Improved Algorithms for White-Box Adversarial Streams

Ying Feng' David P. Woodruff'

Abstract

We study streaming algorithms in the white-box
adversarial stream model, where the internal state
of the streaming algorithm is revealed to an adver-
sary who adaptively generates the stream updates,
but the algorithm obtains fresh randomness un-
known to the adversary at each time step. We in-
corporate cryptographic assumptions to construct
robust algorithms against such adversaries. We
propose efficient algorithms for sparse recovery
of vectors, low rank recovery of matrices and ten-
sors, as well as low rank plus sparse recovery of
matrices, i.e., robust PCA. Unlike deterministic
algorithms, our algorithms can report when the in-
put is not sparse or low rank even in the presence
of such an adversary. We use these recovery algo-
rithms to improve upon and solve new problems
in numerical linear algebra and combinatorial op-
timization on white-box adversarial streams. For
example, we give the first efficient algorithm for
outputting a matching in a graph with insertions
and deletions to its edges provided the matching
size is small, and otherwise we declare the match-
ing size is large. We also improve the approxima-
tion versus memory tradeoff of previous work for
estimating the number of non-zero elements in a
vector and computing the matrix rank.

1. Introduction

The streaming model captures key resource requirements
of algorithms for database, machine learning, and network
tasks, where the size of the data is significantly larger than
the available storage, such as for internet and network traf-
fic, financial transactions, simulation data, and so on. This
model was formalized in the work of Alon, Matias, and
Szegedy (Alon et al., 1996), which models a vector under-

"Department of Computer Science, Carnegie Mellon
University, Pittsburgh, PA, USA. Correspondence to: Ying
Feng <yingfeng@andrew.cmu.edu>, David P. Woodruff
<dwoodruf @cs.cmu.edu>.

Proceedings of the 40" International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

going additive updates to its coordinates. Formally, there
is an underlying n-dimensional vector x, which could be
a flattened matrix or tensor, which is initialized to 0™ and
evolves via an arbitrary sequence of m < poly(n) addi-
tive updates to its coordinates. These updates are fed into
a streaming algorithm, and the t¢-th update has the form
(it,0¢), meaning x;, < x;, + 0;. Here i, € {1,2,...,n}
and 0; € {-M,-M +1,...,.M —1,M} for an M <
poly(n)'. Throughout the stream, z is promised to be in
{-M,—-M +1,...,M — 1, M}". A streaming algorithm
makes one pass over the stream of updates and uses limited
memory to approximate a function of x.

A large body of work on streaming algorithms has been
designed for oblivious streams, for which the sequence of
updates may be chosen adversarially, but it is chosen inde-
pendently of the randomness of the streaming algorithm. In
practical scenarios, this assumption may not be reasonable;
indeed, even if the stream is not generated by an adversary
this may be problematic. For example, if one is running an
optimization procedure, then one may feed future data into
a streaming algorithm based on past outputs of that algo-
rithm, at which point the inputs depend on the algorithm’s
randomness and there is no guarantee of correctness. This
is also true in recommendation systems, where a user may
choose to remove suggestions based on previous queries.

There is a growing body of work on streaming algorithms
that are robust in the black-box adversarial streaming model
(Ben-Eliezer & Yogev, 2020; Ben-Eliezer et al., 2021; Has-
sidim et al., 2020; Woodruff & Zhou, 2021; Alon et al.,
2021; Kaplan et al., 2021; Braverman et al., 2021; Menuhin
& Naor, 2021; Attias et al., 2021; Ben-Eliezer et al., 2022;
Chakrabarti et al., 2022), in which the adversary can moni-
tor only the output of the streaming algorithm and choose
future stream updates based on these outputs. While useful
in a number of applications, there are other settings where
the adversary may also have access to the internal state of
the algorithm, and this necessitates looking at a stronger
adversarial model known as white-box adversarial streams.

'All bounds can be generalized to larger 1 and M this is only
for convenience of notation. Also, our streaming model, which
allows for both positive and negative updates, is referred to as the
(standard) turnstile streaming model in the literature.

Improved Algorithms for White-Box Adversarial Streams

1.1. The White-box Adversarial Streaming Model

We consider the white-box adversarial streaming model,
introduced in (Ajtai et al., 2022), where a sequence of stream
updates uq, . .., Uy, is chosen adaptively by an adversary
who sees the full internal state of the algorithm at all times,
including the parameters and the previous randomness used
by the algorithm.

Definition 1.1. (White-box Adversarial Streaming Model)
Consider a single-pass, two-player game between
Streamalg, the streaming algorithm, and Adversary.

Prior to the beginning of the game, fix a query Q, which asks
for a function of an underlying dataset that will be implicitly
defined by the stream, which is itself chosen by Adversary.
The game then proceeds across m rounds, where in the t-th
round:

1. Adversary computes an update u for the stream, which
depends on all previous stream updates, all previous internal
states, and randomness used by Streamalg (and thus also,
all previous outputs of Streamalg).

2. Streamalg acquires a fresh batch Ry of random bits, uses
uy and Ry to update its data structures Dy, and (if asked)
outputs a response Ay to the query Q.

3. Adversary observes the response A,, the internal state
Dy of Streamalg, and the random bits R.

The goal of Adversary is to make Streamalg output an in-
correct response Ay to the query Q at some time t € [m)
throughout the stream.

Notation: A function f(n) is said to be negligible if for
every polynomial P(n), for all large enough n, f(n) <
%. We typically denote negligible functions by negl(n).

Given a fixed time bound 7, we say a streaming algorithm
is robust against 7 time-bounded white-box adversaries if
no 7 time-bounded white-box adversary can win the game
with non-negligible probability against this algorithm.

1.1.1. APPLICATIONS OF WHITE-BOX ADVERSARIES

The white-box adversarial model captures characteristics of
many real-world attacks, where an adaptive adversary has
access to the entirety of the internal states of the system.
In comparison to the oblivious stream model or the black-
box adversarial model (Ben-Eliezer et al., 2021), this model
allows us to model much richer adversarial scenarios.

For example, consider a distributed streaming setting where
a centralized server collects statistics of a database generated
by remote users. The server may send components of its
internal state .S to the remote users in order to optimize
the total communication over the network. The remote
users may use S in some process that generates downstream

data. Thus, future inputs depend on the internal state .S’ of
the streaming algorithm run by the central coordinator. In
such settings, the white-box robustness of the algorithms is
crucial for optimal selection of query plans (Selinger et al.,
1979), online analytical processing (Shukla et al., 1996;
Padmanabhan et al., 2003), data integration (Brown et al.,
2005), and data warehousing (Dasu et al., 2002).

Many persistent data structures provide the ability to quickly
access previous versions of information stored in a reposi-
tory shared across multiple collaborators. The internal per-
sistent data structures used to provide version control may
be accessible and thus visible to all users of the repository.
These users may then update the persistent data structure in
a manner that is not independent of previous states (Driscoll
et al., 1989; Fiat & Kaplan, 2003; Kaplan, 2004).

Dynamic algorithms often consider an adaptive adversary
who generates the updates upon seeing the entire data struc-
ture maintained by the algorithm during the execution (Chan,
2010; Chan & He, 2021; Roghani et al., 2022). For example,
(Wajc, 2020) assumes the entire state of the algorithm (in-
cluding the set of randomness) is available to the adversary
after each update, i.e., a white-box model.

Moreover, robust algorithms and adversarial attacks are im-
portant topics in machine learning (Szegedy et al., 2014;
Goodfellow et al., 2014), with a large body of recent litera-
ture focusing on adversarial robustness of machine learning
models against white-box attacks (Ilyas et al., 2018; Madry
etal., 2018; Schmidt et al., 2018; Tramer et al., 2018; Cubuk
et al., 2018; Kurakin et al., 2017; Liu et al., 2017). There
exist successful attacks that use knowledge of the trained
model; e.g., the weights of a linear classifier to minimize
the loss function (which are referred to as Perfect Knowl-
edge adversaries in (Biggio et al., 2013)). There are also
white-box attacks that use the architecture and parameters
of a trained neural network policy to generate adversarial
perturbations that are almost imperceptible to the human
eye but result in misclassification by the network (Huang
et al., 2017). In comparison to the black-box adversarial
streaming model, in which the input is chosen by an adver-
sary who repeatedly queries for only a fixed property of the
underlying dataset at each time but does not see the full in-
ternal state of the algorithm during execution, the white-box
model more effectively captures the full capability of these
attacks.

