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Abstract

Automatic Speech Recognition (ASR) systems
for low-resource languages like Hindi often
suffer from transcription errors due to limited
training data and linguistic complexity. Post-
ASR correction is a key strategy to address
these issues, particularly given the prevalence
of code-mixing, compounding, and segmenta-
tion errors. We evaluate both fine-tuned lan-
guage models (LMs) and large language mod-
els (LLMs) for this task, treating it as a high-
overlap text editing problem. Experiments on
the Lahaja dataset reveal a U-shaped inverse
scaling trend: smaller models like mT5 and
ByTS5 outperform larger LLMs such as LLaMA
(1B-70B) and GPT-40-mini, even in in-context
learning (ICL) settings. While ByT5 excels
at character-level corrections, mT5 performs
better on semantic errors. We also observe
significant degradation in out-of-domain set-
tings and propose mitigation strategies to retain
domain fidelity. Our results highlight that in-
ductive bias and task alignment often outweigh
model scale for effective post-ASR correction
in low-resource contexts.

1 Introduction

Automatic Speech Recognition (ASR) systems en-
able seamless human-computer interaction (Zierau
et al., 2023), especially in linguistically diverse
countries like India. These systems are increas-
ingly adopted across domains such as agriculture,
education, e-commerce, and governance, helping
bridge digital accessibility gaps (Javed et al., 2022;
Bhogale et al., 2023b). However, building robust
ASR systems for Hindi, the most widely spoken In-
dian language, remains challenging due to its low-
resource nature, limited availability of high-quality
annotated speech data (Adiga et al., 2021), and
complex linguistic characteristics (Kachru, 2006).

Post-ASR correction has shown to improve tran-
scription accuracy by using language models (LM)
trained on large text-only corpora, which are often

more widely available than speech-text data, for
a low-resource language like Hindi (Kumar et al.,
2022). Unlike traditional n-gram based LMs, mod-
ern LMs such as TS (Raffel et al., 2020) and Large
LMs (LLMs) such as GPT (Brown et al., 2020) and
LLaMA (Touvron et al., 2023), capture rich seman-
tic and contextual information, enabling them to ef-
fectively tackle both linguistic and domain-specific
nuances. The post-ASR correction task typically
addresses a wide range of errors arising out of ASR
systems, including text edit errors, phonetic, gram-
matical and higher order semantic errors. LLLMs, by
virtue of their larger parameter counts and exposure
to massive and diverse training data, are expected
to generalize better in distributional semantics than
traditional language models.

Post-ASR correction can be seen as a text editing
task (Malmi et al., 2022), with high overlap in the
input and the predicted text. Here, such a model
should ideally leverage the linguistic, semantic, and
world knowledge encoded in such language models
while maintaining an inductive bias toward source-
specific error patterns, from an ASR in this case,
for better error correction.

The trade-off between source specific inductive
bias and inherent LM characteristics leads to two
fundamental questions. One, how does model per-
formance scale with size? Two, how competitive
are incontext learning methods (ICL) with no pa-
rameter updation in comparison to fine tuning mod-
els in learning source specific error patterns? ASRs,
regardless of the language, typically induce error
patterns pertaining to phonetic similarities, homo-
phones, grammatical inconsistencies, contextual
misinterpretations,punctuation omissions, etc. Fur-
ther, Hindi poses unique challenges for ASR de-
velopment due to its linguistic richness, complex
phonetic structure, diverse accents, and significant
regional variations'.
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We address both the fundamental questions from
our experiments. We observe that Post-ASR cor-
rection in Hindi can be seen as an inverse scaling
task, (McKenzie et al., 2023), where model per-
formance degrades as model size increases. More
specifically. we observe that the task exhibits a U-
shaped scaling where task performance decreases
upto a certain model size and then has shown to
increase for the largest model we evaluated (Wei
et al., 2022). This suggests that smaller models
such as mT5 and byT5 with 580 million and 300
million parameters respectively outperform LLMs
as high as 70 Billion and even GPT-40-mini. While
these smaller models are fine-tuned, they outper-
form the LL.Ms in both fine-tuned and ICL config-
urations. These results further illustrate the need
for having stronger source-error specific inductive
biases in the model over the inherent general knowl-
edge that these LMs possess. Here, Llama variants
ranging from 1, 3, 8, 10 and 70 billion parameters
have shown performance degradation resulting in
worse error rates than the original ASR hypothesis.

