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Abstract001

Automatic Speech Recognition (ASR) systems002
for low-resource languages like Hindi often003
suffer from transcription errors due to limited004
training data and linguistic complexity. Post-005
ASR correction is a key strategy to address006
these issues, particularly given the prevalence007
of code-mixing, compounding, and segmenta-008
tion errors. We evaluate both fine-tuned lan-009
guage models (LMs) and large language mod-010
els (LLMs) for this task, treating it as a high-011
overlap text editing problem. Experiments on012
the Lahaja dataset reveal a U-shaped inverse013
scaling trend: smaller models like mT5 and014
ByT5 outperform larger LLMs such as LLaMA015
(1B-70B) and GPT-4o-mini, even in in-context016
learning (ICL) settings. While ByT5 excels017
at character-level corrections, mT5 performs018
better on semantic errors. We also observe019
significant degradation in out-of-domain set-020
tings and propose mitigation strategies to retain021
domain fidelity. Our results highlight that in-022
ductive bias and task alignment often outweigh023
model scale for effective post-ASR correction024
in low-resource contexts.025

1 Introduction026

Automatic Speech Recognition (ASR) systems en-027

able seamless human-computer interaction (Zierau028

et al., 2023), especially in linguistically diverse029

countries like India. These systems are increas-030

ingly adopted across domains such as agriculture,031

education, e-commerce, and governance, helping032

bridge digital accessibility gaps (Javed et al., 2022;033

Bhogale et al., 2023b). However, building robust034

ASR systems for Hindi, the most widely spoken In-035

dian language, remains challenging due to its low-036

resource nature, limited availability of high-quality037

annotated speech data (Adiga et al., 2021), and038

complex linguistic characteristics (Kachru, 2006).039

Post-ASR correction has shown to improve tran-040

scription accuracy by using language models (LM)041

trained on large text-only corpora, which are often042

more widely available than speech-text data, for 043

a low-resource language like Hindi (Kumar et al., 044

2022). Unlike traditional n-gram based LMs, mod- 045

ern LMs such as T5 (Raffel et al., 2020) and Large 046

LMs (LLMs) such as GPT (Brown et al., 2020) and 047

LLaMA (Touvron et al., 2023), capture rich seman- 048

tic and contextual information, enabling them to ef- 049

fectively tackle both linguistic and domain-specific 050

nuances. The post-ASR correction task typically 051

addresses a wide range of errors arising out of ASR 052

systems, including text edit errors, phonetic, gram- 053

matical and higher order semantic errors. LLMs, by 054

virtue of their larger parameter counts and exposure 055

to massive and diverse training data, are expected 056

to generalize better in distributional semantics than 057

traditional language models. 058

Post-ASR correction can be seen as a text editing 059

task (Malmi et al., 2022), with high overlap in the 060

input and the predicted text. Here, such a model 061

should ideally leverage the linguistic, semantic, and 062

world knowledge encoded in such language models 063

while maintaining an inductive bias toward source- 064

specific error patterns, from an ASR in this case, 065

for better error correction. 066

The trade-off between source specific inductive 067

bias and inherent LM characteristics leads to two 068

fundamental questions. One, how does model per- 069

formance scale with size? Two, how competitive 070

are incontext learning methods (ICL) with no pa- 071

rameter updation in comparison to fine tuning mod- 072

els in learning source specific error patterns? ASRs, 073

regardless of the language, typically induce error 074

patterns pertaining to phonetic similarities, homo- 075

phones, grammatical inconsistencies, contextual 076

misinterpretations,punctuation omissions, etc. Fur- 077

ther, Hindi poses unique challenges for ASR de- 078

velopment due to its linguistic richness, complex 079

phonetic structure, diverse accents, and significant 080

regional variations1. 081

1For more detail Appendix A
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We address both the fundamental questions from082