1.2. Random Oracle Model

In order to construct streaming algorithms based on the hard-
ness of the SIS problem, we need access to a fixed uniformly
random matrix during the stream. In this paper, we consider
algorithms in the random oracle model, which means that
the algorithms, as well as the white-box adversaries, are
given read access to an arbitrarily long string of random

Improved Algorithms for White-Box Adversarial Streams

bits. Each query gives a uniformly random value from some
output domain and repeated queries give consistent answers.
The random oracle model is a well-studied model and has
been used to design numerous cryptosystems (Bellare & Ro-
gaway, 1993; 1996; Canetti et al., 2004; Koblitz & Menezes,
2015). Also, such a model has been used to design space-
efficient streaming algorithms, for both oblivious streams
(Clifford & Cosma, 2013; Jayaram & Woodruff, 2023) as
well as adversarial settings (Ajtai et al., 2022; Ben-Eliezer
et al., 2020). In the random oracle model, instead of stor-
ing large random sketching matrices during the stream, the
streaming algorithms can generate the columns of the matrix
on the fly when processing updates. Also, in the distributed
setting, the servers will be able to agree on a random sketch-
ing matrix without having to communicate it.

Such an oracle is often implemented with hash-based heuris-
tic functions such as AES or SHA256. These implementa-
tions are appealing since they behave, as far as we can tell
in practice, like random functions. They are also extremely
fast and incur no memory cost.

Another approach is to use a pseudorandom function as a
surrogate.

Definition 1.2. (Pseudorandom Function) Let A, B be finite
sets, and let F = {F; : A — B} be a function family,
endowed with an efficiently sampleable distribution. We
say that F is a pseudorandom function (PRF) family if all
functions F; are efficiently computable and the following
two games are computationally indistinguishable:

1. Sample a function F & F and give the adversary adap-
tive oracle access to F(-).

2. Choose a uniformly random function U : A — B and
give the adversary adaptive oracle access to U ().

Given a random key to draw F' from F, a pseudorandom
function provides direct access to a deterministic sequence
of pseudorandom bits. This pseudorandom bit sequence can
be seen as indexed by indices in A. Moreover, the key size
can be logarithmically small with respect to the function
domain (though in our algorithms we only need the key size
to be polynomially small).

In this work, we design algorithms based on hardness as-
sumptions of lattice cryptographic problems. In particular,
we use the Short Integer Solution (SIS) Problem; see Sec-
tion 2 for the precise cryptographic assumptions we make.
There are many existing schemes to construct families of
pseudorandom functions based on cryptographic assump-
tions (Goldreich et al., 1986; Banerjee et al., 2011; Kim,
2021). Therefore, if we assume the hardness of the SIS
problem against 7 time-bounded adversaries, then we can
construct families of pseudorandom functions. Moreover, if

a function F & F is sampled privately from any of these

families F, then F' behaves just like a random oracle from
the perspective of any 7 time-bounded adversary.

However, in the white-box adversarial setting, the process

of choosing F’ & Fis revealed to the adversary. So the
adversary can distinguish cases 1 and 2 in Definition 1.2 by
simply comparing the output with F'. It may be possible to
use a pseudorandom function in place of a random oracle in
our algorithms if one can resolve the following question:

Let F be a family of pseudorandom functions, constructed
based on the SIS problem. Consider a one-round, two player
game between Challenger and Adversary:

1. Challenger samples a pseudorandom function F' EF
based on some random key KC, and reveals K to Adversary.

2. Challenger uses the pseudorandom bits generated by F'
to sample an instance I of the SIS problem, with hardness
parameter n. = |K|.

3. Adversary attempts to solve L.

Assuming that no T time-bounded adversary can solve the
SIS problem with non-negligible probability, does there exist
a T time-bounded adversary that can win this game with
non-negligible probability, for a fixed time bound T ?

The answer to this question depends on the specific PRF
construction that we use. One may be able to artificially
construct a family of SIS-based PRFs and show that the
pseudorandomness generated by such PRF induces an easy
variant of the SIS problem. However, using other PRF
constructions, the SIS problem could potentially retain its
difficulty. We leave the question of removing our random
oracle assumption as an interesting direction for future work.

1.3. Our Contributions

Table 1 summarizes our contributions. Specifically, we con-
struct sparse recovery schemes for vectors, low rank plus
sparse recovery schemes for matrices, and low rank recov-
ery schemes for tensors, and apply these as building blocks
to solve a number of problems in the white-box adversarial
streaming model. Our algorithms either improve the bounds
of existing algorithms, often optimally, or solve a prob-
lem for which previously no known white-box adversarial
streaming algorithm was known.

1.3.1. RECOVERY ALGORITHMS

We start by giving recovery algorithms for k-sparse vectors
and rank-k matrices in the white-box adversarial streaming
model, which reconstruct their input provided that it satisfies
the sparsity or rank constraint. Our algorithms crucially
have the property that they can detect if their input violates
the sparsity or rank constraint.

Improved Algorithms for White-Box Adversarial Streams

Our algorithms make use of hardness assumptions of the
Short Integer Solution (SIS) Problem and hold against poly-
nomial (and sometimes larger) time adversaries. See Section
2 for the precise cryptographic assumptions we make. In-
formally, we have Theorem 1.3, Theorem 1.4, Theorem 1.5,
and Theorem 1.6 below.

Theorem 1.3. Assuming the exponential hardness of the
SIS problem, there exists a white-box adversarially robust
streaming algorithm which determines if the input vector
is k-sparse, for parameter k > n° for an arbitrarily small
constant ¢ > 0, and if so, recovers a k-sparse vector using
O(k) bits® of space in the random oracle model.

We note that there are standard deterministic, and hence
also white-box adversarially robust, k-sparse vector recov-
ery schemes based on any deterministic algorithm for com-
pressed sensing (Candes & Wakin, 2008). However, previ-
ous algorithms require the promise that the input is k-sparse;
otherwise, their output can be arbitrary. That is, there is no
way to know if the input is k-sparse or not. In contrast,
our algorithm does not assume sparsity of the input, and
reports a failure when the input is not k-sparse. We stress
that this is not an artifact of analyses of previous algorithms;
in fact, any deterministic streaming algorithm cannot detect
if its input vector is k-sparse without using Q(n) bits of
memory (Ganguly & Majumder, 2006). By Theorem 2 in
(Ajtai et al., 2022), this implies an Q(n) bit lower bound
for any randomized k-sparse decision algorithms in the
white-box streaming model. Thus our algorithm provides a
provable separation between computationally bounded and
unbounded adversaries, under cryptographic assumptions.

While sparsity is a common way of capturing vectors de-
scribed with few parameters, low rank is a common way of
capturing matrices described with few parameters. We next
extend our results to the matrix setting:

Theorem 1.4. Assuming the exponential hardness of the
SIS problem, there exists a white-box adversarially robust
streaming algorithm which decides if an n X n input matrix
with integer entries bounded by a polynomial in n, has rank
at most k, and if so, recovers the matrix using O(nk) bits
of space in the random oracle model 3.

Theorem 1.4 provides the first low rank matrix recovery
algorithm in the white-box streaming model. Moreover,
the space complexity of this algorithm is nearly optimal,
as just describing such a matrix requires 2(nk logn) bits.
This result again provides a separation from deterministic
algorithms under cryptographic assumptions, as a simple
reduction from the Equality communication problem (see,

2Here and throughout, O(f) denotes f - poly(logn), with n
defined in our description of the streaming model.

30ur results all generalize to n x d matrices; we state them
here for square matrices for convenience only.

e.g., (Alon et al., 1999) for similar reductions) shows that
testing if the input matrix in a stream is all zeros or not
requires £2(n?) memory.

In addition, our results can be further extended to recover a
sparse plus low rank matrix for robust principal component
analysis (robust PCA) (Chandrasekaran et al., 2011; Candes
et al., 2011) and also can recover a low rank tensor:

Theorem 1.5. Under Assumption 2.3, given parameters
r,k > 0, there exists a streaming algorithm robust against
o(n™**7) time-bounded white-box adversaries that deter-
mines if an n X n input matrix can be decomposed into
the sum of a matrix with rank at most k and a matrix with
at most r non-zero entries, and if so, finds the decomposi-
tion using @(nk + 1) bits of space and poly(n) time in the
random oracle model.

Theorem 1.6. For an input tensor X € Zy+> "4 with
q € poly(n) forn = Hcll n;, under Assumption 2.3, given
parameter k with k € @(m
¢ > 0, there exists a streaming algorithm robust against
o(nF(mi++14)) time-bounded white-box adversaries that
determines if the input tensor has CP rank at most k and
if so, recovers the tensor using O(k(ny + - - -ngq)) bits of
space and poly (n) time in the random oracle model.

) for a constant

See Appendices A and B for more on Theorems 1.5 and 1.6.

1.3.2. APPLICATIONS

Our sparse recovery theorem for vectors can be used to sim-
plify and improve the existing upper bound for the £3-norm
estimation problem in the white-box adversarial model,
which is the problem of estimating the support size, i.e.,
the number of non-zero entries of the input vector x.