In this work, we investigate the effectiveness
of LLMs for Post-ASR correction. Surprisingly,
we observe that fine-tuned T5 variants, with pa-
rameter sizes in the few hundred millions, consis-
tently outperform much larger LLMs. We evaluate
both ICL and fine-tuned configurations of several
LLMs, including the LLaMA family (ranging from
1B to 70B parameters) and GPT-40-mini. Across
these settings, smaller models such as mT5 and
ByTS5 demonstrate superior performance. Notably,
the task exhibits a U-shaped inverse scaling trend,
error rates initially increase with model size be-
fore improving for the largest models, yet they still
fall short of matching the T5 variants. Among the
smaller models, mT5 achieves the best overall per-
formance in both in-domain and out-of-domain sce-
narios, while ByT5 excels at fine-grained character-
level corrections, and mT5 is more effective at cap-
turing broader semantic errors.

We benchmark our models on the Hindi Lahaja
dataset (Javed et al., 2024a), demonstrating im-
provements in Word Error Rate (WER) of up to
5.63 for IndicWav2vec (Javed et al., 2022) and
1.85 for IndicConformer (Javed et al., 2024a). Our
1-best hypothesis strategy (Li et al., 2024) proves
effective in improving both linguistic and domain-
specific transcription accuracy in Hindi?.
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Figure 1: Performance comparison of fine-tuned and
ICL-based LM/LLM models on Hindi post-ASR correc-
tion.

Contributions:

* We demonstrate that Hindi post-ASR correc-
tion exhibits an inverse scaling effect, where
mid-sized LLMs underperform compared to
both smaller and extremely large models.

* Fine-tuned small models (mT5, ByT5) sig-
nificantly outperform large LLMs such as
GPT-40-mini and LLaMA variants in both
ICL and fine-tuning settings.

* ByTS5 excels at fine-grained character-level
corrections (e.g., transliteration, numeric mis-
recognition, compound splitting), while mT5
generalizes better across semantic error types
and domain variations.

* We identify performance degradation in high
out-of-domain settings and propose mitiga-
tion strategies to retain domain-specific fi-
delity in ASR post-correction.

2 Methodology

We define an in-domain dataset Dzﬂam
{(ai,t;),1 < i < n}, consisting of n pairs of
speech a; and corresponding transcripts ¢;, used to
fine-tune LMs and LL.Ms. Unless explicitly stated
otherwise, D;‘riam is sourced from a single dataset
rather than being aggregated from multiple sources.
Let A represent an ASR model trained on Dtr win
and A"Od denote a different ASR model trained on
an out-of-domain dataset D?°% . The objective
is to correct errors in the ASR hypotheses using
fine-tuned LMs and LLMs. We generate the 1-best
hypothesis for each instance in Dtmm, resulting in
Hfﬁlam = {(hi,t;),1 < i < n}, where h; is the
ASR hypothesis and ¢; is the reference transcript.
The LMs and LLMs are fine-tuned on this data,
with ¢; serving as the target for correcting errors in

h;. During inference, for each audio sample in the



test set Di<_,, the ASR model generates hypotheses
that are subsequently processed by the fine-tuned
models to produce accurate transcripts.

Developing a post ASR correction model re-
quires a large dataset that contains pairs of error
and gold transcriptions. However, creating such a
dataset is particularly challenging for Hindi, as it
is a low-resource language with limited availabil-
ity of high-quality annotated data. To address this
limitation, we construct a fine-tuning dataset com-
prising 1-best ASR hypotheses paired with their
corresponding gold transcripts for each utterance
(Li et al., 2024). This dataset will enable the gen-
eration of corrected transcriptions (Hyyq4,) from
error hypotheses. Resulting, this approach aims to
enhance the model’s error correction performance
on Hindi test data, improving overall transcription
accuracy.

2.1 Training Data Creation

Figure 1 illustrates our proposed methodology for
generating a suitable dataset to fine-tune LMs and
LLM:s for ASR error correction. We focus on cre-
ating training corpora in both in-domain and out-
of-domain scenarios.

