution supported on a subset K of Rn. They are used to generate new points in K
outside the training set. We overview their basic features. We then state properties of the Euclidean
distance function distK(x) that are key to our contributions.

2.1 DENOISING DIFFUSION MODELS

Denoisers Denoising diffusion models are trained to estimate a noise vector ϵ ∈ Rn from a given
noise level σ > 0 and noisy input xσ ∈ Rn such that xσ = x0 + σϵ approximately holds for some
x0 in the data manifold K. The learned function, denoted ϵθ : Rn × R+ → Rn, is called a denoiser.
The trainable parameters, denoted jointly by θ ∈ Rm, are found by (approximately) minimizing

L(θ) := Ex,σ,ϵ ∥ϵθ(x0 + σϵ, σ)− ϵ∥2 (1)
when x0 is drawn from the training-set distribution, σ is drawn uniformly from a finite set of positive
numbers, and ϵ is drawn from a Gaussian distribution N (0, I). In practice, training is done by
applying stochastic gradient descent to L(θ) using randomly sampled (x, ϵ, σ).

Throughout, we let {σt}Nt=0 denote the monotonically increasing σ schedule. For simplicity of
notation we use ϵθ(·, σt) and ϵθ(·, t) interchangeably based on context. The sequence of σt is the
basis of sampling algorithms we overview next.

Sampling Given noisy xσ and noise level σ, the denoiser ϵθ(xσ, σ) induces an estimate of x̂0 ≈ x0

via
x̂0(xσ, σ) := xσ − σϵθ(xσ, σ). (2)

Aiming to improve accuracy, sampling algorithms construct a sequence x̂t
0 := x̂0(xt, σt) of estimates

that in turn arises from a sequence of points xt initialized at a given xN . The most basic samplers
recursively construct xt−1 from xt and ϵθ(xt, σt). For instance, the DDPM (Ho et al., 2020) sampler
uses the recursion

xt−1 = xt + (σt′ − σt)ϵθ(xt, σt) + ηwt, (3)
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Figure 2: Denoising approximates projection: When σ is small (2a), most of the added noise lies in
NK(x0) with high probability under the manifold hypothesis. When σ is large (2b), both denoising
and projection point in the same direction towards K. We interpret the denoising process (2c) as
finding x0 ∈ K by iteratively estimating projK(xt) with ϵθ(xt).

where wt ∼ N (0, I), σt′ = σ2
t−1/σt and η =

√
σ2
t−1 − σ2

t′ . (Note that by definition σt′ < σt−1 <

σt, as σt−1 is the geometric mean of σt′ and σt.) The DDIM (Song et al., 2020a) sampler, on the
other hand, uses the recursion

xt−1 = xt + (σt−1 − σt)ϵθ(xt, σt). (4)

DDPM is randomized given the samples wt whereas DDIM is deterministic. See Figure 2c for an
illustration of this denoising process. Note that these samplers were originally presented in variables
zt satisfying zt =

√
αtxt, where αt satisfies σ2

t = 1−αt

αt
. We prove equivalence of the original

definitions to (3) and (4) in Appendix A and note that the change-of-variables from zt to xt previously
appears in Song et al. (2020b); Karras et al. (2022); Song et al. (2020a).

2.2 DISTANCE, PROJECTION, AND REACH

The distance function of a set K ⊆ Rn, denoted distK : Rn → R, is defined via

distK(x) := inf{∥x− x0∥ : x0 ∈ K}. (5)

The projection of x ∈ Rn, denoted projK(x), is the set of points that attain this distance, i.e.,

projK(x) := {x0 ∈ K : distK(x) = ∥x− x0∥}. (6)

When projK(x) is a singleton, i.e., when projK(x) = {x0}, we abuse notation and let projK(x)
denote x0. We collect useful facts below.

Proposition 2.1 (page 283, Theorem 3.3 of Delfour & Zolésio (2011)). Suppose K ⊆ Rn is closed
and x /∈ K. If projK(x) is a singleton, then the following statements hold:

• The gradient ∇distK(x) exists and satisfies ∇distK(x) = distK(x)
−1(x − projK(x)).

Further, ∥∇distK(x)∥ = 1.

• The gradient of f(x) := 1
2distK(x)

2 satisfies∇f(x) = distK(x)∇distK(x). Equivalently,
∇f(x) = x− projK(x).

Further, projK(x) is a singleton for almost all x ∈ Rn (under the Lebesgue measure).

Suppose that xσ = x0 + σϵ for ϵ ∼ N (0, I). The unit vector ∇distK(xσ) is intuitively related to
ϵ whereas distK(xσ) is intuitively related to σ. The next section establishes conditions when these
quantities are approximately equal up to scaling by

√
n. We will state results using the reach of

K, defined as the largest τ > 0 such that projK(x) is unique when distK(x) < τ . Local Lipschitz
continuity of projK(x) can also be established using reach(K); see Appendix B.
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3 MANIFOLD HYPOTHESIS AND EQUIVALENCE BETWEEN DENOISING AND
PROJECTION

The manifold hypothesis (Bengio et al., 2013; Fefferman et al., 2016; Pope et al., 2021) asserts that
“real-world” datasets are (approximately) contained in low-dimensional manifolds of Rn. We next
show that denoising is approximately equivalent to projection under a version of this hypothesis.
Specifically, we suppose that K is a manifold of dimension d with d≪ n. Given xσ = x0 + σϵ, we
then show that the denoiser ϵθ(xσ, σ) approximates projK(xσ) with error that decreases with d. This
is because most of the noise lie in the normal space NK(x0) ⊆ Rn, a subspace of dimension n− d,
and perturbations in NK(x0) do not change the projection (see Figure 2a for an illustration):
Lemma 3.1 (Theorem 4.8(12) in Federer (1959)). Given x0 ∈ K and w ∈ NK(x), if ∥w∥ <
reach(K), then projK(x0 + w) = x0.

Decomposing ϵ using NK(x0)⊕NK(x0)
⊥ and combining Lemma 3.1 with Gaussian concentration

inequalities (Vershynin, 2018, Chapter 3) provides a backward error bound on the approximation
projK(xσ) ≈ x0. Invoking Lipschitz continuity of projK(xσ) when distK(xσ) < reach(K) provides
a forward error bound. We state these bounds informally here, deferring precise statements and
proofs to Appendix B.
Theorem 3.1 (Denoising vs Projection (informal)). Fix σ > 0 and suppose that reach(K) ≳ σ

√
n.