Theorem 1.7. (Informal) Assuming the exponential hard-
ness of the SIS problem, there exists a white-box adver-
sarially robust streaming algorithm which estimates the {,
norm within a factor of n® using @(nl_e) bits of space in
the random oracle model.

Previously, the only known white-box adversarily robust al-
gorithm for £y norm estimation required @(nlfﬁ‘f) space
for an n®-approximation, where ¢ > 0 is a fixed constant, in
the random oracle model. Our algorithm replaces ¢ with 0.

Based on our low rank matrix recovery algorithm, we give
the first algorithm for finding a maximum matching in a
graph if the maximum matching size is small, or declare
that the maximum matching size is large, in a stream with
insertions and deletions to its edges. Standard methods
based on filling in the so-called Tutte matrix of a graph
randomly do not immediately work, since the adversary
sees this randomness in the white box model. Nevertheless,
we show that filling in the Tutte matrix deterministically
during the stream suffices for our purposes.

Improved Algorithms for White-Box Adversarial Streams

Theorem 1.8. (Informal) Assuming the exponential hard-
ness of the SIS problem, there is a white-box adversarially
robust streaming algorithm using O(nk) space in the ran-
dom oracle model and poly(n) running time, which either
declares the maximum matching size is larger than k, or
outputs a maximum matching.

We note that for any matrix problem, such as linear matroid
intersection or parity or union, matrix multiplication and
decomposition, finding a basis of the null space, and so
on, if the input consists of low rank matrices then we can
first recover the low rank matrix in a white-box adversarial
stream, verify the input is indeed of low rank, and then
run an offline algorithm for the problem, such as those in
(Cheung et al., 2013).

Besides solving new problems, as an immediate corollary
we also obtain an improved quantitative bound for testing if
the rank of an input matrix is at most k, which is the rank
decision problem of (Ajtai et al., 2022).

Theorem 1.9. (Informal) Assuming the exponential hard-
ness of the SIS problem, there exists a white-box adver-
sarially robust streaming algorithm which solves the rank
decision problem using @(nk) bits of space in the random
oracle model.

In (Ajtai et al., 2022), a weaker O(nk?) space bound was
shown for white-box adversarially robust algorithms. Our
improvement comes by observing that we can get by with
many fewer than k rows in our sketch, provided that the
modulus ¢ in the SIS problem (see Section 2) is large enough.
This may be counterintuitive as the rank of our sketch may
be much less than k but we can still recover rank-£ inputs
by using a large enough modulus to encode them.

2. Preliminaries
2.1. Short Integer Solution Problem

We make use of well-studied cryptographic assumptions
in the design of our algorithms. Specifically, we construct
white-box adversarially robust algorithms based on the as-
sumed hardness of the Short Integer Solution problem.

Definition 2.1. (Short Integer Solution (SIS) Problem) Let
n, m, q be integers and let B > 0. Given a uniformly ran-
dom matrix A € Zy*™ with m € poly(n), the SIS problem
is to find a non-zero integer vector z € Z™ such that Az = 0
mod q and ||z]|2 < B.

Theorem 2.2. (Micciancio & Peikert, 2013) Let n and
m, B,q € poly(n) be integers and q > n - (5. Then solving
the SIS problem with non-negligible probability, with pa-
rameters n,m, q, B is at least as hard as ~y-approximation
of the Shortest Vector Problem (SVP.,) with v € poly(n).

Theorem 2.2 bases the hardness of the SIS problem on the

SVP,, problem, which is one of the most well-studied lattice
problems with many proposed algorithms. The best known
algorithm for SVP., with v = poly(n) is due to (Aggarwal
et al., 2015) and runs in O(2") time.

2.2. SIS Hardness Assumption

We assume that the white-box adversary is computationally
bounded in such a way that it cannot solve the SIS problem
with non-negligible probability. For the purposes of this
paper, we consider a time bound based on the state-of-the-
art complexity result for lattice problems.

Assumption 2.3. Givenn € N, for some m, 3, q € poly(n)
and g > n - 8, no o(2") time-bounded adversary can solve
the SIS problem SIS, ,, ,, g with non-negligible probability.

As shown above, our instance of the SIS problem is at least
as hard as the approximation problem SVP 1, (), for which

the best-known algorithm runs in O(2") time.

We have the following two crucial lemmas.

Lemma 2.4. Under Assumption 2.3, given a uniformly
random matrix A € Zy*™ for ¢,m,3 € poly(n) and
q > n- B, ifavector x € L} is generated by an o(2")-time
adversary, then with probability at least 1 — negl(n), there
does not exist a k-sparse vector y € ZLp' for which x #*y
mod q yet Az = Ay mod ¢, for k € o(-%-).

logn

Remark 2.5. We note that given a random matrix A €
Zy*™, when both x and y are k-sparse, we can argue
information-theoretically by a union bound that with high
probability all sparse x # y with bounded entries satisfy
Ax # Ay. However, there may exist a binary vector x which
is not k-sparse, and a k-sparse y with bounded entries such
that Az = Ay. In this case we need the SIS assumption to
show that it is hard for an adversary to find such x and fool
the algorithm.

Proof. If an adversary were to find a vector y € Zj' for
which x # y mod ¢q yet Az = Ay mod g, then it would
be able to solve the SIS problem by outputting (z — y)
mod g, which is a short (i.e., polynomially bounded integer
entry), non-zero vector in the kernel of A. Because the
entries of y are bounded by g, it takes at most O(¢* - (7)) <
poly(n)* time for an adversary to try all k-sparse vectors
y € Z. Soitmust be that for k € o(5z5,), such a k-sparse
vector y does not exist with probability greater than negl(n),
as otherwise an 0(2")-time adversary would be able to find
it by enumerating all candidates and use it to solve the SIS

problem with non-negligible probability. O

We similarly have the following lemma:

Lemma 2.6. Under Assumption 2.3, given a uniformly ran-
dom matrix A € Z3*™ for g, m, 3 € poly(n) and ¢ > n-f3,

Improved Algorithms for White-Box Adversarial Streams

Table 1. A summary of the bit complexities of our algorithms, as compared to the best known upper bounds for these problems in the
white-box adversarial streaming model. Dash means that we provide the first algorithm for the problem in the white-box stream model.
For k-sparse recovery, we require k > n° for an arbitrarily small constant ¢ > 0.

PROBLEM PREVIOUS SPACE OUR SPACE NOTE

K-SPARSE RECOVERY - O(k) DETECTS DENSE INPUT
Lo-NORM ESTIMATION O(nt=etee) O(n'~) ACHIEVES n°-APPROXIMATION
LOW-RANK MATRIX RECOVERY - O(nk) DETECTS HIGH-RANK INPUT
LOW-RANK TENSOR RECOVERY - O(k(ny + - +nq)) DETECTS HIGH CP-RANK INPUT
ROBUST PRINCIPLE COMPONENT ANAYSIS - O(nk +r) DETECTS NOT SPARSE + LOW RANK
RANK-DECISION O(nk?) O(nk) DETECTS HIGH-RANK INPUT
MAXIMUM MATCHING - O(nk) DETECTS LARGE MATCHING SIZE

if a matrix X € Zﬁxm is generated by an o(2")-time
adversary, then with probability at least 1 — negl(n), there
does not exist a matrix Y € ZZ{EX\/E with rank(Y) < k,
such that X # Y mod q and Ax = Ay mod q, for
x,y being the vectorizations of X and Y, respectively, and

k€ 0(7\/%7%“).

Proof. As in the proof of Lemma 2.4, an adversary is able
to try all matrices Y € Z%/Hx\/ﬁ with rank(Y) < k in

poly(n)Y™* time. This is because there are O(\/f) ways
of positioning the linearly independent columns of Y, with
poly(n)Y™ choices for their values when 3 € poly(n).
All remaining columns are linear combinations of the inde-
pendent columns. Since there are poly(n)¥-many possible
combinations of coefficients and we choose (v/m-k) of
them, there are poly(n)(V™~*)* choices for the dependent
columns. Therefore in total we have poly(n)Y™*-many
candidate matrices. For k € o(m), there exists an
o(2™)-time adversary that is able to iterate through all can-
didate matrices. Thus, under Assumption 2.3, with over-
whelming probability such a Y does not exist; otherwise,
given X and Y, an adversary can easily solve the SIS prob-
lem by outputting (z-y) mod q. O

3. Vector Recovery
3.1. k-Sparse Recovery Algorithm

Theorem 3.1. Under Assumption 2.3, given a parameter
k€ @(lo’gn) for an arbitrary constant ¢ > 0, and a length-
n input vector with integer entries bounded by poly(n),
there exists a streaming algorithm robust against o(n*) time-
bounded white-box adversaries that determines if the input
is k-sparse, and if so, recovers a k-sparse vector using (5(1{:)

bits of space in the random oracle model.

