
Published as a conference paper at ICLR 2022

SO(2)-EQUIVARIANT REINFORCEMENT LEARNING

Dian Wang, Robin Walters, and Robert Platt
Khoury College of Computer Sciences
Northeastern University
Boston, MA 02115, USA
{wang.dian, r.walters, r.platt}@northeastern.edu

ABSTRACT

Equivariant neural networks enforce symmetry within the structure of their con-
volutional layers, resulting in a substantial improvement in sample efficiency
when learning an equivariant or invariant function. Such models are applicable
to robotic manipulation learning which can often be formulated as a rotationally
symmetric problem. This paper studies equivariant model architectures in the con-
text ofQ-learning and actor-critic reinforcement learning. We identify equivariant
and invariant characteristics of the optimal Q-function and the optimal policy and
propose equivariant DQN and SAC algorithms that leverage this structure. We
present experiments that demonstrate that our equivariant versions of DQN and
SAC can be significantly more sample efficient than competing algorithms on an
important class of robotic manipulation problems.

1 INTRODUCTION

A key challenge in reinforcement learning is to improve sample efficiency – that is to reduce the
amount of environmental interactions that an agent must take in order to learn a good policy. This
is particularly important in robotics applications where gaining experience potentially means inter-
acting with a physical environment. One way of improving sample efficiency is to create “artificial”
experiences through data augmentation. This is typically done in visual state spaces where an affine
transformation (e.g., translation or rotation of the image) is applied to the states experienced during
a transition (Laskin et al., 2020a; Kostrikov et al., 2020). These approaches implicitly assume that
the transition and reward dynamics of the environment are invariant to affine transformations of the
visual state. In fact, some approaches explicitly use a contrastive loss term to induce the agent to
learn translation-invariant feature representations (Laskin et al., 2020b; Zhan et al., 2020).

Recent work in geometric deep learning suggests that it may be possible to learn transformation-
invariant policies and value functions in a different way, using equivariant neural networks (Cohen
& Welling, 2016a;b). The key idea is to structure the model architecture such that it is constrained
only to represent functions with the desired invariance properties. In principle, this approach aim at
exactly the same thing as the data augmentation approaches described above – both methods seek
to improve sample efficiency by introducing an inductive bias. However, the equivariance approach
achieves this more directly by modifying the model architecture rather than by modifying the train-
ing data. Since with data augmentation, the model must learn equivariance in addition to the task
itself, more training time and greater model capacity are often required. Even then, data augmenta-
tion results only in approximate equivariance whereas equivariant neural networks guarantee it and
often have stronger generalization as well (Wang et al., 2020b). While equivariant architectures have
recently been applied to reinforcement learning (van der Pol et al., 2020a;b; Mondal et al., 2020),
this has been done only in toy settings (grid worlds, etc.) where the model is equivariant over small
finite groups, and the advantages of this approach over standard methods is less clear.

This paper explores the application of equivariant methods to more realistic problems in robotics
such as object manipulation. We make several contributions. First, we define and analyze an im-
portant class of MDPs that we call group-invariant MDPs. Second, we introduce a new variation
of the Equivariant DQN (Mondal et al., 2020), and we further introduce equivariant variations of
SAC (Haarnoja et al., 2018), and learning from demonstration (LfD). Finally, we show that our

1

Published as a conference paper at ICLR 2022

methods convincingly outperform recent competitive data augmentation approaches (Laskin et al.,
2020a; Kostrikov et al., 2020; Laskin et al., 2020b; Zhan et al., 2020). Our Equivariant SAC method,
in particular, outperforms these baselines so dramatically (Figure 7) that it could make reinforcement
learning feasible for a much larger class of robotics problems than is currently the case. Supplemen-
tary video and code are available at https://pointw.github.io/equi_rl_page/.

2 RELATED WORK

Equivariant Learning: Encoding symmetries in the structure of neural networks can improve both
generalization and sample efficiency. The idea of equivariant learning is first introduced in G-
Convolution (Cohen & Welling, 2016a). The extension work proposes an alternative architecture,
Steerable CNN (Cohen & Welling, 2016b). Weiler & Cesa (2019) proposes a general framework for
implementing E(2)-Steerable CNNs. In the context of reinforcement learning, Mondal et al. (2020)
investigates the use of Steerable CNNs in the context of two game environments. van der Pol et al.
(2020b) proposes MDP homomorphic networks to encode rotational and reflectional equivariance of
an MDP but only evaluates their method in a small set of tasks. In robotic manipulation, Wang et al.
(2021) learns equivariant Q-functions but is limited in the spatial action space. In contrast to prior
work, this paper proposes an Equivariant SAC algorithm, an equivariant LfD algorithm, and a novel
variation of Equivariant DQN (Mondal et al., 2020) focusing on visual motor control problems.