Given x0 ∈ K and ϵ ∼ N (0, I), let xσ = x0 + σϵ. With high probability, we have:

• (Backward error) x0 = projK(xσ + δ) for some δ ∈ Rn satisfying ∥δ∥ ≤ σ
√
d.

• (Forward error) ∥projK(xσ)− x0∥ ≲ σ
√
d.

The second statement illustrates that perfect denoising of xσ approximates projK(xσ). From Propo-
sition 2.1, it is therefore natural to bound the approximation error of ϵθ(xσ, σ) ≈

√
n∇distK(xσ)

and
√
nσt ≈ distK(xσ), which together induces the approximation projK(xσ) ≈ xσ − σϵθ(xσ, σ).

Diffusion models often add large levels of noise to x0 when training the denoiser. In this case,
even though the reach assumption may be violated, because the noise level is much larger than
the diameter of the data manifold, denoising is still approximately projection in terms of relative
error (see Figure 2b). Section 4 incorporates precise versions of these approximations into sampling
algorithms. We note that De Bortoli (2022) also analyze diffusion under the manifold hypothesis.

4 EQUIVALENCE BETWEEN SAMPLING AND GRADIENT DESCENT

Section 3 establishes that denoising approximates projection. We now study DDIM under two
different approximation models. Letting f(x) := 1

2distK(x)
2 and noting that∇f(x) = x−projK(x)

when ∇f(x) exists, we state these models as the following assumptions.
Assumption 1 (Exact projection). If (x, t) satisfies distK(x) =

√
nσt and ∇f(x) exists, then

σtϵθ(x, σt) = ∇f(x).
Assumption 2 (Projection with relative error). There exists ν ≥ 1 and η ≥ 0 such that if 1

νdistK(x) ≤√
nσt ≤ νdistK(x) and∇f(x) exists, then ∥σtϵθ(x, t)−∇f(x)∥ ≤ ηdistK(x).

Assumption 1 states that denoising is precisely projection, which is unrealistic but gives intuition
for the approximations we will later make. Assumption 2 weakens exactness to a relative-error
assumption on ∇f(x) given that ∥∇f(x)∥ = distK(x). We first show that DDIM is precisely
gradient descent with step-size determined by σt under Assumption 1. We then interpret DDIM as
gradient descent with relative-error under Assumption 2 and provide simple convergence analysis.
Proofs are postponed to Appendix C. Our experiments in Appendix E on image datasets show that the
learned denoiser outputs ϵθ(xt, t) approximately point in the same direction for all t in the denoising
process (i.e. has high cosine similarity) and has approximately unit norm, validating our assumption
that denoising is approximately projection for all noise levels.

4.1 EXACT PROJECTION AND GRADIENT DESCENT

We use the following lemma for gradient descent applied to the squared-distance function f(x).
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Lemma 4.1. Fix x ∈ Rn and suppose that ∇f(x) exists. For step-size 0 < β ≤ 1 consider the
gradient descent iteration applied to f(x):

x+ := x− β∇f(x)
Then, distK(x+) = (1− β) distK(x) < distK(x).

We can now characterize DDIM as follows.
Theorem 4.1. Let xN , xN−1, . . . , x0 denote a sequence (18) generated by DDIM and suppose that
Assumption 1 holds. Further suppose that the gradient of f(x) := 1

2distK(x)
2 exists for all xt. Then

the following statements hold:

• xt equals the sequence generated by gradient descent with step-size βt := 1− σt−1/σt,
xt−1 = xt − βt∇f(xt).

• distK(xt) =
√
nσt for all t.

We remark that distK(xt) < reach(K) will guarantee the existence of ∇f(xt) for each t, but the
existance of∇f(xt) is a weak assumption as it will be satisfied by almost all x ∈ Rn.

4.2 APPROXIMATE PROJECTION AND GRADIENT DESCENT WITH ERROR

Our relative-error model (Assumption 2) supposes that 1
νdistK(x) ≤

√
nσt ≤ νdistK(x). To ensure

this condition holds at each DDIM iteration, we need to lower and upper bound distance. For this, we
use the following two lemmas.
Lemma 4.2. The distance function distK : Rn → R for K ⊆ Rn satisfies

distK(u)− ∥u− v∥ ≤ distK(v) ≤ distK(u) + ∥u− v∥
for all u, v ∈ Rn.
Lemma 4.3. For K ⊆ Rn, let f(x) := 1

2distK(x)
2. If xt−1 = xt − βt(∇f(xt) + et) for et

satisfying ∥et∥ ≤ ηdistK(xt) and 0 ≤ βt ≤ 1, then

distK(xN )

N∏
i=t

(1− βi(η + 1)) ≤ distK(xt−1) ≤ distK(xN )

N∏
i=t

(1 + βi(η − 1).) (7)

From Lemma 4.3, the following condition ensures that 1
νdistK(x) ≤

√
nσt ≤ νdistK(x) holds at

each DDIM iteration, leveraging the DDIM property that σt−1 = (1− βt)σt.
Definition 4.1. We say that parameters {σt}Nt=0 are (η, ν)-admissible if, for all t ∈ {1, . . . , N},

1

ν

N∏
i=t

(1 + βi(η − 1)) ≤
N∏
i=t

(1− βi) ≤ ν
N∏
i=t

(1− βi(η + 1)), (8)

where βt := 1− σt−1/σt.

We now give error bounds for DDIM under the assumption that the noise levels σt are admissible.
We then study admissible sequences for which σt−1/σt is constant, which in turn implies that the
DDIM step-size βt is fixed (Theorem 4.1).

4.2.1 ERROR BOUNDS

Our main result under the relative-error model follows.
Theorem 4.2 (DDIM with relative error). Let Assumption 2 hold and suppose {σt}Nt=0 is (η, ν)-
admissible for 0 ≤ η < 1 and ν ≥ 1. Let xt denote the sequence generated by DDIM and suppose
that the gradient of f(x) := 1

2distK(x)
2 exists for all xt. The following statements hold.

