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Abstract

One of the main goals of current systems neuroscience is to understand how neuronal pop-

ulations integrate sensory information to inform behavior. However, estimating stimulus or

behavioral information that is encoded in high-dimensional neuronal populations is challeng-

ing. We propose a method based on parametric copulas which allows modeling joint distri-

butions of neuronal and behavioral variables characterized by different statistics and

timescales. To account for temporal or spatial changes in dependencies between variables,

we model varying copula parameters by means of Gaussian Processes (GP). We validate

the resulting Copula-GP framework on synthetic data and on neuronal and behavioral

recordings obtained in awake mice. We show that the use of a parametric description of the

high-dimensional dependence structure in our method provides better accuracy in mutual

information estimation in higher dimensions compared to other non-parametric methods.

Moreover, by quantifying the redundancy between neuronal and behavioral variables, our

model exposed the location of the reward zone in an unsupervised manner (i.e., without

using any explicit cues about the task structure). These results demonstrate that the Cop-

ula-GP framework is particularly useful for the analysis of complex multidimensional rela-

tionships between neuronal, sensory and behavioral variables.

Author summary

Understanding the relationship between a set of variables is a common problem in many

fields, such as weather forecast or stock market data. In neuroscience, one of the main

challenges is to characterize the dependencies between neuronal activity, sensory stimuli

and behavioral outputs. A method of choice for modeling such statistical dependencies is

based on copulas, which disentangle dependencies from single variable statistics. To

account for changes in dependencies, we model changes in copula parameters by means

of Gaussian Processes, conditioned on a task-related variable. The novelty of our approach

includes 1) explicit modeling of the dependencies; and 2) combining different copulas to
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describe experimentally observed variability. We validate the goodness-of-fit as well as

information estimates on synthetic data and on recordings from the visual cortex of mice

performing a behavioral task. Our parametric model demonstrates significantly better

performance in describing high dimensional dependencies compared to other commonly

used techniques. We demonstrate that our model can estimate information and predict

behaviorally-relevant parameters of the task without providing any explicit cues to the

model. Our results indicate that our model is interpretable in the context of neuroscience

applications, scalable to large datasets and suitable for accurate statistical modeling and

information estimation.

This is a PLOS Computational BiologyMethods paper.

Introduction

Recent advances in imaging and recording techniques have enabled monitoring the activity of

hundreds to thousands of neurons simultaneously [1–3]. These recordings can be made in

awake animals engaged in experimentally-constrained behavioral tasks or natural behaviors

[4–6], which further augments these already large datasets with a variety of behavioral vari-

ables. These complex high dimensional datasets necessitate the development of novel analytical

approaches [7–10] to address two central questions of systems and behavioral neuroscience:

how do populations of neurons encode information? And how does this neuronal activity

relate to the observed behavior? In machine learning terms, both of these questions translate

into understanding the high-dimensional multivariate dependencies between the recorded

variables [4, 11–14, 14].

The experimentally recorded neuronal and behavioral variables may operate at different

timescales and exhibit different statistics. While neuronal spiking occurs on a temporal scale of

milliseconds [1–3], the behavioral variables span timescales from milliseconds to hours and

even days [5, 6, 15, 16]. The overlap of these multi-scale dynamics results in a complex joined

distribution of the simultaneously recorded activity. Therefore, the newly proposed analytical

tools must be able to accommodate such complex statistics and uncover the underlying

dependencies.

A method of choice for modeling statistical dependencies between variables with drastically

different statistics is based on copulas, which separate marginal (i.e. single variable) statistics

from the dependence structure [17]. For this reason, copula models are particularly effective

formutual information estimation [18, 19], which quantifies how much knowing one variable

reduces the uncertainty about another variable [20]. Copula models can also escape the ‘curse

of dimensionality’ by factorising the multi-dimensional dependence into pair-copula construc-

tions called vines [21, 22]. This factorization of the dependence in vine copulas also, to a lim-

ited extent, accounts for the higher-order correlations between the variables [23].

Copula models have been applied to spiking activity [24–27] in cortical areas, spiking activ-

ity with local-field potential [23] and somatic calcium transients [28]. However, these models

assumed that the dependence between variables was static, and could not capture neither the

dynamics nor the changes with respect to continuous (non-discrete) external variables [12,

29]. In this paper, we demonstrate the limitations of this static copula approach using simple
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toy models with time-dependent stimuli and dynamically coupled neurons. We demonstrate

that, in order to analyse the underlying dynamic computation, it is critical to explicitly model

the continuous time- or context-dependent changes in the relationships between neuronal and

behavioral variables.

Here, we use a copula-based approach with explicit conditional dependence for the parame-

ters of the copula model and approximate these latent dependencies with Gaussian Processes

(GP). It was previously shown that such a combination of parametric copula models with GP

priors outperforms static copula models [30] and even dynamic copula models on many real-

world datasets, including weather forecasts, geological data or stock market data [31]. Yet, this

Copula-GP approach has never been applied to neuronal recordings before.

Here, we propose and validate a method that is interpretable in the context of neuroscience

applications, scalable to large datasets and suitable for accurate probability density and infor-

mation estimation. We first briefly introduce the Copula-GP model, demonstrating its utility

for a simple neuroscience example with two dynamically coupled neurons and interpreting

each component of the model. We then validate our model on synthetic data and compare its

performance against other commonly used information estimators, and show that it has better

scaling to higher dimensions. Next, we demonstrate the utility of the method on real neuronal

and behavioral data, acquired with two-photon calcium imaging in the primary visual cortex

of awake behaving mice performing a rewarded task [6, 32]. We demonstrate that our model

can estimate mutual information and predict behaviorally-relevant parameters of the task

without providing any explicit cues to the model. Finally, we validate the model with a high-

dimensional dataset with hundreds neurons and multiple behavioral variables. These results

demonstrate that the Copula-GP framework is particularly useful for the analysis of complex

multidimensional relationships between neuronal, sensory and behavioral variables.

Results

1 Copula-GP model

Many questions in neuroscience require accurate statistical models of neuronal responses to a

certain stimulus. For instance, such models can be used for Bayesian decoding of the stimulus

[20] or for information-theoretic analysis [33] in order to assess the coding precision of a neu-

ronal population. Here we describe a general framework for constructing such statistical mod-

els, called Copula-GP; the technical details related to model implementation and fitting can be

found in Methods.

Our statistical model is based on copulas: multivariate distributions with uniform margin-

als. Sklar’s theorem [34] states that any multivariate joint distribution can be written in terms

of univariate marginal distribution functions pi(yi) and a unique copula which characterizes

the dependence structure:

pðy1; . . . ; yNÞ ¼ cðF1ðy1Þ . . . FNðyNÞÞ �
YN

i¼1

piðyiÞ: ð1Þ

Here, Fi(�) are the marginal cumulative distribution functions (CDF) corresponding to the

probability density functions (PDF): piðyiÞ ¼ dFiðyÞ=dyjy¼yi .
The model in (1) has been previously applied to neuronal data [18, 23, 35]. In this paper, we

extend that model by conditioning it on a continuous variable x:

pðyjxÞ ¼ cðF1ðy1jxÞ; . . . ; FNðyN jxÞjxÞ �
YN

i¼1

piðyijxÞ

" #

: ð2Þ
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where x, depending on the design of the experimental task, can represent any continuous task-

related variable such as time, phase, coordinate in space, velocity, direction or orientation. In

the further sections we will show that if this variable x also uniquely determines the stimulus,

then the components of the model (2) can also be interpreted in terms of ‘noise correlations’

(i.e. joint trial-to-trial variability of responses to a given stimulus).

We are using Gaussian Processes (GP) to model the conditional dependencies of copula

parameters (i.e. c(.|x)), following the approach by Hernández-Lobato et al. [31] which was

originally developed for analysis of financial time-series. GPs are ideally suited for copula

parametrization, as they make the dependencies explicit and provide an estimate of the uncer-

tainty in model parameters, which we utilize in our model selection process (see Sec. 6 in

Methods). Similarly to previous computational studies [23, 28, 30, 36, 37], we use vine copula

constructions to scale the method to higher dimensions (Sec. 7). Here, we extend the Copula-

GP framework with more flexible copula mixture models (see Fig 1 and Methods), suitable for

inter-neuronal dependencies, and utilise the repeated trial structure in order to estimate condi-

tional marginal distributions pi(yi|x) (e.g. distributions of single neuron responses at every

moment x in the trial). We develop model selection algorithms, based on the fully-Bayesian

Watanabe–Akaike information criterion (WAIC), that construct the best suited mixture mod-

els for a given data set. In the following section we show the utility of our extended Copula-GP

model for analysis of neuronal and behavioral data.

2 Copula-GP separates noise correlations from stimulus statistics

We first examine a synthetic ‘toy’ model of calcium imaging data in order to illustrate and

interpret the components of our Copula-GP model. We use a Generalized linear model

(GLM) [38] and a model of the kinetics of the calcium indicator [39] in order to generate syn-

thetic calcium imaging data of the activity of two neurons (see Methods). GLMs are widely

used to model population spike trains based on spike history filters and coupling filters. While

these models can be readily fit to small neuronal populations, they have parameter identifiabil-

ity issues that lead to degraded performance in predicting neuronal activity patterns [40].

