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Abstract
The lottery ticket hypothesis (LTH) is well-
studied for convolutional neural networks but has
been validated only empirically for graph neural
networks (GNNs), for which theoretical findings
are largely lacking. In this paper, we identify the
expressivity of sparse subnetworks, i.e. their abil-
ity to distinguish non-isomorphic graphs, as cru-
cial for finding winning tickets that preserve the
predictive performance. We establish conditions
under which the expressivity of a sparsely initial-
ized GNN matches that of the full network, par-
ticularly when compared to the Weisfeiler-Leman
test, and in that context put forward and prove
a Strong Expressive Lottery Ticket Hypothesis.
We subsequently show that an increased expres-
sivity in the initialization potentially accelerates
model convergence and improves generalization.
Our findings establish novel theoretical founda-
tions for both LTH and GNN research, highlight-
ing the importance of maintaining expressivity
in sparsely initialized GNNs. We illustrate our
results using examples from drug discovery.

1. Introduction
Graph Neural Networks (GNNs) have emerged as power-
ful tools for learning over graph-structured data. Complex
objects such as molecules, proteins or social networks are
represented as graphs. Nodes represent parts and edges their
relations, both can be enriched with features. GNNs gener-
alize established deep learning techniques and extend their
applicability to new domains such as financial and social
network analysis, medical data analysis, or chem- and bioin-
formatics (Lu & Uddin, 2021; Cheung & Moura, 2020; Sun
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et al., 2021; Gao et al., 2022; Wu et al., 2018; Xiong et al.,
2021). One of the key fields in GNN research is expressiv-
ity, that is, a GNN’s ability to distinguish non-isomorphic
graphs. This expressivity is often benchmarked using the
Weisfeiler-Leman (WL) test, with the 1-WL test being a
standard baseline for many models. Key contributions to
this field include Deep Sets (Zaheer et al., 2017), which
introduced permutation-invariant learning on sets, and the
Graph Isomorphism Network (GIN) (Xu et al., 2019), which
explicitly aimed to match the expressivity of the 1-WL test.
GIN set a new standard in graph representation learning
by using a simple yet powerful aggregation function that
ensures the model’s ability to distinguish non-isomorphic
graphs at a level comparable to the 1-WL test. The combina-
tion of these advances has shaped the current understanding
of GNN expressivity, where models are judged by their ca-
pacity to approximate or exceed the performance of 1-WL
in distinguishing complex graph structures. A large amount
of research has been devoted to improving the expressivity
of GNNs, aiming to go beyond the limitations of 1-WL and
increase the model’s capacity to distinguish between struc-
turally distinct graphs (Morris et al., 2023). Despite these
efforts, the 1-WL test continues to distinguish most graphs
in widely used benchmarks (Morris et al., 2021; Zopf, 2022),
demonstrating that, in many scenarios, it is not necessary to
go beyond this foundational approach.

Practically, in drug discovery and molecular property predic-
tion, the impact of model expressivity on prediction quality
is not entirely clear. Structurally similar molecules can
exhibit drastically different potencies towards the same pro-
tein target, a phenomenon known as activity cliffs (Pérez-
Villanueva et al., 2015). The accurate identification of these
activity cliffs is a challenging but essential task, as misclas-
sifications may result in a drug candidate being erroneously
interpreted as safe or toxic. Furthermore, distinguishing be-
tween stereoisomers is crucial, as these are molecules with
the same molecular formula and bond structure but differ
only in the three-dimensional spatial arrangement of their
atoms. Even such small changes can significantly influence
a molecule’s biological activity and pharmacological profile.

The Lottery Ticket Hypothesis (LTH), originally proposed
by Frankle & Carbin (2018), introduced the idea that large,
randomly initialized neural networks contain smaller, train-
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able subnetworks, or winning tickets, that can match the
performance of the full network. This hypothesis has gained
considerable traction, especially in the context of deep learn-
ing, where iterative pruning techniques identify these subnet-
works, significantly reducing model size and computational
cost while preserving performance. LTH has since been
extended to various domains, including GNNs. In GNNs,
LTH has been explored primarily through the pruning of
both graph structures (e.g., adjacency matrices) and model
parameters (e.g., weights), leading to the discovery of Graph
Lottery Tickets (GLTs), which maintain model performance
while substantially reducing computational overhead (Chen
et al., 2021a; Tsitsulin & Perozzi, 2023). Liu et al. (2024)
provide a comprehensive survey on LTH and related works.

Despite extensive work on LTH in GNNs, and analogous in-
vestigations in related domains having yielded fundamental
insights (Kummer et al., 2025), the link between LTH and
GNN expressivity remains unexplored. While prior research
focuses on efficiency, the effect of pre-training pruning on
preserving expressivity is largely overlooked. Understand-
ing this connection could reveal how sparse initialization
impacts a GNN’s ability to distinguish complex graph struc-
tures, and addressing this gap could advance more efficient
graph learning models that maintain expressivity. Our work
contributes to closing this gap by providing both formal and
empirical evidence that preserving expressivity in sparsely
initialized GNNs is crucial for finding winning tickets.

1.1. Related Work

LTH posits that large, randomly initialized neural networks
contain smaller subnetworks, or winning tickets, that can
match the full network’s performance when trained in isola-
tion (Frankle & Carbin, 2018). Through iterative pruning,
these subnetworks are identified, significantly reducing the
parameter count while preserving performance. Frankle
et al. (2019) enhance LTH by introducing Iterative Magni-
tude Pruning (IMP) with rewinding, pruning subnetworks
early in training rather than at initialization, thus finding
sparse winning tickets in deep neural networks (DNNs)
like ResNet-50, maintaining both accuracy and stability.
Malach et al. (2020) extend LTH by proving the Strong Lot-
tery Ticket Hypothesis (SLTH), showing over-parameterized
networks contain subnetworks that achieve high accuracy
without training, with theoretical guarantees for deep and
shallow networks. Zhang et al. (2021a) theoretically explain
LTH’s improved generalization, showing pruned networks
enlarge the convex region in the optimization landscape,
enabling faster convergence and fewer samples for zero gen-
eralization error. Additionally, Zhang et al. (2021b) use Iner-
tial Manifold Theory to validate LTH, showing that pruned
subnetworks match dense network performance without
repeated pruning and retraining. Finally, da Cunha et al.
(2022) prove SLTH for CNNs, showing that large, randomly

initialized CNNs can be pruned into subnetworks approx-
imating fully trained models. Zhang et al. (2019) propose
Eager Pruning, an LTH-based method that prunes DNNs
early in training, reducing computation without accuracy
loss. Their efficient hardware architecture achieves signif-
icant speedups and energy efficiency over Nvidia GPUs,
suiting energy-constrained applications. Chen et al. (2021b)
embed ownership verification into sparse subnetworks via
graph-based signatures, resilient to fine-tuning and pruning
attacks, enabling verification without performance impact.

In GNNs, LTH approaches typically treat pruning the graph
and the GNN’s trainable parameters as a unified task. Specif-
ically, Chen et al. (2021a) introduce the Unified GNN Spar-
sification (UGS) framework, which prunes both graph ad-
jacency matrices and model weights to identify GLTs and
sparse subnetworks that maintain performance while re-
ducing computational cost. Wang et al. (2022) propose
transforming random subgraphs and subnetworks into GLTs
through hierarchical sparsification and regularization-based
pruning, achieving high performance with substantial spar-
sity. Tsitsulin & Perozzi (2023) present the GLT Hypothe-
sis, suggesting that any graph contains a sparse substructure
capable of preserving the performance of graph learning
algorithms. Efficient algorithms are developed to find these
GLTs, demonstrating that GNN performance is retained
even on sparse subgraphs. Sui et al. (2023) introduce a
co-pruning framework that prunes input graphs and model
weights in both inductive and transductive settings, identify-
ing GLTs while maintaining performance at high sparsity
levels. Hui et al. (2023) improve the UGS framework by
introducing an auxiliary loss for better edge pruning and a
min-max optimization for robustness under high sparsity,
enhancing pruning effectiveness. Zhang et al. (2024) present
an automated adaptive pruning framework to identify GLTs
in GNNs, optimizing graph and GNN sparsity without man-
ual intervention and improving scalability in deeper GNNs.
Yuxin et al. (2024) introduce a scalable graph structure
learning method based on LTH, which prunes adjacency
matrices and model weights to maintain performance under
adversarial conditions. Finally, Yan et al. (2024) propose
Multicoated Supermasks (M-Sup) and folding techniques
to optimize GNNs based on SLTH, enhancing memory effi-
ciency while maintaining performance.

1.2. Contribution

We formally link GNN expressivity to LTH by establishing
criteria that pruning mechanisms—both graph and parame-
ter pruning—must satisfy to preserve prediction quality. We
demonstrate the existence of trainable subnetworks within
moment-based GNNs that match 1-WL expressivity, putting
forward the Strong Expressive Lottery Ticket Hypothesis
(SELTH) as a novel, GNN-specific extension of the classical
SLTH. We subsequently argue that critical computational
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paths (i.e., those whose removal degrades performance) are
subsets of these maximally expressive subnetworks. Fur-
thermore, we show that expressive sparse initializations can
improve generalization and convergence. We also identify
cases where expressivity loss is irrecoverable, exemplified
by molecular property prediction in a medical context. Fi-
nally, we empirically confirm that GNN parameter pruning
impacts post-training accuracy and that more expressive
sparse initializations are more likely to be winning tickets.