In-domain speech refers to data that shares sim-
ilar speaker distributions, topics, vocabulary, and
contextual characteristics with the target evalua-
tion set, such as Lahaja. This alignment enables
LMs and LLMs to more effectively learn domain-
specific error patterns for ASR post-correction.
In contrast, out-of-domain speech differs in style,
source, or vocabulary, e.g., Kathbath (structured
read speech) or Shrutilipi (news domain), and is
less representative of the test conditions.

To address the scarcity of in-domain resources
for low-resource languages like Hindi, we propose
constructing domain-replicative training datasets,
denoted as H{% . . These can be used to fine-
tune LMs/LLMs or for ICL. Similarly, for out-
of-domain scenarios, we define H2°% . with ut-
terances first transcribed by the ASR model. Note
that D9%% is used for adapting the ASR model to

train
these out-of-domain conditions.

3 Experiment and Results

Datasets: We evaluate LMs and LLMs perfor-
mance on the Lahaja (Javed et al., 2024a) Hindi
ASR dataset (12.5 hours, 132 speakers, 83 dis-
tricts), which includes read, extempore, and con-
versational speech. For fine-tuning, we use the

IndicVoice (Javed et al., 2024b) dataset (65 hours
from 287 speakers), selected for its domain and vo-
cabulary overlap with Lahaja. For out-of-domain
evaluation, we include Kathbath (Javed et al.,
2023) (read speech from IndicCorp) and Shru-
tilipi (Bhogale et al., 2023a) (conversational radio
broadcasts). These datasets offer diverse speech
styles and linguistic complexity.

Baseline: We use IndicWav2Vec (Javed et al.,
2022) and IndicConformer (Javed et al., 2024a),
two india specific multilingual ASR systems devel-
oped by Al4Bharat. These models follow wav2vec
2.0 and conformer architecture respectively. Our
preliminary experiments showed these two mod-
els perform the best amongst other Hindi ASRs,
detailed in Appendix C.

Model Configurations In this work, we eval-
uate our hypothesis on pre-trained LM ByTS5,
mT5 along with open-weight and close-weight
LLMs, Llama-3 and ChatGPT-40-Mini, respec-
tively. ByTS (Xue et al., 2022) is a TS variant, an
encoder-decoder based LM. It is a tokenizer-free,
byte-level model. In contrast, mT5 (Xue, 2020) is
a T5 (Raffel et al., 2020) variant that uses Senten-
cePiece tokenization (Kudo, 2018). It is a multi-
lingual model trained on common crawl data, in-
cluding in Hindi. For an open-weight LLM, we use
Llama-3-Nanda-10B-Chat, a 10B-parameter, bilin-
gual English-Hindi LLM adapted from Llama-3-7B
through architectural changes and continued pre-
training on a 65B-token Hindi corpus. Lastly, for a
closed-weight LLM, we adopt ChatGPT-40-mini,
which offers strong zero- and few-shot reasoning
abilities at a favorable cost-performance balance.

3.1 Training and Evaluation

The training data for fine-tuned models comprise
1-best ASR hypotheses generated by various Hindi
ASR systems, paired with their corresponding
ground truth transcriptions. In contrast, ChatGPT-
40 mini leverages few-shot learning with prompts
designed using random and similar sentence em-
bedding (Joshi et al., 2023) examples. These sen-
tence embedding examples are constructed from
Hindi ASR errors in the IndicVoice dataset, with
corrections selected based on sentence embeddings
to ensure semantic similarity and contextual rele-
vance across the examples and the ASR hypothe-
ses. Furthermore, we also trained the ByT5 on D1
dataset using an n-best hypothesis (n = 5) and ob-
served a WER of 45, indicating the impact of mul-
tiple hypotheses in refining ASR post-correction.