our experiments. We observe that Post-ASR cor-083

rection in Hindi can be seen as an inverse scaling084

task, (McKenzie et al., 2023), where model per-085

formance degrades as model size increases. More086

specifically. we observe that the task exhibits a U-087

shaped scaling where task performance decreases088

upto a certain model size and then has shown to089

increase for the largest model we evaluated (Wei090

et al., 2022). This suggests that smaller models091

such as mT5 and byT5 with 580 million and 300092

million parameters respectively outperform LLMs093

as high as 70 Billion and even GPT-4o-mini. While094

these smaller models are fine-tuned, they outper-095

form the LLMs in both fine-tuned and ICL config-096

urations. These results further illustrate the need097

for having stronger source-error specific inductive098

biases in the model over the inherent general knowl-099

edge that these LMs possess. Here, Llama variants100

ranging from 1, 3, 8, 10 and 70 billion parameters101

have shown performance degradation resulting in102

worse error rates than the original ASR hypothesis.103

In this work, we investigate the effectiveness104

of LLMs for Post-ASR correction. Surprisingly,105

we observe that fine-tuned T5 variants, with pa-106

rameter sizes in the few hundred millions, consis-107

tently outperform much larger LLMs. We evaluate108

both ICL and fine-tuned configurations of several109

LLMs, including the LLaMA family (ranging from110

1B to 70B parameters) and GPT-4o-mini. Across111

these settings, smaller models such as mT5 and112

ByT5 demonstrate superior performance. Notably,113

the task exhibits a U-shaped inverse scaling trend,114

error rates initially increase with model size be-115

fore improving for the largest models, yet they still116

fall short of matching the T5 variants. Among the117

smaller models, mT5 achieves the best overall per-118

formance in both in-domain and out-of-domain sce-119

narios, while ByT5 excels at fine-grained character-120

level corrections, and mT5 is more effective at cap-121

turing broader semantic errors.122

We benchmark our models on the Hindi Lahaja123

dataset (Javed et al., 2024a), demonstrating im-124

provements in Word Error Rate (WER) of up to125

5.63 for IndicWav2vec (Javed et al., 2022) and126

1.85 for IndicConformer (Javed et al., 2024a). Our127

1-best hypothesis strategy (Li et al., 2024) proves128

effective in improving both linguistic and domain-129

specific transcription accuracy in Hindi2.130

2Code and Model:
https://anonymous.4open.science/r/PostCorrection-B2B7/
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Figure 1: Performance comparison of fine-tuned and
ICL-based LM/LLM models on Hindi post-ASR correc-
tion.

Contributions: 131

• We demonstrate that Hindi post-ASR correc- 132

tion exhibits an inverse scaling effect, where 133

mid-sized LLMs underperform compared to 134

both smaller and extremely large models. 135

• Fine-tuned small models (mT5, ByT5) sig- 136

nificantly outperform large LLMs such as 137

GPT-4o-mini and LLaMA variants in both 138

ICL and fine-tuning settings. 139

• ByT5 excels at fine-grained character-level 140

corrections (e.g., transliteration, numeric mis- 141

recognition, compound splitting), while mT5 142

generalizes better across semantic error types 143

and domain variations. 144

• We identify performance degradation in high 145

out-of-domain settings and propose mitiga- 146

tion strategies to retain domain-specific fi- 147

delity in ASR post-correction. 148

2 Methodology 149

We define an in-domain dataset Did
train = 150

{(ai, ti), 1 ≤ i ≤ n}, consisting of n pairs of 151

speech ai and corresponding transcripts ti, used to 152

fine-tune LMs and LLMs. Unless explicitly stated 153

otherwise, Did
train is sourced from a single dataset 154

rather than being aggregated from multiple sources. 155

Let Aid
1 represent an ASR model trained on Did

train 156

and Aood
2 denote a different ASR model trained on 157

an out-of-domain dataset Dood
train. The objective 158

is to correct errors in the ASR hypotheses using 159

fine-tuned LMs and LLMs. We generate the 1-best 160

hypothesis for each instance in Did
train, resulting in 161

H id
train = {(hi, ti), 1 ≤ i ≤ n}, where hi is the 162

ASR hypothesis and ti is the reference transcript. 163

The LMs and LLMs are fine-tuned on this data, 164

with ti serving as the target for correcting errors in 165

hi. During inference, for each audio sample in the 166
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test set Did
test, the ASR model generates hypotheses167

