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ABSTRACT

Partially Supervised Multi-Task Learning (PS-MTL) aims to leverage knowledge
across tasks when annotations are incomplete. Existing approaches, however, have
largely focused on the simpler setting of homogeneous, dense prediction tasks,
leaving the more realistic challenge of learning from structurally diverse tasks
unexplored. This paper addresses this critical gap by introducing NexusFlow,
a novel, lightweight, and plug-and-play framework. We establish a challenging
new benchmark where supervision for the highly disparate tasks of dense map
reconstruction and sparse multi-object tracking is split across different geographic
domains, compounding task heterogeneity with a significant domain gap. Nexus-
Flow introduces a pair of surrogate networks with invertible coupling layers to align
the latent feature distributions of these tasks, creating a unified representation that
enables effective knowledge transfer. We validate our framework’s effectiveness on
these core perception tasks in autonomous driving, demonstrating state-of-the-art
results on the nuScenes benchmark. Our approach significantly outperforms strong
partially supervised baselines. Our code and video demos are available in the
supplementary material.

1 INTRODUCTION

Learning multiple tasks simultaneously via Multi-Task Learning (MTL) is a powerful paradigm
for improving model efficiency and generalization while avoiding redundant training Xu et al.
(2018); Zhang et al. (2019); Vandenhende et al. (2020); Li et al. (2024). However, its real-world
applicability is often limited by the prohibitive cost of acquiring exhaustive annotations for every task,
particularly in vision-heavy domains. In practice, datasets frequently lack labels for some tasks, or
contain incomplete and unreliable annotations, motivating the crucial research direction of Partially
Supervised Multi-Task Learning (PS-MTL) Li et al. (2022). Significant progress has been made when
tasks are homogeneous dense predictions, thanks to their natural interdependence Zamir et al. (2018;
2020). This has enabled joint training in both partially and fully supervised settings for tasks such as
semantic segmentation, depth estimation, and surface normal prediction Eigen et al. (2014); He et al.
(2017); Chen et al. (2018); Poggi et al. (2020); Zhang et al. (2020). Yet, when tasks are structurally
disparate (e.g., one requiring dense pixel-wise labels and another producing sparse instance-level
outputs), the challenge becomes far greater and has received very limited attention. This difficulty is
further compounded in realistic scenarios like autonomous driving, where supervision for each task
comes from different geographic domains, introducing both structural disparity and domain shift into
the training setup.

Problem statement. The conventional paradigm of MTL aims to improve generalization by learning
shared representations across multiple tasks Zhang et al. (2019). This paradigm often assumes an
idealized scenario where full ground-truth annotations for all tasks are simultaneously available
for joint training. In practice, however, large-scale datasets rarely contain comprehensive labels
for every task of interest, giving rise to the setting of Partially Supervised Multi-Task Learning
(PS-MTL) Li et al. (2022). Most existing work on PS-MTL has focused on the relatively simple
case of homogeneous dense prediction tasks, such as semantic segmentation and depth estimation Li
et al. (2024). In this setting, partially annotated data is usually generated by randomly dropping task
labels on a per-sample basis, which allows effective knowledge transfer under controlled conditions.
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Yet, this scenario underestimates the real-world difficulty of PS-MTL Ye & Xu (2024). In practice,
a much harder case frequently arises: each task is labeled only in its specific (geographic) region
or domain. This introduces not only structural disparity between tasks (e.g., dense mapping versus
sparse multi-object tracking) but also a substantial domain gap between supervision sources. Despite
being a common challenge in real-world applications, this setting remains largely unexplored. To
the best of our knowledge, we are the first to systematically address PS-MTL across fundamentally
different tasks under such domain-partitioned supervision. Moreover, we take on this challenge in the
complex and safety-critical domain of autonomous driving, tackling the highly diverse objectives of
static map reconstruction and dynamic multi-object tracking.