GLMs are also not directly applicable to calcium imaging data and require some additional

spike inference algorithm (deconvolution, e.g. Deneux et al. 2016 [39]) to obtain spikes. So,

instead of fitting GLMs, we propose to explicitly model the dynamic neuronal activity patterns

Fig 1. Copula families used in the mixture models in our framework. Each panel shows a scatter plot of samples drawn from a parametric copula family (named in

the title of each plot) with a fixed parameter θ (shown in the bottom right corner). In total, we used 10 different copula elements—Gaussian + Frank + 4 × Clayton

+ 4 × Gumbel—to construct copula mixtures. The rightmost figure shows a mixture of two copulas from different copula families taken with equal mixing weights

(0.5). Blue points here correspond to the samples drawn from a Clayton copula, orange points—to a 90˚-rotated Gumbel copula. Note, that a mixture of copulas is a

copula itself.

https://doi.org/10.1371/journal.pcbi.1009799.g001
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(including the calcium dynamics) with Copula-GP. Our approach is complementary to GLMs:

while GLMs consider time-lagged interactions via temporal spike history filters and cannot

model instantaneous coactivation [41], our model focuses exclusively on the instantaneous

correlations between calcium signals.

Calcium imaging in neurons is used as a proxy for monitoring their spiking activity since

action potentials are tightly coupled to large increases in intracellular free calcium concentra-

tion [42]. Two-photon imaging is used to monitor fluorescence changes of calcium indicators

in large population of neurons, with single cell resolution. When dense populations of neurons

are imaged, the signals imaged in a given focal plane can be contaminated by signals from a

volume around this plane. Different methods for correcting such out-of-focus contamination

have been developed [43]. We assumed that each decontaminated recording yi(t) of calcium

dynamics for each neuron is a function of its spiking activity ni(t), which is independent of the

activity of other neurons (i.e. yi(n1. . .nN, t) = yi(ni, t), given time). This assumption is also

implicitly made in deconvolution algorithms, which incorporate inductive biases for calcium

dynamics and are also applied to individual neurons independently. We will consider the

decontaminated recordings yi(t) to be a surrogate of neural spike trains ni(t), which can be

approximated by blurring (convolving) the spikes with an exponential kernel (Deneux et al.

2016 [39]). The time constant in this kernel corresponds to calcium decay and also sets the

time scale of interactions between spiking neurons, which would be captured by an instanta-

neous correlation of their calcium traces. Keeping these assumptions in mind, we aim to build

instantaneous dependence models of calcium recordings for statistical and information-theo-

retic analysis.

We first consider a pair of neurons, which have the same tuning (receive the same input

x(t) in Fig 2A), but are not coupled. Since the spiking activity of these neurons in response to a

given stimulus is completely independent, we expect that their calcium traces, which are a tem-

porally blurred versions of spike trains, to also be independent given the stimulus. A few simu-

lated calcium transients (fluorescence across time) for one of these identical neurons are

shown in Fig 2B.

By design, the activity of these neurons is independent given the stimulus (Fig 2A), but they

do respond similarly to the stimulus. As a result of a naive analysis of their joint statistics, such

as measuring correlation between recorded activities over time, their activity would appear

dependent. The structure of this dependence can be visualized with a static copula model, as

in (1).

To fit a copula-based model to a given dataset, one typically starts with the marginals (i.e.

single variable distributions). Here, we model the single neuron marginals with their empirical

distributions, estimated directly from the data in the form of empirical cumulative distribution

functions (eCDFs). We then use these eCDFs to project the simulated neuronal recordings

onto a unit cube using the probability integral transform: F(yi)!ui* U[0,1], such that each ui
becomes uniformly distributed. Note, that both the neural responses yi and their transformed

versions ui still depend on both the stimulus x(t) and time t. We can confirm that by visualiz-

ing the empirical copula c(u1. . .uN) = c(F1(y1). . .FN(yN)) (Fig 2C). The colors of the data

points here indicate time t. Similarly colored clusters of points in copula space (e.g. green in

Fig 2C) indicate that both the dependence and the marginals in such an unconditional model

depend on time t and on the presented stimulus x(t). Hence, such dependence characterizes

the joint statistics of neural responses to stimulus x(t), but not the interaction between

neurons.

Spurious correlations between neuronal recordings are a well known problem when model-

ing responses to complex stimuli (e.g. time-dependent sequences of stimuli x(t)), which can be

solved by distinguishing between noise and stimulus correlations [40, 44]. In our Copula-GP
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model, this separation is achieved by using conditional marginals and copulas:

pðyjxðtÞ; tÞ ¼ pðyjtÞ ¼ cðF1ðy1jtÞ; . . . ; FNðyN jtÞjtÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
noise correlations

�
YN

i¼1

piðyijtÞ

" #

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
stimulus correlations

:

Here, we only assume that the stimulus x(t) is fully determined by time t. In general, our

framework (2) is applicable to any complex stimuli determined by any continuous variable

(e.g. time, phase, coordinate in space, velocity, direction, orientation, etc.). The conditional

marginals pi(yi|t) in this model account for the within-trial variability (e.g. dynamics of

responses), while the copula model accounts for the trial-to-trial variability in neural

responses.

The conditional marginals pi(yi|t) are estimated using the non-parametric fastKDE [45]

algorithm. This approach is suitable for relatively large datasets, which have enough data

points for direct estimation of the eCDF (see Sec D in S3 Text). If the number of datapoints is

insufficient, one might consider using parametric marginal models instead. Note that the fas-

tKDE also assumes smooth changes in the marginal distributions with respect to the condi-

tioning variable. The corresponding conditional marginal CDFs Fi(yi|t) are then used to map

the data onto a unit hypercube using: FiðyijtÞ ! uti � U½0;1�, such that uti is uniformly distrib-

uted for any t. The resulting empirical copula correctly demonstrates the absence of depen-

dence between y1(t) and y2(t), as the points are uniformly distributed on a unit square. The

Fig 2. Copula-GP finds that uncoupled neurons are independent given the stimulus. A GLM model of two

identical uncoupled neurons that receive the same time-dependent input x(t); B simulated calcium transients

(fluorescence across time) showing dynamic responses to the stimulus x(t) for one of the neurons; C calcium transients

of two neurons (y1(t), y2(t)) projected onto a unit cube by the probability integral transform based on unconditional

marginals; colored points show transformed samples (u1, u2) corresponding to times t (color-coded). The clusters of

similarly colored points (e.g. green) illustrate that the copula c(u) depends on time t; the particular shape and the

location of the clusters depends on the function x(t); only 10% of data-points are shown (selected randomly). D same

as C, but based on conditional marginals Fi(yi|t). The resulting empirical copula describes ‘noise correlations’ between

two neurons. The colored data-points (ut
1
,ut

2
) are uniformly distributed on the unit square, which suggests that there is

no noise correlation between these neurons, the copula c(ut) is independent of time t, and the neurons are independent

given the time-dependent stimulus.

https://doi.org/10.1371/journal.pcbi.1009799.g002
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density of points in Fig 2D illustrates that for every given value of the transformed neural

response ut
1
, the conditional distribution of the other neural responses is the same

(pðut
2
jut

1
Þ ¼ pðut

2
Þ � U½0;1�). This means that the variables ut

1
and ut

2
are independent

pðut
1
; ut

2
Þ ¼ pðut

2
jut

1
Þpðut

1
Þ ¼ pðut

1
Þpðut

2
Þ, and their copula is the Independence copula. This

result demonstrates that once we made the distinction between noise correlations and stimulus

correlations, we could correctly identify that these two neurons are uncoupled (Fig 2A).

The noise correlations were previously linked to anatomical and functional relationships

between cortical neurons [46, 47]. However, these relationships should be interpreted with

caution, since correlation between neurons does not necessarily imply the mechanistic cou-

pling between them [48]. Despite lack of mechanistic interpretability, accurate modelling of

noise correlations is useful for understanding neural code from the information-theoretic per-

spective. Generally, noise correlations themselves can depend on the stimulus [49], and taking

their stimulus dependence into account can improve the decoding accuracy [44, 50, 51]. In

order to model such tuning of the noise correlations, not only the marginals but also the corre-

sponding copula c(. . .|t) itself must be conditioned on t, as in (2).

We next consider two coupled neurons: one excitatory and one inhibitory (Fig 3A.i). They

again receive the same input x(t) as in Fig 2A, in all trials. We added two time-dependent filters

h12 and h21, that couple the spike train history of each neuron to the other (Fig 3A.ii) [38]. The

synthetic calcium traces (Fig 3B and 3C) demonstrate some non-trivial activity in both neu-

rons after the stimulus presentation window, where all of the recurrent circuit dynamics

unfolds. We expect that these dynamics will be reflected in some non-independent trial-to-

trial co-variability of neural responses. Since one neuron inhibits the other, we also expect that

their responses will be overall negatively correlated. While the unconditional copula analysis

again demonstrates strong stimulus correlations (Fig 3D), the conditional copula (conditioned

on the stimulus) reveals some structure in noise correlations (Fig 3E, see more points are con-

centrated in the upper-left corner).

In order to analyse the structure of the noise correlations in this example, we apply our

Copula-GP model. For simplicity, here we use a single 90˚-rotated Clayton copula, parameter-

ized by a Gaussian Process (GP); for details regarding the inference scheme, see Methods. The

inferred GP parameter reconstructs the stimulus-dependent changes in noise correlations (Fig

3F), which are most pronounced after the stimulation window. The corresponding Clayton

copula model can accurately describe the shape of the conditional dependence, which we

quantify with the proportion of variance explained R2 in Fig 3G (see Sec. 10 in Methods).