2. Preliminaries
A graph G is a pair (V,E) of a finite set of nodes V
and edges E ⊆ {{u, v} ⊆ V }. The set of nodes and
edges of G is denoted by V (G) and E(G), respectively.
The neighborhood of a node v in V (G) is N(v) =
{u ∈ V (G) | {u, v} ∈ E(G)}. If a bijection φ:V (G) →
V (H) with {u, v} ∈ E(G) ⇐⇒ {φ(u), φ(v)} ∈ E(H)
for all u, v ∈ V (G) exists, we call the two graphs G and
H isomorphic and write G ≃ H . For two graphs with
designated roots r ∈ V (G) and r′ ∈ V (H), the bijection
must further satisfy φ(r) = r′. The equivalence classes
induced by ≃ are referred to as isomorphism types. A func-
tion l:V (G) → Σ with an arbitrary codomain Σ is called a
node coloring. Then, a node colored or labeled graph (G, l)
is a graph G endowed with a node coloring l. We call l(v) a
label or color of v ∈ V (G). For labeled graphs, the bijec-
tion φ must additionally satisfy l(v) = l(v′) if φ(v) = v′

for all v ∈ V (G). We denote a multiset by {{. . .}}.

The Weisfeiler-Leman algorithm. Let (G, l) denote a
labeled graph. In every iteration t > 0, a node col-
oring c

(t)
l :V (G) → Σ (where the subscript indicates

the coloring is based on the initial labeling function
l) is computed, which depends on the coloring c

(t−1)
l

of the previous iteration. At the beginning, the color-
ing is initialized as c

(0)
l = l. In subsequent iterations

t > 0, the coloring is updated according to c
(t)
l (v) =

HASH
(
c
(t−1)
l (v), {{c(t−1)

l (u)|u ∈ N(v)}}
)
, where HASH

is an injective mapping of the above pair to a unique value
in Σ, that has not been used in previous iterations. The
HASH function can be implemented by assigning consec-
utive integers to pairs upon first occurrence (Shervashidze
et al., 2011). Let C(t)

l (G) = {{c(t)l (v) | v ∈ V (G)}} be the
multiset of colors a graph displays in iteration t. The itera-
tive coloring terminates if |C(t−1)

l (G)|= |C(t)
l (G)|, i.e., the

number of colors does not change between two iterations.
For testing whether two graphs G and H are isomorphic,
the above algorithm is run in parallel on both G and H . If
C

(t)
l (G) ̸= C

(t)
l (H) for any t ≥ 0, then G and H are not

isomorphic. The label c(t)l (v) in the tth iteration of the 1-
WL test encodes the isomorphism type of the tree of height t

representing v’s t-hop neighborhood (D’Inverno et al., 2021;
Jegelka, 2022; Schulz et al., 2022). We write G ̸≃WL(t) H
to denote that 1-WL distinguishes G and H at iteration t.

From Deep Sets to graph neural networks. Deep
Sets (Zaheer et al., 2017) model permutation-invariant func-
tions, making them ideal for unordered or multi-instance
data. Given a (multi)set X = {x1, x2, . . . , xn}, a function
of the form f(X) = ρ

(∑
x∈X ϕ(x)

)
is by design invariant

to the order of elements and can represent any such func-
tion for suitable choices of ρ and ϕ. These two functions,
typically realized by multi-layer perceptrons (MLPs), map
elements to a feature space, aggregate them and transform
the result into the final output. This approach generalizes
to multisets (Xu et al., 2019), reflecting both element iden-
tity and multiplicity, thus enabling permutation-invariant
modeling of complex data distributions.

GNNs can be viewed as stacked neural multiset functions,
where each layer aggregates and combines node features—
numerical attributes assigned to nodes—reflecting the mul-
tiset nature of graph neighborhoods. This process, known
as message passing (MP), applies moment functions de-
rived from sum-pooling: f̂({{x1, . . . ,xk}}) =

∑k
i=1 f(xi)

where f :V d → V m is an MLP mapping elements to a
vector space (Amir et al., 2024). This allows unique rep-
resentations for distinct multisets, as shown in Deep Sets.
Applying this principle in GNNs, an MLP in each layer’s
update rule distinguishes different graph structures, effec-
tively extending Deep Sets to graphs. The update rule of
this class of moment-based GNNs employing this strategy
can be generalized as in Equation (1), where h

(k)
v is the

embedding of node v at layer k and h
(0)
v its initial feature

vector. One-hot encoded input features ensure injectivity of
summation at the first layer, even without an initial MLP.
For graph-level tasks, the readout function aggregates out-
puts across layers to compute the graph embedding hG, see
Equation (2), where ∥ denotes concatenation.

h(k)
v = MLP(k)

h(k−1)
v +

∑
u∈N(v)

h(k−1)
u

 , (1)

hG =
∥∥∥n
k=0

∑
v∈V (G)

h(k)
v . (2)

The update rule can be expressed in matrix form using
the adjacency matrix A and node feature matrix H as
H(k) = MLP(k)

(
(A+ I) ·H(k−1)

)
. The Graph Isomor-

phism Network (GIN) (Xu et al., 2019) extends neural mul-
tiset functions to graphs, ensuring distinct graph representa-
tions and achieving expressivity equal to the 1-WL test, the
upper bound of MP-based GNNs. Unlike Equation (1) (and
its matrix notation), GIN’s update rule includes a learnable
parameter (1 + ϵ(k)) multiplying the ego node embeddings
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h
(k−1)
v , distinguishing between the feature of the node and

those of its neighbors, as captured in Lemma 2.1.

Lemma 2.1 (Sufficient condition for the 1-WL expressiv-
ity (Xu et al., 2019)). A moment-based GNN Φ(k) is as ex-
pressive as the 1-WL test after k iterations, if for all layers
j ∈ {1, . . . , k} the function MLP(j) is injective on its input
domain and the aggregation rule distinguishes a node’s own
features from the aggregated features of its neighbors.

Although a large body of work focuses on surpassing
the expressivity of GIN and the 1-WL test (Morris et al.,
2023), neighborhood aggregation remains prevalent, and
1-WL distinguishes most graphs in common benchmark
datasets (Morris et al., 2021; Zopf, 2022).

3. Expressivity and Winning Tickets
We first establish fundamental criteria that any pruning
mechanism, including those generating winning (graph)
lottery tickets, must satisfy to maintain prediction quality.
Let D be a finite sequence of tuples (A,X, t), where graphs
G are represented by adjacency and feature matrices A and
X, with classification targets t. The index l ∈ [0, |D|] refers
to the lth tuple, denoted as Dl = (A,X, t), with shorthand
Gl = Dl[A,X] and tl = Dl[t]. Let Φ(k) be an MPNN with
k message-passing layers as defined in Equation (1), map-
ping graphs Gl to an embedding space Q. Consider Φ(k+1),
the same MPNN with an additional classification layer C.
Assume C is a perfect classifier that correctly assigns distinct
embeddings from Φ(k) to their respective classes, regard-
less of proximity in the embedding space. Specifically, for
Ga, Gb ∈ D with ta ̸= tb and Φ(k)(Ga) ̸= Φ(k)(Gb), it
holds that: ta = C(Φ(k)(Ga)) ̸= C(Φ(k)(Gb)) = tb. The
existence of such a C is supported by the results of Chen
et al. (2019), showing the equivalence between graph iso-
morphism testing and universal function approximation. For
Φ(k+1) to achieve the same prediction quality on a sequence
of modified tuples D̂ (containing, e.g., D̂l = (Â,X, t),
where the lth tuple’s adjacency matrix has been pruned) as
on D, this level of distinguishability must be preserved in
pruned or otherwise adapted graphs. Similarly, any mod-
ification of Φ(k) to Φ̂(k) (such as pruning Φ(k)’s trainable
parameters) must maintain this distinguishability for Φ̂(k+1)

to perform equivalently to Φ(k+1):

Criterion 1. For Φ(k+1) (or Φ̂(k+1)) to classify all graphs
in D (or D̂) correctly, Φ(k) (or Φ̂(k)) must distinguish all
pairs of non-isomorphic graphs of different classes.

This requirement also applies to sparse initializations of the
MLPs of the MP layers in Φ(k), representing winning tickets
in the initialization lottery, which we analyze for neural
moment-based architectures. As our work focuses on such
sparse initializations, the subsequent sections exclusively
address this setting.