Data Augmentation: Another popular method for improving sample efficiency is data augmenta-
tion. Recent works demonstrate that the use of simple data augmentation methods like random crop
or random translate can significantly improve the performance of reinforcement learning (Laskin
et al., 2020a; Kostrikov et al., 2020). Data augmentation is often used for generating additional sam-
ples (Kalashnikov et al., 2018; Lin et al., 2020; Zeng et al., 2020) in robotic manipulation. However,
data augmentation methods are often less sample efficient than equivariant networks because the
latter injects an inductive bias to the network architecture.

Contrastive Learning: Data augmentation is also applied with contrastive learning (Oord et al., 2018)
to improve feature extraction. Laskin et al. (2020b) show significant sample-efficiency improvement
by adding an auxiliary contrastive learning term using random crop augmentation. Zhan et al. (2020)
use a similar method in the context of robotic manipulation. However, contrastive learning is limited
to learning an invariant feature encoder and is not capable of learning equivariant functions.

Close-Loop Robotic Control: There are two typical action space definitions when learning policies
that control the end-effector of a robot arm: the spatial action space that controls the target pose
of the end-effector (Zeng et al., 2018b;a; Satish et al., 2019; Wang et al., 2020a), or the close-loop
action space that controls the displacement of the end-effector. The close-loop action space is widely
used for learning grasping policies (Kalashnikov et al., 2018; Quillen et al., 2018; Breyer et al., 2019;
James et al., 2019). Recently, some works also learn more complex policies than grasping (Viereck
et al., 2020; Kilinc et al., 2019; Cabi et al., 2020; Zhan et al., 2020). This work extends prior works
in the close-loop action space by using equivariant learning to improve the sample efficiency.

3 BACKGROUND

SO(2) and Cn: We will reason about rotation in terms of the group SO(2) and its cyclic subgroup
Cn ≤ SO(2). SO(2) is the group of continuous planar rotations {Rotθ : 0 ≤ θ < 2π}. Cn is the
discrete subgroup Cn = {Rotθ : θ ∈ { 2πi

n |0 ≤ i < n}} of rotations by multiples 2π
n .

Cn actions: A groupGmay be equipped with an action on a setX by specifying a map · : G×X →
X satisfying g1 · (g2 · x) = (g1g2) · x and 1 · x = x for all g1, g2 ∈ G, x ∈ X . Note that closure,
gx ∈ X , and invertibility, g−1gx = x, follow immediately from the definition. We are interested
in actions of Cn which formalize how vectors or feature maps transform under rotation. The group
Cn acts in three ways that concern us (for a more comprehensive background, see Bronstein et al.
(2021)):

1. R through the trivial representation ρ0. Let g ∈ Cn and x ∈ R. Then ρ0(g)x = x. For example,
the trivial representation describes how pixel color/depth values change when an image is rotated,
i.e. they do not change (Figure 1 left).

2

https://pointw.github.io/equi_rl_page/

Published as a conference paper at ICLR 2022

Figure 1: Illustration of how an element g ∈ Cn acts on the feature map by rotating the pixels and
transforming the channel space through ρ0, ρ1, and ρreg. Left: Cn acts on the channel space of a
1-channel feature map by identical mapping. Middle: Cn acts on the channel space of a vector field
by rotating the vector at each pixel through ρ1. Right: Cn acts on the channel space of a 4-channel
feature map by permuting the order of the channels by ρreg.

2. R2 through the standard representation ρ1. Let g ∈ Cn and v ∈ R2. Then ρ1(g)v =(cos g − sin g
sin g cos g

)
v. This describes how elements of a vector field change when rotated (Figure 1 mid-

dle).

3. Rn through the regular representation ρreg. Let g = rm ∈ Cn = {1, r, r2, . . . , rn−1} and
(x1, x2, . . . , xn) ∈ Rn. Then ρreg(g)x = (xn−m+1, . . . , xn, x1, x2, . . . , xn−m) cyclically per-
mutes the coordinates of Rn (Figure 1 right).

