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Figure 1: SCENIC is a text-conditioned scene interaction model. It adapts to complex scenes with varying terrains and also
supports user-specified semantic control with natural language. Given a 3D scene, our model takes as cues of user-specified
trajectory as sub-goals, and text. We encourage the readers to watch the supplementary video.

Abstract

Synthesizing natural human motion that adapts to com-
plex environments while allowing creative control remains a
fundamental challenge in motion synthesis. Existing models
often fall short, either by assuming flat terrain or lacking the
ability to control motion semantics through text. To address
these limitations, we introduce SCENIC, a diffusion model
designed to generate human motion that adapts to dynamic
terrains within virtual scenes while enabling semantic con-
trol through natural language. The key technical challenge
lies in simultaneously reasoning about complex scene ge-
ometry while maintaining text control. This requires under-
standing both high-level navigation goals and fine-grained
environmental constraints. The model must ensure phys-
ical plausibility and precise navigation across varied ter-
rain, while also preserving user-specified text control, such
as “carefully stepping over obstacles” or “walking upstairs
like a zombie.” Our solution introduces a hierarchical scene
reasoning approach. At the core of our method is a novel
hierarchical scene reasoning framework. It combines two

key components: a motion-scene cross-attention block that
aligns the human body’s motion features with local scene
geometry, enabling precise low-level interactions; and a
target point canonicalization module that provides global
goal conditioning by normalizing target scene coordinates
for high-level guidance. To ensure plausibility and natural-
ness, we leverage a pre-trained motion diffusion prior and
apply scene-constrained diffusion noise optimization during
sampling, enabling long-horizon motion generation that re-
spects both scene structure and semantic text input. Experi-
ments demonstrate that our novel diffusion model generates
arbitrarily long human motions that both adapt to complex
scenes with varying terrain surfaces and respond to textual
prompts. Additionally, we show SCENIC can generalize to
four real-scene datasets.

1. Introduction

Humans navigate complex environments effortlessly, adapt-
ing to varied terrains while performing diverse motions.
This fundamental ability to synthesize natural human mo-
tion in complex environments [28, 29, 52, 93] is crucial



for numerous applications ranging from gaming to embod-
ied agents. For instance, how can we make virtual char-
acters seamlessly “step over obstacles before sitting” or
“walk upstairs like a zombie” (Figure 1). Fundamentally,
this requires both scene understanding and semantic con-
trol. While recent works have made progress in either text-
controlled human motion synthesis [62, 71, 77] or motion
adaptation to simplified environments [38, 83], they strug-
gle with complex scenarios. Even methods that can adapt
to uneven terrain [25, 48, 60] lack flexible semantic control
through natural language. This work bridges this gap by in-
troducing a unified diffusion-based framework that simul-
taneously handles complex scene geometry and text-based
semantic control.

Synthesizing scene-aware semantic motion faces three
fundamental challenges. First, the model must generate
motion that precisely adapts to complex environment con-
straints, avoiding penetration, while maintaining natural
contact with uneven surfaces, and reaching specific tar-
gets. Furthermore, unlike previous approaches that han-
dle either scene geometry or semantic control in isolation,
combining both requires sophisticated reasoning about how
different motion styles interact with varied geometric fea-
tures. Last, traditional approaches require extensive paired
motion-scene data, which is expensive to acquire due to
tracking difficulties and does not scale.