TrackFormer

MapFormer

Multi-View
Camera Images

Bird's Eye View
Feature Map

Task 1: Multi
Object Tracking

Task 2: Map
Construction

Surrogate
Encoder 2

Backbone Encoder
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Alignment
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Figure 1: Our simple, plug-and-play module dramatically boosts the tracking and mapping performance from
the UniAD Hu et al. (2023) baseline.

Motivation. The motivation for our work stems from the unique and formidable challenges of
multi-task perception in autonomous driving Wang et al.; Xing et al. (2025); Wang et al. (2025). Our
framework is designed to simultaneously address two highly complex and fundamentally disparate
objectives. ❶ Multi-object tracking (MOT), which requires end-to-end detection and temporal
association of dynamic instances without relying on non-differentiable post-processing. ❷ Map
reconstruction, where sparse queries are used to generate a structured representation of the road,
capturing both “things”, such as lanes and dividers, and “stuff”, such as the drivable area. These two
tasks differ not only in their output structure (sparse instance sets vs. dense geometric maps) but also
in their learning dynamics. The challenge is further amplified in a partially supervised regime. Unlike
prior PS-MTL settings where missing labels are randomly distributed across samples, in autonomous
driving it is common for one task to be annotated only in specific regions (e.g., mapping in Boston,
tracking in Singapore). This setting couples structural disparity with domain shift, making joint
optimization especially difficult. Simply adapting methods designed for homogeneous dense tasks,
such as semantic segmentation and depth estimation, proves infeasible and inefficient in this context.
This leads us to the central question of our work:

How can we enable effective knowledge transfer between fundamentally different tasks
with incomplete supervision, in a lightweight and plug-and-play manner?

Approach. In light of the immense complexity of jointly learning structurally disparate tasks, our pro-
posed NexusFlow focuses on aligning latent feature distributions during standard backpropagation in
a simple yet effective manner. We formulate the Partially Supervised Multi-Task Learning (PS-MTL)
problem using a compact alignment module inspired by principles of flow-based invertible models
Ardizzone et al. (2018); Behrmann et al. (2019); Kobyzev et al. (2020). Specifically, NexusFlow intro-
duces independent invertible coupling layers that project the latent features from different tasks into a
canonical space where their distributional differences can be explicitly minimized. The choice of
invertible coupling layers is deliberate. Unlike conventional CNN-based feature alignment, coupling
layers provide a bijective mapping that preserves all task-relevant information while enabling flexible
transformation. This one-to-one mapping nature allows NexusFlow to align feature distributions
without collapsing them, maintaining information capacity even when tasks differ drastically in
structure (e.g., dense maps vs. sparse object tracks). At the same time, the lightweight design avoids
the topological constraints and computational overhead of training heavy deep neural networks. The
essence of NexusFlow is to unify the feature spaces of disparate tasks so that knowledge from one
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can benefit the other, even when supervision is incomplete and domain-partitioned. This alignment
not only reduces distributional discrepancy but also strengthens downstream task performance and
fosters more robust representations. We demonstrate its effectiveness through multi autonomous
driving perception tasks, theoretical and piratical analysis.

Contributions. In summary, our key contributions are as follows:

• To the best of our knowledge, we are the first to systematically formulate and address the challenging
problem of Partially Supervised Multi-Task Learning (PS-MTL) for structurally disparate tasks
under domain-partitioned supervision. We identify this as a critical yet largely unexplored frontier,
particularly for complex perception systems like autonomous driving.

• We propose NexusFlow, a novel, lightweight, and plug-and-play framework that tackles this
challenge. Our key innovation is the use of independent invertible coupling layers to align
task-specific feature distributions, enabling effective cross-task knowledge transfer.

• We provide a theoretical and practical analysis, demonstrating that our use of invertible transforma-
tions provides a provable guarantee for aligning the feature distributions of disparate tasks.

• We conduct extensive experiments to validate the effectiveness and generality of NexusFlow. Our
approach achieves new state-of-the-art (SOTA) results on the challenging nuScenes Caesar et al.
(2020) benchmark for both multi-object tracking and map reconstruction under PS-MTL.