• xt is generated by approximate gradient descent iterations of the form (7) in Lemma 4.3
with βt = 1− σt−1/σt.

• 1
νdistK(xt) ≤

√
nσt ≤ νdistK(xt) for all t.

• distK(xN )
∏N

i=t(1− βi(η + 1)) ≤ distK(xt−1) ≤ distK(xN )
∏N

i=t(1 + βi(η − 1)).
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Algorithm 1 DDIM sampler (Song et al., 2020a)

Require: (σN , . . . , σ0), xN ∼ N (0, I), ϵθ
Ensure: Compute x0 with N evaluations of ϵθ

for t = N, . . . , 1 do
xt−1 ← xt + (σt−1 − σt)ϵθ(xt, σt)

return x0

Algorithm 2 Our gradient estimation sampler

Require: (σN , . . . , σ0), xN ∼ N (0, I), ϵθ
Ensure: Compute x0 with N evaluations of ϵθ

xN−1 ← xN + (σN−1 − σN )ϵθ(xN , σN )
for t = N − 1, . . . , 1 do

ϵ̄t ← 2ϵθ(xt, σt)− ϵθ(xt+1, σt+1)
xt−1 ← xt + (σt−1 − σt)ϵ̄t

return x0

4.2.2 ADMISSIBLE LOG-LINEAR SCHEDULES FOR DDIM

We next characterize admissible σt of the form σt−1 = (1 − β)σt where β denotes a constant
step-size. This illustrates that admissible σt-sequences not only exist, they can also be explicitly
constructed from (η, ν).
Theorem 4.3. Fix β ∈ R satisfying 0 ≤ β < 1 and suppose that σt−1 = (1 − β)σt. Then σt is
(η, ν)-admissible if and only if β ≤ β∗,N where β∗,N := c

η+c for c := 1− ν−1/N .

Suppose we fix (η, ν) and choose, for a given N , the step-size β∗,N . It is natural to ask how the error
bounds of Theorem 4.2 change as N increases. The following establishes the limiting behavior of the
final output (σ0, x0) of DDIM.
Theorem 4.4. Let xN , . . . , x1, x0 denote the sequence generated by DDIM with σt satisfying
σt−1 = (1− β∗,N )σt for ν ≥ 1 and η > 0. The following statements hold

• limN→∞ σ0/σN = limN→∞(1− β∗,N )N = (1/ν)1/η .

• limN→∞ distK(x0)/distK(xN ) ≤ limN→∞(1 + (η − 1)β∗,N )N = (1/ν)
1−η
η .

This theorem illustrates that final error, while bounded, need not converge to zero under our error
model. This motivates heuristically updating the step-size from β∗,N to a full step (β = 1) during
the final DDIM iteration. We adopt this approach in our experiments (Section 6).

5 IMPROVING DETERMINISTIC SAMPLING ALGORITHMS VIA GRADIENT
ESTIMATION

Section 3 establishes that ϵθ(x, σ) ≈
√
n∇distK(x) when distK(x) ≈

√
nσ. We next exploit an

invariant property of∇distK(x) to reduce the prediction error of ϵθ via gradient estimation.

The gradient ∇distK(x) is invariant along line segments between a point x and its projection
projK(x), i.e., letting x̂ = projK(x),

∇distK(θx+ (1− θ)x̂) = ∇distK(x) ∀θ ∈ (0, 1]. (9)

Hence, ϵθ(x, σ) should be (approximately) constant on this line-segment under our assumption that
ϵθ(x, σ) ≈

√
n∇distK(x) when distK(x) ≈

√
nσ. Precisely, for x1 and x2 on this line-segment, we

should have

ϵθ(x1, σt1) ≈ ϵθ(x2, σt2) (10)

if ti satisfies distK(xi) ≈
√
nσti . This property suggests combining previous denoiser outputs

{ϵθ(xi, σi)}Ni=t+1 to estimate ϵt =
√
n∇distK(xt). We next propose a practical second-order method

1 for this estimation that combines the current denoiser output with the previous. Recently introduced
consistency models (Song et al., 2023) penalize violation of (10) during training. Interpreting denoiser
output as∇distK(x) and invoking (9) offers an alternative justification for these models.

1This method is second-order in the sense that the update step uses previous values of ϵθ , and should not be
confused with second-order derivatives.
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Figure 3: Plot of different choices of log(σt)
for N = 10.

Schedule CIFAR-10 CelebA

DDIM 16.86 18.08
DDIM Offset 14.18 15.38
EDM 20.85 16.72
Ours 13.25 13.55

Table 1: FID scores of the DDIM sampler
(Algorithm 1) with different σt schedules on
the CIFAR-10 model for N = 10 steps.

Let et(ϵ) = ϵ− ϵθ(xt, σt) be the error of ϵθ(xt, σt) when predicting ϵ. To estimate ϵ from ϵθ(xt, σt),
we minimize the norm of this error concatenated over two time-steps. Precisely, letting yt(ϵ) =
(et(ϵ), et+1(ϵ)), we compute

ϵ̄t := argmin
ϵ
∥yt(ϵ)∥2W , (11)

where W is a specified positive-definite weighting matrix. In Appendix D we show that this error
model results in the update rule

ϵ̄t = γϵθ(xt, σt) + (1− γ)ϵθ(xt+1, σt+1), (12)

where we can search over W by searching over γ.

6 EXPERIMENTS
xt+1

xt

ϵθ(xt+1)

ϵθ(xt)

ϵ̄

K

Figure 4: Illustration of our choice of ϵ̄t

We evaluate modifications of DDIM (Algorithm 1) that
leverage insights from Section 5 and Section 4.2.2. Fol-
lowing Section 5 we modify DDIM to use a second-order
update that corrects for error in the denoiser output (Al-
gorithm 2). Specifically, we use the Equation (12) update
with γ = 2, which is empirically tuned (see Appendix E).
A comparison of this update with DDIM is visualized in
Figure 4. Following Section 4.2.2, we select a noise sched-
ule (σN , . . . , σ0) that decreases at a log-linear (geometric)
rate. The specific rate is determined by an initial and tar-
get noise level. Our σt schedule is illustrated in Figure 3,
along with other commonly used schedules. We note that
log-linear schedules have been previously proposed for SDE-samplers (Song et al., 2020b); to our
knowledge we are the first to propose and analyze their use for DDIM2. All the experiments were run
on a single Nvidia RTX 4090 GPU.