3.1. Critical Paths

We analyze the expressivity of neural moment-based archi-
tectures, as defined in Equation (1), by investigating the
critical computational paths within the MLPs they contain.
Let the computational graph of an L-layer feed-forward
MLP be represented as G = (V,E), where vertices V de-
note neurons and edges E their connections. Each neuron
is indexed as v(ij), referring to the ith neuron in the jth

layer. A layer is thus a subgraph G(j) = (V (j), E(j)) with
V (j) ⊂ V and E(j) ⊂ E, characterized by the adjacency
matrix A(j) ∈ {0, 1}|V (j)|×|V (j)|. Defining input and out-
put neurons as I(j) ⊂ V (j) and O(j) ⊂ V (j) such that
I(j) ∪ O(j) = V (j), the bipartite nature of G(j) implies
that A(j) is symmetric and can, thus, be expressed via the
bi-adjacency matrix Ã(j) ∈ {0, 1}|I(j)|×|O(j)|. The forward
pass through the jth layer is then σ(xÃ(j) ⊙W(j)), where
W(j) contains edge weights W(j) = {wk,l | (vk, vl) ∈
E(j)}, with the Hadamard product ⊙ and activation func-
tion σ. Let W represent the set of all weights across
layers. A path p from input neuron v(i0) to output neu-
ron v(kL) consists of a sequence (v(i0), . . . , v(kL−1)), with
edges (v(ij), v(kj+1)) ∈ E for j = 0, . . . , L − 1. The
total path length is L, and the set of all such paths is
P . Pruning in the MLP applies a binary mask M(j) dur-
ing the forward pass: σ(x(M(j) ⊙ Ã(j) ⊙ W(j))). Set-
ting M

(j)
k,l = 0 removes edge (vk, vl) from E(j), yielding

Ê(j) = E(j) \{(vk, vl)}. Consequently, the pruned path set
P̂ becomes: P̂ = P \ {p ∈ P | (vk, vl) ∈ p}, removing all
paths relying on the pruned edge (vk, vl). These paths are
crucial in GNN pruning, as GNNs rely on MLPs for trans-
formations. In post-training pruning, where each MLP’s
weights W are fixed, a path is defined as critical if its re-
moval degrades the GNN’s classification performance. In
the context of LTH, a path is critical if its removal prevents
learning the task. Specifically, if no weight configuration
for the remaining paths allows the GNN to perform as well
as the original, the removed path is critical.

Definition 3.1 (Critical Paths (Pre-Training)). Let WΦ(k) =⋃k
i Wi be the union of weights sets of the MLPs of the

k MP layers of the moment-based GNN Φ(k). Then, if
for some quality metric M to be maximized and dataset
D it holds that no set of weights WΦ̂(k) exists such that
M(Φ(k+1), D) ≤ M(Φ̂(k+1), D), we say PΦ(k),C =
PΦ(k) \ PΦ̂(k) is a critical path set.

The key question is which paths in GNNs are critical and
how they are characterized. A path in a GNN is critical if
its removal prevents the network from distinguishing two
isomorphism types of different classes, regardless of the
edge weights in any layer of any MLP. Any pruning mask
that removes such a path (or an associated edge) cannot be
a winning ticket, as it would degrade classification accu-
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racy. Conversely, pruning that preserves all critical paths
can, in theory—disregarding practical issues such as over-
smoothing (Keriven, 2022), oversquashing (Di Giovanni
et al., 2023), bottlenecks (Alon & Yahav, 2021) or vanish-
ing gradients —constitute a winning ticket.

In the following theoretical considerations, we assume a
class of injective continuously differentiable zero-fixing ac-
tivations σ with a nowhere-zero derivative for simplicity.
However, our empirical results, indicate that our theory
generalizes to arbitrary activations for appropriately parame-
terized GNNs, see Section 5. Due to the permutation invari-
ance of GNNs, all theoretical results hold up to permutation.
We do not assume a perfect classifier C for Φ(k+1), unless
stated otherwise. All proofs are provided in Appendix A.

Theorem 3.2 (Existence of maximally expressive paths).
Let D be an arbitrary finite sequence of finite, non-trivial
graphs (i.e., graphs with more than zero edges and at least
one non-zero feature per node). Then, for any sufficiently
overparameterized moment-based GNN Φ(k) with layers
employing an aggregation rule that can distinguish between
a node’s own features and the aggregated features of its
neighbors, there exist subsets of maximally expressive paths
PΦ(k),E ⊆ PΦ(k) for which trainable weights WΦ̂(k),E exist
such that for any Ga, Gb ∈ D it holds that if Ga ̸≃WL(k) Gb

then Φ̂(k)(Ga) ̸= Φ̂(k)(Gb).

While the formal results of SLTH (Malach et al., 2020;
da Cunha et al., 2022) make the existence of maximally
expressive paths seem plausible, they are not strictly equiv-
alent. The proven SLTH variants are limited to MLPs
or CNNs applied to classification tasks. Therefore, The-
orem 3.2 constitutes a novel form of LTH, to which we refer
as Strong Expressive Lottery Ticket Hypothesis or SELTH.

In line with Criterion 1, it immediately follows from Theo-
rem 3.2 that for such a Φ(k), a Φ(k+1) employing a per-
fect classifier C could correctly classify every G ∈ D
and consequently M(Φ(k+1), D) ≤ M(Φ̂(k+1), D) for
PΦ̂(k) = PΦ(k),E . Obviously, this existence statement is
devoid of practical learning considerations, which we will
address later. Before delving into those aspects, we first
aim to explore how this result relates to the theory of crit-
ical paths. Specifically, it further follows directly from
Theorem 3.2 that in every PΦ(k),E , there exist sufficiently
expressive paths PΦ(k),S ⊆ PΦ(k),E for which WΦ(k),S ex-
ist such that for Ga, Gb ∈ D it holds that if ta ̸= tb and
Ga ̸≃WL(k) Gb then Φ(k)(Ga) ̸= Φ(k)(Gb). This is an im-
portant insight, as by the definition of critical path sets, each
critical path set is then a sufficiently expressive path set, and
therefore, at least in a sufficiently overparameterized GNN,
every critical path set is also a subset of a maximally expres-
sive path set, for which Theorem 3.2 shows the existence.

3.2. Lottery Ticket Expressivity Impact on Training.

To examine the influence of expressivity on training, we con-
sider its impact on gradient diversity (Yin et al., 2018), see
Eq. (3). Originally devised for distributed training, gradient
diversity has become a standard metric for assessing neural
network learning in local settings as well (Kummer et al.,
2023; Rajagopal et al., 2020). Specifically, low gradient
diversity can slow convergence and necessitate more passes
over the dataset to reach a desired accuracy. This increases
training time, especially with large batch sizes, as the effec-
tive learning rate is diluted. Furthermore, models trained
with low gradient diversity often converge to sharp minima,
which are associated with poor generalization, particularly
when using large batch sizes. Conversely, training with
higher gradient diversity aligns with smoother loss surfaces
and less sharp minima, improving the model’s generaliza-
tion, as well as convergence rates (Yin et al., 2018).

For graphs Gi with label ti, the weight update steps in
gradient-based training are given by W

(l)
i = W(l) −

α ∂Li

∂W(l) for a learning rate α and a loss function loss L.
Gradient diversity is then given as follows for gradient ma-
trices (using the Frobenius norm as a natural generalization
of the Euclidean vector norm):

∆s =

( n∑
i=1

∥∥∥ ∂Li

∂W(l)

∥∥∥2
F

)(∥∥∥ n∑
i=1

∂Li

∂W(l)

∥∥∥2
F

)−1

(3)

For this gradient diversity ∆s, we formulate the following
Theorem for moment-based GNNs, which captures the influ-
ence of the geometry of the embeddings on ∆s’s magnitude.
Theorem 3.3 (Gradient Diversity and Embeddings Or-
thogonality). Assume G1, G2 with labels t1 ̸= t2 and let
H

(l−1)
1 ,H

(l−1)
2 be their corresponding embeddings at layer

l − 1. Denote the rows of H(l−1)
1 as {ai} and the rows of

H
(l−1)
2 as {bj}. Suppose there exist constants 0 < m ≤

M < ∞ s.t. for all i, j, m ≤ ||ai||22, ||bj ||22≤ M . Then,
there exists ζ s.t. ∆s ≥ ζ ≥ 0 with ζ ∝ (

∑
ij |cos(βij)|)−1

with βij being the angle between rows ai and bj .

The theorem easily generalizes to any number of graphs
(i.e., more than two). While the theorem specifically ad-
dresses the angles between individual node embeddings of
two graphs, it also carries implications for expressivity. For
instance, two graphs with identical node embeddings will al-
ways have at least as many codirectional embeddings as they
have nodes (provided the graphs have the same number of
nodes). Conversely, if the two graphs receive distinct node
embeddings, their embeddings may still be codirectional but
they can also be orthogonal, contributing zero to the sum of
cosines, or otherwise divergent. Therefore, a model initial-
ized such that two graphs do not receive (partially) identical
node embeddings is likely to converge faster and general-
ize more effectively and thus more likely to be a winning
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Figure 1. Visualization of thalidomide (also known as under its trade name Contergan) and its embryotoxic stereoisomer as an exemplary
SIFDG, for which a failure to distinguish the two can have potentially life altering consequences for patients. As shown on the right-hand
side of the figure, the aggregates of nodes N1 and N2 in the first layer differ by only a single feature. A pruning mask removing the red
dashed edges from the MLPs applied to these aggregates would irrecoverably cancel this difference; hence these edges are part of critical
path sets (see Definition 3.1) of a GNN trained to predict different classes for the two molecules as in, e.g., toxicity categorization tasks.

ticket in the initialization lottery, as identical embeddings
are always codirectional.