2 RELATED WORK

Partially Supervised Multi-Task Learning. Partially Supervised Multi-Task Learning (PS-MTL)
tackles the challenge of learning multiple tasks when only a subset has labels per sample. Early
approaches showed success mainly in homogeneous dense prediction tasks (e.g., semantic seg-
mentation, depth estimation), using strategies like consistency regularization, pseudo-labeling, or
adversarial training. For example, adversarial discriminators have been used to align distributions
across partially labeled datasets Wang et al. (2022b), while consistency-based methods either employ
model augmentation to provide pseudo-supervision Spinola et al. (2023) or regularize cross-task rela-
tionships in a shared space Li et al. (2022). Pseudo-labeling has also been advanced via hierarchical
task tokens for “label discovery,” enabling dense supervision for unlabeled tasks Zhang et al. (2024).

Despite these advances, such techniques remain tailored to homogeneous tasks and are not directly
applicable to structurally heterogeneous settings like object tracking versus map segmentation.
Even recent unified frameworks for autonomous driving Hu et al. (2023); Huang et al. (2023) assume
full supervision, leaving unresolved the realistic case of partially annotated, structurally disparate
tasks—where annotation costs are prohibitive Dulac-Arnold et al. (2021); Vettoruzzo et al. (2024);
Dai et al. (2025). A central challenge is learning shared representations without negative transfer.
Architectural methods explore optimal layer sharing Ruder et al. (2019), while alignment-based
methods project features into a common latent space. Early pairwise approaches Li et al. (2022)
struggled with quadratic complexity, motivating more scalable solutions like JTR Nishi et al. (2024),
which stacks all predictions into a unified joint-task space, or StableMTL Cao et al. (2025), which
applies a unified latent loss with efficient 1-to-N attention.

Beyond scalability, newer methods seek richer cross-task knowledge transfer. Region-aware strategies
use SAM Kirillov et al. (2023) to detect local regions and model their features as Gaussian distri-
butions, enabling fine-grained alignment Li et al. (2024). DiffusionMTL Ye & Xu (2024) reframes
partially labeled outputs as noisy predictions and refines them through a denoising diffusion process
with multi-task conditioning. These works highlight the trend towards more sophisticated, scalable
PS-MTL approaches, but none address the harder setting of structurally disparate tasks under
domain-partitioned supervision, which is the focus of our work.

Multi-Task Learning for Autonomous Driving Perception. Autonomous driving perception has
shifted from modular pipelines (separate detection, tracking, and mapping) to integrated multi-task
learning (MTL) frameworks, motivated by efficiency, performance, and shared representations.

A major breakthrough is end-to-end models that unify perception, prediction, and planning.
UniAD Hu et al. (2023) pioneered this direction with a Bird’s-Eye-View (BEV) representation
and Transformer-based modules for tracking (TrackFormer), mapping (MapFormer), motion predic-
tion (MotionFormer), and occupancy prediction (OccFormer), all linked by a query-based mechanism.
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Building on this, GenAD Zheng et al. (2024) models the scene generatively for joint prediction
and planning, while DriveTransformer Jia et al. (2025) parallelizes tasks via shared attention for
scalability. VAD Jiang et al. (2023) instead uses a fully vectorized scene representation, improving
efficiency and reducing collision rates.

Another key challenge is domain generalization, as perception models face shifts in weather, lighting,
sensors, and geography. Wang et al. (2022a) highlight this as central to real-world ML. For BEV-
based systems, Wang et al. (2023) analyze domain gaps in 3D detection and propose robust depth
learning. Jiang et al. (2024) introduce DA-BEV for unsupervised adaptation, combining image-view
and BEV features. Chang et al. (2024) unify domain generalization and adaptation with multi-view
overlap depth constraints. Finally, the cost of annotation remains prohibitive: datasets are often
partially labeled. Li Li et al. (2022) address this by mapping task pairs into a joint space to enable
sharing under incomplete supervision, a critical issue for large-scale autonomous driving systems
where exhaustive labels are impractical.