6.1 EVALUATION OF NOISE SCHEDULE

In Figure 3 we plot our schedule (with our choices of σt detailed in Appendix F) with three other
commonly used schedules on a log scale. The first is the evenly spaced subsampling of the training
noise levels used by DDIM. The second “DDIM Offset” uses the same even spacing but starts at a
smaller σN , the same as that in our schedule. This type of schedule is typically used for guided image
generation such as SDEdit (Meng et al., 2021). The third “EDM” is the schedule used in Karras et al.
(2022, Eq. 5), with σmax = 80, σmin = 0.002 and ρ = 7.

We then test these schedules on the DDIM sampler Algorithm 1 by sampling images with N = 10
steps from the CIFAR-10 and CelebA models. We see that in Table 1 that our schedule improves the

2DDIM is usually presented using not σt but parameters αt satisfying σ2
t = (1−αt)/αt. Linear updates of

σt are less natural when expressed in terms of αt.
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CIFAR-10 FID CelebA FID
Sampler N = 5 N = 10 N = 20 N = 50 N = 5 N = 10 N = 20 N = 50

Ours 12.53 3.85 3.39 3.43 10.73 4.30 3.56 3.78
DDIM (Song et al., 2020a) 47.20 16.86 8.28 4.81 32.21 18.08 11.81 7.39

PNDM (Liu et al., 2022) 13.9 7.03 5.00 3.95 11.3 7.71 5.51 3.34
DPM (Lu et al., 2022a) 6.37 3.72 3.48 5.83 2.82 2.71
DEIS (Zhang & Chen, 2022) 18.43 7.12 4.53 3.78 25.07 6.95 3.41 2.95
UniPC (Zhao et al., 2023) 23.22 3.87
A-DDIM (Bao et al., 2022) 14.00 5.81* 4.04 15.62 9.22* 6.13

Table 2: FID scores of our sampler compared to that of other samplers for pretrained CIFAR-10 and
CelebA models with a discrete linear schedule. The first half of the table shows our computational
results whereas the second half of the table show results taken from the respective papers. *Results
for N = 25

FID of the DDIM sampler on both datasets even without the second-order updates. This is in part due
to choosing a smaller σN so the small number of steps can be better spent on lower noise levels (the
difference between “DDIM” and “DDIM Offset”), and also because our schedule decreases σt at a
faster rate than DDIM (the difference between “DDIM Offset” and “Ours”).

6.2 EVALUATION OF FULL SAMPLER

Figure 5: A comparison of our sampler with DDIM
on the CelebA dataset with N = 5 steps.

We quantitatively evaluate our sampler (Algo-
rithm 2) by computing the Fréchet inception
distance (FID) (Heusel et al., 2017) between
all the training images and 50k generated im-
ages. We use denoisers from Ho et al. (2020);
Song et al. (2020a) that were pretrained on
the CIFAR-10 (32x32) and CelebA (64x64)
datasets (Krizhevsky et al., 2009; Liu et al.,
2015). We compare our results with other sam-
plers using the same denoisers. The FID scores
are tabulated in Table 2, showing that our sampler achieves better performance on both CIFAR-10
(for N = 5, 10, 20, 50) and CelebA (for N = 5, 10).

We also incorporated our sampler into Stable Diffusion (a latent diffusion model). We change the
noise schedule σt as described in Appendix F. In Figure 1, we show some example results for text to
image generation in N = 10 function evaluations, as well as FID results on 30k images generated
from text captions drawn the MS COCO (Lin et al., 2014) validation set. From these experiments
we can see that our sampler performs comparably to other commonly used samplers, but with the
advantage of being much simpler to describe and implement.

7 RELATED WORK AND DISCUSSION

Learning diffusion models Diffusion models were originally introduced in Sohl-Dickstein et al.
(2015) as using a variational inference method to learn the reverse of a process that progressively
adds noise to data. This approach resulted in an improved training process (Ho et al., 2020; Nichol &
Dhariwal, 2021) that becomes (1), which is different from the original variational lower bound. This
improvement is justified from the perspective of denoising score matching (Song & Ermon, 2019;
Song et al., 2020b), where the ϵθ is interpreted as ∇ log(p(xt, σt)), the gradient of the log density of
the data distribution perturbed by noise.

Score matching is also shown to be equivalent to denoising autoencoders with Gaussian noise
(Vincent, 2011). From this derivation we can obtain a connection to our interpretation when K is
a finite set of training examples. The ideal denoiser (Karras et al., 2022) for this setting is defined

8
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as the minimizer of Ex0∈KEϵ∼N (0,1)∥D(x0 + σϵ, σ) − x0∥2, which is equivalent to a smoothed
version of the projection operator (6) of K , with its argmin operation replaced by a “soft argmin”
induced by the log-sum-exp function.

Sampling from diffusion models Samplers for diffusion models started with probabilistic methods
(e.g. Ho et al. (2020)) that formed the reverse process by conditioning on the denoiser output at
each step. In parallel, score based models (Song & Ermon, 2019; Song et al., 2020b) interpret
the forward noising process as a stochastic differential equation (SDE), so SDE solvers based on
Langevian dynamics (Welling & Teh, 2011) are employed to reverse this process. As models
get larger, computational constraints motivated the development of more efficient samplers. Song
et al. (2020a) then discovered that for smaller number of sampling steps, deterministic samplers
perform better than stochastic ones. These deterministic samplers are constructed by reversing a
non-Markovian process that leads to the same training objective, which is equivalent to turning the
SDE into an ordinary differential equation (ODE) that matches its marginals at each sampling step.

This led to a large body of work focused on developing ODE and SDE solvers for fast sampling of
diffusion models, a few of which we have evaluated in Table 2. Most notably, Karras et al. (2022)
put existing samplers into a common framework and isolated components that can be independently
improved. Our sampler Algorithm 2 bears most similarity to linear multistep methods, which can also
be interpreted as accelerated gradient descent (Scieur et al., 2017). What differs is the error model:
ODE solvers aim to minimize discretization error whereas we aim to minimize gradient estimation
error, resulting in different “optimal” samplers.