In the context of Theorem 3.2, this suggests pruning a GNN
Φ(k) s.t. a maximally expressive path set PΦ(k),E remains
and initializing the weights WΦ̂(k),E of this pruned Φ̂(k) ac-
cordingly. Distinctness of node embeddings alone, though,
does not rule out that they lie along the same line through the
origin. However, depending on Φ(k)’s width, the following
Proposition holds:

Proposition 3.4 (Non-Colinearity under Random Pruning).
For a sufficiently overparameterized moment-based GNN
Φ(k) with weights drawn from a continuous distribution
and a finite sequence D of finite input graphs, almost any
random initialization combined with random pruning yields
a configuration where no codirectional embeddings occur.

Thus, the added constraint to Theorem 3.2 that for any two
nodes i, j with pairwise distinguishable 1-WL colors it holds
that Φ̂(k)(Ga)i /∈ {ηijΦ̂(k)(Gb)j : ηij ∈ R\{0}} is almost
always satisfied for sufficiently overparameterized Φ(k).

3.3. Edge Cases and Boundaries of Learnability

First, we outline GNN-specific scenarios where expressiv-
ity is permanently and irrecoverably lost through pruning,
regardless of the amount of training, and highlight prac-
tical cases where such a misaligned pruning could have
substantial consequences. Finally, we establish bounds on
the prediction quality a GNN can achieve in such cases.

Irrecoverable cases. Whereas for general MP layers, a re-
duction in expressivity is associated with a reduction in gra-
dient diversity and thus convergence speed (see Section 3.2),
an irrecoverable loss of expressivity can for certain graphs
occur if the first layer is pruned incorrectly.

Lemma 3.5 (Irrecoverable Loss of Expressivity). Consider
two graphs, G1 and G2, with permutation-equivalent ad-
jacency matrices but distinct feature matrices. If the prun-
ing mask of the first layer of the MP layer’s MLP—when
applied in isolation—renders the graph representations in-
distinguishable, then no choice of weights can restore the

ability to distinguish between the two graphs.

In other words, for structurally isomorphic graphs that are
only distinguishable by their node feature matrices, a prun-
ing mask that cancels the differences in the messages before
the update step in the first layer will—independent of the
non-zero values of the MLP’s weights—render both graphs’
node embeddings indistinguishable at the layer’s output. As
they are structurally isomorphic, as a consequence they will
remain indistinguishable for the rest of the forward pass,
regardless of any subsequent transformations. In the context
of Theorem 3.2, Lemma 3.5 implies the removal of a path
from the maximally expressive path set and, depending on
the class labels G1 and G2, is closely related to pruning
of critical paths as by Definition 3.1 and in violation of
Criterion 1. We emphasize that Lemma 3.5 is considering
the first layer of the first MP layer’s MLP exclusively. In
deeper layers, the input embeddings change during training
due to changing transformations in upper layers, and what
may prune away the distinction during the first iteration
of training might not pose a problem in subsequent itera-
tions. However, as Figure 1 (b) shows, the trait captured
by Lemma 3.5 can extend beyond the first MLP layer, and
even an extension beyond the first MP layer is plausible.
Moreover, expressivity is not entirely lost if G1 and G2 do
not have permutation-equivalent adjacency matrices, since
subsequent layers can still approximate 1-WL, albeit with a
different feature matrix for these graphs.

In chemical datasets, structurally similar or identical graphs
(i.e., adjacency matrices identical up to permutation) can
have distinct input features, leading to vastly different chem-
ical properties (see Figure 1). Failure to distinguish such
graphs after the first layer can be critical. For example,
toxic stereoisomers may appear identical to their non-toxic
counterparts, such as thalidomide (Lenz & Knapp, 1962;
Bösl, 2014). Non-stereoisomeric cases, like Ethanol and
Ethanethiol—one a beverage ingredient, the other an odor-
izer used in gas warning systems—illustrate this further. An
improperly pruned GNN may be unable to distinguish these
graphs regardless of training. We call such graphs as Struc-
turally Isomorphic, Feature-Divergent Graphs (SIFDGs).
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Figure 2. Probability that a sparse GIN or GCN is a winning ticket (WT), given pruning ρ ∈ [10, 90]%, expressivity τpre s.t. ϑ− ε ≤
τpre ≤ ϑ + ε, tolerance ε (left). ϑ and ε are used to group similar τpre into intervals, as observing an exact empirical value of τpre
is unlikely. Mean relative test accuracy, ∆ = |S|−1∑

i∈S(A
(i)
post − Aclean)(Aclean)

−1, where Aclean is clean test accuracy of the dense,
unpruned model, A(i)

post is post-training accuracy of pruned model i, and S contains models with τpre ∈ [ϑ± ε] (right). Results aggregated
from training 13,500 runs over 10 datasets.

Figure 3. Statistical significance of Pearson correlation between untrained pruned model expressivity τpre (ρ ∈ [10, 90]%, GIN, GCN)
and post-training accuracy (left). Pearson correlation coefficients (PCC) (right). Aggregated over 13,500 runs (750 per bar, 10 datasets).

Theoretical bounds to the quality of a lottery ticket. De-
pending on the number of 1-WL distinguishable isomor-
phism types for which distinction in the first layer is neces-
sary (i.e. SIFDGs) in order for the GNN to be able to learn
to assign them to different classes, we can—under certain
assumptions regarding class distributions—estimate how
good a GNN can be if a pruning mask satisfying Lemma 3.5
is applied to the first layer.

Lemma 3.6. Let D be a dataset of N graphs, evenly dis-
tributed across C classes of N

C graphs each. Suppose D has
I isomorphism types, of which U are indistinguishable from
at least one other type by the model (i.e. U ≤ I), covering
M graphs. Assuming uniform distribution, M ≈ UN

I , the
maximum classification accuracy is: 1−

(
1− 1

C

)
U
I .

If the U indistinguishable isomorphism types correspond to
SIFDGs as derived from Lemma 3.5, then for any pruning
mask satisfying the assumptions on data and class distribu-
tion outlined in Lemma 3.6, the above expression represents
the maximal achievable accuracy for a such pruned GNN.

3.4. Generality and Limitations

Our theoretical results apply to moment-based GNN archi-
tectures (Section 2) in general and we thus expect the formal
insights we developed—i.e., the connection between prun-
ing, critical path removal, and loss of expressivity (e.g.,
Theorem 3.2, Lemma 3.5)—to apply broadly across this
architectural class. This includes, for example, Graph At-
tention Network (Veličković et al., 2018) (GAT) or Graph
Convolutional Network (GCN) (Welling & Kipf, 2016) as

well. As such, we expect our upper bounds on achiev-
able classification accuracy under misaligned pruning (e.g.,
Lemma 3.6) also hold for GAT or GCN. However, refin-
ing our formal analysis to architectures beyond this most
general setting (including the effects of attention or edge
features that modulate aggregation) is a promising direction
for future work, which might reveal additional, architecture-
specific vulnerabilities not covered by our existing work.

We furthermore emphasize that Lemma 3.6 is a theoretical
bound requiring knowledge of all isomorphism types of a
dataset, which is impractical—though tools like nauty1 can
identify them, and popular frameworks2 include them for
certain benchmark datasets. Most datasets likely also lack
the assumed uniform class distribution. The lemma is meant
to conceptually illustrate how misaligned pruning limits a
GNN’s maximal accuracy. Refining it for more realistic
settings is a potential direction for future research.

We point out that Theorem 3.3 does not directly guarantee
improved convergence or generalization but instead links
embedding distinctiveness to gradient diversity, a factor
known to influence both. Empirically, see Section 4, since
all models were trained for the same number of epochs, the
consistently superior performance of sparse initializations
with high expressivity suggests improved convergence and
generalization, which is consistent with our theory.

Our work focuses on graph level tasks, but we expect our
findings to be transferable to node level tasks as well.

1https://pallini.di.uniroma1.it/
2https://pytorch-geometric
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Figure 4. Visualization of untrained (τpre) and post-training (τpost) expressivity of pruned models (ρ ∈ [10, 90]%, GIN, GCN). Each
marker represents the mean over the samples obtained for the models on the given dataset. The dashed line (0,0) to (1,1) indicates
hypothetical pre-/post-training equivalence. Results based on 13,500 training runs in total over 10 datasets.

Table 1. Probability of post-training expressivity τpost ≥ κ given a pre-training expressivity τpre < κ for thresholds κ. Result based on
13,500 training runs in total (pruning percentages ρ ∈ [10, 90]%, GIN, GCN) over 10 datasets.