3 APPROACH

3.1 PRELIMINARIES

Notations & Problem Definition. We formulate our problem within the framework of Partially Super-
vised Multi-Task Learning (PS-MTL). We consider a set of K tasks, denoted by T = {T1, . . . , TK}.
In this work, we focus on the practical and challenging case of two tasks (K = 2). Our training
dataset is given by S = {(xi,yi,mi)}Ni=1, consisting of N samples. For each sample i, xi is the
input data (multi-view frames) and yi = {y1i , y2i } is the complete set of potential ground-truth labels
for the two tasks. The availability of labels is governed by a binary mask vector mi = (m1

i ,m
2
i ).

Notably, we operate under a strict partial supervision setting where each sample is labeled for
exactly one task in one geographic domain (Either Singapore or Boston). A key distinction in our
problem formulation lies in how the supervision masks mi are assigned. In conventional PS-MTL
for dense prediction tasks, masks are typically generated randomly per sample Ruder et al. (2019);
Nishi et al. (2024); Cao et al. (2025). This randomization naturally helps to bridge the information
gap, as similar inputs across the dataset are likely to receive labels for different tasks, yielding a
richer joint training signal. In contrast, our setting introduces a far more challenging scenario by
assigning supervision masks according to geographically distinct subsets of data. Specifically, in
our experiments on the nuScenes dataset Caesar et al. (2020), one task is annotated only in Boston
scenes, while the other is annotated only in Singapore scenes. This creates a substantial domain gap
between supervision sources, which, when combined with the inherent structural disparity of the
tasks, dramatically increases the difficulty of effective knowledge transfer. The core challenge we
address lies in the structural disparity between our two tasks: Multi-Object Tracking (Ttrack) and
Map Reconstruction (Tmap). This disparity is most evident in their output spaces:

• Map Reconstruction (Tmap): a dense, grid-based representation, ymap ∈ RH×W×C , where
each spatial location is assigned a semantic class (e.g., lane, divider, drivable area).

• Multi-Object Tracking (Ttrack): a sparse, instance-level set, ytrack = {(bj , idj)}Mj=1, where
each object is represented by a bounding box bj and an identity idj , with object number M varing
across samples.

Our objective is to train a single unified model fθ that jointly predicts both the dense map and the
sparse object set. The model must learn a shared representation that bridges the structural gap
between these disparate tasks, while operating under partial supervision.

3.2 NEXUSFLOW: UNIFIED LATENT DISTRIBUTION FOR PARTIALLY SUPERVISED LEARNING

Our approach follows a two-phase training strategy: a pre-training phase followed by a fine-tuning
phase, where our proposed module, NexusFlow can be introduced to enable cross-task knowledge
transfer in both phases.

Training Paradigm. We start with a baseline perception model Hu et al. (2023) composed of a
shared BEV (Bird’s-Eye-View) feature extractor and two task-formers for mapping and tracking.
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Phase 1: Pre-training. The model is trained end-to-end under the defined PS-MTL protocol, using
only the available labels for each sample. This phase yields a well-initialized, pre-trained model in
which the task-formers have learned strong, albeit not explicitly aligned, shared representations.

Phase 2: Fine-tuning with NexusFlow. We freeze the BEV encoder and fine-tune the task-formers.
We then insert our lightweight NexusFlow module to align the latent distributions of the two tasks.
The model is optimized jointly with standard task losses (from partial labels) and our proposed
alignment loss.

Parameter Space Parameter Space

Task 1 Task 1Task 2 Task 2

Information 
Learned for 

Both Task 1 & 2

Information 
Learned for 
Task 2 Only

Information 
Learned for 
Task 1 Only

After 
Enforcing 
Alignment

Figure 2: Illustration of the learning process of the NexusFlow. We
aim to capture more shared information between the two tasks.

As illustrated in Figure 2, Phase 1
pre-training captures only a lim-
ited amount of task-relevant in-
formation for both tasks T1 and
T2. In Phase 2, fine-tuning
with NexusFlow seeks to expand
the shared task-relevant subspace
while simultaneously suppressing
task-irrelevant features (white).