Our key insight is that complex scene-aware motion syn-
thesis can be decomposed into hierarchical reasoning levels,
akin to how humans plan and execute navigation tasks. At a
high level, we condition motion in the canonicalized of the
target scene point, allowing the model to learn goal-directed
behaviors while naturally satisfying global constraints such
as target elevation or location. At a finer level, we rep-
resent detailed scene geometry using a human-centric dis-
tance field [48, 60], capturing local affordances around the
body. To couple scene perception with motion, we intro-
duce a cross-attention mechanism in the latent space, align-
ing motion features with spatially structured scene repre-
sentations. To further enhance realism, we refine motion
in the diffusion noise space, ensuring postures conform to
fine-grained geometry without sacrificing naturalness, by
leveraging the pre-trained motion diffusion prior [30]. Fi-
nally, to ensure data efficiency and generalization, we ex-
ploit the compositional nature of human motion. Our model
is trained on short motion segments [28, 29, 52], which are
automatically augmented across a diverse set of terrain sur-
faces. This enables efficient learning while supporting the
synthesis of long-horizon navigation behaviors in complex
3D environments.

With these components, we present the first text-
conditioned diffusion model that generates long-term hu-
man motion adapted to complex terrain. Experiments
demonstrate that SCENIC generalizes to various geometric

structures—including uneven terrain, steps, staircases and

slopes. We further show that our model supports precise

scene adaptation across four real-world 3D scene datasets:

Replica [66], Matterport3D [7], HPS [20], and LaserHu-

man [12] (see Figure 1). Moreover, SCENIC supports

seamless transition between ten distinct motion semantics
including “crouching”, “climbing”, “hopping”, “jumping”,
and “balancing”, and can adapt to complicated instructions
such as “walking up stairs like a zombie”. Empirically, our
model achieves the best in terms of satisfying the scene
and goal constraints, and motion quality. Qualitatively, our
model is preferred by 75.6% of the participants over state-
of-the-art alternatives (see Table 1).
The key contributions of our work include:

1. A unified model combining text conditioning with
scene-aware motion synthesis, capable of traversing di-
verse 3D geometries such as terrain, stairs, steps, and
slopes.

2. A hierarchical diffusion framework that enables struc-
tured scene reasoning via target-based conditioning and
local geometry alignment, validated on four real-world
datasets.

3. A scene-aware diffusion noise optimization scheme, re-
fining samples with differentiable constraints while pre-
serving naturalness from the pretrained motion prior.

2. Related Work
2.1. Text-guided Motion Diffusion.

Recent years have seen remarkable progress in human mo-
tion synthesis, driven by the emergence of diffusion mod-
els [10, 14, 23, 34, 47, 49, 62, 71, 87, 88, 92, 96] and
comprehensive motion capture datasets like AMASS [50].
The integration of action labels and language descrip-
tions through datasets such as BABEL [59] and Hu-
manML3D [19] has enabled increasingly sophisticated con-
trol over generated motions. Recent work has explored var-
ious aspects of motion synthesis, including two-person in-
teractions [17, 42, 43, 69], joint-level control [31, 72, 77],
and style editing [9, 24].

Motion editing through text has evolved along two main
paths: in-motion editing for specific body parts [8, 26, 32]
and segment-level editing using text prompts. In particular,
FlowMDM [2] demonstrated impressive results in seamless
transitions between local motion segments. STMC [55]
proposed a hybrid method for spatial and temporal mo-
tion composition using pre-trained motion models. UniMo-
tion [37] leveraged per-frame and sequence-level text to en-
hance motion understanding and control.

While these approaches have advanced the field signifi-
cantly, they typically assume simplified environments with
uniform height and flat terrain. Our work extends these ca-
pabilities by incorporating complex scene geometry while



maintaining text-based semantic control.

2.2. Scene-aware Motion Synthesis.

Scene-aware motion synthesis is a comprehensive field
that can be broadly classified into two categories: object
interaction and scene navigation. Research on human-
object interaction [3, 33, 84, 86] spans a wide range,
from interactions with large, static objects like chairs and
beds [21, 27, 35, 53, 56, 65, 83, 89, 90], to dynamic en-
gagements with moving objects. This includes studies that
focus on contact-based object interactions without navi-
gation [15, 54, 75, 78, 79, 81], as well as those that in-
corporate navigation [38-40, 91]. A parallel line of re-
search leverages reinforcement learning to synthesize inter-
actions [13, 22, 51]. Other studies have concentrated on
full body grasps [1, 16, 41, 67, 67, 70] and dexterous hand
manipulation [4, 5, 11, 44, 68, 85].