Feature maps as functions: In deep learning, images and feature maps are typically expressed as
tensors. However, it will be convenient here to sometimes express these as functions. Specifically,
we may write an h× w one-channel image F ∈ R1×h×w as a function F : R2 → R where F(x, y)
describes the intensity at pixel x, y. Similarly, an m-channel tensor F ∈ Rm×h×w may be written
as F : R2 → Rm. We refer to the domain of this function as its “spatial dimensions”.

Cn actions on vectors and feature maps: Cn acts on vectors and feature maps differently depending
upon their semantics. We formalize these different ways of acting as follows. Let F : R2 → Rm be
an m-channel feature map and let V ∈ Rm×1×1 = Rm be a vector represented as a special case of
a feature map with 1× 1 spatial dimensions. Then g is defined to act on F by

(gF)(x, y) = ρj(g)F(ρ1(g)−1(x, y)). (1)

For a vector V (considered to be at (x, y) = (0, 0)), this becomes:

gV = ρj(g)V. (2)

In the above, ρ1(g) rotates pixel location and ρj(g) transforms the pixel feature vector using the
trivial representation (ρj = ρ0), the standard representation (ρj = ρ1), the regular representation
(ρj = ρreg), or some combination thereof.

Equivariant convolutional layer: A Cn-equivariant layer is a function h whose output is constrained
to transform in a defined way when the input feature map is transformed by a group action. Consider
an equivariant layer h with an input Fin : R2 → R|ρin| and an output Fout : R2 → R|ρout| , where
ρin and ρout denote the group representations associated with Fin and Fout, respectively. When the
input is transformed, this layer is constrained to output a transformed version of the same output
feature map:

h(gFin) = g(h(Fin)) = gFout. (3)

where g ∈ Cn acts on Fin or Fout through Equation 1 or Equation 2, i.e., this constraint equation
can be applied to arbitrary feature maps F or vectors V .

A linear convolutional layer h satisfies Equation 3 with respect to the group Cn if the convolutional
kernel K : R2 → R|ρout|×|ρin| has the following form (Cohen et al., 2018):

K(ρ1(g)v) = ρ−1
out(g)K(v)ρin(g). (4)

Since the composition of equivariant maps is equivariant, a fully convolutional equivariant network
can be constructed by stacking equivariant convolutional layers that satisfy the constraint of Equa-
tion 3 and together with equivariant non-linearities (Weiler & Cesa, 2019).

3

Published as a conference paper at ICLR 2022

4 PROBLEM STATEMENT

4.1 GROUP-INVARIANT MDPS

In a group-invariant MDP, the transition and reward functions are invariant to group elements g ∈ G
acting on the state and action space. For state s ∈ S, action a ∈ A, and g ∈ G, let gs ∈ S denote
the action of g on s and ga ∈ A denote the action of g on a.

Definition 4.1 (G-invariant MDP). A G-invariant MDPMG = (S,A, T,R,G) is an MDPM =
(S,A, T,R) that satisfies the following conditions:

1. Reward Invariance: The reward function is invariant to the action of the group element g ∈ G,
R(s, a) = R(gs, ga).

2. Transition Invariance: The transition function is invariant to the action of the group element
g ∈ G, T (s, a, s′) = T (gs, ga, gs′).

A key feature of a G-invariant MDP is that its optimal solution is also G-invariant (proof in Ap-
pendix A):

Proposition 4.1. LetMG be a group-invariant MDP. Then its optimal Q-function is group invari-
ant, Q∗(s, a) = Q∗(gs, ga), and its optimal policy is group-equivariant, π∗(gs) = gπ∗(s), for any
g ∈ G.

It should be noted that the G-invariant MDP of Definition 4.1 is in fact a special case of an MDP
homomorphism (Ravindran & Barto, 2001; 2004), a broad class of MDP abstractions. MDP ho-
momorphisms are important because optimal solutions to the abstract problem can be “lifted” to
produce optimal solutions to the original MDP (Ravindran & Barto, 2004). As such, Proposition 4.1
follows directly from those results.

4.2 SO(2)-INVARIANT MDPS IN VISUAL STATE SPACES

In the remainder of this paper, we focus exclusively on an important class of SO(2)-invariant MDPs
where the state is encoded as an image. We approximate SO(2) by its subgroup Cn.