that are subsequently processed by the fine-tuned168

models to produce accurate transcripts.169

Developing a post ASR correction model re-170

quires a large dataset that contains pairs of error171

and gold transcriptions. However, creating such a172

dataset is particularly challenging for Hindi, as it173

is a low-resource language with limited availabil-174

ity of high-quality annotated data. To address this175

limitation, we construct a fine-tuning dataset com-176

prising 1-best ASR hypotheses paired with their177

corresponding gold transcripts for each utterance178

(Li et al., 2024). This dataset will enable the gen-179

eration of corrected transcriptions (Htrain) from180

error hypotheses. Resulting, this approach aims to181

enhance the model’s error correction performance182

on Hindi test data, improving overall transcription183

accuracy.184

2.1 Training Data Creation185

Figure 1 illustrates our proposed methodology for186

generating a suitable dataset to fine-tune LMs and187

LLMs for ASR error correction. We focus on cre-188

ating training corpora in both in-domain and out-189

of-domain scenarios.190

In-domain speech refers to data that shares sim-191

ilar speaker distributions, topics, vocabulary, and192

contextual characteristics with the target evalua-193

tion set, such as Lahaja. This alignment enables194

LMs and LLMs to more effectively learn domain-195

specific error patterns for ASR post-correction.196

In contrast, out-of-domain speech differs in style,197

source, or vocabulary, e.g., Kathbath (structured198

read speech) or Shrutilipi (news domain), and is199

less representative of the test conditions.200

To address the scarcity of in-domain resources201

for low-resource languages like Hindi, we propose202

constructing domain-replicative training datasets,203

denoted as H id
train. These can be used to fine-204

tune LMs/LLMs or for ICL. Similarly, for out-205

of-domain scenarios, we define Hood
train, with ut-206

terances first transcribed by the ASR model. Note207

that Dood
train is used for adapting the ASR model to208

these out-of-domain conditions.209

3 Experiment and Results210

Datasets: We evaluate LMs and LLMs perfor-211

mance on the Lahaja (Javed et al., 2024a) Hindi212

ASR dataset (12.5 hours, 132 speakers, 83 dis-213

tricts), which includes read, extempore, and con-214

versational speech. For fine-tuning, we use the215

IndicVoice (Javed et al., 2024b) dataset (65 hours 216

from 287 speakers), selected for its domain and vo- 217

cabulary overlap with Lahaja. For out-of-domain 218

evaluation, we include Kathbath (Javed et al., 219

2023) (read speech from IndicCorp) and Shru- 220

tilipi (Bhogale et al., 2023a) (conversational radio 221

broadcasts). These datasets offer diverse speech 222

styles and linguistic complexity. 223

Baseline: We use IndicWav2Vec (Javed et al., 224

2022) and IndicConformer (Javed et al., 2024a), 225

two india specific multilingual ASR systems devel- 226

oped by AI4Bharat. These models follow wav2vec 227

2.0 and conformer architecture respectively. Our 228

preliminary experiments showed these two mod- 229

els perform the best amongst other Hindi ASRs, 230

detailed in Appendix C. 231

Model Configurations In this work, we eval- 232

uate our hypothesis on pre-trained LM ByT5, 233

mT5 along with open-weight and close-weight 234

LLMs, Llama-3 and ChatGPT-4o-Mini, respec- 235

tively. ByT5 (Xue et al., 2022) is a T5 variant, an 236

encoder-decoder based LM. It is a tokenizer-free, 237

byte-level model. In contrast, mT5 (Xue, 2020) is 238

a T5 (Raffel et al., 2020) variant that uses Senten- 239

cePiece tokenization (Kudo, 2018). It is a multi- 240

lingual model trained on common crawl data, in- 241

cluding in Hindi. For an open-weight LLM, we use 242

Llama-3-Nanda-10B-Chat, a 10B-parameter, bilin- 243

gual English-Hindi LLM adapted from Llama-3-7B 244

through architectural changes and continued pre- 245

training on a 65B-token Hindi corpus. Lastly, for a 246

closed-weight LLM, we adopt ChatGPT-4o-mini, 247

which offers strong zero- and few-shot reasoning 248

abilities at a favorable cost-performance balance. 249

3.1 Training and Evaluation 250

The training data for fine-tuned models comprise 251

1-best ASR hypotheses generated by various Hindi 252

ASR systems, paired with their corresponding 253

ground truth transcriptions. In contrast, ChatGPT- 254

4o mini leverages few-shot learning with prompts 255

designed using random and similar sentence em- 256

bedding (Joshi et al., 2023) examples. These sen- 257

tence embedding examples are constructed from 258

Hindi ASR errors in the IndicVoice dataset, with 259

corrections selected based on sentence embeddings 260

to ensure semantic similarity and contextual rele- 261

vance across the examples and the ASR hypothe- 262

ses. Furthermore, we also trained the ByT5 on D1 263

dataset using an n-best hypothesis (n = 5) and ob- 264

served a WER of 45, indicating the impact of mul- 265

tiple hypotheses in refining ASR post-correction. 266
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IndicWav2Vec IndicConformer