Notation: A function f(k) is said to be in w(k) if for all
real constants ¢ > 0, there exists a constant kg > 0 such
that f(k) > c- k for every k > k.

Algorithm 1 Recover-Vector(n, m, k)

Input: m integer updates u; to a length-n vector.

Let f(k) be a function in w(k) and O(k). Initialize a
Z((If(k)dog n)xn

uniformly random matrix A €
poly(n) and a zero vector v of length & - log n.
for each update u, with ¢ € [m] do
Update v by adding u, - A; to it, where A, is the i'"
column of A, and where the stream update changes the
i*" coordinate by an additive amount u, € ZLyq.
end for
for each k-sparse vector y with entries € [—3, 3] do
if Ay =v mod ¢ then
return y
end if
end for
return None

for q €

Proof. Algorithm 1 decides and recovers a k-sparse vector
using (5(]4:) bits. The algorithm receives a stream of integer
updates to an underlying vector, whose entries are assumed
to be at most 5 € poly(n) at any time. Thus we can interpret
the stream updates to be mod ¢ for ¢, 5 € poly(n) and

q=>n-p.

When an input vector x is k-sparse, for a uniformly ran-
dom sketching matrix A, it is guaranteed by Lemma 2.4
that Ay = Ax mod g implies y = x. Therefore, in the
k-sparse case, by enumerating over all k-sparse vectors, Al-
gorithm 1 correctly recovers the input vector y = x. On
the other hand, for inputs that have sparsity larger than
k, Lemma 2.4 guarantees that during post-processing, the
enumeration over k-sparse vectors will not find a vector y
satisfying Ay = v mod ¢. Thus, in this case Algorithm 1
outputs None as desired. In the random oracle model, we
can generate the columns of a uniformly random matrix A
on the fly. Then, Algorithm 1 only stores a vector of length
f(k) - log n with entries bounded by poly(n), so O(k) bits
of space. O

Remark 3.2. With roughly k space, any white-box adversar-

Improved Algorithms for White-Box Adversarial Streams

ially robust algorithm for k-sparse recovery has to assume
that the adversary is at most nk-time bounded. Otherwise,
given that an algorithm using k words of memory has at
most ¥ states, for a k'-sparse input x with k' slightly larger
than k, there exists an x' # x that goes to the same state as
x with high probability. Hence, the adversary would have
enough time to find x and x'. If the adversary inserts either
x or =’ in the stream, followed by —z, the algorithm cannot
tell if the input is 0 or ' — x. Thus, our algorithm is nearly
optimal in the sense that it uses O(k) bits assuming the
adversary is 0(2%1°8™) = o(n¥)-time bounded.

3.2. Fast k-Sparse Recovery

Algorithm 1 enumerates over all possible k-sparse vectors
in post-processing, which is time-inefficient. We now give a
faster version of k-sparse recovery, which is also capable of
identifying whether the input is k-sparse. In parallel we run
an existing deterministic k-sparse recovery scheme that has
fast update time assuming the input is k-sparse.

Theorem 3.3. (Jafarpour, 2011) There exists a determinis-
tic algorithm that recovers a k-sparse length-n vector in a
stream using O(k) bits of space and poly(n) time.

When the input vector is k-sparse, the algorithm in Theo-
rem 3.3 outputs the input vector. However, when taking in
an input vector with sparsity larger than k, this algorithm
erroneously assumes the input to be k-sparse and has no
guarantees, in which case the user cannot tell if the out-
put is a correct recovery or not. To fix this, we run the two
recovery schemes from Algorithm 1 and Theorem 3.3 in par-
allel. Any deterministic recovery scheme is robust against
white-box adversaries, and therefore using the algorithm of
Theorem 3.3 as a subroutine does not break our robustness.

Theorem 3.4. Under Assumption 2.3, given a parameter
ke o(h)"gcn) for an arbitrary constant ¢ > 0, and a length-
n input vector with integer entries bounded by poly(n),
there exists a streaming algorithm robust against o(n*) time-
bounded white-box adversaries that determines if the input
is k-sparse, and if so, recovers a k-sparse vector using @(k)

bits of space and poly(n) time in the random oracle model.

Proof. Algorithm 2 gives a fast version of k-sparse recovery.
By running the two schemes in parallel, at the end of the
stream, we can check the validity of its output as follows:
if the fast algorithm recovers a vector y* which is k-sparse
and has the same SIS sketch as the input, i.e., (Ay* = v
mod q), then by the correctness of Algorithm 1, y* equals
the input. On the other hand, if y* is not k-sparse or its
sketch does not match the SIS sketch v, then it must be that
the input was not k-sparse. In both cases, Algorithm 2 is
poly(n) time and returns the correct result. Both recovery
schemes from Algorithm 1 and Theorem 3.3 use O(k) bits

Algorithm 2 Fast-Recover(n, m, k)
Input: m integer updates u; to a length-n vector.
Initiate an instance of the fast k-sparse recovery scheme
F(-) from Theorem 3.3.

Let f(k) be a function in w(k) and O(k). Initialize a
(k)-logn)xn

uniformly random matrix A € ng
poly(n) and a zero vector v of length & - log n.
for each update u; with ¢ € [m] do
Feed the update to the initiated instance F(-).
Update v by adding u; - A; to it, where A; is the i*"
column of A, and where the stream update changes the
i'" coordinate by an additive amount u; € Z,.
end for
y* < eval(F(+))
if y* is k-sparse andalso ||y*|| < 3 andalso Ay* = v
mod g then
return y*
else
return None
end if

for q €

of space. Thus, Algorithm 2 uses O(k) bits as well. Evaluat-
ing the output of the fast recovery scheme (eval(F(-))) and
comparing the sketches takes poly(n) time, so the entire
algorithm takes poly(n) time. O

3.3. Applications of k-Sparse Recovery
3.3.1. ESTIMATING THE {3 NORM

Using our k-sparse recovery algorithm as a subroutine, we
can construct an efficient £y estimation algorithm. This algo-
rithm gives an n®-approximation to the £y, norm of a vector,
whose entries are assumed to be bounded by poly(n).

Theorem 3.5. Under Assumption 2.3, for constant € < 1,
there exists a streaming algorithm robust against o(n,”lfe)
time-bounded white-box adversaries, which estimates the
Lo norm of a length-n vector in the stream within a mul-
tiplicative factor of n® using @(nl_e) bits of space and
poly(n) time in the random oracle model.

Algorithm 3 Estimate-LO(n, m, ¢)
Input: m integer updates u; to a length-n vector.
result «+ Fast-recover(n, m, n! %)
if result = None then
return n' —¢
else
return /o (result)
end if

Proof. Algorithm 3 gives an n®-approximation to the ¢
norm using Algorithm 1 as a subroutine. Given a parame-
ter € > 0, we set the parameter k for k-sparse recovery to

Improved Algorithms for White-Box Adversarial Streams

be n'~¢. The space used by Algorithm 3 is then O(n'~*)
bits. Also, both the recovery and the post-processing run in
poly(n) time, so estimation can be done in poly(n) time.
For correctness, if the vector is n!~%-sparse, it can be re-
covered perfectly, and thus /y(result) is the exact value of
the ¢y norm. Otherwise, for an input vector with more than
n'~¢ non-zero entries, its £y norm lies in the range (n'—e,
n]. Hence, if we estimate its norm to be n'~¢, this gives an
n®-approximation. O

4. Matrix Recovery
4.1. Low-Rank Matrix Recovery

In addition to recovering sparse vectors, we can recover
low-rank matrices. We propose a white-box adversarially
robust algorithm for the low-rank matrix recovery problem,
which is efficient in terms of both time and space.

Similar to the k-sparse vector recovery problem, in order
to achieve a fast update time while ensuring that the algo-
rithm correctly detects inputs with rank larger than expected,
we run two matrix recovery schemes in parallel. We will
maintain one sketch based on a uniformly random matrix to
distinguish if the input rank is too high to recover, and the
other sketch will allow us to recover the input matrix if it is
promised to be low rank.

Theorem 4.1. (Recht et al., 2010) Let « = O(nk logn) and
let A be a random matrix of dimension o X n?, with entries
sampled from an i.i.d. symmetric Bernoulli distribution:

\/g with probability %
! —\/g with probability %

Interpret A as a linear map A : R™"*"™ — R that computes
Az for x being the vectorization of an input X € R"*™
Then, given a rank-r matrix Xo € R™*" and b = A(X)
Jor 1 < r < min(k,n/2), with high probability X
is the unique low-rank solution to A(X) = b satisfying
rank(X) < r. Moreover, X can be recovered by solving
a convex program: argminx || X ||« subject to A(X) = 0.