In the context of human-scene interactions, a significant
portion of the work is dedicated to generating short-term
motion within 3D scenes [6, 73, 74]. PENN [25] introduced
a real-time motion controller that adapts to uneven terrain
but requires carefully annotated phase labels and does not
enable text-based motion style editing. Some models gener-
ate longer-term human motion but often require a full-body
target pose as a control signal [45, 93]. Others assume uni-
form height within the scenes [29, 36, 52]. Using reinforce-
ment learning, [48, 60] propose policies for terrain traver-
sal, however, the motion is not human-like due to the ani-
mation of the physical character. Moreover, their synthesis
only perform on synthetic terrains with limited complexity.

More recent work incorporates text control into human-
scene interaction. TeSMO [83] proposed a two-stage
method for collision-free navigation within the scene. TRU-
MANS [29] unified static and dynamic object interactions,
and a recent extension replaced action labels with more ver-
satile text prompts [28], achieving impressive results. How-
ever, these models still assume flat terrains or floors. While
some concurrent works have demonstrated human motion
on stairs [12, 94], they have their limitation of not training
on paired motion-scene data. This lack of scene awareness
restricts the model’s ability to generalize to complex terrain
surfaces. Moreover, their approach requires the future 3D
root position, which is not always available. On the other
hand, Cong et al. [12] did not enable control with the goal
location, limiting its controllability and the length of plau-
sible motion sequences it can generate.

Our work addresses these limitations by introducing the
first scene-aware motion synthesis model that can adapt to
the terrain and is controllable with text-based semantic sig-
nals. Our versatile model synthesizes realistic human mo-
tion across diverse 3D environments while allowing seman-
tic control over motion style.

3. Method

I
“A person walks upstairs” @@@ (7 i
(4 i

“A person walks upstairs”™ /Tk\@@ y‘l ) @
' 14 I

O ¢
“Balance yourself ” @@@ 3

Goal waypoint update

Figure 2. SCENIC has a 3D scene, a set of trajectory waypoints,
and text prompts, and the past human motion as inputs. The past
human motion and the scene encoding first undergo goal-centric
canonicalization. The diffusion-based transformer then encodes
the aligned text-motion tokens, scene tokens and a timestamp to-
ken to predict the canonicalized future human motion.

Our proposed diffusion model generates arbitrarily long
human motions that adapt to complex terrains while allow-
ing semantic control through text prompts. The key insight
is decomposing the complex task into hierarchical reason-
ing levels: high-level movement planning relative to the tar-
get scene point and fine-grained scene adaptation through
local geometry reasoning.

3.1. Problem Formulation

As illustrated in Figure 2, given a 3D scene, a user-
defined trajectory consisting of sub-goals {Gj}j”il, and
text prompts T, our model is designed to fulfill both the en-
vironmental and textual constraints. It synthesizes motion
H that reaches the goals, adapts to complex scene surfaces,
and avoids penetration. Moreover, our motion style can be

controlled by user-specified text instructions.

3.2. Data Representations

To synthesize scene-aware semantic motion, our method
takes four key representations:

Human Motion H Unlike previous motion representa-
tion of human motion [19, 29, 71], which requires an ad-
ditional fitting process to obtain the final animated mesh,
our representation can be animated directly. The SMPL
model [46] is used to parameterize our human motion. Our
motion human H consists of N = 40 frames of body pose
in the 6-D continuous form [97] J, € RN*22%6_and the
global root location J;0r € RN*3. The binary foot contact
for the heel and toe joints ¢ € R™Y** are also included.