This noise correlation model in Fig 3G can be interpreted as follows. The red point in the

middle of each plot in Fig 3G corresponds to the median response for both neurons: 50% of

recorded responses from a given neuron were higher, while 50% were lower. More generally,

the values of the transformed neural responses ut correspond to the percentile scores of each

response y in a marginal distribution of neural responses. The shades in Fig 3G correspond to

the probability density, i.e. how likely it is to jointly observe a pair of responses utex and utinh.
Typically, most of the density is concentrated along one of the diagonals of the unit square:

around utex ¼ u
t
inh if neurons are positively correlated, and around utex ¼ � u

t
inh if neurons are

negatively correlated. In this case, the density is mostly concentrated around the negative diag-

onal, suggesting that the responses of these two neurons are generally negatively correlated (as

expected, given that one of the neurons inhibits the activity of the other). However, this depen-

dence also has a heavy tail: a high degree of association between some of the extreme values of

the variables. We can observe this association as a probability mass concentrated in the corner

of the unit square (see orange circles in Fig 3G). It indicates that there is a high probability to

observe a strongly activated inhibitory neuron together with the inactivated excitatory neuron.
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Such asymmetry in the joint trial-to-trial variability of two neurons suggests that their depen-

dence is non-linear: their dependence is not well characterized by a single linear correlation

coefficient as there is additional structure in the dependence beyond linear association. In our

GLM model, this non-linearity stems from the different timescales of spike history filters: fast

inhibitory and slow excitatory neurons.

The confidence intervals (95% CI, two standard deviations) shown in Fig 3F correspond to

the uncertainty in model parameters, captured by the Gaussian process. The uncertainty in

model parameters is not essential for this example, but necessary when modeling high-dimen-

sional datasets with relatively low sample numbers, which is often the case in neuronal data

with hundreds to thousands of recorded neurons and only few hundreds of trials. These uncer-

tainties can be propagated through the model and produce the uncertainty measures for the

Fig 3. Copula-GP describes the noise correlations between dynamically coupled neurons with a Clayton copula. A i. GLM model of two coupled neurons (excitatory

and inhibitory) that receive the same time-dependent input x(t); ii. the spike history coupling filters h12 and h21; B-C simulated calcium transients (fluorescence across

time) showing dynamic responses to the stimulus x(t) for excitatory and inhibitory neurons, respectively; D calcium transients of two neurons (y1(t), y2(t)) projected

onto a unit cube by the probability integral transform based on unconditional marginals; colored points show transformed samples (u1, u2) corresponding to times t
(color-coded). The clusters of similarly colored points (e.g. green) illustrate that the copula c(u) depends on time t; the particular shape and the location of the clusters

depends on the function x(t). E same as D, but based on conditional marginals Fi(yi|t). The resulting copula describes ‘noise correlations’ between two neurons. The

colored data-points (ut
1
,ut

2
) are not uniformly distributed on the unit square, which suggests that the noise correlation between these neurons and the copula c(ut) itself

depends on time t. F Clayton copula parameter (θ) that characterizes the strength of the non-linear noise correlation between neurons (see Methods for details); G

probability density plots illustrating the stimulus-dependent shape of noise correlations. The empirical dependence estimated from data samples is shown with black

outlines, while the predictions of the Clayton copula model are shown in shades of blue. The proportion of the variance explained R2 is indicated in the upper-right

corner for each time interval. Orange circles indicate the heavy tail of the distribution, which can be best seen in the range t 2 [0.6, 1.0] where the variables are stronger

correlated.

https://doi.org/10.1371/journal.pcbi.1009799.g003
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decoded stimulus (when using Copula-GP for Bayesian decoding) or in estimated mutual

information.

As we demonstrated in these synthetic examples, our Copula-GP model can separate the

statistics corresponding to the network from the single unit statistics, or, in other words, dis-

tinguish (stimulus-dependent) noise correlations (i.e. shared neuronal trial-to-trial variability)

from stimulus correlations. Moreover, it provides a visualization of the shape of noise correla-

tions (Fig 3G), and reveals that the noise correlations are tuned to a particular time point

(t� 0.7) in a trial (Fig 3F). The main advantage of using copula models [18] is their expressive

power in modeling the shape of the relationship between variables, which, in this case, is asym-

metric due to the dynamic connections in the neuronal circuit being asymmetric (Fig 3). It

was also shown previously that shared excitatory or inhibitory inputs can result in similar

non-linear dependencies between neurons [24]. While copula models of the noise correlations

do not provide any mechanistic interpretation of these dependencies (e.g. whether neurons

are recurrently coupled or share an input), their expressive power allows one to build statistical

models for information-theoretic analysis or Bayesian decoding. An additional explicit fully-

Bayesian parameterization provided by a GP (Fig 3F) extends the copula model to time-depen-

dent, location-dependent or otherwise continuously parameterized behavioral tasks.

3 Validation of mutual information estimation on artificial data

Apart from conditioning on time or on some complex continuous stimuli, Copula-GP models

can also provide accurate information estimates. Static copula models are generally well suited

for information estimation, as the mutual information between the variables corresponds to

the negative entropy of their copula [18, 34]. This also applies to the conditional entropy of

our conditional copula modelsH(y|x), as it factorizes into marginal and copula components

(see Eq (11) in Methods). However, calculating the mutual information between the variable y

and the conditioning variable x is more complicated. We propose two methods for estimating

this mutual information I(y, x): ‘integrated’ (12) and ‘estimated’(13). The first one assumes no

conditional dependence in marginals (i.e. pi(yi) = pi(yi|x) for every yi and every value of x) and

only requires a conditional copula model for p(y|x), which is then integrated using the Monte-

Carlo (MC) algorithm (over both x and y) in order to obtain p(y). The second method has no

limitations on the conditional dependencies in marginals, but requires an additional copula

model for the unconditional distribution p(y) apart for a conditional copula model of p(y|x)
(see Sec. 11 in Methods for details).

We expect our information estimates to be unbiased for every parametric copula model in

our framework, due to the MC estimator being unbiased [52]. The only source of bias in our

information estimates comes from the accuracy of the model fit obtained via variational infer-

ence, which is inevitably biased. This bias, however, is expected to affect ‘integrated’ and ‘esti-

mated’ Copula-GP methods differently, since different dependencies are being modeled with

the parametric copulas.

In this section, we evaluate the performance of our Copula-GP method and compare it with

the other commonly used non-parametric algorithms for mutual information estimation:

Kraskov-Stögbauer-Grassberger (KSG [53]), Bias-Improved-KSG by Gao et al. (BI-KSG [54])

and the Mutual Information Neural Estimator (MINE [55]). We construct 3 datasets, which

best illustrate the strengths and the limitations of our semi-parametric and other non-paramet-

ric methods. These datasets comprise the synthetic samples from relatively low dimensional

distributions (�10D), for which we can still directly calculate the true mutual information.

These distributions have uniform marginals, which allows us to compare ‘integrated’ and ‘esti-

mated’ approaches.
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Baseline scenario: Gaussian dataset. First, we consider a dataset sampled from a multi-

variate Gaussian distribution, with cov(yi, yj) = ρ + (1 − ρ)δij, where δij is Kronecker’s delta and

ρ = −0.1 + 1.1 x, x 2 [0, 1]. Our method is expected to perform well on this dataset because the

ground truth model is a special case of our parametric copula model. On the other hand, the

dataset is expected to expose the limited scalability of non-parametric methods that do not sep-

arate the dependence structure from the marginals and do not make any assumptions on the

shape of the dependence.

Our Bayesian model selection algorithm (Sec. 6), based on the fully-Bayesian Watanabe–

Akaike information criterion (WAIC, see Sec. 6), selected a Gaussian copula on these data,

which perfectly matches the true distribution. As a result, we confirm that Copula-GP mea-

sures both entropy and mutual information without bias for any number of dimensions in this

dataset (within integration tolerance, see Fig 4A; also tested up to ρ = 0.999 and up to 20

dimensions in Sec A in S3 Text). The same exact estimation applies to any linear mixture of

copulas in our framework as well (Fig 1; see validation on Clayton copula in Sec B in S3 Text),

and is covered by the automated tests on simulated data (see S2 Text).

The performance of the non-parametric methods on this dataset is lower: KSG/BI-KSG

captured only around 35%-40% of the true mutual information in 10 dimensions, and MINE

captured from 70% to 90% depending on the number of hidden units. This agrees with the

previous studies, in which KSG and MINE both severely underestimate the MI for high-

dimensional Gaussians with high correlation (e.g. see Fig 1 in Belghazi et al. [55]).

Low entropy scenario: Student T dataset. Next, we test the Copula-GP performance on

the Student T distribution, which can only be approximated by our copula mixtures, but

would not exactly match any of the parametric copula families used in our framework (see

Fig 1). We keep the correlation coefficient ρ fixed at 0.7, and only change the number of

degrees of freedom exponentially: df = exp(5x) + 1, x 2 [0, 1]. This makes the dataset particu-

larly challenging for all methods, as all of the mutual information I(x, y) is encoded in tail

dependencies of p(y|x). The trueH(y|x) of the Student T distribution was calculated analyti-

cally (see equation A.12 in [56]) and I(x, y) was integrated numerically according to (12) given

the true p(y|x).
Fig 4B shows that most of the methods underestimate I(x, y), while MINE also produces

inconsistent results, sensitive to the choice of the number of hidden units. The training curve

for MINE with more hidden units (200,500) showed signs of overfitting (abrupt changes in

loss at certain permutations) and the resulting estimate was higher than the true I(x, y) at

higher dimensions (e.g. 2 times higher for 10 dimensional dataset and 500 hidden units). It

was shown before that MINE provides inaccurate and inconsistent results on datasets with low

I(x, y) [57]. KSG/BI-KSG methods also failed to estimate information and produced estimates

close or even below 0 (mutual information is supposed to be positive). Our ‘Integrated’ Cop-

ula-GP also underestimated the true mutual information by 0.03 bit for every number of

dimensions.

For this dataset, we also apply Copula-GP ‘estimated’, which uses a combination of two

copula models for estimating the components of the I(x, y):H(y) andH(y|x) (see Eq (13)).

In lower dimensions, it produces estimates similar to “Copula-GP integrated”, but starts over-

estimating the true MI at higher dimensions, when the inaccuracy of the density estimation for

p(y) builds up. This shows the limitation of the “estimated” method, which can either underes-

timate or overestimate the correct value due to parametric model mismatch, whereas our

empirical results show that “integrated” method consistently underestimates the correct value.