State space: State is expressed as an m-channel image, Fs : R2 → Rm. The group opera-
tor g ∈ Cn acts on this image as defined in Equation 1 where we set ρj = ρ0: gFs(x, y) =
ρ0(g)Fs(ρ1(g)−1(x, y)), i.e., by rotating the pixels but leaving the pixel feature vector unchanged.

Action space: We assume we are given a factored action space Ainv ×Aequiv = A ⊆ Rk embedded
in a k-dimensional Euclidean space where Ainv ⊆ Rkinv and Aequiv ⊆ Rk−kinv . We require the
variables in Ainv to be invariant with the rotation operator and the variables in Aequiv to rotate
with the representation ρequiv = ρ1. Therefore, the rotation operator g ∈ Cn acts on a ∈ A via
ga = (ρequiv(g)aequiv, ainv) where ainv ∈ Ainv and aequiv ∈ Aequiv.

(a) (b)

Figure 2: The manipulation scene (a)
and the visual state space (b).

Application to robotic manipulation: We express the state
as a depth image centered on the gripper position where
depth is defined relative to the gripper. The orientation
of this image is relative to the base reference frame – not
the gripper frame. We require the fingers of the gripper
and objects grasped by the gripper to be visible in the im-
age. Figure 2 shows an illustration. The action is a tuple,
a = (aλ, axy, az, aθ) ∈ A ⊂ R5, where aλ ∈ Aλ denotes
the commanded gripper aperture, axy ∈ Axy denotes the
commanded change in gripper xy position, az ∈ Az
denotes the commanded change in gripper height, and
aθ ∈ Aθ denotes the commanded change in gripper orientation. Here, the xy action is equivariant
with g ∈ Cn,Aequiv = Axy , and the rest of the action variables are invariant,Ainv = Aλ×Az×Aθ.
Notice that the transition dynamics are Cn-invariant (i.e. T (s, a, s′) = T (gs, ga, gs′)) because the
Newtonian physics of the interaction are invariant to the choice of reference frame. If we constrain
the reward function to be Cn-invariant as well, then the resulting MDP is Cn-invariant.

4

Published as a conference paper at ICLR 2022

5 APPROACH

5.1 EQUIVARIANT DQN

Figure 3: Illustration of Q-
map equivariance. The output
Q-map rotates with the input
image.

In DQN, we assume we have a discrete action space, and we learn
the parameters of a Q-network that maps from the state onto ac-
tion values. Given a G-invariant MDP, Proposition 4.1 tells us that
the optimal Q-function is G-invariant. Therefore, we encode the
Q-function using an equivariant neural network that is constrained
to represent only G-invariant Q-functions. First, in order to use
DQN, we need to discretize the action space. Let Aequiv ⊂ Aequiv

and Ainv ⊂ Ainv be discrete subsets of the full equivariant and
invariant action spaces, respectively. Next, we define a function
Fa : Aequiv → RAinv from the equivariant action variables in
Aequiv to the Q values of the invariant action variables in Ainv.
For example, in the robotic manipulation domain described Sec-
tion 4.2, we have Aequiv = Axy and Ainv = Aλ × Az × Aθ and
ρequiv = ρ1, and we define Aequiv and Ainv accordingly. We now
encode the Q network q as a stack of equivariant layers that each
encode the equivariant constraint of Equation 3. Since the compo-
sition of equivariant layers is equivariant, q satisfies:

q(gFs) = g(q(Fs)) = gFa, (5)

where we have substituted Fin = Fs and Fout = Fa. In the above, the rotation operator g ∈
Cn is applied using Equation 1 as gFa(axy) = ρ0(g)Fa(ρ1(g)−1(axy)). Figure 3 illustrates this
equivariance constraint for the robotic manipulation example with |Aequiv| = |Axy| = 9. When
the state (represented as an image on the left) is rotated by 90 degrees, the values associated with
the action variables in Axy are also rotated similarly. The detailed network architecture is shown in
Appendix D.1. Our architecture is different from that in Mondal et al. (2020) in that we associate
the action of g on Aequiv and Ainv with the group action on the spatial dimension and the channel
dimension of a feature map Fa, which is more efficient than learning such mapping using FC layers.

5.2 EQUIVARIANT SAC

Figure 4: Illustration of the equivari-
ant actor network (top) and the invariant
critic network (bottom).