Training Dataset Dataset
Size

ASR
Hyp. ByT5 mT5 Llama ASR

Hyp. ByT5 mT5 Llama

D1: In-Domain Speech with ASR model 63500 28.60 24.17 32.92 76.72 18.02 18.22 17.50 76.04
D2: + In-Domain Speech with Diff. ASR model 127306 28.60 26.62 29.09 27.8 18.02 18.07 16.75 23.24
D3: + Out-of-Domain Speech with ASR model 1021472 28.60 25.14 23.74 26.03 18.02 17.52 16.31 21.49

Table 1: WER Comparison for Various fintuned LMs (ByT5-small, mT5-base) and LLM (Llama)

IndicWav2Vec IndicConformer

Training Dataset Dataset
Size ByT5 mT5 ByT5 mT5

D1: IndicVoice [IC] 63500 24.17 32.92 18.22 17.50
IndicVoice [W2V] 63500 26.00 26.67 18.37 16.81

Shrutilipi [IC] 127306 31.37 29.67 24.18 22.19
Kathbath + Shrutilipi [IC] 127306 30.45 27.76 23.34 19.48
Shrutilipi [W2V] 127306 30.10 29.96 25.04 22.55
Kathbath + Shrutilipi [W2V] 127306 28.84 29.05 22.30 20.75
D2: IndicVoice [IC+W2V] 127306 26.62 29.09 18.07 16.75

D3: D2 + other ASR dataset [IC] 1021472 25.14 23.74 17.52 16.31
D2 + other ASR dataset [W2V] 1021472 23.66 22.97 17.55 16.45
D2 + other ASR dataset [IC + W2V] 1021472 23.36 23.00 17.46 16.17

Table 2: Performance comparison of ByT5-small
(ByT5) and mT5-base (mT5) models on the Lahaja
test dataset trained with different training datasets. The
Word Error Rate (WER) of the IndicWav2Vec (W2V)
model is 28.6, while the IndicConformer (IC) model is
18.02 .

Experiment Shots IndicWav2Vec IndicConformer
- 0-Shot 28.60→ 31.77 18.02→ 25.14
Random 1-Shot 28.60→ 30.95 18.02→ 24.51

3-Shot 28.60→ 29.84 18.02→ 22.13
5-Shot 28.60→ 29.27 18.02→ 22.19

SE Similarity 1-Shot 28.60→ 29.22 18.02→ 22.88
3-Shot 28.60→ 28.18 18.02→ 22.04
5-Shot 28.60→ 27.14 18.02→ 20.89

Table 3: WER Comparison for Various Shot Settings
using ChatGPT (ICL)