From these results, we conclude that, despite the model mismatch, Copula-GP ‘integrated’

produces imperfect but consistent results in the low mutual information setting, which consis-

tently underestimate the true value by 0.05 bit. At the same time, MINE produced inconsistent
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estimates in high dimensional datasets, ranging from 60% to 200% of the true value, KSG

found almost no mutual information between the variables, and BI-KSG even produced

invalid negative results.

No exact model fit scenario: Transformed Gaussian dataset. Finally, we created a third

artificial dataset (Fig 4C) for exploring the limitations of the Copula-GP method. We con-

structed a distribution, which was drastically different from any of the copula models used in

our framework (see Fig 1). We achieved that by applying a homeomorphic transformation F

Fig 4. Comparison of the Copula-GP model against the non-parametric information estimators, performed on three benchmarking datasets A Multivariate

Gaussian. B Multivariate Student T. C Multivariate Gaussian y (same as A), morphed into another distribution pðŷÞ with a tail dependence, while Iðx; yÞ ¼ Iðx; ŷÞ. In

each row, the plots show: i. the probability density plots from each dataset: the unconditional dependency structure p(u) (left) and conditional dependency structures at

the beginning and the end of the parameter domain dom x = [0, 1] (middle and right, respectively). ii. conditional entropyH(y|x); the black line shows the true values,

the red line—Copula-GP, the orange line—BI-KSG; Note, that MINE is not included in this comparison, as it does not produce estimates ofH(y|x). iii. mutual

information I(x, y); black line—true value; red—Copula-GP (solid: MC integration (12); dashed: estimated MI (13)); orange—BI-KSG; green—KSG; blue—MINE

(dotted: 100 HU, dashed: 200 HU, solid: 500 HU). Gray intervals show either standard error of mean (SE, 6 repetitions), or

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðSEÞ2 þ ðMCtolÞ
2

q

for integrated variables.

Note, that MINE estimates are sensitive to the choice of hyper-parameters (e.g. number of hidden units, shown in different line styles).

https://doi.org/10.1371/journal.pcbi.1009799.g004
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(y) to a multivariate Gaussian distribution (from Fig 4A). Since the transformation is indepen-

dent of the conditioning variable, it does not change the I(x, y) = I(x, F(y)) [53]. Therefore, we

possess the true mutual information I(x, y), which is the same as for the first example in Fig

4A. Note, however, that there is no ground truth for the conditional entropy in this example,

sinceH(y) 6¼H(F(y)). We transform the Gaussian copula samples y 2 [0, 1]N from the first

example as ~yi ¼ yi þ ð
QN

j¼1
yjÞ

1=N
and again transform the marginals using the empirical prob-

ability integral transform u ¼ Fð~y). Both conditional p(u|x) and unconditional p(u) densities

here do not match any of the parametric copulas from Fig 1.

We observe, that the estimates of the non-parametric methods remained almost unchanged

after the transformation (compare Fig 4A vs. 4C). Copula-GP, on the other hand, produced

erroneous estimates: the ‘integrated’ method underestimated the true value by 30%, while ‘esti-

mated’ method overestimated it by just 5%. The MINE estimator (500 hidden units) per-

formed slightly better, capturing 85% of the true MI in 10 dimensions. However, predictions

from MINE were sensitive to the choice of hyperparameters (see plots for MINE 100,200 and

500, with estimations ranging from 60% to 200% of the true value in Fig 4B and from 65% to

85% in Fig 4A and 4C).

This result demonstrates that the performance of the parametric Copula-GP model criti-

cally depends on the match between the true probability density and the parametric copula

model. The mismatch, however, affects the ‘integrated’ method and the ‘estimated’ method dif-

ferently. The ‘estimated’ method can have either positive or negative bias, depending on which

model mismatch had greater impact: either the unconditional (p(y)) or the conditional

(p(y|x)) copula model in (13), respectively. The ‘integrated’ method, however, has never over-

estimated the true value in any of the synthetic datasets. Therefore, while having a higher

computational cost, the Copula-GP ‘integrated’ method can produce more accurate and more

reliable results, which either accurately match the true value (Fig 4A) or, when the exact

modeling is not possible, consistently underestimate it (Fig 4B and 4C).

Overall Copula-GP provides accurate and reliable information estimates. The exam-

ples in Fig 4 show that our method is well suited for estimating the information measures

(entropy or mutual information) at higher dimensions. Our Copula-GP provides better infor-

mation estimates compared to KSG/BI-KSG on all datasets, and also outperforms MINE either

when the true distribution matches our parametric model exactly (Fig 4A) or when the abso-

lute values of the mutual information are low (Fig 4B). Even when the exact reconstruction of

the density is not possible (e.g. Fig 4B), the mixtures of the copula models are still able to

model the changes in tail dependencies, at least qualitatively, and produce reasonable informa-

tion estimates.

The third dataset in Fig 4C was designed to expose the main limitation of the Copula-GP

method: a situation where the parametric copula model is inadequate for the data. Unlike

MINE which can produce biased and inconsistent results (e.g. in Fig 4B; also see explanation

of this behavior in [57]), our Copula-GP model has never overestimated the mutual informa-

tion when using the direct ‘integrated’ Copula-GP method. Most importantly, the perfor-

mance of the Copula-GP method was less affected by the increase in dimensionality (MINE

and KSG estimates diverge from the ground truth at higher dimenstions in Fig 4), suggesting

that our semi-parametric method scales better than the non-parametric methods.

4 Validation of Copula-GP method on neuronal population activity from

the visual cortex of behaving mice

In this section, we investigate the dependencies observed in neuronal and behavioral data and

showcase possible applications of the Copula-GP framework. We used two-photon calcium
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imaging data of neuronal population activity in the primary visual cortex of mice engaged in a

visuospatial navigation task in virtual reality (data from Henschke et al. [16], decontaminated

with FISSA algorithm [43]). The visual stimulus in this experiment was uniquely determined

by the position in the virtual reality, similarly to the examples in Figs 2 and 3 where the shared

input x was determined by time t. Briefly, the mice learned to run through a virtual corridor

with vertical gratings on the walls (Fig 5A, 0–120 cm) until they reached black walls in the

reward zone (Fig 5A, 120–140 cm), where they could get a reward by licking a reward spout as

defined in the original publication of this dataset [5].

For demonstration of the suitability of Copula-GP models for neuronal data, we selected

one example dataset from an animal in which 102 neurons were imaged in visual cortex, dur-

ing the first day of the animal’s training to the task. We conditioned our Copula-GP model on

the position in the virtual environment x and studied the joint distribution of the behavioral

(~y1 . . . ~y5) and neuronal (~y6 . . . ~y109) variables (dim y = 109, Table 1). Fig 5B shows examples of

neuronal responses from the selected mouse running along the virtual corridor. The traces

show changes in the position x of the mouse as well as the activity of 3 selected neurons and

the licking rate.

The goal of our analysis is to build a statistical model of the joint distribution of these vari-

ables p(y|x) and measure how much information these variables carry about each other (i.e.

the redundancy) and about the location in the virtual environment. These variables have dif-

ferent patterns of activity depending on x and different signal-to-noise ratios (Fig 5B), which

results in drastically different distributions of individual variables (i.e. marginal statistics). For

such data, copulas are an uniquely suited tool for ‘gluing’ these variables together and con-

structing a statistical model of their joint distribution.

4.1 Bivariate Copula-GP models find heavy-tailed dependencies in inter-neuronal noise

correlations and behavioral modulations. We first studied bivariate relationships between

the neurons imaged in the visual cortex. In order to do this, we transformed the decontami-

nated calcium traces (shown in Fig 5B) with a probability integral transform ux = F(y|x). We

observed strong changes in the shape of the dependence c(u|x) subject to the position in the

virtual reality x: it was heavy-tailed in some but not all locations (see orange circles in Fig 5C),

indicating that the tail-dependence carried information about the location. These heavy-tailed

dependencies can be captured by our copula models but would have been missed if the noise

correlations were only characterized with a linear (Pearson) correlation coefficient. We applied

our Bayesian model selection algorithm (see Sec. 6) to these data, which showed that this

dependence structure is best characterized by a combination of Gaussian and Clayton copula

(rotated by 90˚). The Clayton copula has a heavy tail, which models the dependence between

the extreme values of the variables, e.g. between abnormally high or low single trial responses

of these neurons compared to their trial-average responses. This heavy tail can be seen in the

probability density plots indicated by orange circles, at the beginning and the end of the virtual

corridor (Fig 5C, x 2 [0, 60]cm and x 2 [140, 160]cm). The Gaussian copula, on the other

hand, has no tail dependence. Therefore, such mixtures of copulas with different tail depen-

dencies allow us to model qualitative changes in the shape of the dependence that we observe

in real neuronal data (Fig 5C).

The probability density plots in Fig 5C demonstrate the match between the empirical prob-

ability density (outlines) and the copula model density (blue shades) for 4 locations along the

virtual corridor. We measure the accuracy of the probability density estimation with the pro-

portion of variance explained R2, which shows how much of the variance of the variable y2 can

be predicted given the variable y1 (see (9) in section 10). The average R2 for all y1 is provided in

the upper right corner of the density plots. Here, for each interval, R2 � 94%. These results
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suggest that such heavy-tailed noise correlations between neurons can be captured by our Cop-

ula-GP model.