NexusFlow Module Architecture.
As shown in Figure 1, NexusFlow
is plugged in across the two task-formers Carion et al. (2020); Zeng et al. (2022); Zhang et al. (2022).
NexusFlow consists of two identical surrogate networks, Ssurro1(·) and Ssurro2(·), that process the
intermediate feature in parallel without altering the main path to the task-formers. Each surrogate has
two components:

Feature Aggregator: From each task-former, its intermediate features are first compressed by a feature
aggregator, g′track(·) for tracking and g′map(·) for mapping, into a fixed-dimension embedding. It is
implemented by deformable transformer Zhu et al. (2020) g′(·), which efficiently aggregates salient
spatial information into feature vector f ′

map and f ′
track.

Invertible Transformation: The embedding f ′ is then passed through an invertible coupling layer C(·),
a core component of normalizing flows Ardizzone et al. (2018); Behrmann et al. (2019); Kobyzev
et al. (2020). In this work, we employ only the forward affine transformation C and use the second
partition of the resulting embedding. Specifically, the coupling layer acts as:

C(f ′) =
(
f ′2 ⊙ exp

(
s(f ′1)

)
+ t(f ′1)

)
, (1)

where the input f ′ is split into (f ′1, f
′
2), and both the scale s(·) and translation t(·) functions are

implemented by multilayer perceptrons (MLPs). This layer performs a bijective transformation,
mapping the feature into a canonical latent space, z = C(f ′), while preserving its information content.

Distribution Alignment Objective. A key advantage of our plug-and-play design is that Lalign is
added as an auxiliary objective. The baseline’s original task-specific losses, Lmap and Ltrack, remain
entirely unchanged:

Ltrack = λfocalLfocal + λl1Ll1 , (2)
Lmap = λfocalLfocal + λl1Ll1 + λiouLiou + λdiceLdice. (3)

The primary goal of NexusFlow is to enforce consistency between the transformed representations of
the two tasks. The f ′

map and f ′
track are passed through the respective surrogate networks to obtain

the latent variables zmap and ztrack:

zmap = Cmap
(
g′map(f

′
map)

)
, ztrack = Ctrack

(
g′track(f

′
track)

)
. (4)

We then introduce a simple but effective distribution alignment loss, Lalign, which minimizes the L2
distance between these two latent features. This effectively pulls their distributions closer together in
the latent feature space, providing a better alignment:

Lalign = ∥zmap − ztrack∥22. (5)

The total loss of the training is:

Lall = Lmap + Ltrack + λLalign, (6)
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where λ is a tuning-free hyperparameter: λ = 1.

Here, although our main focus is the two-phase fine-tuning strategy, NexusFlow can also be applied
in a simpler one-phase joint training scheme, where Lalign is active from the beginning. As shown in
our experiments, this joint training approach also yields significant improvements, with only minor
performance differences compared to the fine-tuning strategy, demonstrating the robustness and
plug-and-play nature of NexusFlow.

3.3 THEORETICAL ANALYSIS

We now provide a formal analysis of our alignment mechanism, whose effectiveness hinges on a
key property of the coupling layers C(·): their invertibility. This property guarantees a one-to-one
mapping between the input features f ′ and the latent variables z. This is also the guarantee for our
method: it prevents representational collapse and ensures that minimizing our alignment loss, Lalign,
in the latent space has a direct and controllable effect on the alignment of the underlying feature
distributions. The following Lemma formalizes this relationship.

Lemma 1 (Bounded Feature Discrepancy). Let f ′
map, f

′
track ∈ RN be the compact feature inputs to

the coupling layers Cmap and Ctrack. Assume their inverse transformations, C−1
map and C−1

track, are
L-Lipschitz continuous with a constant L Virmaux & Scaman (2018); Gouk et al. (2021). Then, the
L2 distance between the input feature vectors is upper-bounded by a function of the alignment loss:

∥f ′
map − f ′

track∥2 ≤ L ·
√

Lalign + δ, (7)

where δ is a constant representing the maximum structural discrepancy between the two inverse
transformation functions over the domain of interest.