A;

We state our main theorem for matrix recovery:

Theorem 4.2. Under Assumption 2.3, given an integer
parameter k, there exists a streaming algorithm robust
against o(n™*) time-bounded white-box adversaries that
either states that the input matrix has rank greater than
k, or recovers the input matrix with rank at most k using

O(nk) bits of space and poly(n) time in the random oracle
model.

Proof. Algorithm 4 decides and recovers a matrix with rank
no greater than & using O(nk) bits of space. For any input
matrix X € ZZX” with 8 € poly(n), ¢ > n -, and

Algorithm 4 Recover-Matrix(n, m, k)

Input: m integer updates u; to an n X n matrix.
Let f(k) be a function in w(k) and O(k). Initialize a

uniformly random matrix H € Zg (k)mlognxn® o q €
poly(n), a matrix A : a x n? as specified in Theorem
4.1, and zero vectors v, w of length f(k) - nlogn.
for each update v, with ¢ € [m] do
Update v by adding u;- H; to it, and update w by adding
uy - A; to it, where 4 corresponds to the vectorized index
of the update, and where H;, A; are the it" columns of
H, A, respectively.
end for
Xo < argminx|| X || subject to A-vectorize(X) = w
if rank(Xo) < k andalso X, € Z3*" andalso H -
vectorize(Xo) =v mod ¢ then
return X
else
return None
end if

rank(X) < k, by the uniqueness of the low-rank solution
given in Theorem 4.1, X can be recovered by solving a
convex program, and its product with the matrix A matches
the sketch v. On the other hand, when rank(X) > k, by
Lemma 2.6 under the SIS hardness assumption, there does
not exist a low-rank matrix Y distinct from X, for which
Hy = v = Hx mod ¢ with =, y being the vectorization
of X,Y, respectively. Therefore, in this case Algorithm 4
outputs None, as desired.

Both random matrices H and A used in Algorithm 4 can
be generated on the fly in the random oracle model. There-
fore, the recovery algorithm only stores two sketch vectors
of length O(nk) with entries bounded by poly(n), taking
O(nk) bits in total. Solving the convex problem with the
ellipsoid method and then comparing the solution with the

sketch is poly(n) time, giving overall poly(n) time. [

Remark 4.3. We argue the optimality of our low-rank
matrix recovery algorithm: with roughly nk space, any
white-box adversarially robust algorithm for low-rank ma-
trix recovery has to assume that the adversary is n**-time
bounded. Otherwise, the adversary has enough time to find
a pair of inputs X # X' that go to the same state and sat-
isfy rank(X' — X) > k. Inserting X then —X, or X' then
— X into the stream, the algorithm cannot tell if the input
is 0 or X' — X. Hence, our O(nk)-bit algorithm assuming
an o(2"F198 ™) = o(n"*) adversary is nearly optimal.

4.2. Applications of Low-Rank Matrix Recovery

Our low-rank matrix recovery algorithm can be applied to a
number of other problems on data streams.

Improved Algorithms for White-Box Adversarial Streams

4.2.1. RANK DECISION PROBLEM

Definition 4.4. (Rank Decision Problem). Given an integer
k, and an n X n matrix A, determine whether the rank of A
is larger than k.

Theorem 4.5. Under Assumption 2.3, given an integer
parameter k, there exists a streaming algorithm robust
against o(n"™*) time-bounded white-box adversaries that
solves the rank decision problem using @(nk) bits of space
and poly(n) time in the random oracle model.

Proof. This problem is solved by running Algorithm 4 with
parameter k. This directly improves (Ajtai et al., 2022). [

4.2.2. GRAPH MATCHING

Definition 4.6. (Maximum Matching Problem) Given an
undirected graph G = (V, E), the maximum matching prob-
lem is to find a maximum set of vertex disjoint edges in G.
In a stream, we see insertions and deletions to edges.

Theorem 4.7. Under Assumption 2.3, given an integer
upper bound k' on the size of a maximum matching in
the graph, there is a streaming algorithm robust against
o(n2"%") time-bounded white-box adversaries that finds a
maximum matching in a graph using O(nk’) bits of space
and poly(n) time in the random oracle model.

Proof. We can use the fact that the rank of the n x n Tutte
matrix A of the graph G, where A; ; = 0 if there is no
edge from i to j, and A; ; = x; ; and A;; = —x; ; for an
indeterminate x; ; otherwise, equals twice the maximum
matching size of G. Here the rank of A is defined to be the
maximum rank of A over the reals over all assignments to its
indeterminates. The main issue, unlike standard algorithms
(see, e.g., Sections 4.2.1 and 4.2.2 of (Cheung et al., 2013)),
is that we cannot fill in the entries of A randomly in a stream
in the white-box model because the adversary can see our
state and try to fool us. Fortunately, there is a fix - in the
stream we replace all ; ; deterministically with the number
1. Call this deterministically filled in matrix A’, and note
that the rank of A’ is at most the rank of A, and the latter
is twice the maximum matching size. We then run our low-
rank matrix recovery algorithm with parameter % set to 2k’.
If we detect that the rank of A’ is greater than 2k’, then the
rank of A is greater than 2k’, and the maximum matching
size is larger than k’ and we stop the algorithm and declare
this. Otherwise, we have successfully recovered A’ and now
that the stream is over, the locations of the 1s are exactly the
indeterminates in A, and so we have recovered A and hence
G and thus can run any offline algorithm for computing a
maximum matching of G. O

4.3. Extension to Robust PCA and Tensors

The problem of Robust Principal Component Analysis is
defined as follows:

Definition 4.8. (Robust Principal Component Analysis)
Consider a data matrix M € Zy*" for ¢ > poly(n),
such that there exists a decomposition M = L + S, where
L e Z;’;X” satisfies rank(L) < k and S € ZZ;X” has at
most r non-zero entries. The robust principal component
analysis (RPCA) problem seeks to find the components L
and S.

A recurring idea in our algorithms is to run two algorithms
in parallel: (1) an algorithm to detect if the input is drawn
from a small family of inputs, such as those which are sparse
or low rank or both, and (2) a time-efficient deterministic
algorithm which recovers the input if it is indeed drawn from
such a family. The algorithm in (1) relies on the hardness
of SIS while the algorithm in (2) is any time and space
efficient deterministic, and thus white box adversarially
robust, algorithm. For (1) we use an SIS matrix, and for
(2), for robust PCA we use the algorithm of (Tanner & Vary,
2020) while for tensors we use the algorithm of (Grotheer
et al., 2019). See Appendix A and Appendix B for details.

5. Conclusion

We give robust streaming algorithms against computation-
ally bounded white-box adversaries under cryptographic
assumptions. We design efficient recovery algorithms for
vectors, matrices, and tensors which can detect if the input
is not sparse or low rank. We use these to improve upon and
solve new problems in linear algebra and optimization, such
as detecting and finding a maximum matching if it is small.
It would be interesting to explore schemes that can recover
vectors that are only approximately k-sparse or matrices that
are only approximately rank-k. We make progress on the
latter by considering robust PCA, but there is much more to
be done. Also, although our algorithm improves the space-
accuracy trade-off for /g-norm estimation, it is unclear if it
is optimal, and it would be good to generalize to £,, norms
for p > 0, as well as other statistics of a vector.

Acknowledgment: We thank Aayush Jain for a helpful dis-
cussion on pseudorandom functions and the random oracle
model. D. Woodruff would like to thank support from the
National Institute of Health (NIH) grant 5R01 HG 10798-2
and a Simons Investigator Award.

References

Aggarwal, D., Dadush, D., Regev, O., and Stephens-
Davidowitz, N. Solving the shortest vector problem
in 2n time using discrete gaussian sampling: Extended
abstract. In Proceedings of the Forty-Seventh Annual

Improved Algorithms for White-Box Adversarial Streams

ACM Symposium on Theory of Computing, STOC 15,
pp- 733-742, New York, NY, USA, 2015. Associa-
tion for Computing Machinery. ISBN 9781450335362.

doi: 10.1145/2746539.2746606. URL https://doi.

org/10.1145/2746539.2746606.

Ajtai, M., Braverman, V., Jayram, T., Silwal, S., Sun,
A., Woodruff, D. P, and Zhou, S. The white-box ad-
versarial data stream model. In Proceedings of the
41st ACM SIGMOD-SIGACT-SIGAI Symposium on Prin-
ciples of Database Systems, PODS ’22, pp. 15-27,
New York, NY, USA, 2022. Association for Comput-
ing Machinery. ISBN 9781450392600. doi: 10.1145/
3517804.3526228.
1145/3517804.3526228.