In SAC, we assume the action space is continuous. We
learn the parameters for two networks: a policy net-
work Π (the actor) and an action-value network Q (the
critic) (Haarnoja et al., 2018). The critic Q : S ×A→ R
approximates Q values in the typical way. However, the
actor Π : S → A×Aσ estimates both the mean and stan-
dard deviation of action for a given state. Here, we define
Aσ = Rk to be the domain of the standard deviation vari-
ables over the k-dimensional action space defined in Sec-
tion 4.2. Since Proposition 4.1 tells us that the optimal Q
is invariant and the optimal policy is equivariant, we must
model Q as an invariant network and Π as an equivariant
network.

Policy network: First, consider the equivariant constraint
of the policy network. As before, the state is encoded
by the function Fs. However, we must now express the
action as a vector over Ā = A×Aσ . Factoring A into its
equivariant and invariant components, we have Ā = Aequiv × Ainv × Aσ . In order to identify the
equivariance relation for Ā, we must define how the group operator g ∈ G acts on aσ ∈ Aσ . Here,
we make the simplifying assumption that aσ is invariant to the group operator. This choice makes
sense in robotics domains where we would expect the variance of our policy to be invariant to the
choice of reference frame. As a result, we have that the group element g ∈ G acts on ā ∈ Ā via:

gā = g(aequiv, ainv, aσ) = (ρequiv(g)aequiv, ainv, aσ). (6)

5

Published as a conference paper at ICLR 2022

We can now define the actor network π to be a mapping Fs 7→ ā (Figure 4 top) that satisfies the
following equivariance constraint (Equation 3):

π(gFs) = g(π(Fs)) = gā. (7)

Critic network: The critic network takes both state and action as input and maps onto a real value. We
define two equivariant networks: a state encoder e and aQ network q. The equivariant state encoder,
e, maps the input state Fs onto a regular representation s̄ ∈ (Rn)α where each of n group elements
is associated with an α-vector. Since s̄ has a regular representation, we have gs̄ = ρreg(g)s̄. Writing
the equivariance constraint of Equation 3 for e, we have that e must satisfy e(gFs) = ge(Fs) = gs̄.
The output state representation s̄ is concatenated with the action a ∈ A, producing w = (s̄, a). The
action of the group operator is now gw = (gs̄, ga) where ga = (ρequiv(g)aequiv, ainv). Finally, the q
network maps from w onto R, a real-valued estimate of theQ value for w. Based on proposition 4.1,
this network must be invariant to the group action: q(gw) = q(w). All together, the critic satisfies
the following invariance equation:

q(e(gFs), ga) = q(e(Fs), a). (8)

This network is illustrated at the bottom of Figure 4. For a robotic manipulation domain in Sec-
tion 4.2, we have Aequiv = Axy and Ainv = Aλ ×Az ×Aθ and ρequiv = ρ1. The detailed network
architecture is in Appendix D.2.

Preventing the critic from becoming overconstrained: In the model architecture above, the hidden
layer of q is represented using a vector in the regular representation and the output of q is encoded
using the trivial representation. However, Schur’s Lemma (see e.g. Dummit & Foote (1991)) implies
there only exists a one-dimensional space of linear mappings from a regular representation to a
trivial representation (i.e., x = a

∑
i vi where x is a trivial representation, a is a constant, and

v is a regular representation). This implies that a linear mapping f : Rn × Rn → R from two
regular representations to a trivial representation that satisfies f(gv, gw) = f(v, w) for all g ∈ G
will also satisfy f(g1v, w) = f(v, w) and f(v, g2w) = f(v, w) for all g1, g2 ∈ G. (See details in
Appendix B.) In principle, this could overconstrain the last layer of q to encode additional undesired
symmetries. To avoid this problem we use a non-linear equivariant mapping, maxpool, over the
group space to transform the regular representation to the trivial representation.

5.3 EQUIVARIANT SACFD

Many of the problems we want to address cannot be solved without guiding the agent’s exploration
somehow. In order to evaluate our algorithms in this context, we introduce the following simple
strategy for learning from demonstration with SAC. First, prior to training, we pre-populate the
replay buffer with a set of expert demonstrations generated using a hand-coded planner. Second, we
introduce the following L2 term into the SAC actor’s loss function:

Lactor = LSAC + 1e

[
1

2
((a ∼ π(s))− ae)2

]
, (9)

where LSAC is the actor’s loss term in standard SAC, 1e = 1 if the sampled transition is an expert
demonstration and 0 otherwise, a ∼ π(s) is an action sampled from the output Gaussian distribution
of π(s), and ae is the expert action. Since both the sampled action a ∼ π(s) and the expert action
ae transform equivalently, Lactor is compatible with the equivariance we introduce in Section 5.2.
We refer to this method as SACfD (SAC from Demonstration).