Scene embedding S The scene is encoded by a distance
field S € RNV*H>H centered at the human root joint and its
orientation is relative to the Y-rotation of the root. This local



representation enables efficient processing of relevant ter-
rain features while maintaining translation invariance. The
embedding is sampled by projecting from the point grid per-
pendicularly toward the scene. Previous approaches adopt
an occupancy representation by encoding the scene with bi-
nary values [6, 29, 45, 65]. Instead, our embedding is more
efficient and informative for the character to adapt to the
terrain. Empirically, we use H x H=144 points that are
uniformly sampled from a 1.2 x 1.2 meter grid.

Goal Representation Each sub-goal G is represented
by a target 3D position to be reached on the scene g;, € R3,
and a 2D desired orientation vector represented by g7 € R2.

Text Control T Unlike previous methods that use a sin-
gle text embedding combined with a timestamp [62, 63, 71],
we employ a different approach. We encode the text on a
per-frame basis and treat each frame’s text as an individ-
ual token within the diffusion transformer. This method of
temporal tokenization ensures a precise alignment between
the motion and the corresponding text [37], facilitating a
seamless transition between different motion styles. The
text prompt T € RV*P s obtained by reducing the di-
mensionality of the CLIP embeddings using PCA. In our
experiments, the CLIP embedding is reduced to D = 64
dimensions.

3.3. Hierarchical Scene Reasoning

A key design component of our model is a hierarchical rea-
soning framework that combines goal-centric canonicaliza-
tion with cross-modal scene fusion. This allows the model
to synthesize long-horizon motion that is both goal-directed
and scene-compliant, particularly in challenging environ-
ments such as slopes, steps, or cluttered terrains.

Target Scene Point Canonicalization. To simplify
learning and enable robust goal-reaching, we transform
both the human motion and the local scene context into a
canonical coordinate system defined by the current goal G;.
This transformation achieves two critical outcomes: (1) it
normalizes diverse spatial configurations into a consistent
reference frame, and (2) it encourages the model to focus
on relative geometry rather than absolute world positions,
which improves generalization across scenes.

Specifically, given a goal G, we canonicalize the hu-
man motion as: Hepo = Thuman(H, G;) and the corre-
sponding scene representation as: Scano = Tscene(S, G;).
Here, Thuman and Tscene perform spatial transformations that
align both modalities into the goal-centric frame. Rather
than explicitly conditioning on the goal vector, which prior
work [28, 29, 83] has shown to degrade performance in
complex terrain, we instead train the model to predict mo-
tion that converges toward the origin in the canonical frame.

Motion-Scene Cross-Attention. To further enhance
scene understanding, we introduce a motion-scene cross-

attention mechanism that fuses motion features with fine-
grained spatial scene context. Operating in the latent space
of the diffusion model, this module aligns the canonical-
ized motion H,,, with structured scene features S,,, al-
lowing the model to reason about physical constraints such
as ground elevation or obstacles. The resulting fused rep-
resentation is then passed to downstream self-attention lay-
ers, where it interacts with the text prompt embedding. This
staged attention mechanism allows the model to first resolve
spatial alignment between the body and the scene, before
integrating semantic intent.

3.4. Autoregressive Motion Diffusion

The synthesis process seamlessly connects multiple motion
segments through an autoregression. As shown in Figure 2,
each segment is predicted using the previous one, maintain-
ing continuity while adapting to new goals and terrain fea-
tures. The model synthesizes scene-aware motion towards
the current sub-goal G;. Once the sub-goal is reached, the
goal iterates to G;41. This way, the model can progres-
sively synthesize arbitrarily long motions that are plausible
to the scene. Such an approach not only enables the length
of the animation to become unconstrained, but also allows
users to control the motion trajectory to avoid obstacles.