Next, we show that our model can be applied not only to the neuronal data, but also to any

of the behavioral variables. Fig 5D shows the dependence structure between one of the neurons

Fig 5. Validation of Copula-GP method on neuronal population activity and behavioral variables from awake mice. Copula-GP accurately models the neuronal and

behavioral heavy tailed dependencies in the data from the visual cortex of awake mice, and quantifies more mutual information between various combinations of

variables than the alternative methods. A Schematic of the navigational experimental task [5, 16] in virtual reality; B Example traces from ten example trials: x is a

position in virtual reality, y is a vector of neuronal (blue) and behavioral (red) variables; these traces show that variables have different timescales and different signal-to-

noise ratios, which result in different distributions of single variables yi (i.e. different marginal statistics). C-D Copula probability density plots for: the noise correlation

between two neurons (number 3 and 63) (C) and for the correlation between one neuronal activity (60) vs. one behavioral variable (licks) (D); Black outlines show

empirical copula, shades of blue—the best fitting Copula-GP model: a mixture of Gaussian + 90˚-rotated Clayton copula in (C) and a mixture of Frank + 0˚-rotated

Clayton + 270˚-rotated Gumbel copula in (D) (see S4 Text for model parameters). Similarly to the example with two dynamically coupled neurons (Fig 3G), these

copulas are heavy-tailed. The goodness-of-fit for these models is measured with the proportion of the variance explained R2 , which is indicated in the upper-right corner

of each plot corresponding to a range of positions in virtual reality; E-G Conditional entropy for the bivariate examples (E-F) and the population-wide statistics (G) all

peak in the reward zone; this entropy is equivalent to the mutual information between variables, given the position x, which means that the variables carry the most

information about each other when the animal is in the reward zone. H Comparison of Copula-GP method (“integrated”) vs. non-parametric MI estimators (MINE [55]

and KSG [53]) on estimating the amount of information about the location x from the subsets of variables ux. While the true I(x, ux) is unknown, the validation on

synthetic data (Fig 4) suggest that Copula-GP “integrated” does not overestimate the amount of mutual information. Yet, Copula-GP “integrated” quantifies more

information about the position x from the large subsets of data ux than MINE and KSG methods.

https://doi.org/10.1371/journal.pcbi.1009799.g005
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and the licking rate. The best selected mixture model here is Frank + Clayton 0˚ + Gumbel

270˚, which again provides an accurate estimate of the conditional dependence between the

variables (R2 � 98%). This statistical model describes how the activity of neuron 60 is modu-

lated be the licking behavior of the animal, showing how both variables jointly deviate from

their trial-averaged values. For example, these variables were negatively correlated in the

reward zone, while before the reward zone, they were positively correlated with a lower tail

dependence (orange circle in Fig 5). Thus, our model can describe not only the noise correla-

tions, but also the behavioral modulations of neuronal activity.

These examples illustrate that copula mixtures in the Copula-GP model provide an accurate

fit for the pairwise joint distributions and make the shape of the dependence explicit with a

direct visualization (Fig 5C and 5D). Both the noise correlations between two neurons and the

dependencies between neurons and behavioral variables have heavy tails (see orange circles in

Fig 5C and 5D). The heavy tails in neuronal noise correlations were expected, based on previ-

ous studies that considered various excitatory or inhibitory shared inputs into pairs of neurons

[24]. Although, we also found unexpected qualitative changes of the dependence from one

location to another, which could even change from a positive to a negative correlation (e.g.

Fig 5D [60, 120] vs. [120, 140] cm). The parameters of the linear mixtures can qualitatively

describe these changes in shape of the dependence, since the mixing coefficients identify the

contribution of different copula components at any given location (see S4 Text for details and

examples). Most importantly, the accurate approximation of the copula density, provided by

mixture models, allows us to use them for estimating the mutual information between neuro-

nal and behavioral variables.

4.2 Copula-GP reveals behaviorally-relevant locations without prior knowledge of task

structure. Fig 5E and 5F show the negative conditional entropy −H(ux|x), which is equivalent

to the mutual information between two variables I(yi, yj|x) given the position x. The confidence

intervals (shaded area) were obtained using samples from the Gaussian Process posterior,

which reflects the uncertainty in model parameters. For both examples, the MI between vari-

ables (between two neurons in Fig 5E and a neuron vs. the licking rate in Fig 5F) peaks in the

reward zone located at 120–140 cm in this task (Fig 5A). The bivariate Copula-GP models

were agnostic of the reward mechanism in this task, yet they reveal a location that is strongly

Table 1. A list of variables in the navigational task dataset from Pakan et al.; for a detailed description of the task

and the reward, see the original paper [5]. The variables are grouped according to their type; their order ~y1 . . . ~y109

does not correspond to the order of variables y1. . .y109 in vine models (see text).

Variable Name Type Units

x Position Determines visual stimulus cm

~y1 Velocity Behavioral cm/s

~y2 Licks 1/s

~y3 Early reward

~y4 Default reward

~y5 Any reward

~y6 Global neuropil Neuronal [1] = ΔF/F
~y7 Background fluorescence

~y8 Neuron 1

. . . . . .

~y109 Neuron 102

https://doi.org/10.1371/journal.pcbi.1009799.t001
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encoded in the neuronal population, and appears in our analysis as an anomaly in the mutual

information between neuronal and behavioral variables.

This analysis shows that the Copula-GP model can reveal the behaviorally-relevant loca-

tions in the virtual corridor without any prior knowledge about the task structure by quantify-

ing the information encoded in non-linear dependencies between single trial neuronal

responses.

4.3 Copula-GP captures more information from a large neuronal population compared

to non-parametric estimators. Finally, we constructed a C-vine model describing the distri-

bution between all neuronal and behavioral variables in the dataset (fux
1
:::ux

109
g, dim ux = 109,

see Table 1). The vine model decomposes the high-dimensional distribution into a hierarchy

of bivariate copulas, where each level of the hierarchy (a vine tree) adds a conditional depen-

dence on one of the variables. Such factorization allows one to escape the ‘curse of dimension-

ality’ while still accounting for the higher-order correlations between the variables [23].

Using this C-vine model, we have calculated the negative conditional entropy, which

is equivalent to the generalized redundancy between all variables given the position x:
� HðuxjxÞ ¼

P
Hð~yijxÞ � Hð~y1; . . . ; ~y109jxÞ. The generalized redundancy in Fig 5G peaks in

the reward zone (similarly to Fig 5E and 5F) and also at the beginning of the trial, where the

velocity of the animal varied the most on a trial-to-trial basis. In those regions where the

redundancy was high, a larger portion of neural variability can be accounted for, based on the

activity of the other neurons and on the current behavior of the animal.

We next studied the complexity of the trained vine copula model. In this conditional C-

vine trained on a neuronal dataset with 109 variables (Table 1), 5253 out of 5886 (=m(m − 1)/

2, 89%) bivariate models were Independence copula, which leaves only 633 non-Independence

copula models. These remaining 633 non-independence copulas still describe a distribution

with a relatively high intrinsic dimensionality. We can estimate this dimensionality by, for

example, finding the minimal number of copula vine trees to capture 90% of the entropy

H(y|x). For this complex dataset with a self-paced navigational task, this estimate equals 17

dimensions, which is much lower than the dimensionality of the recorded variables (102 neu-

rons, 109 neuronal and behavioral variables). Such sparsity of the C-vine arises from the low

dimensionality of the experimental tasks. Therefore, for our data-driven model and for typical

neuronal population recordings, the time required for mutual information estimation depends

mostly on the dimensionality of the task rather than on the number of recorded variables (see

Sec. 8 in Methods).

Next, we compare our Copula-GP against the non-parametric methods in estimating the

mutual information I(x, ux) between the position of the animal in virtual reality x and the trial-

to-trial variability of the recorded neuronal and behavioral variables ux. While constructing

the C-vine, we ordered the neuronal variables according to their pairwise rank correlations

(see Sec. 7). We then considered subsets of the firstN variables and measured the mutual infor-

mation (MI) between each subset of neuronal responses and the position in virtual reality. We

compared the performance of our Copula-GP method on these subsets of ux vs. KSG and

MINE. Fig 5H shows that all 3 methods provide similar results on subsets of up to 10 variables,

yet in higher dimensions both MINE and KSG show smaller amount of information

Iðx; fuxi<NgÞ compared to our Copula-GP method (47% and 0% of the Copula-GP prediction,

respectively), which qualitatively agrees with the results obtained on the synthetic data (Fig 4).

The true values of Iðx; fuxi<NgÞ are unknown, yet we expect the integrated Copula-GP to

underestimate the true value (solid red line in Fig 4 above). Even this estimate, however,

exceeds the MINE estimate by 211%, suggesting that both non-parametric methods (KSG and

MINE) severely underestimate the mutual information Iðx; fuxi<Ng in a large neuronal
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population. These results demonstrate superior performance of our Copula-GP model on

information estimation in high-dimensional neuronal data.

Comparison with alternative methods

Throughout the paper, we compare our model with the state-of-the-art general-purpose infor-

mation estimators, which were also recently applied to the neuronal data [58, 59]. We show,

that both of the state-of-the-art information estimators—KSG and MINE—have poor perfor-

mance on high dimensional neuronal data. Intuitively, the difference in performance between

our parametric method and these non-parametric methods can be explained as follows. The

estimators based on k-nearest neighbor distances, such as KSG [53] / BI-KSG [54] rely on the

volumes of the nearest neighborhoods of the samples for density estimation, which expand

with the increase in the number of dimensions, resulting in poor information estimates. The

neural network approaches, such as MINE [55], provide better scalability, but have many

parameters and require high sample numbers in order to achieve a given accuracy with a given

confidence. As a result, both classes have poor performance when the number of samples (tri-

als) is low and the dimensionality (number of neurons and behavioral variables) is high. To

overcome this ‘curse of dimensionality’, some assumptions about the dependency between

variables are required [60].