Proof. The distance ∥f ′
map−f ′

track∥2 can be rewritten as ∥C−1
map(zmap)−C−1

track(ztrack)∥2. Applying
the triangle inequality yields:

∥f ′
map − f ′

track∥2 ≤ ∥C−1
map(zmap)− C−1

map(ztrack)∥2 + ∥C−1
map(ztrack)− C−1

track(ztrack)∥2, (8)

The first term is bounded by L · ∥zmap − ztrack∥2 due to L-Lipschitz continuity. Since ∥zmap −
ztrack∥2 =

√
Lalign, this term becomes L ·

√
Lalign. The second term reflects only the network

structure discrepancy given the same input, thus is bounded by the maximum structural discrepancy
δ. Combining these terms gives the final result.

This Lemma provides a theoretical guarantee: minimizing our alignment loss Lalign directly and
provably tightens the upper bound on the distance between the input feature distributions.

3.4 PRACTICAL ANALYSIS

Building upon our theoretical guarantee, we provide a practical analysis to empirically verify the core
mechanism of NexusFlow. We hypothesize that by explicitly aligning the latent feature distributions,
our method forges a unified and more effective representation space for knowledge transfer. To
validate this, we investigate two key properties of the learned representations: their alignment and in-
trinsic dimensionality. We assess alignment both qualitatively through t-SNE visualizations Maaten
& Hinton (2008); Cai & Ma (2022) and quantitatively using the Maximum Mean Discrepancy (MMD)
metric Gretton et al. (2012). We then analyze their intrinsic dimensionality via Principal Component
Analysis (PCA) Abdi & Williams (2010); Del Giudice (2021) to ensure the unified representation is
also complex enough to serve both disparate tasks.

Distribution Alignment Analysis. We first evaluate the alignment of the feature distributions.
For a qualitative understanding, we employ t-SNE Maaten & Hinton (2008); Cai & Ma (2022) to
visualize two sets of high-dimensional features: the intermediate features inside the task-formers, and
the latent variables produced by our NexusFlow module. As illustrated in Figure 3, the visualization
is revealing. The top row shows the intermediate features for tracking (blue) and mapping (red) form
largely separate clusters. This is expected, as these features must retain task-specific information for
the task-formers, but we observe that our NexusFlow brings the trend of clusters mixing. The critical
distinction appears in the bottom row, which shows the latent variables after the surrogate networks.
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Figure 3: From left to right: t-SNE visualizations of Baseline, MTPSL, JTR, and NexusFlow(Ours). Top row
shows the latent features from the two task-formers; bottom row shows those from the two coupling layers.

Here, the features from the baseline methods still exhibit a clear distributional shift. In contrast, the
latent variables from our full NexusFlow model become substantially intermingled, providing visual
evidence that our method creates a more unified manifold for knowledge transfer.

This qualitative observation is substantiated by our quantitative analysis using the Maximum Mean
Discrepancy (MMD). MMD is a standard metric for measuring the distance between two distributions,
where a lower score signifies greater similarity Gretton et al. (2012). We compute the MMD between
the intermediate features from mapping-annotated samples and tracking-annotated samples. As
shown in Table 1, NexusFlow module leads to a significant reduction in the MMD score compared
to all baselines. This quantitatively validates that NexusFlow effectively reduces the distributional
distance between the disparate tasks, creating the statistical foundation for knowledge transfer.

Table 1: MMD score comparison in same training setting (smaller means greater similarity).
Ref Baseline MTPSL JTR Ours (w/o inv) Ours

MMD 0.23±0.32 2.97±0.54 2.81±0.36 2.77±0.54 2.54±0.29 1.56±0.47

Figure 4: Figure of eigenvalue magnitudes decay.