Conditional Diffusion Model Each motion segment is
generated through a conditional diffusion process, which
incorporates a transformer architecture, as depicted in Fig-
ure 2. The generation of successive segments is facilitated
by using the last k frames of the preceding segment as a
seed motion, which then extends to the next segment. We
denote the canonicalized motion segment H,,, defined in
Sec 3.3 as a combination of the k frames of seed motion
H™, and the N —k frames of predicted motion H™. The dif-
fusion process is conditioned on several factors: the scene
embeddings S, the text prompt T, and the past seed mo-
tion, H™. Together, these are represented as the condition,
C = (S, T,H™). In our experiments, we set the values
of N and k to 40 and 10, respectively. During the training
phase, noise is injected into the future motion, HT, while
the seed motion, H™, remains unchanged. At each denois-
ing step n, the model learns to reverse the forward diffusion
process, with the reverse process defined as

p(H}_ | [H}, C):=NH_;;pH}, C),%,), )

no n?

where y denotes the predicted mean and X, is a fixed vari-
ance. Learning the mean can be re-parameterized as learn-
ing to predict the clean future motion Ha' . During training,
we also apply an [ loss on the predicted joint positions ob-
tained via forward kinematics:
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This is crucial for the sharpness of the motion. Here, H

. . P
denotes the predicted future motion, while J,, denotes the



predicted future joint positions obtained via forward kine-
matics. The positional loss weight A is set to be 4.

3.5. Object Interaction

When the human arrives in the vicinity of the target object
after the navigation, our method generates full-body motion
by interacting with the objects to perform text-controlled
sitting and lying. Instead of focusing on the goal and the
neighboring scene, the interaction model needs to be aware
of the target object geometry. For this reason, we introduce
another diffusion model conditioned on an object geometric
representation O € R2%48, The representation comprises
the distances from the basis point set (BPS) [58] to the ob-
ject surface, as well as the distance from the hands and the
hip joints to each one of the object voxels. The BPS consists
of 512 points uniformly sampled from a sphere of radius
1 meter, centered around the normalized object center. The
object is voxelized into an 8 x 8 x 8 grid, and we zero out
the distance features for unoccupied voxels. The interaction
model employs the same representation for human motion
and texts. We train our interaction model on the SAMP [21]
dataset. The interaction diffusion model is trained using the
same learning objective as the navigation model.

3.6. Scene-Aware Diffusion Noise Optimization

At test time, we apply Diffusion Noise Optimization
(DNO) [30, 57, 61, 95] to enforce physics and scene con-
straints without retraining the model. While a common ap-
proach is to apply diffusion guidance [15, 38, 76, 83] which
updates the clean prediction at each timestep using gradi-
ents of an external objective—this technique has several
limitations. Specifically, guidance operates directly in mo-
tion space, where small perturbations can easily push sam-
ples off the learned motion manifold, often resulting in un-
realistic or jerky motions.

To overcome this, we adopt DNO, which instead opti-
mizes the initial Gaussian noise sample 1 ~ N(0,1),
preserving the model’s learned motion prior. The final mo-
tion is generated by passing the optimized noise through the
pretrained diffusion model via an ODE-based DDIM sam-
pler [64]. This setup enables gradients to propagate back
through all denoising steps, allowing the noise to be up-
dated to better satisfy scene-level objectives—while staying
on the learned manifold of realistic human motion.

Formally, we solve:

. = argmin [L(ODE(G, z1)) + R(zr)], (3)
T
where £ encodes our scene-specific objectives, and R(xr)
is a regularization term that encourages the noise sample to
remain close to the standard normal distribution. G’ denotes
the diffusion model, and ODE represents the DDIM sampler
used to produce the final motion.

Scene-Aware Navigation Objectives To promote physi-
cally plausible foot contact and prevent ground penetration,
we define a contact-aware physics loss:

ACphys =C- ||eret - h||2 + (1 - C) : ]]-(h > eret) : ”eret - h||27
“)
where c is the predicted foot contact label, J¢ are the 3D
foot joint positions, and h is the ground height at those po-
sitions projected from the scene. The first term enforces ac-
curate contact, while the second penalizes interpenetration
when contact is not expected.
To reduce jitter and improve motion realism, we apply
a smoothness 10ss Lemooth = ||J11;N — JgiN*ll ,» Where J,,
denotes the global joint positions over time.