P (τpost ≥ κ|τpre < κ) 0.00 0.03 0.04 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.02 0.02

κ 1.00 0.92 0.83 0.75 0.67 0.58 0.50 0.42 0.33 0.25 0.17 0.08

4. Experiments
We structure our experiments3 to address the primary re-
search question, which also drove our theoretical analysis,
namely how the pre-training expressivity of a lottery ticket
affects its post-training accuracy. That is, to what extent
can we determine whether a sparsely initialized GNN is a
winning lottery ticket based solely on its ability to distin-
guish non-isomorphic graphs? We investigate this research
question by utilizing 10 real-world datasets from the TU-
Dataset repository (Morris et al., 2020). These datasets,
which are described in detail in Appendix B, are widely
used in current studies. They include one-hot encoded node
labels and span a variety of prevalent applications such as
drug discovery (Xiong et al., 2021; Rossi et al., 2020), bioin-
formatics (Borgwardt et al., 2005), object recognition (Rossi
& Ahmed, 2015), and social network analysis.

We assess our research question on GIN (2 hidden layers
per MLP) with 2 to 4 MP layers due to its direct relation
to our theory. To show our theory extends to GCN, rep-
resenting the class of spectral GNNs, we include GCN in
our assessment. We use ReLU activations and initialize
network parameters W(j) randomly from a uniform dis-
tribution U(−

√
1
mj

,
√

1
mj

) with mj = |I(j)|, following
common variance scaling initialization schemes (Glorot &
Bengio, 2010; He et al., 2015). The parameterization width
is matched with the input graphs’ features. All models are
trained for 250 epochs with a batch size of 32, a learning
rate of 0.01, using the Adam optimizer. In line with LTH,
only non-zero weights are updated. The experiments took
approximately 8 weeks with three parallel workers to con-

3The code for reproducing our results is available at GitHub:
https://github.com/lorenz0890/wl2025lottery

clude and were conducted on a local server equipped with
an NVIDIA H100 PCIe GPU (80GB VRAM), an Intel Xeon
Gold 6326 CPU (500GB RAM) and a 1TB SSD.

We measure expressivity τ as graph level pre- and post-
training expressivity (denoted τpre and τpost in our exper-
iments) via the percentage of non-isomorphic graphs of
a dataset for which the GNN’s final MP layer (at depth
n) outputs node embeddings that are distinguishable for
FLOAT32 (ϵmach = 1.19× 10−7). Specifically, we retain
one representative per isomorphism type, as isomorphic
graphs yield identical embeddings by GNN permutation
invariance. Let {G1, . . . , Gm} be m such representatives
with embeddings {hG1

, . . . ,hGm
}, hGi

=
∑

v∈V (Gi)
h
(n)
v .

We mark each pair (hGi ,hGj ) as indistinguishable if
hGi

− hGj
= 0, which generally implies differing node-

level embeddings: while distinct node embeddings can
theoretically sum to the same vector, such collisions are
extremely rare and occur only under measure-zero config-
urations. The expressivity τ is the fraction that remains
distinguishable. Alternative methods (e.g., exhaustive com-
parisons or training accuracy) are more costly or reflect
different notions of expressivity. We chose our approach
for its scalability and direct assessment of whether a graph
is distinguishable from the rest of the dataset. A sparsely
initialized model is a winning ticket if its test accuracy de-
grades by less than 0.05 relative to its dense counterpart.

5. Results
Our experiments empirically confirm both our theoretical
predictions made in Section 3. Specifically, our experiments
show that sparse yet highly expressive (even if their weights
are untrained), trainable subnetworks exist (Theorem 3.2).
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Moreover, they show that for a given percentage of random
weights pruning, the expressivity of the pruned network
before training is at least one of the driving factors of its
post-training accuracy.

The probability that a GNN is a winning ticket given a
certain pruning percentage and pre-training expressivity is
high for high expressivity and low otherwise for all but
the highest pruning ratios (Figure 2, left). To compute this
probability, for each pruning ratio ρ, we set a target ϑ and
collect runs with τpre ∈ [ϑ±ε]. A run is labeled a “winning
ticket” if its accuracy decreases by less than 0.05 relative
to the unpruned model. The probability is the fraction of
these runs, aggregated (with subset-size normalization) to
visualize winning ticket probabilities across pruning levels
and thresholds. Given that we trained all our models for
the same number of epochs, our results are consistent with
the hypothesis put forward in Section 3.2 that an increased
expressivity in the initialization potentially improves model
convergences and generalization, as is indicated by Theo-
rem 3.3. Up to 80% pruning, highly expressive sparse GINs
outperformed dense unpruned models in post-training pre-
diction, while less expressive models failed to match dense
model quality (Figure 2, right).

Moreover, we find that a GNN, when initialized with a cer-
tain sparsity and non-zero weights trained in isolation, is
highly unlikely to gain expressivity (Table 1). That is, if
a GNN initialized, pruned and trained as described could
reliably transition from low τpre to high τpost, then for some
κ, this transition would occur with a probability exceeding
a low single-digit percentage. Although we do not explicitly
set a threshold defining “high probability”, Figure 4 illus-
trates the trend outlined in Table 1. Consistent with Table 1,
Figure 4 shows that sparse GNNs rarely transition from low
to high expressivity during training. Instead, the converse
is the typical case, as all data points fall below the dashed
τpost = τpre line, indicating that τpost is generally lower
than τpre, whereby low pruning percentages apparently ex-
aggerate the effect. This aligns with Lemma 3.5 (focused on
the input layer) and highlights the broader trend suggested
in Section 3.3: despite the dataset-dependent differences
apparent in Figure 4, recovery from a relatively low ex-
pressivity sparse initialization is rare during training if only
non-zero weights are updated, even if theoretically possible.
As pre-training expressivity was low even at conservative
pruning rates on some datasets, we interpret this, following
Proposition 3.4, as an indication that the underlying GNNs
were insufficiently parameterized for the pruning rate.

Finally, Figure 3 reveals an intriguing pattern: the statistical
significance of the correlation between pre-training expres-
sivity and post-training prediction quality (left) is lowest for
mid to slightly above mid-pruning ratios but higher for very
low and high pruning ratios (though still significant). Con-

versely, the Pearson correlation coefficients (right) show an
inverse trend. We conjecture this reflects the greater likeli-
hood of irrecoverable damage (compare Section 3.3) at high
pruning ratios, while achieving good post-training predic-
tion quality is generally more probable at low pruning ratios
and less related to expressivity, leading to increased p-values
and decreased correlation coefficients in both cases.

Implications for practitioners and future research. As
demonstrated in this work, the expressivity of sparsely ini-
tialized GNNs influences convergence speed and general-
ization quality. Irrecoverable pruning scenarios, where de-
graded expressivity cannot be restored through training,
underscore the need for careful pruning design. Preserving
critical paths is essential to avoid catastrophic errors, such
as misclassifying toxic and non-toxic stereoisomers.

Future work should seek to enhance convergence, gener-
alization, and optimization by developing sparse yet ex-
pressive initializations. For moment-based GNNs, injective
aggregate and combine functions over dataset-defined do-
mains are sufficient for maximal expressivity (i.e., 1-WL
-equivalence for GIN). A simple pre-training sparsification
strategy could proceed layer-wise: for a fixed pruning ratio,
sample k configurations and retain the one preserving in-
put–output injectivity across all graphs. This is repeated per
layer, increasing sparsity until no injective configuration is
found within k trials. The result is a maximally expressive,
sparsified network. Adapting our results on winning tickets
to settings such as those explored by Wałęga & Rawson
(2025), Bause et al. (2024) or Kummer et al. (2024) is an-
other promising direction. Pruning strategies that prioritize
expressivity could improve LTH’s practicality for GNNs,
ensuring reliability and performance in critical domains.

6. Conclusion
In this work, we bridge the gap between GNN expressivity
and LTH. We offer theoretical insights and empirical vali-
dation that trainable sparse initializations with comparable
expressivity to dense models exist. Moreover, we show
that increased expressivity in the initialization potentially
accelerates model convergence and improves generaliza-
tion. Our findings highlight the risk of pruning strategies
that fail to retain critical computational paths, in certain
cases theoretically causing irreversible degradation in per-
formance. Recovering expressivity loss induced by sparsity
through training is generally unlikely, underscoring the need
for sparsification approaches that safeguard key expressive
capabilities. Our work also has practical implications: pre-
serving critical paths during pruning is essential to prevent
catastrophic errors, such as misclassifying toxic and non-
toxic stereoisomers, particularly in critical applications like
drug discovery or molecular property prediction.
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A. Proofs
A.1. Proof of Theorem 3.2

Proof. The proof consists of two parts. In the first part, we show the existence of subsets paths for which weights exist such
that any 1-WL distinguishable pair of graphs of a bounded dataset can be distinguished. In the second part, we show that the
weights of these paths are trainable, i.e., that they can receive gradient updates.