3.2 Results of Finetuned LMs and LLMs267

Table 1 and Table 2, evaluate the performance268

of Finetuned LMs and LLMs under three train-269

ing scenarios: in-domain speech with an ASR270

model (D1), in-domain speech using a different271

ASR model (D2), and out-of-domain speech with272

an ASR model (D3). In-Domain Training: When273

finetuned LMs are trained on datasets from the274

same domain (Did
train,H id

train) as the test set (Did
test),275

performance improves significantly. For exam-276

ple, ByT5 and mT5 performs better when train-277

ing dataset is IndicVoice compared to Shrutilipi or278

other. We hypothesize that this is because the fine-279

tuned LMs encounter error patterns at test time that280

are similar to those it has been exposed to during281

training. Out-of-Domain Training: When fine-282

tuned LMs are trained on datasets from different283

domains (Dood
train,Hood

train) than the test set (Did
test),284

performance improvements are not observed. This 285

is likely because the errors encountered at test time 286

differ significantly from those seen in the training 287

data, limiting the ability of the finetuned LMs to 288

generalize effectively. 289

3.3 Results of ICL 290

In Table 3, we evaluate the ICL capability of a 291

LLM, ChatGPT-4o mini. We assess ASR post- 292

correction in both zero-shot, 1-shot and few-shot 293

settings. Our findings demonstrate the adaptability 294

of few-shot learning, leveraging sentence embed- 295

dings (SE) to improve ASR correction. However, in 296

the case of IndicConformer, this approach resulted 297

in an increase in ASR hypothesis WER. 298

Our experiments evaluating the impact of model 299

size under a zero-shot ICL setting, leveraging the 300

inherent knowledge from the pre-trained versions 301

of each model without further fine-tuning men- 302

tioned in the Appendix D. 303

4 Conclusion 304

In this work, we explored the effectiveness of lan- 305

guage models (LMs) and large language models 306

(LLMs) for post-ASR correction in Hindi, high- 307

lighting the surprising result that smaller, fine- 308

tuned models such as mT5 and ByT5 consistently 309

outperform much larger LLMs like GPT-4o-mini 310

and LLaMA variants. Our findings reveal a U- 311

shaped inverse scaling trend, where increasing 312

model size initially degrades performance before 313

marginal improvements at extreme scales, yet still 314

falling short of the smaller models. ByT5 excels at 315

fine-grained character-level corrections, while mT5 316

is more effective at capturing broader semantic in- 317

consistencies. We also identify performance degra- 318

dation in high out-of-domain settings and propose 319

mitigation strategies to preserve domain-specific fi- 320

delity in ASR post-correction. These results under- 321

score the importance of source-specific inductive 322

biases and suggest that lightweight, fine-tuned mod- 323

els are better suited than general-purpose LLMs for 324

improving ASR quality in low-resource language 325

contexts. 326
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Limitations327

As part of future work, we would like to work on328

the following limitations of our work:329

• While the study primarily focuses on Hindi,330

this language-specific scope may constrain the331

generalizability of the findings to other low-332

resource Indian languages with distinct lin-333

guistic characteristics. Although preliminary334

evaluations are conducted on Marathi and Tel-335

ugu, they lack detailed analysis. Moreover,336

the absence of linguistic experts for these lan-337

guages limits the depth of error categorization338

and interpretation.339

• ICL results are limited to GPT-4o-mini and340

evaluated under only a few-shot and SE-based341

prompting. The comparison of GPT-4o is342

missing due to limited funds.343
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A Illustrative Example of Hindi ASR 509

Errors 510

}ASR 
Error 
Types

GT: rathayātrā ke lie jānabūjhakara vana 
ṭūrisṭa dvārā taiṃtālīsa minaṭa kī derī kī gaī hai
N-GT: rathayātrā ke lie jānabūjhakara vana [One] 
ṭūrisṭa [Tourist] dvārā taiṃtālīsa minaṭa kī derī kī gaī hai
Hypothesis: ratha yātrā ke lie jānabūjhakara vāna 
ṭyūresṭa dvārā taitālīsa minaṭa kī derī kī gaīhai
Transcript: rathayātrā ke lie jānabūjhakara vana 
ṭūrisṭa dvārā taitālīsa minaṭa kī derī kī gaī hai

English Word ['ṭyūresṭa']
Number ['vāna', 'taitālīsa']    
Word Segmentation ['gaīhai']
Compound Words ['ratha yātrā']
Under Represented Characters ['taitālīsa']

Figure 2: Example of ASR hypothesis errors in Hindi,
categorized by error types: English word transliteration
(t.yūrest.a), number transcription (vāna, taitālı̄sa), word
segmentation (gaı̄hai), compound word splitting (ratha
yātrā), and underrepresented character errors (taitālı̄sa).

Compound words, such as (/rathayātrā/), which 511

refers to an annual Hindu chariot festival, erro- 512

neously the word can split into (/ratha yātrā/) (ratha 513

means chariot, yātrā means travel, journey), thus 514

altering their meaning. Word segmentation errors 515

are also common, particularly with derivational 516

and infectional word groups (Karthika et al., 2025), 517

where phrases like (/kē liē/) or (/gaı̄ hai/) can be- 518

come incorrectly merged. Misrecognition of num- 519

bers further complicates Hindi ASR. For instance, 520

the English numbers, such as “one" (expected as 521

(/ vana /)), are often phonetically transcribed as (/ 522
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vāna /), and native Hindi numbers, like (/taitālı̄sa/)523