Object Interaction Objectives When interacting with
static scene objects (e.g., for sitting or lying), we apply a
collision loss Leolision = SDF(v), where v are the body
mesh vertices, and SDF is the signed distance field from the
object mesh surface. This loss penalizes interpenetration
and promotes plausible body-object contact.

Optimization Details We define the final scene objective
as: L = )\physﬁphys+)\smoothcsmooth+/\collision£collisiona where
the weights are set to Aphys = 3, Asmooth = 50 for navigation
tasks, and Aopision = 50 for object interaction. Optimiza-
tion is performed using the Adam optimizer over 100 of
steps. We use the final DDIM trajectory from the optimized
noise to synthesize the resulting motion.

4. Experiments

First we introduce our dataset and evaluation metrics. Then
we show comparisons of our proposed approach against the
baselines. We further conduct a human perceptual study to
complement our evaluation and ablation study to verify the
effectiveness of our key components.

4.1. Dataset and Implementation Details

The SCENIC Dataset To our knowledge, [12, 28] are the
only existing dataset that captures human navigation with
scenes and text annotations. However, both its motion style
and terrain variation are limited.

To address the scarcity of paired human-scene-text data,
we utilize a database of heightmap assets [25], derived
from video game environments. This approach allows us to
match human motion segments with the most suitable ter-
rain patches, thereby generating paired human and scene
data. We divide the motion sequences into clips of 60
frames (2 seconds) each, aligning the human’s initial po-
sition with the center of the 4 x 4 meter patches. The ter-
rains with minimized foot contact and penetration error are
retrieved, where the error is computed similarly to Equa-
tion 4. To diversify our dataset, we record motion featur-



Table 1. Quantitative evaluations against baseline methods, and ablation study on key components and design.

Scene constraints Goal reaching Motion quality User Study(%)

Methods Penetration| Contact Dist.| Pos.] Rot.| FID] Multimodal Dist.— Diversity— Foot-skate]

Ground Truth - - - - 0.000 6.023 12.410 - -
FlowMDM* [2] 4.67 6.94 479  0.125 66.485 9.107 17.038 2.949 9.5
TRUMANS* [29] 4.50 6.65 3.38 0.0454 26.533 8.172 14.717 3.329 14.9

Ours no cano. 1.98 5.55 3.51 0.0796 8.021 7.344 13.507 2.710 -

Ours no scene emb. 2.99 5.74 1.57 0.0384 1924 5.823 12.519 2.678 -

Ours no cross-attn. 2.54 5.61 1.72  0.0392 1924 5.765 12.540 2.690 -

Ours 1.58 4.56 1.40 0.0372 1.690 5.925 12.371 2.676 75.6

ing various motion styles on different terrains. Our motion
set includes a dataset captured with Inertial Motion Units
(IMU) and the PENN [25] motion dataset redirected to the
SMPL format. The dataset comprises 15,000 sequences and
1000 sequences are reserved for testing. To augment our
data, pose mirroring is performed along the x-axis and for
each motion sequence. Three best-fitted terrains are used
for training.

Implementation Details All models including the base-
lines are trained for 400k steps. Navigation models are
trained on the SCENIC dataset and the interaction model
is trained in our text-annotated SAMP [21]. All models are
trained to denoise the input in 100 diffusion steps.

4.2. Baselines

We train all the baselines and perform an ablation study on
the SCENIC dataset. We compare our work with state-of-
the-art diffusion-based methods. TRUMANS [29] achieves
impressive performance for scene interaction, since it does
not condition on text prompts, we replace its action encod-
ing with a text encoding. This text variant of TRUMANS is
denoted as TRUMANS*. FlowMDM [2] does not consider
the surrounding scene, we enhance its scene awareness by
additionally incorporating the same occupancy representa-
tion that was adopted in the original TRUMANS model.