IndicWav2Vec IndicConformer
.. Dataset ASR ASR
Training Dataset Size Hyp. ByT5 mT5 Llama Hyp. ByTS mTS Llama
D1: In-Domain Speech with ASR model 63500 28.60 24.17 3292 76.72 18.02 1822 17.50 76.04
D2: + In-Domain Speech with Diff. ASR model 127306 28.60 26.62 29.09 27.8 18.02 18.07 16.75 23.24
D3: + Out-of-Domain Speech with ASR model 1021472 28.60 25.14 23.74 26.03 18.02 17.52 16.31 | 21.49

Table 1: WER Comparison for Various fintuned LMs (ByT5-small, mT5-base) and LLM (Llama)

IndicWav2Vec IndicConformer

Dataset

Training Dataset Size ByT5 mT5 ByT5S mT5
D1: IndicVoice [IC] 63500 24.17 3292 1822  17.50
IndicVoice [W2V] 63500 26.00 26.67 1837  16.81
Shrutilipi [IC] 127306 31.37 29.67 24.18  22.19
Kathbath + Shrutilipi [IC] 127306 3045 27.76 2334  19.48
Shrutilipi [W2V] 127306 30.10 29.96 2504  22.55
Kathbath + Shrutilipi [W2V] 127306 28.84 29.05 2230 20.75
D2: IndicVoice [IC+W2V] 127306 26.62 29.09 18.07  16.75
D3: D2 + other ASR dataset [IC] 1021472 2514 2374 17.52 16.31
D2 + other ASR dataset [W2V] 1021472 23.66 2297 17.55 1645
D2 + other ASR dataset [IC + W2V] 1021472 23.36 23.00 17.46 16.17

Table 2: Performance comparison of ByT5-small
(ByT5) and mT5-base (mT5) models on the Lahaja
test dataset trained with different training datasets. The
Word Error Rate (WER) of the IndicWav2Vec (W2V)
model is 28.6, while the IndicConformer (IC) model is
18.02.

Experiment Shots IndicWav2Vec IndicConformer
- 0-Shot  28.60 —31.77  18.02 — 25.14
Random 1-Shot  28.60 — 30.95  18.02 — 24.51
3-Shot 28.60 — 29.84  18.02 — 22.13
5-Shot  28.60 — 29.27  18.02 — 22.19
SE Similarity 1-Shot 28.60 —29.22  18.02 — 22.88
3-Shot 28.60 — 28.18  18.02 — 22.04
5-Shot  28.60 — 27.14 | 18.02 — 20.89

Table 3: WER Comparison for Various Shot Settings
using ChatGPT (ICL)

3.2 Results of Finetuned LMs and LLMs

Table 1 and Table 2, evaluate the performance
of Finetuned LMs and LLMs under three train-
ing scenarios: in-domain speech with an ASR
model (D1), in-domain speech using a different
ASR model (D2), and out-of-domain speech with
an ASR model (D3). In-Domain Training: When
finetuned LMs are trained on datasets from the
same domain (D4 . Hi% . ) as the test set (Did,)),
performance improves significantly. For exam-
ple, ByT5 and mTS5 performs better when train-
ing dataset is IndicVoice compared to Shrutilipi or
other. We hypothesize that this is because the fine-
tuned LMs encounter error patterns at test time that
are similar to those it has been exposed to during
training. Out-of-Domain Training: When fine-
tuned LMs are trained on datasets from different

domains (D94 H?°4 ) than the test set (D)),

performance improvements are not observed. This
is likely because the errors encountered at test time
differ significantly from those seen in the training
data, limiting the ability of the finetuned LMs to
generalize effectively.

3.3 Results of ICL

In Table 3, we evaluate the ICL capability of a
LLM, ChatGPT-40 mini. We assess ASR post-
correction in both zero-shot, 1-shot and few-shot
settings. Our findings demonstrate the adaptability
of few-shot learning, leveraging sentence embed-
dings (SE) to improve ASR correction. However, in
the case of IndicConformer, this approach resulted
in an increase in ASR hypothesis WER.

Our experiments evaluating the impact of model
size under a zero-shot ICL setting, leveraging the
inherent knowledge from the pre-trained versions
of each model without further fine-tuning men-
tioned in the Appendix D.