As established in the literature (Lemma 2.1), a neural moment-based GNN is maximally expressive if all of its MLPs are
injective on their respective input domains; that is, if distinct inputs representing neighborhood aggregates are mapped to
distinct outputs. Therefore, it is necessary to demonstrate the existence of sparse subnetworks capable of modeling such
injective functions. Noting that an MLP is injective if all of its layers are injective, we begin by proving the following
Lemma:

Lemma A.1 (Layer Injectivity under Random Pruning). Let W ∈ Rm×n with 1 < n ≤ m be a linear transformation matrix
where each entry is independently drawn from a continuous and bounded distribution over an interval [a, b] with a < b. Let
σ : R → R an injective elementwise activation function. Consider a finite inpute set X ⊂ Rn with cardinality N where each
element has continous entries bounded by [c, d]. Suppose we randomly prune W by independently setting each weight to
zero with probability ρ (sparsity ratio), resulting in a sparse weight matrix W′. Then, the function f = σ ◦W′ : X → Rm

is injective with probability γ ≥ 1−
(
N
2

)
ρkm where k ≥ 1 is the minimum number of non-zero components in xu − xv for

all distinct pairs xu,xv ∈ X

Proof. The function f fails to be injective if there exist distinct inputs xu,xv ∈ X s.t. f(xu) = f(xv). Since σ is injective,
this implies that W′xu = W′xv Let δ = xu − xv ̸= 0. Then, the condition W′xu = W′xv becomes W′δ = 0.

For a fixed δ, we compute the probability that W′δ = 0. Let k be the number of non-zero components in δ, i.e.,
k = ∥δ∥0 ≥ 1. Each weight w′

rj in W′ is then given by w′
rj = wrjzrj where wrj is the original weights and zrj is an

independent Bernoulli random variable:

zrj =

{
0, with probability ρ,

1, with probability 1− ρ.

For each row r of W′, the r-th component of W′δ is:

(W′δ)r =

n∑
j=1

w′
rjδj =

n∑
j=1

wrjzrjδj .

If all zrjδj = 0: This occurs if either zrj = 0 (due to pruning) or δj = 0.

• The probability that zrj = 0 when δj ̸= 0 is ρ.

• Since zrj are independent and there are k non-zero δj , the probability that all zrj = 0 for those j is ρk.

If any zrjδj ̸= 0: Since wrj are continuous random variables over [a, b] and δj ̸= 0, the product wrjδj is a continuous
random variable. Therefore, the sum (W′δ)r is also a continuous random variable, and the probability that it equals zero
is zero. That is, the set of weights elements of each row vector wr satisfying wT

r δ = 0 forms a hyperplane in Rn. Since
elements wrj are drawn independently from a continuous distribution, the probability that they fall on that hyperplane is
practically 0, which is equivalent to every proper hyperplane having a zero Lebesgue measure in its ambient space.

Thus, the probability (W′δ)r = 0 is
P ((W′δ)r = 0) = ρk.

Therefore, as the rows of W′ are independent because the w′
rj are independent across r, the probability that W′δ = 0 is

P (W′δ = 0) =
(
ρk

)m
= ρkm.
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There are
(
N
2

)
distinct pairs (xu,xv) in X . By Boole’s inequality, the probability that there exists at least one pair (xu,xv)

such that W′δ = 0 is now at most:

P (∃δ ̸= 0 : W′δ = 0) ≤
(
N

2

)
ρkm.

Therefore, the probability that f is injective over X is at least:

γ = 1−
(
N

2

)
ρkm.

Since k ≥ 1 and ρ ∈ (0, 1), ρkm decreases exponentially with m, and for sufficiently large m, γ will always be > 0. That
is, for ρ > 0, γ > 0 and for fixed N, k, we choose m such that m ≥ logρ

(
(1− γ)

(
N
2

)−1
)
k−1.

Then, it immediately follows that for an MLP with L layers, the probability of a random pruning leaving it injective is
γL ≥ (1−

(
N
2

)
ρkmmin)L with mmin being the smallest number of neurons of any of the L layers. Note that treating the

layers independently is conservative, as non-injectivity in a previous layer would decrease N (size of distinct elements in
input) for the subsequent layer and thus increase the probability of it being injective w.r.t to these inputs.

Likewise, we can model a GNN on a bounded dataset D of finite graphs. If there are at most N nodes in any graph
in D and we have M MP layers, the total probability for the pruned GNN having injective MLPs is then γGNN ≥
(1−

(|D|N
2

)
ρkmmin)LM , which corresponds to the probability that a non-zero pruning rate (corresponding to pruning masks

corresponding to edge- and therefore computational path-deletions) leaves a subset of paths intact in the GNN for which
weights exist such that the GNN is maximally expressive (in the sense of Lemma 2.1) on the given dataset D, i.e., if
Ga ̸≃WL(k) Gb, Ga, Gb ∈ D then Φ̂(k)(Ga) ̸= Φ̂(k)(Gb), given a sufficient number of neurons m for each of the MLP
layers.

Based on the above shown existence of PΦ̂(k),E ⊆ PΦ(k) and WΦ̂(k),E such that any Ga, Gb ∈ D,Ga ̸≃WL(k) Gb can be

distinguished via Φ̂(k)(Ga) ̸= Φ̂(k)(Gb), we now show that these weights can receive weights updates. For simplicity and to
focus on the most relevant interactions between trainable parameters and other components of MP, the proof only considers
MP layers with a single layer MLP (i.e., not hidden layers), but it can easily be generalized to an arbitrary number of layers
per MLP.

Lemma A.2 (Trainability). Let Φ̂(k) be a GNN pruned to an PΦ̂(k),E initialized to appropriate WΦ̂(k),E for a dataset D,
where D consists of bounded, non-trivial graphs (e.g., graphs with more than zero edges and at least one non-zero feature
per node) Then, for any loss L(Φ̂(k+1)(G), t) ̸= 0, at least those weights relevant to the distinction of G from other H ∈ D
are capable of receiving updates.

Proof. The general equations for backpropagation through a GNN with Z(l) = AH(l−1)W(l) and H(l) = σ(Z(l)) of the

form Equation (1), where ∂Z(l)

∂H(l) = W(l)T , ∂L
∂H(l) = AT ∂L

∂Z(l+1)W
(l+1)T , and ∂L

∂W(l) are derived via chain rule as

∂L
∂W(l)

=
∂L

∂H(l)

∂H(l)

∂W(l)

=
∂L

∂H(l)

∂H(l)

∂Z(l)

∂Z(l)

∂W(l)

= H(l−1)TAT ∂L
∂Z(l)

= H(l−1)TAT

(
σ′(Z(l))⊙ ∂L

∂H(l)

)
= H(l−1)TAT

(
σ′(Z(l))⊙AT ∂L

∂Z(l+1)
W(l+1)T

)
(4)
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which, written as elementwise summation, yields

∂L
∂W

(l)
ij

=

dl∑
l=1

n∑
r=1

n∑
p=1

n∑
q=1

H
(l−1)
qi ApqArpσ

′(Z
(l)
pj )

∂L
∂Z

(l+1)
rl

W
(l+1)
jl (5)

To show back-propagation works for these paths, we show by induction the existence of non-zero gradients at every layer.

Base Case. By assumption Φ̂(k) is pruned to an expressive path set PΦ̂(k),E initialized to appropriate WΦ̂(k),E , allowing
the distinction of WL distinguishable graphs. That means for any G in D, there must be at least one node embedding at the
kth layers output of Φ̂(k) that distinguishes it from those H ∈ D that are H ̸≃WL(k) G, as otherwise either PΦ̂(k),E would
not be a maximally expressive path set or WΦ̂(k),E would not be properly initialized as per Theorem 3.2. That is, at least
one of the two graphs G or H must have at least one non-zero node embeddings and, for the sake of the argument, we let
this graph be G. Let’s further say p is one of those nodes of G where embeddings are distinguishing G from H .Then, this
node p must have at least one non-zero embedding i at layer k, i.e., σ(Z(k)

pi ) ̸= 0,

Now, we start at layer l = k, right before the classifier layer. Assume ∂L
∂Z

(k+1)
rt

W
(k+1)
it ̸= 0, i.e. loss back propagated for the

tth feature of the rth node from the classifier C used at layer k + 1 and the tth weight of the ith neuron of the classifier is also
non-zero (which it is since we assume a dense classifier with random continuous weights).

Then we know by assumption σ(Z
(k)
pi ) ̸= 0 that for some node p connected to r (or at least r = p) at least one feature i of

node p must have had a non-zero contribution to σ(Z
(k)
pi ) ̸= 0 as σ is injective and zero-fixing (i.e. only σ(0) = 0 ) and

consequently, as σ has nowhere-zero derivative, at least for these indices,

∂L
∂Z

(k)
pi

= σ′(Z
(k)
pi )

dk∑
t=1

n∑
r=1

Arp
∂L

∂Z
(k+1)
rt

W
(k+1)
it ̸= 0. (6)

From the assumption σ(Z
(k)
pi ) ̸= 0 and σ being zero-fixing it further follows that

Z
(k)
pi =

n∑
q

dk−1∑
j

ApqH
(k−1)
qj W

(k)
ji ̸= 0 (7)

which implies that for some node q connected to r (or r = q) the jth feature had a non-zero embedding at layer k − 1, i.e.,
H

(k−1)
qj ̸= 0, and moreover, W (k)

ji ̸= 0 (which in turn implies inclusion of the edge ji of the computational graph in the
expressive path set PΦ̂(k),E).