Intrinsic Dimensionality Analysis. Beyond
showing the distributions are closer, we analyze
the feature distributions’ intrinsic complexity us-
ing Principal Component Analysis (PCA). Our
analysis is guided by the premise that a rep-
resentation with a slower decay in its eigen-
value magnitudes holds more informative di-
mensions, making it more suitable for complex,
multi-tasks Goel & Klivans (2017); Ansuini et al.
(2019); Kim et al. (2023). As shown in the
Scree plot Zhu & Ghodsi (2006) in Figure 4,
the features from the baseline and a variant of
our model where we ablate the invertible layer
(‘Ours (w/o inv)‘) exhibit rapid eigenvalue decay, suggesting their representations are more com-
pressible and may lose nuanced information. In contrast, the eigenvalue of our full NexusFlow model
decays at a slower rate. This provides evidence that our alignment process forges a more complex
and information-rich feature space, one that retains the high dimensionality necessary to effectively
serve two structurally disparate tasks.

4 EXPERIMENTS

Dataset. We conduct our experiments on nuScenes Caesar et al. (2020), a large-scale and challenging
public benchmark for autonomous driving. The dataset contains 1000 driving scenes, captured in

7
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Method Multi-object Tracking Online Mapping

AMOTA↑ AMOTP↓ Recall↑ IDS↓ Lanes↑ Drivable↑ Divider↑ Crossing↑
Oracle (fully supervised) 0.323 1.328 0.431 696 31.4 71.42 34.4 21.3

Baseline Hu et al. (2023) 0.289 1.488 0.362 1025 27.1 62.7 22.6 14.1

MTPSL Li et al. (2022) 0.255 1.504 0.321 1089 27.0 59.6 21.7 11.5
JTR Nishi et al. (2024) 0.197 1.547 0.317 774 25.1 57.6 21.0 12.1
Ours (One stage) 0.318 1.353 0.407 734 37.0 63.7 29.4 21.5
Ours (Two stage) 0.329 1.322 0.428 690 37.1 64.5 30.0 22.8

Table 2: Multi-object tracking and Online mapping results. Ours achieves competitive perfor-
mance against Sota methods on both tasks. For online mapping, we report segmentation IoU (%).

Boston and Singapore, which are officially divided into 700 for training, 150 for validation, and 150
for testing. In total, it comprises approximately 40,000 annotated keyframes. Moreover, nuScenes
provides rich annotations for our two disparate tasks: over 1.4 million 3D object bounding boxes for
tracking and detailed, city-level vectorized maps for map reconstruction. For vision-centric methods,
it provides the standard sensory input, which includes images from six surrounding cameras, intrinsic
and extrinsic calibration matrices, and vehicle ego-motion data Zheng et al. (2023); Liu et al. (2024);
Chen et al. (2024).

Experimental Setup. To ensure a fair comparison, all methods are trained from scratch by using
the same hyperparameters, including learning rates, batch sizes, and loss balancing factors Lin
et al. (2023). All experiments are conducted with four NVIDIA A100 80G GPUs. To rigorously
evaluate performance in the partially supervised setting with an explicit domain gap, we design a
specific data protocol based on the data locations in nuScenes. Specifically, we provide ground-truth
annotations for the mapping task only for scenes in Boston. Conversely, ground-truth annotations
for the multi-object tracking task are provided only for scenes in Singapore. This challenging,
geographic domain-based partial supervision protocol is applied consistently across all evaluated
methods, as well as in our analysis and ablation studies. For an upper-bound comparison, we also
train an Oracle model that is fully supervised with all mapping and tracking labels from both cities.

Baseline Architecture. To provide a strong and consistent foundation for our experiments, we
adopt the SOTA UniAD Hu et al. (2023) architecture as the backbone for all evaluated methods.
This includes the fully supervised Oracle, and the standard partially supervised Baseline. To show
the superiority of our method, we re-implement two PS-MTL methods, MTPSL Li et al. (2022)
and JTR Nishi et al. (2024). Although originally designed for dense prediction tasks, we carefully
adapt their core knowledge transfer mechanisms and integrate them into the UniAD architecture.
This ensures a fair and controlled comparison where the primary difference between methods is the
specific strategy used for partially supervised learning, not the underlying perception model.