4 Conclusion

In this work, we explored the effectiveness of lan-
guage models (LMs) and large language models
(LLMs) for post-ASR correction in Hindi, high-
lighting the surprising result that smaller, fine-
tuned models such as mT5 and ByT5 consistently
outperform much larger LLMs like GPT-40-mini
and LLaMA variants. Our findings reveal a U-
shaped inverse scaling trend, where increasing
model size initially degrades performance before
marginal improvements at extreme scales, yet still
falling short of the smaller models. ByT5 excels at
fine-grained character-level corrections, while mT5
is more effective at capturing broader semantic in-
consistencies. We also identify performance degra-
dation in high out-of-domain settings and propose
mitigation strategies to preserve domain-specific fi-
delity in ASR post-correction. These results under-
score the importance of source-specific inductive
biases and suggest that lightweight, fine-tuned mod-
els are better suited than general-purpose LLMs for
improving ASR quality in low-resource language
contexts.



Limitations

As part of future work, we would like to work on
the following limitations of our work:

* While the study primarily focuses on Hindi,
this language-specific scope may constrain the
generalizability of the findings to other low-
resource Indian languages with distinct lin-
guistic characteristics. Although preliminary
evaluations are conducted on Marathi and Tel-
ugu, they lack detailed analysis. Moreover,
the absence of linguistic experts for these lan-
guages limits the depth of error categorization
and interpretation.

* ICL results are limited to GPT-40-mini and
evaluated under only a few-shot and SE-based
prompting. The comparison of GPT-40 is
missing due to limited funds.
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A Ilustrative Example of Hindi ASR
Errors

GT: rathayatra ke lie janabujhakara vana

tarista dvara taimtalisa minata k1 derT k1 gat hai

N-GT: rathayatra ke lie janabdjhakara vana [One]
tarista [Tourist] dvara taimtalisa minata ki dert ki gart hai
Hypothesis: ratha yatra ke lie janabujhakara vana
tyuresta dvara taitalisa minata ki deri ki gathai
Transcript: rathayatra ke lie janabudjhakara vana
tarista dvara taitalisa minata k1 derT kT gat hai

English Word [tyaresta’]

Number [vana, 'taitalisa’] ASR
Word Segmentation  ['gaihai] Error
Compound Words ['ratha yatra'] Types

Under Represented Characters [taitalisa’

Figure 2: Example of ASR hypothesis errors in Hindi,
categorized by error types: English word transliteration
(tyiiresta), number transcription (vana, taitalisa), word
segmentation (garhai), compound word splitting (ratha
yatrd), and underrepresented character errors (taitalisa).

Compound words, such as (/rathayatra/), which
refers to an annual Hindu chariot festival, erro-
neously the word can split into (/ratha yatra/) (ratha
means chariot, yatra means travel, journey), thus
altering their meaning. Word segmentation errors
are also common, particularly with derivational
and infectional word groups (Karthika et al., 2025),
where phrases like (/ké 1i€/) or (/gai hai/) can be-
come incorrectly merged. Misrecognition of num-
bers further complicates Hindi ASR. For instance,
the English numbers, such as “one" (expected as
(/ vana /)), are often phonetically transcribed as (/
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vana /), and native Hindi numbers, like (/taitalisa/)
(taitaltsa means forty three), can be distorted due to
inadequate training data. Code-mixed content, such
as(/ rathayatra ké li€é janabujhakara vana tirista
dvara taitalisa minata ki déri ki gai hai /)°, fur-
ther complicates ASR tasks, as systems struggle
to manage transitions between Hindi and English
seamlessly. Lastly, phonetic and orthographic vari-
ability arising from regional accents, dialects, and
optional diacritics or conjunct consonants leads to
systematic recognition errors as shown in Figure 2.

B Related Works

LLMs have been integrated into ASR systems
through various approaches. ASR error correc-
tion utilizes LLMs to rescore N-best lists of poten-
tial transcriptions, refining predictions (Ma et al.,
2023; Radhakrishnan et al., 2023). Speech in-
context learning fine-tunes LLMs with speech in-
puts, enabling them to handle diverse tasks (Ku-
mar et al., 2024), while deep LLM fusion (Fathul-
lah et al., 2024) employs LLMs as decoders in
ASR architectures, integrating language modelling
capabilities through mechanisms like gated cross-
attention. However, both speech in-context learn-
ing (Pan et al., 2023) and deep LLM fusion (Fathul-
lah et al., 2024) are computationally intensive, re-
quiring significant resources and large labelled
speech datasets, which are scarce for low-resource
languages like Hindi. Similarly, LLM rescoring of
N-best lists often underperforms compared to using
a single 1-best hypothesis (Li et al., 2024), which
is sufficient for addressing common errors such as
word segmentation, underrepresented characters,
and compound word handling.