(taitālı̄sa means forty three), can be distorted due to524

inadequate training data. Code-mixed content, such525

as(/ rathayātrā kē liē jānabūjhakara vana t.ūrist.a526

dvārā taitālı̄sa minat.a kı̄ dērı̄ kı̄ gaı̄ hai /)3, fur-527

ther complicates ASR tasks, as systems struggle528

to manage transitions between Hindi and English529

seamlessly. Lastly, phonetic and orthographic vari-530

ability arising from regional accents, dialects, and531

optional diacritics or conjunct consonants leads to532

systematic recognition errors as shown in Figure 2.533

B Related Works534

LLMs have been integrated into ASR systems535

through various approaches. ASR error correc-536

tion utilizes LLMs to rescore N-best lists of poten-537

tial transcriptions, refining predictions (Ma et al.,538

2023; Radhakrishnan et al., 2023). Speech in-539

context learning fine-tunes LLMs with speech in-540

puts, enabling them to handle diverse tasks (Ku-541

mar et al., 2024), while deep LLM fusion (Fathul-542

lah et al., 2024) employs LLMs as decoders in543

ASR architectures, integrating language modelling544

capabilities through mechanisms like gated cross-545

attention. However, both speech in-context learn-546

ing (Pan et al., 2023) and deep LLM fusion (Fathul-547

lah et al., 2024) are computationally intensive, re-548

quiring significant resources and large labelled549

speech datasets, which are scarce for low-resource550

languages like Hindi. Similarly, LLM rescoring of551

N-best lists often underperforms compared to using552

a single 1-best hypothesis (Li et al., 2024), which553

is sufficient for addressing common errors such as554

word segmentation, underrepresented characters,555

and compound word handling.556

C Model Comparison557

Model WER (%) CER (%)
IndicWav2vec (Javed et al., 2022) 28.605 10.54
IndicWhisper (Bhogale et al., 2023b) 32.17 19.86
IndicConformer (Javed et al., 2024a) 18.015 6.458
Seamless M4T (Barrault et al., 2023) 52.63 29.89
data2vec_aqc (Lodagala et al., 2023) 29.63 10.6
SALSA (Mittal et al., 2024) 74.43 54.54

Table 4: Performance Comparison of Open-Source
Hindi ASR Models on Hindi Lahaja dataset

Table 4 presents a comparative evaluation of558

open-source Hindi ASR models on the Hindi La-559

haja dataset in terms of Word Error Rate (WER)560

3means “For the chariot procession, a tourist intentionally
caused a delay of forty-three minutes."

and Character Error Rate (CER). Among the evalu- 561

ated systems, IndicConformer (Javed et al., 2024a) 562

achieves the best performance with a WER of 563

18.015% and a CER of 6.458%, significantly out- 564

performing other models. IndicWav2Vec (Javed 565

et al., 2022) also demonstrates strong performance 566

with a WER of 28.605% and CER of 10.54%, while 567

IndicWhisper and Seamless M4T show higher error 568

rates, reflecting their limitations in capturing the 569

linguistic nuances of Hindi. Notably, SALSA (Mit- 570

tal et al., 2024) performs the worst, with a WER of 571

74.43% and CER of 54.54%, suggesting it is less 572

suitable for Hindi ASR. These results reinforce the 573

effectiveness of IndicConformer as a robust base- 574

line for downstream ASR post-correction tasks in 575

Hindi. 576

Moreover, Table 1 demonstrates how the use of 577

larger and diverse training datasets improves model. 578

Specifically, IndicWav2Vec and IndicConformer, 579

combined with LM like ByT5 and mT5, exhibit 580

marked improvements in the Lahaja test set, under- 581

scoring the effectiveness of leveraging diverse error 582

patterns for ASR post correction training. Although 583

finetuned Llama decline the ASR hypothesis qual- 584

ity. 585

D Ablation Study 586

Experiments IW→ CW CW→ IW No Change
Word Segmentation 224 216 498
Compound Words 75 74 215
English Words 637 283 3180
English Number 7 17 131
Hindi Number 36 24 94
Underrepresented Character 2254 1129 3296

Table 5: Analysis of errors in Lahaja Dataset by
mT5=16.17 model train on Lahaja dataset. IW = In-
correct Word and CW = Correct Word

Experiments IW→ CW CW→ IW No Change

Word Segmentation 241 253 722
Compound Words 84 97 206
English Words 730 456 3087
English Number 19 22 119
Hindi Number 33 28 97
Underrepresented Character 2287 1798 3263

Table 6: Analysis of errors in Lahaja Dataset by
ByT5=17.46 model train on Lahaja dataset. IW = Incor-
rect Word and CW = Correct Word

Table 5 and Table 6 show that ByT5 consistently 587

corrects more character-centric errors, code-mixed 588

tokens, compound-word splits, word-segmentation 589

mistakes, numeric misrecognitions, and under- 590

represented graphemes, than mT5. This stems from 591
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ByT5’s byte-level tokenization, which provides592

finer granularity for detecting single-character per-593

turbations. In contrast, mT5’s sub-word vocabulary594

affords stronger semantic coverage but makes it595

less sensitive to very fine-grained character varia-596

tions.597

Parameter Size

W
ER
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)
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IndicWav2Vec IndicConformer

Figure 3: Inverse scaling phenomenon in Hindi post-
ASR correction across varying LLaMA model sizes.

Table 7: Latency (in seconds) of different models for
ASR post-correction.