Thus, for the gradient update step,

∂L
∂W

(k)
ji

=

dl∑
t=1

n∑
r=1

n∑
p=1

n∑
q=1

H
(k−1)
qj ApqArpσ

′(Z
(k)
pi )

∂L
∂Z

(k+1)
rt

W
(k+1)
it (8)

we find that indices exist which for which the non-zero weight W (k)
ji as part of the expressive path set receives a nonzero

gradient and the loss gradient ∂L
∂Z

(k)
pi

that can be back propagated to the next layer.

Assumption. For some su and iu ∂L
∂Z

(l+1)
su

W
(l+1)
iu ̸= 0.

Step. In the induction step, we show that the induction assumption implies that the error is back propagated through layer
l − 1 and the weights at layer l − 1 receive updates via the recursive definition of backpropagation:

∂L
∂W

(l−1)
ji

=

dl−1∑
t=1

n∑
r=1

n∑
p=1

n∑
q=1

dl∑
u=1

n∑
s=1

H
(l−2)
qj ApqArpAsrσ

′(Z
(l−1)
pi )σ′(Z

(l)
rt )

∂L
∂Z

(l+1)
su

W
(l+1)
iu W

(l)
it (9)
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By the induction assumption, for some su and iu, ∂L
∂Z

(l+1)
su

W
(l+1)
iu ̸= 0. As we also assume that σ(Z(k)

pi ) ̸= 0 for some pi,

also σ(Z
(l)
rt ) ̸= 0 for some rt as otherwise, no non-zero forward propagation could have happened. By the same argument,

for some pi, σ(Z(l−1)
pi ) ̸= 0, implying ∂L

∂Z
(l−1)
pi

̸= 0 for some node p. Thus, assuming W
(l−1)
ji ̸= 0, as the edge is part the

expressive path set, it follows that H(l−2)
qj ̸= 0 for some qj. Then, if nodes pq, rp and sr are connected or have self loops, at

least for those node indices, ∂L
∂W

(l−1)
ji

̸= 0.

To summarize, we have shown that it follows from Lemma A.1 that for any arbitrary finite sequence of finite graphs D
(e.g., graphs with more than zero edges and at least one non-zero feature per node). and any sufficiently overparameterized
moment-based GNN Φ(k) with layers employing an aggregation rule that can distinguish between a node’s own features
and the aggregated features of its neighbors, there exist subsets of maximally expressive paths PΦ(k),E ⊆ PΦ(k) for which
weights WΦ̂(k),E exist such that for any Ga, Gb ∈ D it holds that if Ga ̸≃WL(k) Gb then Φ̂(k)(Ga) ̸= Φ̂(k)(Gb) and, from
Lemma A.2, that these WΦ̂(k),E for PΦ(k),E ⊆ PΦ(k) are trainable.

A.2. Proof of Theorem 3.3

Proof. Let Gi with labels ti be graphs and Li be the loss w.r.t to the input graph Gi with label ti. Then, gradient diversity
as given by (3) via Frobenius inner product expansion, can be rewritten as

∆s =
( n∑

i=1

|| ∂Li

∂W(l)
||2F

)( n∑
i=1

|| ∂Li

∂W(l)
||2F+

∑
i ̸=j

〈
∂Li

∂W(l)
,

∂Lj

∂W(l)

〉
F

)−1

. (10)

Obviously, the Frobenius inner product (a generalization of the dot product to matrices) between gradients of different data
points dictates how large or small the gradients’ diversity is: if all gradients are orthogonal , it is maximal, whereas if they
are codirectional, it is minimal.

Let’s now consider two graphs specific G1, G2 with labels t1 ̸= t2 and analyze this inner product product. Then, with

∂Li

∂W(l)
= H

(l−1)T
i AT

i

∂L
∂Z

(l)
i

(11)

from Equation (4) we obtain for the inner product

tr
((

H
(l−1)T
1 AT

1

∂L1

∂Z
(l)
1

)T

H
(l−1)T
2 AT

2

∂L2

∂Z
(l)
2

)
=

〈
H

(l−1)T
1 AT

1

∂L1

∂Z
(l)
1

,H
(l−1)T
2 AT

2

∂L2

∂Z
(l)
2

〉
F

(12)

which (via transposition and cyclicity of the trace of matrix products) is equal to

tr
(
H

(l−1)
1 H

(l−1)T
2 AT

2

∂L2

∂Z
(l)
2

∂L1

∂Z
(l)
1

A1

)
= tr

((
H

(l−1)T
1 AT

1

∂L1

∂Z
(l)
1

)T

H
(l−1)T
2 AT

2

∂L2

∂Z
(l)
2

)
. (13)

For this left hand side, without assumptions of definiteness of the matrices involved, an upper bound of it’s magnitude (i.e.
absolute value) is provided by

|tr
(
H

(l−1)
1 H

(l−1)T
2 AT

2

∂L2

∂Z
(l)
2

∂L1

∂Z
(l)
1

A1

)
|≤ ||H(l−1)

1 H
(l−1)T
2 ||F ·||AT

2

∂L2

∂Z
(l)
2

∂L1

∂Z
(l)
1

A1||F . (14)

The first part of this product itself can be bounded by exploiting the relation between the Frobenius norm and the inner
product

||H(l−1)
1 H

(l−1)T
2 ||F≤

√
(max

i,j
||ai||22||bj ||22)

∑
i,j

cos2(βij) (15)

with i, j denoting rows of H(l−1)
1 ,H

(l−1)
2 and ai,bj the corresponding row vectors and βij the angle between each pair

ai,bj and
∑

i,j the double sum over the common dimension of the two matrices. Thus, it follows that if all node embeddings
are orthogonal, gradient diversity is maximal as their enclosing angles’ cosines equal 0.
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Furthermore, if there exist m,M s.t. for all i, j it holds that m ≤ ||ai||22, ||bj ||22≤ M , then maxi,j ||ai||22||bj ||22≤ M2 and

thus ||H(l−1)
1 H

(l−1)T
2 ||F≤ M

√∑
i,j cos

2(βij), which is proportional up to a constant factor M to the sum of the cosine
similarity of the node embeddings.

Consequentially, we can formulate for the two graphs G1, G2

ζ± =
( 2∑

i=1

|| ∂Li

∂W(l)
||2F

)( 2∑
i=1

|| ∂Li

∂W(l)
||2F±M

√∑
i,j

cos2(βij) · ||AT
2

∂L2

∂Z
(l)
2

∂L1

∂Z
(l)
1

A1||F
)−1

. (16)

for which it holds that for any
∑2

i=1||
∂Li

∂W(l) ||2F ̸= 0 either ∆s ∈ [ζ+,∞) if 0 <
∑2

i=1||
∂Li

∂W(l) ||2F< M
√∑

i,j cos
2(βij) ·

||AT
2

∂L2

∂Z
(l)
2

∂L1

∂Z
(l)
1

A1||F or ∆s ∈ [ζ+, ζ−] if
∑2

i=1||
∂Li

∂W(l) ||2F≥ M
√∑

i,j cos
2(βij) · ||AT

2
∂L2

∂Z
(l)
2

∂L1

∂Z
(l)
1

A1||F .

Thus, for any ∆s, we obtain the proposed lower bound by choosing ζ = ζ+ for which it directly follows from equation (16)
that ζ ∝ (

∑
ij |cos(βij)|)−1.

A.3. Proof of Proposition 3.4

Proof. Let the function
f = σ ◦W′ : X → Rm,

where W ∈ Rm×n, 1 < n ≤ m, with entries independently drawn from a continuous and bounded distribution over an
interval [a, b] with a < b. We use an injective elementwise activation σ : R → R. Suppose we randomly prune W by
independently setting each weight to zero with probability ρ, resulting in a sparse matrix W′. Let X ⊂ Rn be a finite input
set of cardinality N , with each element having continuous entries bounded by [c, d].

Then, by Lemma A.1, with probability

γ ≥ 1−
(
N

2

)
ρkm,

the map f = σ(W′·) is injective on X , where k ≥ 1 is the minimum number of non-zero components in xu − xv for all
distinct pairs xu,xv ∈ X . We also recall from the argument in the proof of Theorem 3.2 that, for ρ > 0, γ > 0, and fixed
N, k, one obtains a sufficient condition on m, namely m ≥ logρ

(
(1− γ)

(
N
2

)−1
)
k−1

We now extend Lemma A.1 from injectivity to non-colinearity of the outputs. Specifically, we wish to show that for any two
distinct inputs xu,xv ∈ X , the probability that there exists a nonzero scalar η ∈ R with

f(xu) = ηf(xv)

is negligible (indeed measure zero) under our assumptions on the continuous distribution of weights and the independent
pruning process.

We proceed as follows. Fix a single pair of distinct inputs xu ̸= xv ∈ X . Denote by w′
r the r-th row of W′. Then

f(xu) = ηf(xv) ⇐⇒ σ(w′
r
T
xu) = ησ(w′

r
T
xv) for allr = 1, . . . ,m.