Alon, N., Matias, Y., and Szegedy, M. The space complexity
of approximating the frequency moments. In Proceed-
ings of the Twenty-Eighth Annual ACM Symposium on
Theory of Computing, STOC *96, pp. 20-29, New York,
NY, USA, 1996. Association for Computing Machinery.
ISBN 0897917855. doi: 10.1145/237814.237823. URL
https://doi.org/10.1145/237814.237823.

Alon, N., Matias, Y., and Szegedy, M. The space complexity
of approximating the frequency moments. J. Comput.
Syst. Sci., 58(1):137-147, 1999.

Alon, N., Ben-Eliezer, O., Dagan, Y., Moran, S., Naor,
M., and Yogev, E. Adversarial laws of large numbers
and optimal regret in online classification. In STOC "21:
53rd Annual ACM SIGACT Symposium on Theory of
Computing, pp. 447-455, 2021.

Attias, 1., Cohen, E., Shechner, M., and Stemmer, U. A
framework for adversarial streaming via differential pri-
vacy and difference estimators. CoRR, abs/2107.14527,
2021.

Banerjee, A., Peikert, C., and Rosen, A. Pseudoran-
dom functions and lattices. volume 2011, pp. 401,
01 2011. ISBN 978-3-642-29010-7. doi: 10.1007/
978-3-642-29011-4_42.

Bellare, M. and Rogaway, P. Random oracles are practical:
A paradigm for designing efficient protocols. In Proceed-
ings of the 1st ACM Conference on Computer and Com-
munications Security, CCS *93, pp. 6273, New York,
NY, USA, 1993. Association for Computing Machinery.
ISBN 0897916298. doi: 10.1145/168588.168596. URL
https://doi.org/10.1145/168588.168596.

Bellare, M. and Rogaway, P. The exact security of digital
signatures-how to sign with rsa and rabin. In Maurer,
U. (ed.), Advances in Cryptology — EUROCRYPT 96,
pp- 399-416, Berlin, Heidelberg, 1996. Springer Berlin
Heidelberg. ISBN 978-3-540-68339-1.

URL https://doi.org/10.

10

Ben-Eliezer, O. and Yogev, E. The adversarial robustness
of sampling. In Proceedings of the 39th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database
Systems, PODS, pp. 49-62, 2020.

Ben-Eliezer, O., Jayaram, R., Woodruff, D. P., and Yo-
gev, E. A framework for adversarially robust stream-
ing algorithms. In Proceedings of the 39th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, PODS’20, pp. 63-80, New York,
NY, USA, 2020. Association for Computing Machin-
ery. ISBN 9781450371087. doi: 10.1145/3375395.
3387658. URL https://doi.org/10.1145/
3375395.3387658.

Ben-Eliezer, O., Jayaram, R., Woodruff, D. P., and Yogev,
E. A framework for adversarially robust streaming algo-
rithms. SIGMOD Rec., 50(1):6-13, 2021.

Ben-Eliezer, O., Eden, T., and Onak, K. Adversarially robust
streaming via dense-sparse trade-offs. In 5th Symposium
on Simplicity in Algorithms, SOSA, 2022.

Biggio, B., Corona, 1., Maiorca, D., Nelson, B., Srndic,
N., Laskov, P., Giacinto, G., and Roli, F. Evasion at-
tacks against machine learning at test time. In Machine
Learning and Knowledge Discovery in Databases - Euro-
pean Conference, ECML PKDD, Proceedings, Part I,
pp. 387402, 2013.

Braverman, V., Hassidim, A., Matias, Y., Schain, M., Silwal,
S., and Zhou, S. Adversarial robustness of streaming
algorithms through importance sampling. In Advances
in Neural Information Processing Systems 34: Annual
Conference on Neural Information Processing Systems,
NeurlPS, 2021.

Brown, P, Haas, P. J., Myllymaki, J., Pirahesh, H., Rein-
wald, B., and Sismanis, Y. Toward automated large-scale
information integration and discovery. In Data Manage-
ment in a Connected World, Essays Dedicated to Hartmut
Wedekind on the Occasion of His 70th Birthday, pp. 161—
180, 2005.

Candes, E. J. and Wakin, M. B. An introduction to compres-
sive sampling. IEEE Signal Process. Mag., 25(2):21-30,
2008. doi: 10.1109/MSP.2007.914731. URL https:
//doi.org/10.1109/MSP.2007.914731.

Candes, E. J., Li, X., Ma, Y., and Wright, J. Ro-
bust principal component analysis? J. ACM, 58
(3), jun 2011. ISSN 0004-5411. doi: 10.1145/

1970392.1970395. URL https://doi.org/10.
1145/1970392.1970395.

Canetti, R., Goldreich, O., and Halevi, S. The ran-
dom oracle methodology, revisited. J. ACM, 51(4):

https://doi.org/10.1145/2746539.2746606
https://doi.org/10.1145/2746539.2746606
https://doi.org/10.1145/3517804.3526228
https://doi.org/10.1145/3517804.3526228
https://doi.org/10.1145/237814.237823
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/3375395.3387658
https://doi.org/10.1145/3375395.3387658
https://doi.org/10.1109/MSP.2007.914731
https://doi.org/10.1109/MSP.2007.914731
https://doi.org/10.1145/1970392.1970395
https://doi.org/10.1145/1970392.1970395

Improved Algorithms for White-Box Adversarial Streams

557-594, jul 2004. ISSN 0004-5411. doi: 10.1145/
1008731.1008734. URL https://doi.org/10.
1145/1008731.1008734.

Chakrabarti, A., Ghosh, P., and Stoeckl, M. Adversarially
robust coloring for graph streams. In 13th Innovations in
Theoretical Computer Science Conference, ITCS, 2022.

Chan, T. M. A dynamic data structure for 3-d convex hulls
and 2-d nearest neighbor queries. J. ACM, 57(3):16:1-
16:15, 2010.

Chan, T. M. and He, Q. More dynamic data structures for
geometric set cover with sublinear update time. In 37th
International Symposium on Computational Geometry,
SoCG, pp. 25:1-25:14, 2021.

Chandrasekaran, V., Sanghavi, S., Parrilo, P. A., and Will-
sky, A. S. Rank-sparsity incoherence for matrix decom-
position. SIAM Journal on Optimization, 21(2):572—
596, 2011. doi: 10.1137/090761793. URL https:
//doi.org/10.1137/090761793.

Cheung, H. Y., Kwok, T. C., and Lau, L. C. Fast matrix rank
algorithms and applications. J. ACM, 60(5):31:1-31:25,
2013.

Clifford, P. and Cosma, I. A. A simple sketching algorithm
for entropy estimation over streaming data. In Interna-
tional Conference on Artificial Intelligence and Statistics,
2013.

Cubuk, E. D., Zoph, B., Mané, D., Vasudevan, V., and Le,
Q. V. Autoaugment: Learning augmentation policies
from data. CoRR, abs/1805.09501, 2018.

Dasu, T., Johnson, T., Muthukrishnan, S., and Shkapenyuk,
V. Mining database structure; or, how to build a data qual-
ity browser. In Proceedings of the 2002 ACM SIGMOD
International Conference on Management of Data, pp.
240-251, 2002.

Driscoll, J. R., Sarnak, N., Sleator, D. D., and Tarjan, R. E.
Making data structures persistent. J. Comput. Syst. Sci.,
38(1):86—-124, 1989.

Fiat, A. and Kaplan, H. Making data structures confluently
persistent. J. Algorithms, 48(1):16-58, 2003.

Ganguly, S. and Majumder, A. Deterministic k-set struc-
ture. In Vansummeren, S. (ed.), Proceedings of the
Twenty-Fifth ACM SIGACT-SIGMOD-SIGART Sympo-
sium on Principles of Database Systems, June 26-28,
2006, Chicago, Illinois, USA, pp. 280-289. ACM, 2006.

Goldreich, O., Goldwasser, S., and Micali, S. How to con-
struct random functions. J. ACM, 33(4):792-807, aug
1986. ISSN 0004-5411. doi: 10.1145/6490.6503. URL
https://doi.org/10.1145/6490.6503.

11

Goodfellow, I. J., Shlens, J., and Szegedy, C. Ex-
plaining and harnessing adversarial examples. CoRR,
abs/1412.6572, 2014. URL http://arxiv.org/
abs/1412.6572.

Grotheer, R., Li, S., Ma, A., Needell, D., and Qin, J. Iterative
hard thresholding for low cp-rank tensor models. 08 2019.

Hassidim, A., Kaplan, H., Mansour, Y., Matias, Y., and
Stemmer, U. Adversarially robust streaming algorithms
via differential privacy. In Advances in Neural Infor-
mation Processing Systems 33: Annual Conference on
Neural Information Processing Systems, NeurIPS, 2020.