Linear-inverse problems and conditioning Several authors (Kadkhodaie & Simoncelli, 2020;
Chung et al., 2022; Kawar et al., 2022) have devised samplers for finding images that satisfy linear
equations Ax = b. Such linear inverse problems generalize inpainting, colorization, and compressed
sensing. In our framework, we can interpret this samplers as algorithms for equality constraint
minimization of the distance function, a classical problem in optimization. Similarly, the widely
used technique of conditioning (Dhariwal & Nichol, 2021) can be interpreted as multi-objective
optimization, where minimization of distance is replaced with minimization of distK(x)2 + g(x) for
an auxiliary objective function g(x).

Learning the distance function Reinterpreting denoising as projection, or equivalently gradient
descent on the distance function, has a few immediate implications. First, it suggests generalizations
that draw upon the literature for computing distance functions and projection operators. Such
techniques include Fast Marching Methods (Sethian, 1996), kd-trees, and neural-network approaches,
e.g., Park et al. (2019); Rick Chang et al. (2017). Using concentration inequalities, we can also
interpret training a denoiser as learning a solution to the Eikonal PDE, given by ∥∇d(x)∥ = 1. Other
techniques for solving this PDE with deep neural nets include Smith et al. (2020); Lichtenstein et al.
(2019); bin Waheed et al. (2021).

8 CONCLUSION, LIMITATIONS AND FUTURE WORK

We have presented an elementary framework for analyzing and generalizing diffusion models that has
led to a new sampling approach and new interpretations of pre-existing techniques. Moreover, the
key objects in our analysis —the distance function and the projection operator—are canonical objects
in constrained optimization. We believe our work can lead to new generative models that incorporate
sophisticated objectives and constraints for a variety of applications. We also believe this work can
be leveraged to incorporate existing denoisers into optimization algorithms in a plug-in-play fashion,
much like the work in Chan et al. (2016); Le Pendu & Guillemot (2023); Rick Chang et al. (2017).

The limitations of our theory include its reliance on reach. While estimating reach is studied
(Fefferman et al., 2016; Aamari et al., 2019), it is unclear if the reach of practically important datasets
(e.g., the image manifold) can be estimated in practice. The correspondence between projection and
denoising relies on the assumption that the manifold has low-dimension. If this assumption fails, the
denoiser must be replaced with a different function that explicitly learns the projection operator. We
think combining the multi-level noise paradigm of diffusion with distance function learning (Park
et al., 2019) is an interesting direction, as are diffusion-models that carry out projection using analytic
formulae or simple optimization routines.
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A EQUIVALENT DEFINITIONS OF DDIM AND DDPM

The DDPM and DDIM samplers are usually described in a different coordinate system zt defined by
parameters ᾱt and the following relations , where the noise model is defined by a schedule ᾱt:

y ≈
√
ᾱtz +

√
1− ᾱtϵ, (13)

with the estimate ẑt0 := ẑ0(zt, t) given by

ẑ0(y, t) :=
1√
ᾱt

(y −
√
1− ᾱtϵ

′
θ(y, t)). (14)

We have the following conversion identities between the x and z coordinates:

x0 = z0, xt = zt/
√
ᾱt, σt =

√
1− ᾱt

ᾱt
, ϵθ(y, σt) = ϵ′θ(y/

√
ᾱt, t). (15)

While this change-of-coordinates is used in Song et al. (2020a, Section 4.3) and in Karras et al.
(2022)–and hence not new– we rigorously prove equivalence of the DDIM and DDPM samplers
given in Section 2 with their original definitions.

DDPM Given initial zN , the DDPM sampler constructs the sequence

zt−1 =

√
ᾱt−1(1− αt)

1− ᾱt
ẑt0 +

√
αt(1− ᾱt−1)

1− ᾱt
zt +

√
1− ᾱt−1

1− ᾱt
(1− αt)wt, (16)

where αt := ᾱt/ᾱt−1 and wt ∼ N (0, I). This is interpreted as sampling zt−1 from a Gaussian
distribution conditioned on zt and ẑt0 (Ho et al., 2020).

Proposition A.1 (DDPM change of coordinates). The sampling update (3) is equivalent to the update
(16) under the change of coordinates (15).

Proof. First we write (3) in terms of zt, ϵ′θ(zt, t) and wt using (14):

zt−1 =

√
ᾱt−1(1− αt)√
ᾱt(1− ᾱt)

(
zt −

√
1− ᾱtϵ

′
θ(zt, t)

)
+

√
αt(1− ᾱt−1)

1− ᾱt
zt +

√
1− ᾱt−1

1− ᾱt
(1− αt)wt

=
zt√
αt

+
αt − 1√

αt(1− ᾱt))
ϵ′θ(zt, t) +

√
1− ᾱt−1

1− ᾱt
(1− αt)wt.

Next we divide both sides by
√
ᾱt−1 and change zt and zt−1 to xt and xt−1:

xt−1 = xt +
αt − 1√
ᾱt(1− ᾱt)

ϵθ(xt, σt) +

√
1− ᾱt−1

ᾱt−1

1− αt

1− ᾱt
wt.

Now if we define

η :=

√
1− ᾱt−1

ᾱt−1

1− αt

1− ᾱt
= σt−1

√
1− ᾱt/ᾱt−1

1− ᾱt
,

σt′ :=
√
σ2
t−1 − η2 = σt−1

√
ᾱt(1/ᾱt−1 − 1)

1− ᾱt
=

σ2
t−1

σt
,

it remains to check that

σt′ − σt =
σ2
t−1 − σ2

t

σt
=

1/ᾱt−1 − 1/ᾱt√
1− ᾱt/

√
ᾱt

=
αt − 1√
ᾱt(1− ᾱt)

.
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DDIM Given initial zN , the DDIM sampler constructs the sequence

zt−1 =
√
ᾱt−1ẑ

t
0 +

√
1− ᾱt−1ϵ

′
θ(zt, t), (17)

i.e., it estimates ẑt0 from zt and then constructs zt−1 by simply updating ᾱt to ᾱt−1. This sequence
can be equivalently expressed in terms of ẑt0 as

zt−1 =
√
ᾱt−1ẑ

t
0 +

√
1− ᾱt−1

1− ᾱt
(zt −

√
ᾱtẑ

t
0). (18)

Proposition A.2 (DDIM change of coordinates). The sampling update (4) is equivalent to the update
(18) under the change of coordinates (15).