6 EXPERIMENTS

We evaluate Equivariant DQN and Equivariant SAC in the manipulation tasks shown in Figure 5.
These tasks can be formulated as SO(2)-invariant MDPs. All environments have sparse rewards (+1
when reaching the goal and 0 otherwise). See environment details in Appendix C.

6.1 EQUIVARIANT DQN

We evaluate Equivariant DQN in the Block Pulling, Object Picking, and Drawer Opening tasks
for the group C4. The discrete action space is Aλ = {OPEN, CLOSE}; Axy = {(x, y)|x, y ∈

6

Published as a conference paper at ICLR 2022

(a) Block Pulling (b) Object Picking (c) Drawer Opening

(d) Block Stacking (e) House Building (f) Corner Picking

Figure 5: The experimental environments implemented in PyBullet (Coumans & Bai, 2016). The
left image in each sub figure shows an initial state of the environment; the right image shows the
goal state. The poses of the objects are randomly initialized.

(a) Block Pulling (b) Object Picking (c) Drawer Opening

Figure 6: Comparison of Equivariant DQN (blue) with baselines. The plots show the evaluation
performance of the greedy policy in terms of the discounted reward. The evaluation is performed
every 500 training steps. Results are averaged over four runs. Shading denotes standard error.

{−0.02m, 0m, 0.02m}}; Az = {−0.02m, 0m, 0.02m}; Aθ = {− π
16 , 0,

π
16}. Note that the def-

inition of Axy and g ∈ C4 satisfies the closure requirement of the action space in a way that
∀axy ∈ Axy,∀g ∈ C4, ρ1(g)axy ∈ Axy . We compare Equivariant DQN (Equi DQN) against the
following baselines: 1) CNN DQN: DQN with conventional CNN instead of equivariant network,
where the conventional CNN has a similar amount of trainable parameters (3.9M) as the equivari-
ant network (2.6M). 2) RAD Crop DQN (Laskin et al., 2020a): same network architecture as CNN
DQN. At each training step, each transition in the minibatch is applied with a random-crop data aug-
mentation. 3) DrQ Shift DQN (Kostrikov et al., 2020): same network architecture as CNN DQN.
At each training step, both the Q-targets and the TD losses are calculated by averaging over two
random-shift augmented transitions. 4): CURL DQN (Laskin et al., 2020b): similar architecture as
CNN DQN with an extra contrastive loss term that learns an invariant encoder from random crop
augmentations. See the baselines detail in Appendix E. At the beginning of each training process,
we pre-populate the replay buffer with 100 episodes of expert demonstrations.

Figure 6 compares the learning curves of the various methods. Equivariant DQN learns faster and
converges at a higher discounted reward in all three environments.

6.2 EQUIVARIANT SAC

In this experiment, we evaluate the performance of Equivariant SAC (Equi SAC) for the group
C8. The continuous action space is:Aλ = [0, 1]; Axy = {(x, y)|x, y ∈ [−0.05m, 0.05m]};
Az = [−0.05m, 0.05m]; Aθ = [−π8 ,

π
8]. We compare against the following baselines: 1) CNN

SAC: SAC with conventional CNN rather than equivariant networks, where the conventional CNN
has a similar amount of trainable parameters (2.6M) as the equivariant network (2.3M). 2) RAD
Crop SAC (Laskin et al., 2020a): same model architecture as CNN SAC with random crop data
augmentation when sampling transitions. 3) DrQ Shift SAC (Kostrikov et al., 2020): same model

7

Published as a conference paper at ICLR 2022

(a) Block Pulling (b) Object Picking (c) Drawer Opening

Figure 7: Comparison of Equivariant SAC (blue) with baselines. The plots show the evaluation
performance of the greedy policy in terms of the discounted reward. The evaluation is performed
every 500 training steps. Results are averaged over four runs. Shading denotes standard error.