To justify our key hierarchical scene reasoning, ablation is
performed on the goal-centric canonicalization, where in-
stead the motion is canonicalized to the first frame, and
the goal is provided explicitly. Another baselines are intro-
duced to evaluate the importance of the local scene reason-
ing by not incorporating the scene embedding and without
the motion-scene cross attention.

4.3. Quantitative Evaluation.

An important aspect of assessing the model is to evaluate
how well it satisfies the scene constraint. Penetration (cm)
measures the average penetration distance for all the hu-
man body vertices [29, 38, 82, 83], obtained by querying
all body vertices from the computed SDF of the testing
scenes. Contact distance (cm) evaluates the average dis-
tance to the scene when there is contact. For this, we anno-
tate four body vertices - one at the toe and the heel of each

foot. From Table 1, our model achieves competitive perfor-
mance across all evaluation metrics compared to baseline
methods. In terms of scene constraints, our approach at-
tains the lowest penetration (1.58 cm) and contact distance
(4.56 cm), outperforming FlowMDM* and TRUMANS*.
These results collectively demonstrate the effectiveness of
our human-centric scene embedding in maintaining physi-
cal plausibility of the generated motions.

For goal reaching, we evaluate the body-to-goal positional
(cm) and rotational offset (radians). [83, 94]. In goal-
reaching, our method exhibits the best performance in
both positional accuracy (1.40 cm) and rotational alignment
(0.0372 radians). This validates our design choice of goal-
centric canonicalization.

To measure motion quality, we follow previous work [18,
29, 38, 71, 83, 94], using the motion and text embeddings
generated from a pre-trained action recognition model [12,
80]. The model is pre-trained on the SCENIC dataset with
all ten action classes. To measure the alignment between
motion and text, multimodal distance measures the av-
erage distance between the motion and text embeddings.
Frechet Inception Distance (FID) [18] measures realism
by comparing the motion embedding of the generated and
ground-truth sequences. Diversity is calculated on the basis
of the average pairwise distance between generated motion
embeddings. Table 1 shows that our approach achieves the
best performance with the lowest FID score (1.690) among
all compared methods, being closest to the ground truth.
Our method also maintains diversity (12.371) and multi-
modal distance (5.925) scores closest to the ground truth
distribution (12.410 and 6.023 respectively). Our model
also produces the least foot-skate artifact (2.676 cm). Note,
the “no scene embed” baseline performs better in multi-
modal distance and diversity metrics due to its absence of
terrain constraints. However, this trade-off comes at the cost
of physical plausibility, which SCENIC prioritizes.

Human Perceptual Study In addition to the quantitative
measures introduced, we also conducted a user study on
the realism and controllability of the methods through text.
In the user study, we presented animations in real-world
scenes from HPS [20] and Matterport [7] to 24 participants.
The participants make three-way comparisons of the ani-
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Figure 3. Qualitative comparison with baselines. Results are on the testing set of the SCENIC dataset (top two rows). Without the
hierarchical reasoning of the scene, the baseline methods produce more penetration with the legs (first row) and the floating effect (second
row). Furthermore, our method generalizes to real-world scene datasets of HPS [20] and MatterPort3D [7] (bottom two rows)

mations generated by the three methods in shuffled order.
We have filtered out incomplete responses. Details of the
user study can be found in the supplementary. Results show
75.6% of participants preferred SCENIC over the baselines.
This strong preference confirms our method’s effectiveness
in generating visually plausible human-scene interactions,
particularly in reducing floating and penetration artifacts,
while generating realistic contacts.

Inference speed SCENIC is more computationally effi-
cient, achieving an inference speed of 0.0203 seconds per
data sample vs. 0.0442 seconds for FlowMDM* and 0.0581
seconds for TRUMANS*.