Proof. First we write (17) in terms of zt and ϵ′θ(zt, t) using (14):

zt−1 =

√
ᾱt−1

ᾱt
zt +

(√
1− ᾱt−1 −

√
ᾱt−1

ᾱt

√
1− ᾱt

)
ϵ′θ(zt, t).

Next we divide both sides by
√
ᾱt−1 and change zt and zt−1 to xt and xt−1:

xt−1 = xt +

(√
1− ᾱt−1

ᾱt−1
−
√

ᾱt−1

1− ᾱt

)
ϵθ(xt, σt)

= xt + (σt−1 − σt)ϵθ(xt, σt).

B FORMAL COMPARISON OF DENOISING AND PROJECTION

Our proof uses local Lipschitz continuity of the projection operator, stated formally as follows.

Proposition B.1 (Theorem 6.2(vi), Chapter 6 of Delfour & Zolésio (2011)). Suppose 0 <
reach(K) < ∞. Consider h > 0 and x, y ∈ Rn satisfying 0 < h < reach(K) and distK(x) ≤ h

and distK(y) ≤ h. Then the projection map satisfies ∥projK(y)− projK(x)∥ ≤
reach(K)

reach(K)−h∥y− x∥.

Decomposing random noise σϵ as

σϵ = wN + wT (19)

for wN ∈ NK(x0) and wT ∈ NK(x0)
⊥ and using Lemma 3.1 allows us to show that projK(xσ) ≈

x0.

Theorem B.1 (Denoising vs Projection). Fix σ > 0 and suppose K and t > 0 satisfies reach(K) >
σ(
√
n + t). Given x0 ∈ K and ϵ ∼ N (0, I), let xσ = x0 + σϵ and w := σϵ = wN + wT by the

decomposition (19). The following statements hold with probability at least 1− exp(−αt2), where
α > 0 is an absolute constant.

• (Backward error) x0 = projK(xσ − wT ).

• (Forward error) ∥projK(xσ)− x0∥ ≤ Cσ(
√
d+ t), where C = reach(K)

reach(K)−σ(
√
n+t)

.

Proof. Let B ∈ Rn×d denote an orthonormal basis for NK(x0)
⊥, such that wT = BBTw, ∥wT ∥ =

∥BTw∥ and we have

E[∥wT ∥2] = E[∥BTw∥]2 +Tr cov(BTw) = Tr cov(BTw) = σ2 TrBTB = σ2d. (20)

Using a standard concentration inequality (Vershynin, 2018, page 44, Equation 3.3), we get that
for a universal constant α, with probability at least 1 − exp(−αt2), we have ∥ϵ∥ ≤

√
n + t and

∥wT ∥ ≤ σ(
√
d+ t). Using Lemma 3.1 and the fact that ∥wN∥ ≤ ∥σϵ∥ ≤ σ(

√
n+ t) < reach(K),

we get
proj(xσ − wT ) = proj(x0 + wN ) = x0,
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proving the first statement. To prove the second statement, we observe that

∥ proj(xσ)− x0∥ = ∥ proj(x0 + wN + wT )− x0∥
= ∥ proj(x0 + wN )− x0 + proj(x0 + wN + wT )− proj(x0 + wN )∥
= ∥ proj(x0 + wN )− proj(x0 + wN + wT )∥
≤ C∥wT ∥
≤ Cσ(

√
n+ t)

where the second-to-last inequality comes from Proposition B.1, the assumption that reach(K) >
σ(
√
n+t), and the inequalities distK(x0+wN ) ≤ ∥wN∥ ≤ σ(

√
n+t) and distK(x0+wN+wT ) ≤

∥w∥ ≤ σ(
√
n+ t).

C DDIM WITH PROJECTION ERROR ANALYSIS

C.1 PROOF OF THEOREM 4.1

Make the inductive hypothesis that dist(xt) =
√
nσt. From the definition of DDIM (4), we have

xt−1 = xt + (
σt−1

σt
− 1)σtϵθ(xt, σt).

Under Assumption 1 and the inductive hypothesis, we conclude

xt−1 = xt + (
σt−1

σt
− 1)∇f(xt)

= xt − βt∇f(xt)

Using Lemma 4.1 we have that

dist(xt−1) = (1− βt) dist(xt) =
σt−1

σt
dist(xt) =

√
nσt−1

The base case holds by assumption, proving the claim.

C.2 PROOF OF LEMMA 4.1

Letting x0 = projK(x) and noting∇f(x) = x− x0, we have

distK(x+) = distK(x+ β(x0 − x))

= ∥x+ β(x0 − x)− x0∥
= ∥(x− x0)(1− β)∥
= (1− β)distK(x)

C.3 PROOF OF LEMMA 4.2

By (Delfour & Zolésio, 2011, Chapter 6, Theorem 2.1), |distK(u)− distK(v)| ≤ ∥u− v∥, which is
equivalent to

distK(u)− distK(v) ≤ ∥u− v∥,distK(v)− distK(u) ≤ ∥u− v∥.
Rearranging proves the claim.

C.4 PROOF OF LEMMA 4.3

We first restate the full version of Lemma 4.3.
Lemma C.1. For K ⊆ Rn, let f(x) := 1

2distK(x)
2. The following statements hold.

(a) If x+ = x− β(∇f(x) + e) for e satisfying ∥e∥ ≤ ηdistK(x) and 0 ≤ β ≤ 1, then

(1− β(η + 1))distK(x) ≤ distK(x+) ≤ (1 + β(η − 1))distK(x).
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(b) If xt−1 = xt − βt(∇f(xt) + et) for et satisfying ∥et∥ ≤ ηdistK(xt) and 0 ≤ βt ≤ 1, then

distK(xN )

N∏
i=t

(1− βi(η + 1)) ≤ distK(xt−1) ≤ distK(xN )

N∏
i=t

(1 + βi(η − 1).)