ByT5-small ByT5-base mT5-small mT5-base Llama ChatGPT-4o mini
2.29 2.79 0.97 1.84 10.17 2.03

In Table 7, we summarize the latency of different598

LMs/LLMs, indicating that mt5-small performed599

the fastest post-ASR correction. It also points to600

the fact smaller models like mT5 not only achieve601

significant performance gains but also are faster602

than larger LLMs. Hence, we incorporate mT5 for603

post-ASR correction is advantageous for both per-604

formance wise and latency, enabling robust ASR605

correction in low-resource settings.606

We evaluate the impact of model size on Hindi607

post-ASR correction under a zero-shot in-context608

learning setup, relying solely on the pre-trained609

knowledge of each model without additional fine-610

tuning. As shown in Figure 3, increasing parameter611

counts ( 3.1 1B→ 3.2 3B→ 3.1 8B→ Nanda-10B-612

Chat 10B → 3.3 70B) reveals an n-shaped trend613

in Word Error Rate (WER): performance improves614

initially, then worsens, and may slightly recover at615

higher scales. This inverse scaling behavior indi-616

cates that larger models do not necessarily guaran-617

tee better correction accuracy.618

E LM/LLM comparison619

We have experimented with LMs (mT5 and ByT5)620

and LLMs (Llama-3-Nanda-10B-Chat) under com-621

parable condition in terms of Hindi token used for622

pre-training them in absolute terms, relative terms 623

to their size, and relative to overall presence of 624

Hindi within the rest of the languages present to pre- 625

train the model. We find that our observation still 626

holds. Given that many experiments have shown 627

that the fine-tuned model substantially updates their 628

weights and hence the performance improvement is 629

substantial, we empirically observe that finetuning 630

has substantially improved the performance. 631

F Additional Languages 632

Language Hypothesis ByT5 small ByT5 base mT5 small mT5 base

Marathi 25.556 26.324 26.018 25.761 25.122

Telugu 23.284 24.51 24.725 22.68 22.05

Table 8: Evaluation of ASR post-correction on Marathi
and Telugu IndicTTS datasets.

Our approach was tailored to Hindi, focusing on 633

lexical and multiword interventions involving both 634

lexical and morphemic-level knowledge. However, 635

we have conducted evaluations for Marathi and Tel- 636

ugu as well. Table 8 shows the performance of 637

various post-correction models on Marathi and Tel- 638

ugu subsets of the IndicTTS dataset. We compare 639

ASR hypotheses against corrected outputs from 640

ByT5 and mT5 models of both small and base sizes. 641

The mT5-base model achieves a lower WER across 642

both languages. We use the IndicTTS dataset for 643

this evaluation as it closely resembles the Lahaja 644

dataset in linguistic characteristics and is in-domain 645

with the IndicVoice dataset, ensuring consistent do- 646

main relevance for low-resource ASR evaluation. 647

G Compound Word Error Detection 648

Algorithm 649

To systematically identify compound word errors 650

in ASR hypotheses, we propose an algorithm that 651

leverages a trie-based structure built from a vocabu- 652

lary dictionary. As outlined in Algorithm 1, the pro- 653

cess involves tokenizing both the ground truth (GT) 654

and hypothesis (Hyp) utterances, generating valid 655

substrings from GT tokens, and validating these 656

against the constructed trie. The algorithm then 657

checks whether the valid compound words from 658

the ground truth appear intact in the hypothesis. 659

If a compound word is absent or split incorrectly 660

in the hypothesis, it is flagged as an error. This 661

approach is particularly effective for detecting er- 662

rors in morphologically rich languages like Hindi, 663

where compound word splitting significantly alters 664

meaning. By identifying such errors, the algorithm 665
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Algorithm 1 Detecting Compound Word Errors
Using a Trie

Require: Dict: Vocabulary dictionary, GT:
Ground Truth utterance , Hyp: Hypothesis ut-
terance

Ensure: ErCW: List of compound word errors
1: Step 1: Build the Trie
2: Initialize an empty Trie T
3: for each word ∈ Dict do
4: Traverse T character by character
5: if character does not exist in T then
6: Create a new node
7: end if
8: Mark the end of word as isEndOfWord←