Our Copula-GP method follows this approach in that it assumes certain shapes of the

dependence between variables by specifying parametric copula distributions (see Fig 1). These

constraints on the shape of the dependence, however, are less restrictive than the assumptions

in other commonly used models, such as maximum entropy models [61]. Some of these maxi-

mum entropy models utilized conditioning on the overall population activity in order to take

some of the higher-order correlations into account [62–64]. These models resemble the condi-

tioning used in the first tree of our vine copulas, especially when we select the global neuropil

activity as the first conditioning variable (see Sec. 7). However, all these population tracking

maximum entropy models assumed linear coupling of each individual neuron with the popu-

lation rate, characterized by a single parameter (thus, *N2 parameters in total). We relax this

constraint by introducing mixtures of copulas from different copula families, which model

complex nonlinear pairwise dependencies between variables. The complexity of the copula

mixture ‘adapts’ to the complexity of the data, since we select the least complex model that can

capture the dependence via the information criterion (WAIC). As a result, our semi-paramet-

ric Copula-GP model takes the best of both worlds, performing well given a limited number of

high-dimensional samples, and, at the same time, being more flexible in representing the con-

ditional dependencies than maximum entropy models.

Alternatively to the information-theoretic approaches, some popular non-copula methods

could model the neuronal responses in the aforementioned navigational task dataset. These

methods include GPFA or GLMs on the deconvolved spikes [65]. Also, for the multi-photon

calcium recordings (ΔF/F), the newly developed ValPACa method could, perhaps, be an alter-

native [66]. These models, however, require certain assumptions on the marginal statistics

(e.g. Poisson or Gaussian), and only model the joint distribution of the neuronal activity (with-

out behavioral variables). Contrary to these approaches, copula methods allow us to model the

dependencies between neuronal and behavioral variables, combining the elements with utterly

different statistics (e.g. licks or velocity with neuronal activity). In addition, Copula-GP explic-

itly represents the dependencies as a function of time or position. As a result, the conditional

entropy calculated with our model (Fig 5E–5G) revealed insightful information about the task

structure, highlighting the location of the reward zone. To the best of our knowledge, there are

currently no other methods with this combination of properties that include: explicit
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conditioning on stimuli, flexibility in probability density estimation, scalability and accuracy

in information estimation.

Discussion

We have developed the Copula-GP framework for modeling neuronal and behavioral depen-

dencies. The validation of our method on synthetic and neuronal imaging data demonstrates

that Copula-GP can provide accurate statistical models and quantifies most of the mutual

information between neuronal and behavioral variables from experimental recordings. Unlike

other statistical models commonly used in neuroscience, Copula-GP can merge behavioral

variables along with neuronal responses into a joint statistical model. The parameterization

with a Gaussian process makes our framework particularly useful for modeling neuronal

dynamics (as in the example in Fig 3) or for visualizing the conditional information in neuro-

nal populations (e.g. the representation of the reward zone in Fig 5E–5G). Apart from time

and space, the model can be conditioned on any other continuous variable, such a phase,

velocity, direction, orientation, etc. If this variable also uniquely determines the stimulus, then

the components of the model (2) can be interpreted in terms of ‘noise correlations’, approxi-

mated by a parametric copula.

The main advantage of using copula models is their ability to ‘glue’ together the variables

with drastically different statistics. This allowed us to use the calcium traces (ΔF/F), instead of

the deconvolved spikes, together with a variety of behavioral variables that are measured in dif-

ferent units (Table 1) and have different marginal distributions. Also, since our framework

does not rely on spike counts, no binning of the data along the spatial locations of the virtual

environment was required. Instead, the Gaussian process component of our Copula-GP

model could account for the unevenly distributed data-points. This variability in the amount

of available data at different locations contributes to the uncertainty estimates in Fig 5E and 5F

(confidence intervals for the MI estimates are shown in red shades and have variable size). As

a result, Copula-GP can be applied directly to calcium imaging data from the complex (e.g.

self-paced) tasks, without the need for spike inference and binning.

The combination of parametric copula models with GP priors has been previously applied

to weather forecasts, geological data, or stock market data [30, 31]. Yet, this Copula-GP

approach has never been applied to neuronal recordings before. As a distinct feature in neuro-

nal datasets that limited the application of the original method, we observed changes in tail

dependencies with regard to the conditioning variable. None of the single parametric copula

models could represent such dependencies (Fig 1). Therefore, the main contributions of our

method are the following: 1) we applied gaussian process priors on both the copula parameters

and the mixing concentrations in the copula mixture models (see Sec. 5); 2) we have developed

the algorithms for constructing such copula mixtures with a Bayesian model selection algo-

rithm (see Sec A in S1 Text and S2 Text); 3) we have proposed two approaches for mutual

information estimation and validated them against the state-of-the-art information estimators.

These contributions made the method flexible enough to describe the dependencies between

neurons (Fig 5C and 5D and A in S4 Text) and applicable for information-theoretic analysis of

neural codes (Fig 5E–5H).

Apart from these methodological contributions that made the Copula-GP method applica-

ble to neuronal data, we have also ensured that the method is scalable to large neuronal data-

sets. We overcame the well-known poor scalability of Gaussian processes by using

approximate methods and by parallelizing the parameter inference of different pairwise copu-

las in a vine tree on a GPU, building our package based upon the PyTorch [67] and GPyTorch

[68] libraries. We demonstrated that the model scales well at least up to 109 variables and 21k
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samples, while theoretically, the parameter inference scales as Oðn �m2Þ, where n is the num-

ber of samples andm is the (effective) number of variables (see Sec. 8). Such scaling with the

effective number of dimensions in the data results from the sparsity of the vine copula models.

This sparsity also allows to use the trained models for decoding without access to high-perfor-

mance computing infrastructure. The implementation of our method is available on Github:

https://github.com/NinelK/CopulaGP.

We have validated the Copula-GP method on mutual information estimation for synthetic

datasets and for neuronal and behavioral recordings. Our method, therefore, can be readily

used for information-theoretic analysis. We have shown how our method discovers the struc-

ture of the task in an unsupervised way based on one day of recordings. The same analysis,

applied to multiple days, can detect how the amount of information in the neuronal popula-

tion about a certain behaviorally-relevant variable changes during training of the animal. The

estimates from different days can be compared, and the uncertainty of the estimated informa-

tion allows for statistical hypothesis testing. Such analysis does not require chronic recordings

of the same neurons across days, as it focuses on the information instead of particular neuronal

codes. A similar analysis can be applied to finding the mutual information between the

responses in different brain areas. As a fully-Bayesian model, Copula-GP can also guide data

collection [69], suggesting whether the number of recorded neurons or behavioral variables is

sufficient for confirmation or rejection of a hypothesis. A visualization similar to Fig 5E–5H

can also highlight the areas, where additional data collection is needed.

Apart from a mutual information estimator, our Copula-GP model can be viewed as a gen-

eral probabilistic model of the distribution of y given x. This distribution can be used for

Bayesian decoding. The Bayesian decoding is complimentary to the mutual information

between the stimulus and the response: while the former predicts the most likely stimulus that

caused the observed neuronal responses, the latter quantifies the overall knowledge about the

stimuli contained in single-trial responses [20]. The application of such decoders is not limited

to basic science, but can be extended to brain-computer interfaces, where Gaussian Process

based methods were already successfully applied [38]. Our Copula-GP model can potentially

be adapted as an observation model for Gaussian Process Latent Variable Models [70], as a

more flexible statistical model of neuronal responses.

Future work will focus on implementing model selection for the vine structure, incorporat-

ing discrete variables (as in Onken et al. [23]) and improving the scalability of the mutual

information estimation algorithm. Another interesting possible extension involves a recently

developed multi-output non-reversible kernel [71], which can make the Copula-GP model

more suitable for modeling non-reversible dynamics in neuronal populations. These modifica-

tions would further broaden the applicability of the Copula-GP method, which, in its current

state, is best suited for analyzing the activity in large neuronal populations measured with cal-

cium imaging methods.

In summary, we demonstrated that the Copula-GP approach can make stochastic relation-

ships (e.g. noise correlations) explicit and accurately model dependencies between neuronal

responses, sensory stimuli, and behavioral variables.

Methods

5 Parametric copula mixtures with Gaussian process priors

In this paper, we use semi-parametric approach: non-parametric marginals and parametric

copulas. We used the two-stage inference for margins (IFM) training scheme, which is typi-

cally used high dimensional datasets [72]. First, univariate marginals were estimated and used
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to map the data onto a multidimensional unit cube. Second, the parameters of the copula

model were inferred.

Bivariate copula families. We use 4 copula families as the building blocks for our copula

models: Gaussian, Frank, Clayton and Gumbel copulas (Fig 1). All of these families have a sin-

gle parameter, corresponding to the rank correlation (Table 2). We also use rotated variants

(90˚, 180˚, 270˚) of Clayton and Gumbel copulas in order to express upper tail dependencies

and negative correlation.

Since we are primarily focused on the analysis of neuronal data, we have first visualized the

dependencies in calcium signal recordings after a probability integral transform, yielding

empirical conditional copulas. As a distinct feature in neuronal datasets, we observed changes

in tail dependencies with regard to the conditioning variable. Since none of the aforemen-

tioned families alone could describe such conditional dependency, we combined multiple cop-

ulas into a linearmixture model:

cðujxÞ ¼
XM

j¼1

�jðxÞcjðu; yjðxÞÞ; ð3Þ

whereM is the number of elements, ϕj(x) is the concentration of the jth copula in a mixture, cj
is the pdf of the jth copula, and θj is its parameter.

Each of the copula families includes the Independence copula as a special case. To resolve

this overcompleteness, we add the Independence copula as a separate model with zero parame-

ters (Table 2). For independent variables yind, the Independence model will be preferred over

the other models in our model selection algorithm (Sec. 6), since it has the smallest number of

parameters.