For Item (a) we apply Lemma 4.2 at points u = x+ and v = x− β∇f(x). We also use dist(v) =
(1− β)distK(x), since 0 ≤ β ≤ 1, to conclude that

(1− β)distK(x)− β∥e∥ ≤ distK(x+) ≤ (1− β)distK(x) + β∥e∥.
Using the assumption that ∥e∥ ≤ ηdistK(x) gives

(1− β − ηβ)distK(x) ≤ distK(x+) ≤ (1− β + ηβ)distK(x)

Simplifying completes the proof. Item (b) follows from Item (a) and induction.

C.5 PROOF OF THEOREM 4.2

We first state and prove an auxillary theorem:
Theorem C.1. Suppose Assumption 2 holds for ν ≥ 1 and η > 0. Given xN and {βt, σt}Ni=1,
recursively define xt−1 = xt + βtσtϵθ(xt, t) and suppose that projK(xt) is a singleton for all t.
Finally, suppose that {βt, σt}Ni=1 satisfies 1

νdistK(xN ) ≤
√
nσN ≤ νdistK(xN ) and

1

ν
distK(xN )

N∏
i=t

(1 + βi(η − 1)) ≤
√
nσt−1 ≤ νdistK(xN )

N∏
i=t

(1− βi(η + 1)). (21)

The following statements hold.

• distK(xN )
∏N

i=t(1− βi(η + 1)) ≤ distK(xt−1) ≤ distK(xN )
∏N

i=t(1 + βi(η − 1))

• 1
νdistK(xt−1) ≤

√
nσt−1 ≤ νdistK(xt−1)

Proof. Since projK(xt) is a singleton, ∇f(xt) exists. Hence, the result will follow from (7) in
Lemma 4.3 if we can show that ∥βtσtϵθ(xt, t)−∇f(xt)∥ ≤ ηdistK(xt). Under Assumption 2, it
suffices to show that

1

ν
distK(xt) ≤

√
nσt ≤ νdistK(xt) (22)

holds for all t. We use induction, noting that the base case (t = N) holds by assumption. Suppose
then that (22) holds for all t, t+ 1, . . . , N . By Lemma 4.3 and Assumption 2, we have

distK(xN )

N∏
i=t

(1− βi(η + 1)) ≤ distK(xt−1) ≤ distK(xN )

N∏
i=t

(1 + (η − 1)βi)

Combined with (21) shows
1

ν
distK(xt−1) ≤

√
nσt−1 ≤ νdistK(xt−1),

proving the claim.

The proof of Theorem 4.2 follows that of Theorem C.1 by additionally observing η < 1 implies that
distK(xt) < reach(K) for all t, which implies projK(xt) is a singleton.

C.6 PROOF OF THEOREM 4.3

Assuming constant step-size βi = β and dividing (8) by
∏N

i=1(1− β) gives the conditions(
1 + η

β

1− β

)N

≤ ν,

(
1− η

β

1− β

)N

≥ 1

ν
.

Rearranging and defining a = η β
1−β and b = ν

1
N gives

a ≤ b− 1, a ≤ 1− b−1.

Since b−1− (1− b−1) = b+ b−1−2 ≥ 0 for all b > 0, we conclude a ≤ b−1 holds if a ≤ 1− b−1

holds. We therefore consider the second inequality η β
1−β ≤ 1− ν−1/N , noting that it holds for all

0 ≤ β < 1 if and only if 0 ≤ β ≤ k
1+k for k = 1

η (1− ν−1/N ), proving the claim.
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C.7 PROOF OF THEOREM 4.4

The value of σ0/σN follows from the definition of σt and and the upper bound for
distK(x0)/distK(xN ) follows from Theorem 4.3. We introduce the parameter µ to get a general
form of the expression inside the limit:

(1− µβ∗,N )N =

(
1− µ

1− ν−1/N

η + 1− ν−1/N

)N

.

Next we take the limit using L’Hôpital’s rule:

lim
N→∞

(
1− µ

1− ν−1/N

η + 1− ν−1/N

)N

= exp

(
lim

N→∞
log

(
1− µ

1− ν−1/N

η + 1− ν−1/N

)
/(1/N)

)
= exp

(
lim

N→∞

ηµ log(ν)

(ν−1/N − η − 1)(ν1/N (η − µ+ 1) + µ− 1)

)
= exp

(
−µ log(ν)

η

)
= (1/ν)

µ/η
.

For the first limit, we set µ = 1 to get

lim
N→∞

(1− β∗,N )N = (1/ν)1/η.

For the second limit, we set µ = 1− η to get

lim
N→∞

(1 + (η − 1)β∗,N )N = (1/ν)
1−η
η .

C.8 DENOISER ERROR

Assumption 2 places a condition directly on the approximation of∇f(x), where f(x) := 1
2distK(x),

that is jointly obtained from σt and the denoiser ϵθ. We prove this assumption holds under a direct
assumption on∇distK(x), which is easier to verify in practice.

Assumption 3. There exists ν ≥ 1 and η > 0 such that if 1
νdistK(x) ≤

√
nσt ≤ νdistK(x) then

∥ϵθ(x, t)−
√
n∇distK(x)∥ ≤ η

Lemma C.2. If Assumption 3 holds with (ν, η), then Assumption 2 holds with (ν̂, η̂), where η̂ =
1√
n
ην +max(ν − 1, 1− 1

ν ) and ν̂ = ν.

Proof. Multiplying the error-bound on ϵθ by σt and using
√
nσt ≤ νdistK(x) gives

∥σtϵθ(x, t)−
√
nσt∇distK(x)∥ ≤ ησt ≤ ην

1√
n
distK(x)

Defining C =
√
nσt − distK(x) and simplifying gives

ην
1√
n
distK(x) ≥ ∥σtϵθ(x, t)−

√
nσt∇distK(x)∥

= ∥σtϵθ(x, t)−∇f(x)− C∇distK(x)∥
≥ ∥σtϵθ(x, t)−∇f(x)∥ − ∥C∇distK(x)∥
= ∥σtϵθ(x, t)−∇f(x)∥ − |C|

Since ( 1ν − 1)distK(x) ≤ C ≤ (ν − 1)distK(x) and ν ≥ 1, the Assumption 2 error bound holds for
the claimed η̂.
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Figure 6: Plot of the cosine similarity between ϵθ(xt, t) and ϵθ(xt′ , t
′) over N = 50 steps of DDIM

denoising on the CIFAR-10 dataset. Each cell is the average result of 1000 runs.