Huang, S. H., Papernot, N., Goodfellow, I. J., Duan, Y.,
and Abbeel, P. Adversarial attacks on neural network
policies. In 5th International Conference on Learning
Representations, ICLR, 2017.

Ilyas, A., Engstrom, L., and Madry, A. Prior convictions:
Black-box adversarial attacks with bandits and priors.
CoRR, abs/1807.07978, 2018.

Jafarpour, S. Deterministic Compressed Sensing. PhD thesis,
Princeton University, 2011.

Jayaram, R. and Woodruff, D. P. Towards optimal mo-
ment estimation in streaming and distributed models.
ACM Trans. Algorithms, may 2023. ISSN 1549-6325.
doi: 10.1145/3596494. URL https://doi.org/10.
1145/3596494. Just Accepted.

Kaplan, H. Persistent data structures. In Handbook of Data
Structures and Applications. Chapman and Hall/CRC,
2004.

Kaplan, H., Mansour, Y., Nissim, K., and Stemmer, U. Sepa-
rating adaptive streaming from oblivious streaming using
the bounded storage model. In Advances in Cryptology
- CRYPTO 2021 - 41st Annual International Cryptology
Conference, CRYPTO, Proceedings, Part III, pp. 94-121,
2021.

Karney, C. F. F. Sampling exactly from the normal dis-
tribution. ACM Trans. Math. Softw., 42(1), jan 2016.
ISSN 0098-3500. doi: 10.1145/2710016. URL https:
//doi.org/10.1145/2710016.

Kim, S. B. Pseudorandom Functions with New Proper-
ties from Hard Lattice Problems. PhD thesis, 2021. -
Database copyright ProQuest LLC; ProQuest does not
claim copyright in the individual underlying works; -
2023-03-05.

Koblitz, N. and Menezes, A. The random oracle model: A
twenty-year retrospective. Cryptology ePrint Archive, Pa-
per 2015/140, 2015. URL https://eprint.iacr.
org/2015/140. https://eprint.iacr.org/
2015/140.

https://doi.org/10.1145/1008731.1008734
https://doi.org/10.1145/1008731.1008734
https://doi.org/10.1137/090761793
https://doi.org/10.1137/090761793
https://doi.org/10.1145/6490.6503
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1412.6572
https://doi.org/10.1145/3596494
https://doi.org/10.1145/3596494
https://doi.org/10.1145/2710016
https://doi.org/10.1145/2710016
https://eprint.iacr.org/2015/140
https://eprint.iacr.org/2015/140
https://eprint.iacr.org/2015/140
https://eprint.iacr.org/2015/140

Improved Algorithms for White-Box Adversarial Streams

Kurakin, A., Goodfellow, L. J., and Bengio, S. Adversarial
machine learning at scale. In 5th International Confer-
ence on Learning Representations, ICLR, Conference
Track Proceedings, 2017.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207-1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Liu, Y., Chen, X., Liu, C., and Song, D. Delving into trans-
ferable adversarial examples and black-box attacks. In 5tk
International Conference on Learning Representations,
ICLR, Conference Track Proceedings, 2017.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and
Vladu, A. Towards deep learning models resistant to
adversarial attacks. In 6th International Conference on
Learning Representations, ICLR, Conference Track Pro-
ceedings, 2018.

Menuhin, B. and Naor, M. Keep that card in mind: Card
guessing with limited memory. CoRR, abs/2107.03885,
2021.

Micciancio, D. and Peikert, C. Hardness of sis and Iwe
with small parameters. Cryptology ePrint Archive, Pa-
per 2013/069, 2013. URL https://eprint.iacr.
org/2013/069. https://eprint.iacr.org/
2013/0609.

Padmanabhan, S., Bhattacharjee, B., Malkemus, T.,
Cranston, L., and Huras, M. Multi-dimensional cluster-
ing: A new data layout scheme in DB2. In Proceedings
of the 2003 ACM SIGMOD International Conference on
Management of Data, pp. 637-641, 2003.

Recht, B., Fazel, M., and Parrilo, P. A. Guaranteed
minimum-rank solutions of linear matrix equations via
nuclear norm minimization. SIAM Review, 52(3):471-
501, 2010. doi: 10.1137/070697835. URL https:
//doi.org/10.1137/070697835.

Roghani, M., Saberi, A., and Wajc, D. Beating the folklore
algorithm for dynamic matching. In /3th Innovations in
Theoretical Computer Science Conference, ITCS, 2022.

Schmidt, L., Santurkar, S., Tsipras, D., Talwar, K., and
Madry, A. Adversarially robust generalization requires
more data. In Advances in Neural Information Process-
ing Systems 31: Annual Conference on Neural Informa-
tion Processing Systems 2018, NeurlIPS., pp. 5019-5031,
2018.

Selinger, P. G., Astrahan, M. M., Chamberlin, D. D., Lo-
rie, R. A., and Price, T. G. Access path selection in a
relational database management system. In Proceedings
of the 1979 ACM SIGMOD International Conference on
Management of Data, pp. 23-34. ACM, 1979.

12

Shukla, A., Deshpande, P., Naughton, J. F., and Ramasamy,
K. Storage estimation for multidimensional aggregates in
the presence of hierarchies. In VLDB’96, Proceedings of
22th International Conference on Very Large Data Bases,
pp- 522-531, 1996.

Szegedy, C., Zaremba, W., Sutskever, 1., Bruna, J., Erhan,
D., Goodfellow, I. J., and Fergus, R. Intriguing prop-
erties of neural networks. International Conference on
Learning Representations, 2014.

Tanner, J. and Vary, S. Compressed sensing of low-rank
plus sparse matrices. ArXiv, abs/2007.09457, 2020.

Tramer, F., Kurakin, A., Papernot, N., Goodfellow, I. J.,
Boneh, D., and McDaniel, P. D. Ensemble adversarial
training: Attacks and defenses. In 6¢h International Con-
ference on Learning Representations, ICLR, Conference
Track Proceedings, 2018.

Wajc, D. Rounding dynamic matchings against an adap-
tive adversary. In Proccedings of the 52nd Annual ACM
SIGACT Symposium on Theory of Computing, STOC, pp.
194-207, 2020.

Woodruff, D. P. and Zhou, S. Tight bounds for adversarially
robust streams and sliding windows via difference estima-
tors. In 62nd IEEE Annual Symposium on Foundations
of Computer Science, FOCS, pp. 1183-1196, 2021.

A. Robust Principal Component Analysis

As in Section 2.2, we derive the following lemma based on
the hardness of the SIS problem.

Lemma A.1. Under Assumption 2.3, given a uniformly
random matrix A € Zy*™ for ¢, m, 3 € poly(n) and q >
n- B, ifamatrix X € Zﬁxm is generated by an o(2")-
time adversary, then with probability > 1 — negl(n), there
do not exist matrices L, S € Zﬁxm with rank(L) < k
and* nnz(S) < r, forwhich X # L+S mod qand Az =
A(l+s) mod g, for x,1, s being the vectorization of X, L

and S, respectively, and r, k satisfying k € 0(%1155:).

Proof. Similar to the proof of Lemma 2.6, an adversary
is able to try all pairs of matrices L, S € Z;{mx‘/ﬁ with

rank(L) < kand nnz(S) < r in poly(n)"*V™ time. As
shown in the proof of Lemma 2.6, there are poly(n)Vv™*-
many candidates for L. For the sparse matrix .S, there are
(“:) € poly(n)" ways of positioning the non-zero entries,
with their values chosen in poly(n). Therefore in total there
are poly(n)" V™ pairs of candidate matrices.