Gaussian process priors. We parametrize each copula in the mixture model with an inde-

pendent latent GP: f � N ðm� 1;Klðx; xÞÞ. For each copula family, we constructed GPLink

functions (Table 2) that map the GP variable onto the copula parameter domain: yj ¼

GPlinkcjðfjÞ;R! domðcjÞ: Next, we also use GP to parametrize concentrations ϕj(x), which

are defined on a simplex (∑ϕ = 1):

�j ¼ ð1 � tjÞ
Yj� 1

m¼1

tm; tm ¼ F ~f m þ F
� 1 M � m � 1

M � m

� �� �

; tM ¼ 0;

where F is a CDF of a standard normal distribution and ~fm � N ð~mm � 1; ~K ~lm
ðx; xÞÞ. We

use the RBF kernel Kλ(x, x) with bandwidth parameter λ. Therefore, the whole mixture

model withM copula elements is parameterized by [2M − 1] independent GPs and requires

[2M − 1] hyperparameters: {λ}M for θ and f~lgM� 1 for ϕ.

Approximate inference. Since our model has latent variables with GP priors and intracta-

ble posterior distribution, direct maximum likelihood Type-II estimation is not possible and

Table 2. Bivariate copula families and their GPLink functions.

Copula Domain GPLinkðf Þ : R! domðcjÞ

Independence – –

Gaussian [-1,1] Erf(f/1.4)

Frank (-1,1) 0.1 � f + sign(f) � (0.1 � f)2

Clayton [0,1) exp(0.2 � f)
Gumbel [1,1) 1 + exp(0.1 � f)

https://doi.org/10.1371/journal.pcbi.1009799.t002
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an approximate inference is needed. Such an inference problem with copula models has previ-

ously been solved with the expectation propagation algorithm (Hernández-Lobato et al. [31],

see a direct comparison with our method in Sec C in S3 Text), which was not suitable for large

scale data. Recently, a number of scalable approximate inference methods were developed,

including stochastic variational inference (SVI) [73, 74], scalable expectation propagation

(SEP) [75], and MCMC based algorithms [76], as well as a scalable exact GP [77]. We chose to

use SVI due to availability of the well-established GPU-accelerated libraries: PyTorch [67] and

GPyTorch [68].

In particular, we used stochastic variational inference (SVI) with a single evidence lower

bound [78]:

LELBO ¼
XN

i¼1

E
qðfiÞ
½log pðyijfiÞ� � KL½qðuÞjjpðuÞ�; ð4Þ

implemented as VariationalELBO in GPyTorch [68]. Here N is the number of data sam-

ples, u are the inducing points, q(u) is the variational distribution and q(f) =
R
p(f|u)q(u)d u.

Following the Wilson et al. [79] approach (KISS-GP), we then constrain the inducing points

to a regular grid, which applies a deterministic relationship between f and u. As a result, we

only need to infer the variational distribution q(u), but not the positions of u. The number of

grid points is one of the model hyper-parameters: grid_size. Note that while approximate

inference with KISS-GP uses a discrete set of inducing points (pseudo-inputs), it does not

imply discretization of the input variable. The Gaussian process still uses a continuous kernel

and assumes a continuous input.

Eq (4) enables joint optimization of the GP hyperparameters (constant mean μ and two ker-

nel parameters: scale and bandwidth) and parameters of the variational distribution q (mean

and covariance at the inducing points: u � N ðmu � 1;SuÞ) [78]. We have empirically discov-

ered by studying the convergence on synthetic data, that the best results are achieved when the

learning rate for the GP hyperparameters (base_lr) is much greater than the learning rate

for the variational distribution parameters (var_lr, see Table 3).

Priors. For both the neuronal and the synthetic data, we use a standard normal prior

pðuÞ � N ð0; IÞ for a variational distribution. Note, that the parametrization for mixture mod-

els was chosen such that the aforementioned choice of the variational distribution prior with

zero mean corresponds to a priori equal mixing coefficients ϕj = 1/M for j = 1. . .M. In our

experiments with the simulated and real neuronal data, we observed that the GP hyper-param-

eter optimisation problem often had 2 minima (which is a common situation, see Fig 5.5 on

page 116 in [80]). One of those corresponds to a short kernel lengthscale (λ) and low noise

(minf σ2), which we interpret as overfitting. To prevent overfitting, we used l � N ð0:5; 1:0Þ
prior on RBF kernel lengthscale parameter.

Table 3. Hyper-parameters of the bivariate Copula-GP model.

Hyper-parameter Value Description

base_lr 0.05 Learning rate for GP parameters

var_lr 0.02 Learning rate for variational distribution

grid_size 60 Number of inducing points for KISS-GP

waic_tol 0.005 Tolerance for WAIC estimation

loss_tol 10−4 Loss tolerance that indicates the convergence

check_waic 0.005 Loss tolerance when we check WAIC

. . . and GPLink parameters listed in Table 1.

https://doi.org/10.1371/journal.pcbi.1009799.t003
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Optimization. We use the Adam optimizer with two learning rates for GP hyper-parame-

ters (base_lr) and variational distribution parameters (var_lr). We monitor the loss

(averaged over 50 steps) and its changes in the last 50 steps: Δ loss = mean(loss
[-100:-50])—mean(loss[-50:]). If the change becomes smaller than check_-
waic, then we evaluate the model WAIC and check if it is lower than −WAICtol. If it is higher,

we consider that either the variables are independent, or the model does not match the data.

Either way, this indicates that further optimisation is counterproductive. If the WAIC

< −WAICtol, we proceed with the optimisation until the change of loss in 50 steps Δloss
becomes smaller than loss_tol (see Table 3).

Hyper-parameter selection. The hyper-parameters of our model (Table 3) were manually

tuned, often considering the trade off between model accuracy and evaluation time. A more

systematic hyper-parameter search might yield improved results and better determine the lim-

its of model accuracy.

6 Bayesian model selection

We use the Watanabe–Akaike information criterion (WAIC [81]) for model selection. WAIC

is a fully Bayesian approach to estimating the Akaike information criterion (AIC) (see (31) in

the original paper by Watanabe (2013) [81]). The main advantage of the method is that it

avoids the empirical estimation of the effective number of parameters, which is often used for

approximation of the out-of-sample bias. It starts with the estimation of the log pointwise pos-

terior predictive density (lppd) [82]:

dlppd ¼
XN

i¼1

log
1

S

XS

s¼1

pðyijy
s
Þ

 !

; pWAIC ¼
XN

i¼1

VS
s¼1

log p yijy
s

ð Þð Þ;

where {θs}S is a draw from a posterior distribution, which must be large enough to represent

the posterior. Next, the pWAIC approximates the bias correction, where VS
s¼1

represents sample

variance. Therefore, the bias-corrected estimate of the log pointwise posterior predictive den-

sity is given by:

edlppdWAIC ¼ lppd � pWAIC ¼ � N �WAICoriginal:

In the model selection process, we aim to choose the model with the lowest WAIC. Since

our copula probability densities are continuous, their values can exceed 1 and the resulting

WAIC is typically negative. Zero WAIC corresponds to the Independence model (pdf = 1 on

the whole unit square).

Since the total number of combinations of 10 copula elements (Fig 1, considering rotations)

is large, exhaustive search for the optimal model is not feasible. In our framework, we propose

two model algorithms for constructing close-to-optimal copula mixtures: greedy and heuristic
(see S1 Text for details). The greedy algorithm is universal and can be used with any other cop-

ula families without adjustment, while the heuristic algorithm is fine-tuned to the specific cop-

ula families used in this paper (Fig 1). Both model selection algorithms were able to select the

correct 1- and 2-component model on simulated data and at least find a close approximation

(within WAICtol = 0.005) for more complex models (see validation of model selection in S2

Text).

7 Copula vine constructions

High-dimensional copulas can be constructed from bivariate copulas by organizing them into

hierarchical structures called copula vines [21]. There are many possible decompositions based
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on different assumptions about conditional independence of specific elements in a model,

which can be classified using graphical models called regular vines [83, 84]. A regular vine

can be represented using a hierarchical set of trees, where each node corresponds to a condi-

tional distribution function (e.g. F(u2|u1)) and each edge corresponds to a bivariate copula

(e.g. c(u2, u3|u1)). The copula models from the lower trees are used to obtain new conditional

distributions (new nodes) with additional conditional dependencies for the higher trees, e.g. a

ccdf of a copula c(u2, u3|u1) and a marginal conditional distribution F(u2|u1) from the 1st

tree provide a new conditional distribution F(u3|u1, u2) for a 2nd tree. Therefore, bivariate

copula parameters are estimated sequentially, starting from the lowest tree and moving up the

hierarchy. The total number of edges in all trees (= the number of bivariate copula models) for

anm-dimensional regular vine equalsm(m − 1)/2.

The regular vines often assume that the conditional copulas c(ui, uj|{uk}) themselves are

independent of their conditioning variables {uk}, but depend on the them indirectly through

the conditional distribution functions (nodes) [85]. This is known as the simplifying assump-
tion for vine copulas [86], which, if applicable, allows to escape the curse of dimensionality in

high-dimensional copula construction.

In this study, we focus on the canonical vine or C-vine, which has a unique node in each

tree, connected to all of the edges in that tree. It factorizes the high-dimensional copula proba-

bility density function as follows:

cðuÞ ¼
YN

i¼2

c1iðu1; uiÞ

" #

�
YN

i¼2

YN

j¼iþ1

cijjfkgk<iðFðuijfukgk<iÞ; Fðujjfukgk<iÞÞ

" #

ð5Þ

where {k}k<i = 1, . . ., i − 1 and F(.|.) is a conditional CDF. For graphical illustration, see, for

example, Fig 2 in Aas et al. [21]. Note, that all of the copulas in (5) can also be conditioned on

x via Copula-GP model.