C Model Comparison

Model WER (%) | CER (%)
IndicWav2vec (Javed et al., 2022) 28.605 10.54
IndicWhisper (Bhogale et al., 2023b) 32.17 19.86
IndicConformer (Javed et al., 2024a) 18.015 6.458
Seamless M4T (Barrault et al., 2023) 52.63 29.89
data2vec_aqc (Lodagala et al., 2023) 29.63 10.6
SALSA (Mittal et al., 2024) 74.43 54.54

Table 4: Performance Comparison of Open-Source
Hindi ASR Models on Hindi Lahaja dataset

Table 4 presents a comparative evaluation of
open-source Hindi ASR models on the Hindi La-
haja dataset in terms of Word Error Rate (WER)

*means “For the chariot procession, a tourist intentionally
caused a delay of forty-three minutes."

and Character Error Rate (CER). Among the evalu-
ated systems, IndicConformer (Javed et al., 2024a)
achieves the best performance with a WER of
18.015% and a CER of 6.458%, significantly out-
performing other models. IndicWav2Vec (Javed
et al., 2022) also demonstrates strong performance
with a WER of 28.605% and CER of 10.54%, while
IndicWhisper and Seamless M4T show higher error
rates, reflecting their limitations in capturing the
linguistic nuances of Hindi. Notably, SALSA (Mit-
tal et al., 2024) performs the worst, with a WER of
74.43% and CER of 54.54%, suggesting it is less
suitable for Hindi ASR. These results reinforce the
effectiveness of IndicConformer as a robust base-
line for downstream ASR post-correction tasks in
Hindi.

Moreover, Table 1 demonstrates how the use of
larger and diverse training datasets improves model.
Specifically, IndicWav2Vec and IndicConformer,
combined with LM like ByT5 and mTS5, exhibit
marked improvements in the Lahaja test set, under-
scoring the effectiveness of leveraging diverse error
patterns for ASR post correction training. Although
finetuned Llama decline the ASR hypothesis qual-

ity.
D Ablation Study

Experiments IW—- CW CW —IW No Change
‘Word Segmentation 224 216 498
Compound Words 75 74 215
English Words 637 283 3180
English Number 7 17 131
Hindi Number 36 24 94
Underrepresented Character 2254 1129 3296

Table 5: Analysis of errors in Lahaja Dataset by
mT5=16.17 model train on Lahaja dataset. IW = In-
correct Word and CW = Correct Word

Experiments IW - CW CW —IW No Change
Word Segmentation 241 253 722
Compound Words 84 97 206
English Words 730 456 3087
English Number 19 22 119
Hindi Number 33 28 97
Underrepresented Character 2287 1798 3263

Table 6: Analysis of errors in Lahaja Dataset by
ByT5=17.46 model train on Lahaja dataset. IW = Incor-
rect Word and CW = Correct Word

Table 5 and Table 6 show that ByT5 consistently
corrects more character-centric errors, code-mixed
tokens, compound-word splits, word-segmentation
mistakes, numeric misrecognitions, and under-
represented graphemes, than mT5. This stems from



ByT5’s byte-level tokenization, which provides
finer granularity for detecting single-character per-
turbations. In contrast, mT5’s sub-word vocabulary
affords stronger semantic coverage but makes it
less sensitive to very fine-grained character varia-
tions.

== IndicWav2Vec = IndicConformer
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Figure 3: Inverse scaling phenomenon in Hindi post-
ASR correction across varying LLaMA model sizes.

Table 7: Latency (in seconds) of different models for
ASR post-correction.

ByT5-small ByT5-base mT5-small mT5-base Llama ChatGPT-40 mini
2.29 2.79 0.97 1.84 10.17 2.03

In Table 7, we summarize the latency of different
LMs/LLMs, indicating that mt5-small performed
the fastest post-ASR correction. It also points to
the fact smaller models like mT5 not only achieve
significant performance gains but also are faster
than larger LLMs. Hence, we incorporate mT5 for
post-ASR correction is advantageous for both per-
formance wise and latency, enabling robust ASR
correction in low-resource settings.