*We use nnz(S) to denote the number of non-zero entries of a
matrix S.

https://eprint.iacr.org/2013/069
https://eprint.iacr.org/2013/069
https://eprint.iacr.org/2013/069
https://eprint.iacr.org/2013/069
https://doi.org/10.1137/070697835
https://doi.org/10.1137/070697835

Improved Algorithms for White-Box Adversarial Streams

When k € 0(%11;)5:), there exists an o(2™)-time adver-

sary that is able to iterate through all candidate pairs. Thus,
under Assumption 2.3, with overwhelming probability such
an L, S do not exist, otherwise, given L and S, an ad-
versary can solve the SIS problem by outputting (2-I-s)
mod gq. O

As in our matrix recovery algorithm, we run a compressed
sensing scheme for RPCA in parallel to achieve a fast re-
covery time. This fast scheme approximates a unique pair
of low rank and sparse matrices from their sum, assuming
the sum is decomposable into a pair of such matrices.
Theorem A.2. (Tanner & Vary, 2020) Let « = O((nk+7)-
logn), and let A be a random matrix of dimension « X n2,
with entries sampled from an i.i.d. symmetric Bernoulli
distribution:

A \/g with probability %
N —\/g with probability %

Interpret A as a linear map A : R™"™ — R® which
computes Ax for x being the vectorization of an input
X € R"™ ™ Then given b = A(Lg + So), with high prob-
ability, Lo, Sy is the unique solution to A(L + S) = b
satisfying rank(Lo) < k and nnz(S) < r. More-
over, Ly, Sy can be recovered efficiently to a precision of
(L +S) — (Lo + So)|lr < 42¢ by solving a semidefinite
program:

argming, s(| Ll + v/2r/s - |1S]1)

subject to

IA(L +5) = blls <e

with the nuclear norm ||-||. of a matrix M defined as the
sum of its singular values |M||, = >, 0;(M); and the
1-norm ||-||1 defined as its maximum absolute column sum
Ml = mazo<jcn 325y [Mij]-

Note that for an integer stream, we can set the error param-
etere < m and then round the entries of the result to
integers to guarantee exact recovery.

Proof. (of Theorem 1.5) Algorithm 5 determines if an n xn
input matrix can be decomposed into a low rank matrix plus
a sparse matrix. For any input matrix Xy = Lo + Sy €
Zy " withrank(Lo) < kand nnz(So) < r, by the unique-
ness of the solution pair given in Theorem A.2, Lg, Sy can
be recovered by solving a semidefinite program, and the
product of their sum with the matrix matches the sketch
v. On the other hand, when the input X cannot be decom-
posed into low rank and sparse components, by Lemma
A.1 under the SIS hardness assumption, there does not ex-
ist a pair of low rank and sparse matrices L', S’ such that

13

Algorithm 5 RPCA(n, m, k, r)
Input: m integer updates u; to an n X n matrix.

Let f(k) be a function in w(k) and O(k). Initialize a

2
uniformly random matrix H € Z,(Jf (k) lognxn® gop

q € poly(n), a fast recovery matrix A : (nk +7)logn x
n? as specified in A.2, and zero vectors v, w of length
(f(k)-n+r)logn.
for each update u; with ¢ € [m] do
Update v by adding u;- H; to it, and update w by adding
uy - A; to it, where 4 corresponds to the vectorized index
of the update, and where H;, A; are the it" columns of
H, A, respectively.
end for
Lo, So < argming s(|| L]« ++/2r/s-||S||1) subject to
AL +8) =bll2 < 5ongy-
if rank(Lo) < k andalso nnz(Sp) < r andalso
Lo, Sy € ngn andalso H - vectorize(Lg + Sp) = v
mod ¢ then
return Lg, Sy
else
return None
end if

X#AL+SandH(I'+s') =v=Hz mod g, forl’, s x
being the vectorization of L', S’, X, respectively. Therefore,
in this case Algorithm 5 outputs None, as desired.

Both random matrices H and A used in Algorithm 5 can be
generated on the fly in the random oracle model. Therefore,
the recovery algorithm only stores two sketch vectors of
length O(nk + r) with entries bounded by poly(n), taking
O(nk + r) bits in total. Also, solving the semidefinite
program and then comparing the solution with the sketch
takes poly(n) time, giving overall poly(n) time. O

B. Tensor Recovery

Similar to our vector and matrix recovery algorithms, we
propose an algorithm which recovers tensors with low CAN-
DECOMP/PARAFAC (CP) rank.

Notation: Let ® denote the outer product of two vectors.
Then one can build a rank-1 tensor in Z"1*"2X " X"d by
taking the outer product 1 ® 2 ® - - - ® x4 where z; € Z"¢.
Definition B.1. (CP-rank) For a tensor X € Zy+ > >"4,
consider it to be the sum of r rank-1 tensors: X =
S (i1 @ Tin @ - ® Tiq) where T;; € Zy’. The small-
est number of rank-1 tensors that can be used to express a
tensor X is then defined to be the rank of the tensor.

As in Section 2.2, we derive the following lemma based on
the hardness of the SIS problem.

Lemma B.2. Under Assumption 2.3, given a uniformly
random matrix A € Zy*™ for ¢, m, 3 € poly(n) and q >

Improved Algorithms for White-Box Adversarial Streams

n- B, if atensor X € Zg' ™" is generated by an o(2")-
time adversary, where [[n; = m, then with probability
> 1—negl(n), there does not exist a tensor Y € Zgl XX na
with rank(Y) < k, such that X #Y mod q and Ax =
Ay mod q, for x,y being the vectorization of X and Y,
respectively, [[n; = m, and k € o(m).

Proof. Similar to the proof of Lemma 2.6, an adversary
is able to try all low rank tensors Y € Zj' """ with

rank(Y) < k in poly(n)*(™++74) time. For each x;;,
there are poly(n)™ choices of its value. So we have
poly(n)™ T " many possible rank-1 tensors. Choos-
ing k-many of them to generate a rank-k tensor, that is
poly(n)k(mit-+na) candidates in total.

When k € o(m), there exists an o(2")-time
adversary that is able to iterate through all candidate pairs.
Thus, under Assumption 2.3, with overwhelming probability
such a Y does not exist; otherwise, given L and S, an
adversary can solve the SIS problem by outputting (z-y)
mod gq. O

As we did for vector and matrix recovery problems, we can
run a fast low rank tensor estimation scheme in parallel in
our tensor recovery algorithm.

Theorem B.3. (Grotheer et al., 2019) Let A

R X xna _y RE(mitna)logn he g Gaussian measure-
ment operator whose entries are properly normalized, i.i.d.
Gaussian random variables. Then given a measurement
b = A(X) for a tensor X € R" X" there exists an
algorithm that gives an estimate Xy € R™ > *"d with

X0 — X||Fr < m with high probability using poly(n)

time, for n, = Hil n;.

Remark B.4. For our purposes, we round the Gaussian
random variables to additive integer multiples of m.
This rounding changes the norm of the measurement by at

most additive —*— and therefore asymptotically does not

poly(n)

change the result in Theorem B.3. The discretized random
variables can then be constructed to the desired precision
using uniformly random bits (Karney, 2016) generated by a

random oracle.

Then running the algorithm from Theorem B.3 in a stream,
we only have to maintain and update a measurement vec-
tor of length O(k(ny + ---ngq)) with entries bounded in

poly(n), giving an overall O(k(ny + - -+ + nq)) bits of
space usage.

For an integer stream, we can round the entries of the esti-
mation result to integers to guarantee exact recovery. We
formulate the proof for the low rank tensor recovery algo-
rithm as follows.

Proof. (of Theorem 1.6) Algorithm 6 determines if an n; X

14

Algorithm 6 Recover-tensor(ny, - - - ng, m, k)

Input: m integer updates u; to an n; X - -+ X ng tensor.
Initiate an instance of the fast low rank tensor recovery
scheme F(-) from Theorem A.2.

Let n =]_[(11 n;. Let f(k) be a function in w(k)

and O(k). Initialize a uniformly random matrix H €

Zg”(k)(”ﬁ'”*"d) 1087X™ for g € poly(n), and a zero vec-

tor v of length f(k)(ni + - -- 4+ ng) logn
for each update u, with ¢ € [m] do
Feed the update to the initiated instance F(-).
Update v by adding u; - A; to it, where H; is the i"
column of H, and where the stream update changes
the i*" coordinate by an additive amount u; € Zyq.
end for
X* + eval(F(+))
if rank(X*) < k andalso X* € Z3'*""*"* andalso
H - vectorize(X*) = v mod ¢ then
return X~
else
return None
end if

ng X --- X ng input tensor has rank at most k£ and if so,
recovers the input tensor.

For any input tensor X € Z73** """ with rank(X) < k,
by Theorem B.3, eval(F(-)) correctly reconstructs it. Also,
the product of it with the matrix H matches the sketch
v. On the other hand, when the input rank(X) > k, by
Lemma B.2 under the SIS hardness assumption, there does
not exist a tensor Y with rank(Y’) < k such that X # Y
and Hy = v = Hx mod ¢, for x, y being the vectorization
of X,Y, respectively. Therefore, in this case Algorithm 6
outputs None, as desired.

The random matrix H used in Algorithm 6 can be gen-
erated on the fly in the random oracle model. Therefore,
the recovery algorithm only stores a sketch vector of length

O(k(n1+- - -+nq)) with entries bounded by poly(n). Also,
as stated in Remark B.4, the fast recovery scheme F (-) takes

O(k(n1 + - - + nq)) bits of space, so the total space usage
is O(k(n1 + -+ 4+ ng)). Both the evaluation of the fast
recovery scheme eval(F(+)) and the comparison of vectors

take poly(n) time, giving overall poly(n) time. O