The C-vine was shown to be a good choice for neuronal datasets [23], as they often include

some proxy of neuronal population activity as an outstanding variable, strongly correlated

with the rest. This variable provides a natural choice for the first conditioning variable in the

lowest tree. In the neuronal datasets from [16], this outstanding variable is the global fluores-

cence signal in the imaged field of view (global neuropil, variable ~y6 in Table 1).

To construct a C-vine for describing the neuronal and behavioral data from [16], we used a

heuristic element ordering based on the sum of absolute values of Kendall’s τ of a given ele-

ment with all of the other elements. It was shown by Czado et al. [36] that this ordering facili-

tates C-vine modeling. For all of the animals and most of the recordings (14 out of 16) the first

variable after such ordering was the global neuropil activity. This again confirms, that a C-vine

with the global neuropil activity as a first variable is an appropriate model for the dependencies

in neuronal datasets.

Number of parameters in a C-vine model. A full C-vine fromm variables comprisesm �
(m − 1)/2 bivariate copulas. We model bivariate copulas with copula mixtures. As we men-

tioned above, each copula mixture has max(0, 2M − 1) parameters, whereM is the number

of mixture components (M = 0 here corresponds to Independence model, which does not

have parameters; the maximal number of mixing components isMmax = 5). Therefore,

depending on the data, the actual number of parameters can vary greatly (from 0 to

(2Mmax − 1) �m � (m − 1)/2).

8 Algorithmic complexity

In this section, we discuss the algorithmic complexity of the parameter inference for a C-vine

copula model.
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The parameter inference for each of the bivariate Copula-GP models scales as OðnÞ, where

n is the number of samples, since we use a scalable kernel interpolation KISS-GP [79]. As

we mentioned in Sec. 7, a fullm-dimensional C-vine model requiresm(m − 1)/2 bivariate

copulas, trained sequentially. As a result, the OðnÞ GP parameter inference has to be repeated

m(m − 1)/2 times, which yields Oðn �m2Þ complexity.

In practice, the computational cost (in terms of time) of the parameter inference for each

bivariate model varies from tens of seconds to tens of minutes. The heuristic model selection is

designed in such a way, that it discards independent variables in just around 20 seconds (line 3

in Alg. 2). As a result, most of the models are quickly skipped and further considered as Inde-

pendence models. When the model is evaluated, the Independence components are also effi-

ciently ‘skipped’ during sampling, as ppcf function is not called for them. The Independence

models also add zero to C-vine log probability, so they are also ‘skipped’ during log probability

calculation. They also reduce the total memory storage, as no GP parameters, which predomi-

nate the memory requirements, are stored for these models.

In practice, this means that the algorithmic complexity of the model is much better than the

naïve theoretical prediction Oðn �m2Þ, based on the structure of the graphical model. Suppose

that the actual number of the non-Independence models NnI in a vine model is much smaller

thanm(m − 1)/2 and can be characterized by an effective number of dimensionsmeff �
ffiffiffiffiffiffiffi
NnI
p

.

In this case, instead of the Oðm2Þ scaling with the number of variables, the complexity of

parameter inference highly depends on the sparsity of the dependencies in the graphical model

and scales with as Oðn � NnIÞ � Oðn �m2
eff Þ.

Therefore, the our method is especially efficient on the datasets with a low effective

dimensionalitymeff, such as the neuronal data. The dimensionalitym itself has little effect on

the computational cost and memory requirements, as the total complexity scales as

n � ðm2
eff þ c �m

2Þ, where c is a small constant (� 0.05) equal to the ratio between indepen-

dency test time to the extra time required for model selection to complete. However, the sec-

ond term can become significant for extremely large datasets, where many bivariate models

have to be tested for dependence vs. independence. If this becomes an issue, some additional

independence assumptions (e.g. for distant neurons) can be incorporated into the model.

9 Generation of the synthetic calcium recording from a GLM model

We generated the synthetic spike counts using a Generalized linear model (GLM) with an

exponential non-linearity and Poisson emission model [38]:

li ¼ 0:2 � expð11�Tx� T:0 þ
X

j

hijy
� T:0

j Þ ð6Þ

y0
i � PoissonðliÞ ð7Þ

where T = 20 is the length of the filters, x−T:0 are the values of the stimuli in the preceding T
steps (up to, but excluding 0) of size (T × 1), y−T:0 is a matrix (T × 2) of neural responses, and h
is a tensor (2 × 2 × T) of coupling filters:

hðtÞ ¼
� 0:1 0:4ð� t=TÞ2

� 0:1ð1þ t=TÞ2 � 0:1

0

@

1

A; t 2 ½� T; 0� ð8Þ

for coupled neurons in Fig 3. For independent neurons in Fig 2, the off-diagonal elements

were equal to 0.

We simulate 100 identical trials with fixed duration (τ = 100 steps), in which the same

sequence of stimuli x(t) was applied (see, for example, Fig 2A). In order to generate continuous
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data mimicking the calcium optical recordings, we convolve the simulated spike count data

y(t) with an exponential temporal kernel (as in Deneux et al. [39] model). A characteristic

time of the exponent in the synthetic calcium dynamics was 4 time steps (whole interval t 2 [0,

τ], τ = 100 steps). The resulting calcium traces are shown in Figs 2B, 3B and 3C.

10 Goodness-of-fit

We measure the accuracy of the density estimation with the proportion of variance explained

R2. We compare the empirical conditional CDF ecdf(u2|u1 = y) vs. estimated conditional CDF

ccdf(u2|u1 = y) and calculate:

R2ðyÞ ¼ 1 �
X

u2

ecdfðu2ju1 ¼ yÞ � ccdfðu2ju1 ¼ yÞ
ecdfðu2ju1 ¼ yÞ � u2

� �2

; ð9Þ

where R2(y) quantifies the portion of the total variance of u2 that our copula model can explain

given u1 = y, and u2 ¼ Fðy2Þ ¼ 0:5. The sum was calculated for u2 = 0.05 n, n = 0. . .20.

Next, we select all of the samples from a certain interval of the task (x 2 [x1, x2]) matching

one of those shown in Fig 3 in the paper. We split these samples u1 2 [0, 1] into 20 equally

sized bins: {Ii}20. For each bin Ii, we calculate (9). We evaluate ccdf(u2|u1 = yi)� ccdf(u2|u1 2

Ii) using a copula model from the center of mass of the considered interval of x: xμ = mean(x)
for samples x 2 [x1, x2]. We use the average measure:

R2 ¼ E
pðu12IiÞ

R2ðmeanðu1 2 IiÞÞ; ð10Þ

to characterize the goodness of fit for a bivariate copula model. Since u1 is uniformly distrib-

uted on [0, 1], the probabilities for each bin p(u1 2 Ii) are equal to 1/20, and the resulting mea-

sure R2 is just an average R2 from all bins. The results were largely insensitive to the number of

bins (e.g. 20 vs. 100).

11 Entropy and mutual information

Our framework provides tools for efficient sampling from the conditional distribution and for

calculating the probability density p(y|x). Therefore, for each x = t the entropy H(y|x = t) can

be estimated using Monte Carlo (MC) integration: Hðyjx ¼ tÞ ¼ � Epðyjx¼tÞ log pðyjx ¼ tÞ:
The probability p(y|x = t) factorizes into the conditional copula density and marginal densi-

ties (2), hence the entropy also factorizes [18] asH(y|x = t) = ∑H(yi|x = t) +Hc(ux|x = t), where

ux = F(y|x). The conditional entropy can be integrated as

HðyjxÞ ¼
XN

i¼1

HðyijxÞ þ
Z

Hcðu
xjx ¼ tÞpðtÞdt; ð11Þ

separating the entropy of the marginals {yi}N from the copula entropy.

Now, I(x, y) = I(x, G(y)) if G(y) is 1) a homeomorphism, 2) independent of x [53]. If mar-

ginal statistics are independent of x, then the probability integral transform u = F(y) satisfies

both requirements, and I(x, y) = I(x, u). Then, in order to calculate the mutual information I
(x, u)≔H(u) −H(u|x), we must also rewrite it using only the conditional distribution p(u|x),
which is modelled with our Copula-GP model. This can be done as follows:

Iðx; uÞ ¼ HðuÞ �
Z

Hðujx ¼ tÞpðtÞdt ¼ E
pðu;xÞ

log pðujxÞ � E
pðuÞ

log E
pðxÞ
pðujxÞ: ð12Þ
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The last term in (12) involves nested integration, which is computationally difficult and

does not scale well with N = dim u. Therefore, we propose an alternative way of estimating

I(x, y), which avoids double integration and allows us to use the marginals conditioned on

x (ux = F(y|x)). We can use two separate copula models, one for estimating p(y) and calculating

H(y), and another one for estimating p(y|x) and calculating H(y|x):

Iðx; yÞ ¼
XN

i¼1

Iðx; yiÞ þ Hcðu1; . . . ; uNÞ �
Z

Hcðu
x
1
; . . . ; uxN js ¼ tÞpðtÞdt; ð13Þ

where both entropy terms are estimated with MC integration. Here we only integrate over the

unit cube [0, 1]N and then parameter domain domx, whereas (12) required integration over

[0, 1]N × dom x.
The performance of both (12) and (13) critically depends on the approximation of the

dependence structure, i.e. how well the parametric copula approximates the true copula proba-

bility density. If the joint distribution p(y1. . .yN) has a complex dependence structure, as we

saw in synthetic examples (Sec. 3), then the mixture of parametric copulas may provide a poor

approximation of p(y) and overestimate Hc(u1, . . ., uN), thereby overestimating I(x, y). The

direct integration (12), on the other hand, typically underestimates the I(x, y) due to imperfect

approximation of p(y|x), and is only valid under assumption that the marginals can be consid-

ered independent of x.
We refer to the direct integration approach (12) as “Copula-GP integrated” and to the alter-

native approach (13) as “Copula-GP estimated” and assess both of them on synthetic and real

data.
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