We evaluate the impact of model size on Hindi
post-ASR correction under a zero-shot in-context
learning setup, relying solely on the pre-trained
knowledge of each model without additional fine-
tuning. As shown in Figure 3, increasing parameter
counts (3.1 1B — 3.2 3B — 3.1 8B — Nanda-10B-
Chat 10B — 3.3 70B) reveals an n-shaped trend
in Word Error Rate (WER): performance improves
initially, then worsens, and may slightly recover at
higher scales. This inverse scaling behavior indi-
cates that larger models do not necessarily guaran-
tee better correction accuracy.

E LM/LLM comparison

We have experimented with LMs (mT5 and ByT5)
and LLMs (Llama-3-Nanda-10B-Chat) under com-
parable condition in terms of Hindi token used for

pre-training them in absolute terms, relative terms
to their size, and relative to overall presence of
Hindi within the rest of the languages present to pre-
train the model. We find that our observation still
holds. Given that many experiments have shown
that the fine-tuned model substantially updates their
weights and hence the performance improvement is
substantial, we empirically observe that finetuning
has substantially improved the performance.

F Additional Languages

Language | Hypothesis | ByT5 small | ByT5 base | mT5 small | mT5 base
Marathi 25.556 26.324 26.018 25.761 25.122
23.284 24.51 24.725 22.68 22.05

Telugu

Table 8: Evaluation of ASR post-correction on Marathi
and Telugu IndicTTS datasets.

Our approach was tailored to Hindi, focusing on
lexical and multiword interventions involving both
lexical and morphemic-level knowledge. However,
we have conducted evaluations for Marathi and Tel-
ugu as well. Table 8 shows the performance of
various post-correction models on Marathi and Tel-
ugu subsets of the IndicTTS dataset. We compare
ASR hypotheses against corrected outputs from
ByT5 and mT5 models of both small and base sizes.
The mT5-base model achieves a lower WER across
both languages. We use the IndicTTS dataset for
this evaluation as it closely resembles the Lahaja
dataset in linguistic characteristics and is in-domain
with the IndicVoice dataset, ensuring consistent do-
main relevance for low-resource ASR evaluation.

G Compound Word Error Detection
Algorithm

To systematically identify compound word errors
in ASR hypotheses, we propose an algorithm that
leverages a trie-based structure built from a vocabu-
lary dictionary. As outlined in Algorithm 1, the pro-
cess involves tokenizing both the ground truth (GT)
and hypothesis (Hyp) utterances, generating valid
substrings from GT tokens, and validating these
against the constructed trie. The algorithm then
checks whether the valid compound words from
the ground truth appear intact in the hypothesis.
If a compound word is absent or split incorrectly
in the hypothesis, it is flagged as an error. This
approach is particularly effective for detecting er-
rors in morphologically rich languages like Hindi,
where compound word splitting significantly alters
meaning. By identifying such errors, the algorithm



Algorithm 1 Detecting Compound Word Errors
Using a Trie

Require: Dict:  Vocabulary dictionary, GT:
Ground Truth utterance , Hyp: Hypothesis ut-
terance

Ensure: Ercw: List of compound word errors

1: Step 1: Build the Trie

Initialize an empty Trie T

for each word € Dict do
Traverse T character by character
if character does not exist in 7" then

Create a new node
end if
Mark the end of word as isSEndOfWord <
True
9: end for

10: Step 2: Preprocess Input

11: Tokenize GT: GTiokens <— split(GT)

12: Tokenize Hyp: Hyp,yens < SPlit(Hyp)

13: Step 3: Generate Substrings

14: for each word € GTokens do

15: Splits < splits(word)

16: Store valid splits as Splits

17: end for

18: Step 4: Validate Substrings

19: for each split € Splits, ;4 do

20: if all substrings subsplit € split exist in T’
then

e A Gl

valid

21: Add split to CompoundWords, ;4
22: end if
23: end for

24: Step 5: Check for Errors
25: for each word € CompoundWords, ;4 do
26: if word ¢ Hyp,.yc,s then

27: Add word to Ercw
28: end if
29: end for

30: Step 6: Output Results
31: Save Ercw for further analysis

supports more fine-grained ASR post-correction
and helps evaluate model performance on preserv-
ing lexical integrity.