Quantitative Results. We present our results in Table 2, with the main metric for each task
highlighted in gray. While training is strictly conducted under our scenario-based partial supervision
protocol, evaluation is performed on the complete validation set, including scenes from both Boston
and Singapore. Our proposed NexusFlow significantly outperforms all partially supervised baselines
and, remarkably, achieves performance competitive with the fully supervised Oracle.

• Multi-Object Tracking: For the tracking task (left side of the table), NexusFlow sets a new SOTA
for this challenging PS-MTL setting. It surpasses the strong JTR Nishi et al. (2024) baseline by a
large margin of +13.8% AMOTA and improves upon the standard Baseline Hu et al. (2023) by
+4.0% AMOTA. Furthermore, our method achieves the lowest ID Switch score, demonstrating a
superior ability to maintain temporal consistency for each tracklet.

• Online Mapping: For the mapping task (right side of the table), our method shows substantial
gains in segmenting crucial road elements. Notably, it outperforms the Baseline by over +10%
IoU on lanes, a critical component for safe downstream motion planning. This result confirms that
effective knowledge was transferred from the tracking-annotated domain (Singapore) to enhance
the mapping performance.

Qualitative Results. These quantitative results are corroborated by our qualitative analysis in Figure 5.
We observe that our model is able to detect objects more accurately. A full video comparison is
provided in the supplementary material.
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Baseline method

Ours

Figure 5: Visualization results. We show results for multi-object tracking and online mapping tasks
in surround-view images and BEV from left to right. We highlight the difference with red dashed
circle.

Ablation Study. We conduct an ablation study to validate our design choices, with results presented
in Table 3. We compare our full model against two variants: the ‘Baseline’ (without the NexusFlow
module) and ‘Ours (w/o inv)’ (without the invertible coupling layers). The results confirm that our
full model significantly outperforms both variants. While ‘Ours (w/o inv)’ surpasses the ‘Baseline‘,
the performance gap to the full model underscores the critical role of the invertible transformation.
Furthermore, we find that a coupling layer depth of 6 achieves the optimal performance, which we
adopt in our final design.

Method Multi-object Tracking Online Mapping (IoU %)

AMOTA↑ AMOTP↓ Recall↑ IDS↓ Lanes↑ Drivable↑ Divider↑ Crossing↑
Baseline Hu et al. (2023) 0.289 1.488 0.362 1025 27.1 62.7 22.6 14.1

Ours (w/o inv) 0.214 1.507 1.355 731 32.3 56.8 27.7 21.9
Ours (1 Layer) 0.236 1.482 0.389 982 32.9 57.2 28.1 20.9
Ours (2 Layers) 0.258 1.475 0.396 913 33.5 58.2 28.3 21.0
Ours (4 Layers) 0.292 1.405 0.402 854 35.3 60.3 28.6 21.1
Ours (6 Layers) 0.329 1.322 0.428 690 37.1 64.5 30.0 22.8
Ours (8 Layers) 0.247 1.453 0.385 1054 33.1 57.9 28.5 20.7

Table 3: Ablation study on multi-object tracking and online mapping. Ours with 6 layers achieves
the best performance on both tasks.

5 CONCLUSION

In this paper, we tackled the challenging and previously unexplored problem of Partially Supervised
Multi-Task Learning (PS-MTL) for structurally disparate tasks, focusing on the complex autonomous
driving setting of joint map reconstruction and multi-object tracking. We introduced NexusFlow, a
novel, lightweight, and plug-and-play framework that effectively aligns the latent feature distributions
of these heterogeneous tasks. Through theoretical and practical analysis, we demonstrated that our
invertible, flow-based alignment provides a principled mechanism for knowledge transfer, enabling
our method to establish a new SOTA on the challenging, domain-shifted nuScenes dataset.
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APPENDIX

A LLM USAGE STATEMENT

Large Language Models (LLMs) were not used to generate, analyze, or create any of the content,
results, or figures presented in this paper. LLMs were only employed after the full manuscript was
completed, and solely for light editing of grammar and phrasing. All scientific ideas, experimental
design, implementation, and writing were conducted entirely by the authors.
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