Because σ is injective (elementwise), each equation

σ(w′
r
T
xu) = ησ(w′

r
T
xv)

for a fixed η imposes a lower-dimensional (measure-zero) constraint on the row w′
r in Rn. Enforcing this condition across

all r = 1, . . . ,m and with the same scalar η yields an intersection of these measure-zero sets in Rm×n. Consequently, the
probability that

W′ ∈
{
W′ ∈ Rm×n : f(xu) = ηf(xv)

}
is itself zero under our continuous distribution for W and subsequent Bernoulli pruning of entries (c.f. Lemma A.1).
The only way the dimension of these constraints would fail to be negligible is if W′ had some degenerate structure (e.g.
all-zero rows, or precisely tuned rows to force colinearity), but for almost all choices of non-pruned weights in a sufficiently
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overparameterized W′ (i.e. with m ≥ logρ

(
(1− γ)

(
N
2

)−1
)
k−1 for γ → 1), such a degeneracy cannot occur with non-zero

probability.

Hence, for any fixed pair xu,xv ∈ X , the probability that they become mapped to colinear outputs under f is zero. A union
bound (Boole’s inequality) over the

(
N
2

)
distinct pairs in X remains a finite union of measure-zero events. Therefore, with

probability 1, none of the pairs xu,xv ∈ X yield colinear outputs.

Putting it all together:

• Injectivity: we already know from Lemma A.1 that P [f(xu) ̸= f(xv)∀xu ̸= xv] ≥ 1−
(
N
2

)
ρkm.

• Non-colinearity: with probability 1, no two distinct inputs map to outputs that are scalar multiples of each other.

Since a measure-zero event does not further reduce the probability threshold from the injectivity part, the second property is
effectively guaranteed almost surely in our random draw of W′. Therefore, for any two distinct points in X , both

f(xu) ̸= f(xv) and f(xu) ̸∝ f(xv)

hold with high probability (and indeed the colinearity condition holds with probability 0).

Thus, if m is chosen large enough to satisfy m ≥ logρ

(
(1− γ)

(
N
2

)−1
)
k−1 then γ ≥ 1 −

(
N
2

)
ρkm > 0, ensuring both

injectivity and non-colinearity of the outputs as claimed.

A.4. Proof of Lemma 3.5

Proof. Let G1 and G2 be two graphs with adjacency and features matrices A1 = A2 and X1 ̸= X2, respectively.
Let W(1) be the first weight’s matrix of the first MP layers MLP and M(1) it’s associated pruning mask. Suppose
A1X1M

(1) = A2X2M
(1). Then, we need to show that for any weight matrix W(1), A1X1W

(1) = A2X2W
(1).

Now, assume, for contradiction, that there exists a weight matrix W(1) such that A1X1W
(1) ̸= A2X2W

(1). Consider the
elementwise product M(1) ⊙ Ã(1) ⊙W(1). Since M(1) and Ã(1) are binary matrices, this product selects certain entries of
W(1).

If A1X1W
(1) ̸= A2X2W

(1), there must exist some i, j for which

⟨(A1X1)i,:,W
(1)
:,j ⟩ ≠ ⟨(A2X2)i,:,W

(1)
:,j ⟩.

Since we can focus on the entries selected by M(1) ⊙ Ã(1), we consider

⟨(A1X1)i,:, (M
(1) ⊙ Ã(1) ⊙W(1)):,j⟩ and ⟨(A2X2)i,:, (M

(1) ⊙ Ã(1) ⊙W(1)):,j⟩.

If these two inner products differ, then there exists at least one l, l′ such that

(A1X1)i,l(M
(1)
l,j Ã

(1)
l,j W

(1)
l,j ) ̸= (A2X2)i,l′(M

(1)
l′,jÃ

(1)
l′,jW

(1)
l′,j).

For this difference to depend on W(1), the corresponding entries of M(1) and Ã(1) must be nonzero. In particular, if there
is a discrepancy when using W(1), then choosing W(1) such that it matches the nonzero structure selected by M(1) and
Ã(1) would produce the same discrepancy. Hence, a difference in A1X1W

(1) and A2X2W
(1) would imply a difference in

A1X1M
(1) and A2X2M

(1), contradicting the initial assumption.

Thus, our contradiction shows that no such W(1) can exist. Therefore, for any W(1), it must hold that A1X1W
(1) =

A2X2W
(1).

A.5. Proof of Lemma 3.6

Proof. Under the assumption that classes are uniformly represented, each of the C classes contains about M
C of these M

indistinguishable graphs, and the pairwise indistinguishability of isomorphism types of different classes is equivalent to
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assigning all M graphs to a single class. Then, the model correctly classifies exactly those M
C graphs that truly belong to the

chosen class. The other M − M
C = M

(
1− 1

C

)
graphs from the remaining C − 1 classes are misclassified.

For the remaining N −M graphs, which are all distinguishable isomorphism types, the model can correctly classify all of
them (assuming perfect separability in the distinguishable subset).

Hence, the total number of correctly classified graphs is

(N −M) +
M

C
.

Dividing by N to obtain the accuracy:

(N −M) + M
C

N
= 1− M

N
+

M

CN
.

Since M ≈ UN
I , substitute this into the equation:

= 1− U

I
+

U

IC
.

Factor out U
I :

= 1− U

I

(
1− 1

C

)
.

This expression gives the maximum fraction of correctly classified graphs under the stated assumptions.

B. DATASETS

Table 2. Overview of selected datasets.

DATASET TYPE #GRAPHS AVG. NODES AVG. EDGES LABELS TASK

MUTAG CHEMICAL 188 17.9 19.8 NODE, EDGE CLASS.
AIDS CHEMICAL 2,000 15.7 16.2 NODE, EDGE CLASS.
PTC_FM CHEMICAL 349 14.1 14.5 NODE, EDGE CLASS.
PTC_MR CHEMICAL 344 14.3 14.7 NODE, EDGE CLASS.
NCI1 CHEMICAL 4,110 29.9 32.3 NODE CLASS.
PROTEINS PROTEIN 1,113 39.1 72.8 NODE CLASS.
ENZYMES PROTEIN 600 32.6 62.1 NODE CLASS.
MSRC_9 IMAGE 221 40.6 72.4 NODE CLASS.
MSRC_21C IMAGE 563 77.5 142.8 NODE CLASS.
IMDB-BINARY SOCIAL 1,000 19.8 96.5 - CLASS.

To examine the complex relationship between the Lottery Ticket Hypothesis (LTH) and the expressivity of Graph Neural
Networks (GNNs), we utilize a diverse set of ten real-world datasets. Each dataset is carefully selected based on its relevance
to distinct graph structures and domain-specific tasks. These datasets are sourced from the widely recognized TUDataset
collection (Morris et al., 2020), which serves as a standard benchmark for tasks involving graph classification and regression.
A detailed summary of these datasets is presented in Table 2.

Chemical Compounds: The MUTAG, AIDS, PTC_FM, PTC_MR, and NCI1 datasets focus on chemical compounds,
where molecular structures are represented as graphs, with nodes corresponding to atoms and edges denoting chemical bonds.
MUTAG, one of the earliest and most widely used datasets for graph classification, comprises nitroaromatic compounds
labeled by their mutagenic effects on Salmonella typhimurium. The AIDS dataset contains molecular graphs relevant
to anti-HIV drug discovery, aiming to predict inhibitory activity against HIV. The PTC datasets (FM and MR) involve
compounds evaluated for rodent carcinogenicity, classified based on different experimental setups. NCI1, a larger dataset
derived from the National Cancer Institute’s screening program, involves classifying compounds according to their activity
against non-small cell lung cancer.
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Protein Structures: The PROTEINS and ENZYMES datasets are derived from bioinformatics, where graphs are used to
represent protein structures. In the PROTEINS dataset, nodes correspond to secondary structural elements, such as helices
and sheets, with edges reflecting spatial proximity. The classification task is to determine whether a given protein functions
as an enzyme. The ENZYMES dataset builds on this by categorizing enzymes into one of the six top-level classes defined by
the Enzyme Commission (EC), based on the types of chemical reactions they catalyze (Borgwardt et al., 2005; Schomburg
et al., 2002).

Image Segmentation: The MSRC_9 and MSRC_21C datasets, originating from the MSRC database, are designed
for semantic image segmentation tasks. In these datasets, images are represented as graphs, where nodes correspond to
superpixels and edges capture spatial relationships between them. The task requires GNNs to classify nodes into various
categories based on the visual content of the superpixels. MSRC_21C serves as an extended version, offering a greater
number of classes and increased complexity (Neumann et al., 2016).

Social Networks: The IMDB-BINARY dataset represents social networks, with each graph modeling the collaboration
network of actors who have appeared together in movies. The classification task involves distinguishing these networks
based on the movie genre, specifically differentiating between action and romance. This dataset highlights the complexities
of real-world social networks, where nodes correspond to individuals and edges represent their interactions, challenging
GNNs to capture nuanced social dynamics (Yanardag & Vishwanathan, 2015).

These datasets collectively offer a diverse evaluation framework, encompassing a wide variety of graph structures and
complexities, ranging from small molecular graphs to larger social networks and image-based graphs. Leveraging this
extensive set of benchmarks allows our empirical analysis to thoroughly evaluate the hypothesis across multiple domains.
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