D DERIVATION OF GRADIENT ESTIMATION SAMPLER

To choose W , we make two assumptions on the denoising error: the coordinates et(ϵ)i and et(ϵ)j are
uncorrelated for all i ̸= j, and et(ϵ)i is only correlated with et+1(ϵ)i for all i. In other words, we
consider W of the form

W =

[
aI bI
bI cI

]
(23)

and next show that this choice leads to a simple rule for selecting ϵ̄. From the optimality conditions
of the quadratic optimization problem (11), we get that

ϵ̄t =
a+ b

a+ c+ 2b
ϵθ(xt, σt) +

c+ b

a+ c+ 2b
ϵθ(xt+1, σt+1).

Setting γ = a+b
a+c+2b , we get the update rule (12). When b ≥ 0, the minimizer ϵ̄t is a simple convex

combination of denoiser outputs. When b < 0, we can have γ < 0 or γ > 1, i.e., the weights in
(12) can be negative (but still sum to 1). Negativity of the weights can be interpreted as cancelling
positively correlated error (b < 0) in the denoiser outputs. Also note we can implicitly search over
W by directly searching for γ.

E FURTHER EXPERIMENTS

E.1 DENOISING APPROXIMATES PROJECTION

We test our interpretation that denoising approximates projection on pretrained diffusion models on
the CIFAR-10 dataset. In these experiments, we take a 50-step DDIM sampling trajectory, extract
ϵ(xt, σt) for each t and compute the cosine similarity for every pair of t, t′ ∈ [1, 50]. The results are
plotted in Figure 6. They show that the direction of ϵ(xt, σt) over the entire sampling trajectory is
close to the first step’s output ϵ(xN , σN ). On average over 1000 trajectories, the minimum similarity
(typically between the first step when t = 50 and last step when t′ = 1) is 0.85, and for the vast
majority (over 80%) of pairs the similarity is > 0.99, showing that the denoiser outputs approximately
align in the same direction, validating our intuitive picture in Figure 2.

E.2 DISTANCE FUNCTION PROPERTIES

We test Assumption 1 and Assumption 2 on pretrained networks. If Assumption 1 is true, then
∥ϵθ(xt, σt)∥

√
n = ∥∇distK(xt)∥ = 1 for every xt along the DDIM trajectory. In Figure 7a, we

plot the distribution of norm of the denoiser ϵθ(xt, σt) over the course of many runs of the DDIM
sampler on the CIFAR-10 model for N = 100 steps (t = 1000, 990, . . . , 20, 10, 0). This plot shows
that ∥ϵθ(xt, σt)∥ /

√
n stays approximately constant and is close to 1 until the end of the sampling
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(a) Plot of ∥ϵθ(xt, σt)∥ /
√
n against t. (b) Plot of ∥ϵθ(x0 + σtϵ, σt)− ϵ∥ /

√
n against t.

Figure 7: Plots of the norm of the denoiser at different stages of denoising, as well as the ability of
the denoiser to accurately predict the added noise as a function of noise added.

Figure 8: Plot of FID score against γ for our second-order sampling algorithm on the CIFAR-10 and
CelebA datasets for N = 5, 10, 20 steps.

process. We next test Assumption 3, which implies Assumption 2 by Lemma C.2. We do this by first
sampling a fixed noise vector ϵ, next adding different levels of noise σt, then using the denoiser to
predict ϵθ(x0 + σtϵ, σt). In Figure 7b, we plot the distribution of ∥ϵθ(x0 + σtϵ, σt)− ϵ∥ /

√
n over

different levels of t, as a measure of how well the denoiser predicts the added noise.

E.3 CHOICE OF γ

We motivate our choice of γ = 2 in Algorithm 2 with the following experiment. For varying γ,
Figure 8 reports FID scores of our sampler on the CIFAR-10 and CelebA models for N = 5, 10, 20
timesteps using the σt schedule described in Appendix F.3. As shown, γ ≈ 2 achieves the optimal
FID score over different datasets and choices of N .

F EXPERIMENT DETAILS

F.1 PRETRAINED MODELS

The CIFAR-10 model and architecture were based on that in Ho et al. (2020), and the CelebA
model and architecture were based on that in Song et al. (2020a). The specific checkpoints we
use are provided by Liu et al. (2022). We also use Stable Diffusion 2.1 provided in https:
//huggingface.co/stabilityai/stable-diffusion-2-1. For the comparison ex-
periments in Figure 1, we implemented our gradient estimation sampler to interface with the Hug-

19

https://huggingface.co/stabilityai/stable-diffusion-2-1
https://huggingface.co/stabilityai/stable-diffusion-2-1


Under review as a conference paper at ICLR 2024

gingFace diffusers library and use the corresponding implementations of UniPC, DPM++, PNDM
and DDIM samplers with default parameters.

F.2 FID SCORE CALCULATION

For the CIFAR-10 and CelebA experiments, we generate 50000 images using our sampler and cal-
culate the FID score using the library in https://github.com/mseitzer/pytorch-fid.
The statistics on the training dataset were obtained from the files provided by Liu et al. (2022). For
the MS-COCO experiments, we generated images from 30k text captions drawn from the validation
set, and computed FID with respect to the 30k corresponding images.

F.3 OUR SELECTION OF σt

Let σDDIM(N)
1 be the noise level at t = 1 for the DDIM sampler with N steps. For the CIFAR-10 and

CelebA models, we choose σ1 =

√
σ

DDIM(N)
1 and σ0 = 0.01. For CIFAR-10 N = 5, 10, 20, 50 and

CelebA N = 5 we choose σN = 40 and for CelebA N = 10, 20, 50 we choose σN = 80. For Stable
Diffusion, we use the same sigma schedule as that in DDIM.

F.4 TEXT PROMPTS

For the text to image generation in Figure 1, the text prompts used are:

• “A digital Illustration of the Babel tower, 4k, detailed, trending in artstation, fantasy vivid
colors”

• “London luxurious interior living-room, light walls”
• “Cluttered house in the woods, anime, oil painting, high resolution, cottagecore, ghibli

inspired, 4k”
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