4.4. Qualitative Evaluation

We present qualitative comparisons in Figure 3. The top two
rows demonstrate results from the SCENIC dataset’s test
set, where baseline methods exhibit noticeable artifacts -
leg penetration into the ground surface - due to their limited
scene understanding. In contrast, our approach, leverag-
ing hierarchical scene reasoning with scene embedding and
goal-centric canonicalization, generates motions that main-

tain proper contact while avoiding both penetration and
floating artifacts. The bottom two rows highlight the gener-
alization capabilities of our approach across different scene
datasets, namely MatterPort3D [7] and HPS [20]. These
real-world environments pose more challenging scenes than
those in our training set. Despite these complexities, our
method consistently generates physically plausible motions
that adhere to scene constraints. Please refer to our supple-
mentary video for results and comparisons in motion.

4.5. Ablation

Goal-centric canonicalization The usefulness of our
core components of goal-centric canonicalization and
human-centric scene embedding is shown in the comparison
with the ablative baselines. Our method (1.40 cm, 0.0372
radians) achieves better performance over the baseline with-
out canonicalization (3.51 cm, 0.0796 radians) validates our
design choice of goal-centric canonicalization (Table 1).

Fine-grained scene reasoning As illustrated in Figure 5,
without local scene embedding, the model is more likely to
exhibit unwanted penetrations with cluttered scenes while
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Figure 4. SCENIC generalizes to novel scenes and text instructions, as demonstrated with LaserHuman [12], Replica [66] and HPS [20]
scenarios. The model follows instructions like take a walk, sit on the sofa, and run up the stairs, and adapts to more complex commands
such as jump over a stool while adjusting to scene constraints. In the HPS scene, the model transits between different gait styles, following

the text control while adapting to the staircases.

Ours Ours without scene embedding

Figure 5. Ablation on the human-centric scene embedding. It pre-
vents unwanted interactions with cluttered environments.

navigating. With the scene embedding, our model avoids
the collision in the way of reaching the sub-goal. The
importance of local scene reasoning and the motion-scene
cross attention is also justified as shown in Table 1.

Motion-text alignment vs. Single-text We compare our
per-frame text alignment approach to a baseline that uses a
single, global text instruction to describe the target action.
Our method demonstrates improved text control by aligning
motion generation more closely with the textual description
at each frame. This leads to more precise motion-text cor-
respondence, as reflected by a reduction in multimodal dis-
tance from 7.88 to 5.925.

4.6. Generalization

Complex real-world environments SCENIC is capable
of generalizing to both novel real-world scenes and text in-
structions. As shown in Figure 4, SCENIC navigates in
Replica [66] and HPS [20] The model is firstly instructed
to “take a walk” before “sitting on the sofa” (top left) and

“running up the stairs” (bottom left). In more complicated
scenarios, the model adapts to the scene constraints while
following the “jump over a stool” instruction, before “sit-
ting on the sofa” (top right). In the HPS scene, the human
transits between various gait styles controlled by text while
adapting to the stairs. Similarly in Figure 1, SCENIC is pro-
vided a series of text instructions before lying on the sofa in
the LaserHuman scene [12].

General Text Prompting As shown in Figure 4, our
method handles diverse and semantically rich prompts such
as “a person lounges over the steps” or “a person steps over
the stool.”, while adapting to the scene.

5. Conclusion

We presented SCENIC, the first diffusion-based motion
synthesis model that simultaneously enables text control
and adaptation to complex terrains. Our model introduces
a hierarchical scene reasoning for precise scene adapta-
tion and also a scene-aware diffusion noise optimization
scheme. Through extensive experiments across multiple
scene datasets, we demonstrated that our approach signif-
icantly outperforms existing methods, achieving the best
performance in both scene constraint satisfaction and mo-
tion quality. User studies further validate our approach,
having 75.6% of the participants preferring our method over
state-of-the-art methods. In the future, this work can be ex-
tended to more complex compositional scene interaction,
such as carrying objects while climbing stairs.
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