True
9: end for

10: Step 2: Preprocess Input
11: Tokenize GT: GTtokens ← split(GT)
12: Tokenize Hyp: Hyptokens ← split(Hyp)
13: Step 3: Generate Substrings
14: for each word ∈ GTtokens do
15: Splits← splits(word)
16: Store valid splits as Splitsvalid
17: end for
18: Step 4: Validate Substrings
19: for each split ∈ Splitsvalid do
20: if all substrings subsplit ∈ split exist in T

then
21: Add split to CompoundWordsvalid
22: end if
23: end for
24: Step 5: Check for Errors
25: for each word ∈ CompoundWordsvalid do
26: if word /∈ Hyptokens then
27: Add word to ErCW
28: end if
29: end for
30: Step 6: Output Results
31: Save ErCW for further analysis

supports more fine-grained ASR post-correction 666

and helps evaluate model performance on preserv- 667

ing lexical integrity. 668

H Compute Infrastructure 669

Compute details: For all our pre-training and 670

fine-tuning experiments, we used two NVIDIA 671

A100-SXM4-80GB GPUs. Each training requires 672

4-48 hours. 673

Software and Packages details: We implement 674

all our models in PyTorch4 675

Models 676

mT5: mT5-small (300M parameters), mT5-base 677

(580M parameters) 678

ByT5: ByT5-small (300M parameters), ByT5-base 679

(580M parameters) 680

Nanda: Llama3-10B 681

ChatGPT: 8B parameter 682

683

I Effect of Domain-specific 684

Regularization 685

While fixed-ratio training helps mitigate domain 686

forgetting by ensuring consistent exposure to lim- 687

ited in-domain data, an open research question 688

remains: Can incorporating regularization tech- 689

niques alongside fixed-ratio training further en- 690

hance model retention of in-domain knowledge 691

during ASR post-correction? As shown in Table 9, 692

fine-tuning ByT5 and mT5 variants with a con- 693

trolled in-domain to out-of-domain ratio results in 694

noticeable gains in correction performance across 695

both IndicWav2Vec and IndicConformer outputs. 696

However, despite these improvements, subtle per- 697

formance degradation is still observed in some con- 698

figurations with higher out-of-domain proportions. 699

This suggests that additional mechanisms, such 700

as domain-aware regularization, rehearsal-based 701

constraints, or importance-weighted loss, could po- 702

tentially reinforce in-domain retention even further. 703

Investigating such methods in conjunction with 704

fixed-ratio scheduling presents a promising direc- 705

tion for improving robustness and domain fidelity 706

in low-resource ASR post-correction. 707

J Prompt 708

4https://pytorch.org/
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Training Dataset Ratio Dataset Size byt5-small byt5-base mt5-small mt5-base
W2V IC W2V IC W2V IC W2V IC

IndicVoice [IC+W2V] + other ASR dataset [IC] 3:7 381415 0.2620 0.1778 0.2244 0.1719 0.2817 0.1689 0.2589 0.1603
IndicVoice [IC+W2V] + other ASR dataset [W2V] 3:7 381415 0.2300 0.1760 0.2226 0.1765 0.2600 0.1713 0.2581 0.1651

IndicVoice [IC+W2V] + other ASR dataset [IC] 2:8 571962 0.2358 0.1729 0.2232 0.1774 0.2735 0.1688 0.2651 0.1602
IndicVoice [IC+W2V] + other ASR dataset [W2V] 2:8 571962 0.2310 0.1787 0.2229 0.1758 0.2591 0.1758 0.2668 0.1662

IndicVoice [IC+W2V] + other ASR dataset [IC] 1:9 993155 0.2442 0.1774 0.2443 0.1774 0.2512 0.1710 0.2588 0.1614
IndicVoice [IC+W2V] + other ASR dataset [W2V] 1:9 993155 0.2333 0.1829 0.2234 0.1762 0.2388 0.1712 0.2549 0.1638

Table 9: Evaluation of ASR post-correction on Lahaja dataset mixing the in-domain and out-of-domain dataset in
fixed ratio

ChatGPT Prompt based on error-types

Example 1:
You are given an ASR hypothesis of a spoken utterance. The hypothesis may contain misrecognized
words, incorrect word segments, or code-switching mistakes. Your job is to produce the best
possible corrected text, relying on your own knowledge of grammar and typical usage
Please correct any errors in
1. Incorrect transliteration of English words
2. Incorrect transliteration of English numbers
3. Incorrect transcription of native Hindi numbers
4. Misrecognition of underrepresented characters
5. Splitting of compound words
6. Incorrect word segmentation

There may be more than two errors in the ASR hypothesis.
Output only the final corrected output (no extra commentary)

Hypothesis: ratha yātrā ke lie jānabūjhakara vāna t.yūrest.a dvārā taitālı̄sa minat.a kı̄ derı̄
kı̄ gaı̄ hai

Predicted Output: ratha yātrā ke lie jānabūjhakara vana t.yūrist.a dvārā taim. tālı̄sa minat.a kı̄ derı̄
kı̄ gaı̄ hai.
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