H Compute Infrastructure

Compute details: For all our pre-training and
fine-tuning experiments, we used two NVIDIA
A100-SXM4-80GB GPUs. Each training requires
4-48 hours.

Software and Packages details: We implement
all our models in PyTorch*

Models

mTS: mT5-small (300M parameters), mT5-base
(580M parameters)

ByTS: ByT5-small (300M parameters), ByT5-base
(580M parameters)

Nanda: Llama3-10B

ChatGPT: 8B parameter

I Effect of Domain-specific
Regularization

While fixed-ratio training helps mitigate domain
forgetting by ensuring consistent exposure to lim-
ited in-domain data, an open research question
remains: Can incorporating regularization tech-
niques alongside fixed-ratio training further en-
hance model retention of in-domain knowledge
during ASR post-correction? As shown in Table 9,
fine-tuning ByT5 and mTS5 variants with a con-
trolled in-domain to out-of-domain ratio results in
noticeable gains in correction performance across
both IndicWav2Vec and IndicConformer outputs.
However, despite these improvements, subtle per-
formance degradation is still observed in some con-
figurations with higher out-of-domain proportions.
This suggests that additional mechanisms, such
as domain-aware regularization, rehearsal-based
constraints, or importance-weighted loss, could po-
tentially reinforce in-domain retention even further.
Investigating such methods in conjunction with
fixed-ratio scheduling presents a promising direc-
tion for improving robustness and domain fidelity
in low-resource ASR post-correction.

J Prompt

*https://pytorch.org/



Training Dataset Ratio | Dataset Size byt5-small bytS-base mtS-small mtS-base
w2v IC w2v IC w2v IC w2v IC

IndicVoice [IC+W2V] + other ASR dataset [IC] 3.7 381415 | 0.2620 | 0.1778 | 0.2244 | 0.1719 | 0.2817 | 0.1689 | 0.2589 | 0.1603
IndicVoice [IC+W2V] + other ASR dataset [W2V] | 3:7 381415 | 0.2300 | 0.1760 | 0.2226 | 0.1765 | 0.2600 | 0.1713 | 0.2581 | 0.1651
IndicVoice [IC+W2V] + other ASR dataset [IC] 2:8 571962 | 0.2358 | 0.1729 | 0.2232 | 0.1774 | 0.2735 | 0.1688 | 0.2651 | 0.1602
IndicVoice [IC+W2V] + other ASR dataset [W2V] | 2:8 571962 | 0.2310 | 0.1787 | 0.2229 | 0.1758 | 0.2591 | 0.1758 | 0.2668 | 0.1662
IndicVoice [IC+W2V] + other ASR dataset [IC] 1:9 993155 | 0.2442 | 0.1774 | 0.2443 | 0.1774 | 0.2512 | 0.1710 | 0.2588 | 0.1614
IndicVoice [IC+W2V] + other ASR dataset [W2V] | 1:9 993155 | 0.2333 | 0.1829 | 0.2234 | 0.1762 | 0.2388 | 0.1712 | 0.2549 | 0.1638

Table 9: Evaluation of ASR post-correction on Lahaja dataset mixing the in-domain and out-of-domain dataset in
fixed ratio

ChatGPT Prompt based on error-types

Example 1:

You are given an ASR hypothesis of a spoken utterance. The hypothesis may contain misrecognized
words, incorrect word segments, or code-switching mistakes. Your job is to produce the best
possible corrected text, relying on your own knowledge of grammar and typical usage

Please correct any errors in

1. Incorrect transliteration of English words

2. Incorrect transliteration of English numbers

3. Incorrect transcription of native Hindi numbers

4. Misrecognition of underrepresented characters

5. Splitting of compound words

6. Incorrect word segmentation

There may be more than two errors in the ASR hypothesis.
Output only the final corrected output (no extra commentary)

Hypothesis: ratha yatra ke lie janabtjhakara vana tyiiresta dvara taitaltsa minata ki deri

k1 gat hai

Predicted Output: ratha yatra ke lie janabiijhakara vana tytrista dvara taimtalisa minata k1 deri
ki gai hai.
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