(a) Drawer Opening (b) Block Stacking (c) House Building (d) Corner Picking

Figure 8: Comparison of Equivariant SACfD (blue) with baselines. The plots show the evaluation
performance of the greedy policy in terms of the discounted reward. The evaluation is performed
every 500 training steps. Results are averaged over four runs. Shading denotes standard error.

architecture as CNN SAC with random shift data augmentation when calculating the Q-target and
the loss. 4) FERM (Zhan et al., 2020): a combination of SAC, contrastive learning, and random crop
augmentation (baseline details in Appendix E). All methods use a SO(2) data augmentation buffer,
where every time a new transition is added, we generate 4 more augmented transitions by applying
random continuous rotations to both the image and the action (this data augmentation in the buffer
is in addition to the data augmentation that is performed in the RAD DrQ, and FERM baselines).
Prior to each training run, we pre-load the replay buffer with 20 episodes of expert demonstration.

Figure 7 shows the comparison among the various methods. Notice that Equivariant SAC outper-
forms the other methods significantly. Without the equivariant approach, Object Picking and Drawer
Opening appear to be infeasible for the baseline methods. In Block Pulling, FERM is the only other
method able to solve the task.

6.3 EQUIVARIANT SACFD

We want to explore our equivariant methods in the context of more challenging tasks such as those in
the bottom row of Figure 5. However, since these tasks are too difficult to solve without some kind
of guided exploration, we augment the Equivariant SAC as well as all the baselines in two ways: 1)
we use SACfD as described in Section 5.3; 2) we use Prioritized Experience Replay (Schaul et al.,
2015) rather than standard replay buffer. As in Section 6.2, we use the SO(2) data augmentation in
the buffer that generates 4 extra SO(2)-augmented transitions whenever a new transition is added.
Figure 8 shows the results. First, note that our Equivariant SACfD does best on all four tasks,
followed by FERM, and other baselines. Second, notice that only the equivariant method can solve
the last three (most challenging tasks). This suggests that equivariant models are important not only
for unstructured reinforcement learning, but also for learning from demonstration. Additional results
for Block Pulling and Object Picking environments are shown in Appendix G.

6.4 COMPARING WITH LEARNING EQUIVARIANCE USING AUGMENTATION

In the previous experiments, we compare against the data augmentation baselines using the same
data augmentation operators that the authors proposed (random crop in RAD (Laskin et al., 2020a)

8

Published as a conference paper at ICLR 2022

(a) Drawer Opening (b) Block Stacking (c) House Building (d) Corner Picking

Figure 9: Comparison of Equivariant SACfD (blue) with baselines. The plots show the evaluation
performance of the greedy policy in terms of the discounted reward. The evaluation is performed
every 500 training steps. Results are averaged over four runs. Shading denotes standard error.

and random shift in DrQ (Kostrikov et al., 2020)). However, those two methods can also be modified
to learn SO(2) equivariance using SO(2) data augmentation. Here, we explore this idea as an
alternative to our equivariant model. Specifically, instead of augmenting on the state as in Laskin
et al. (2020a) and Kostrikov et al. (2020) using only translation, we apply the SO(2) augmentation
in both the state and the action. Since the RAD and DrQ baselines in this section are already
running SO(2) augmentations themselves, we disable the SO(2) buffer augmentation for the online
transitions in those baselines. (See the result of RAD and DrQ with the SO(2) data augmentation
buffer in Appendix H.4). We compare the resulting version of RAD (RAD SO(2) SACfD) and DrQ
(DrQ SO(2) SACfD) with our Equivariant SACfD in Figure 9. Our method outperforms both RAD
and DrQ equipped with SO(2) data augmentation. Additional results for Block Pulling and Object
Picking are shown in Appendix G.

6.5 GENERALIZATION EXPERIMENT

(a) Block Pulling (b) Drawer Opening

Figure 10: Comparison of Equivariant SACfD with
baselines. Results are averaged over four runs.

This experiment evaluates the ability for the
equivariant model to generalize over the equiv-
ariance group. We use a similar experimental
setting as in Section 6.3. However, now the
training environment is always initialized with
a fixed orientation rather than a random ori-
entation. For example, in Block Pulling, the
two blocks are initialized with a fixed relative
orientation; in Drawer Opening, the drawer is
initialized with a fixed orientation. In the eval-
uation environment, however, these objects are
initialized with random orientations. To suc-
ceed, the agent needs to generalize over varied orientations while being trained with a fixed orienta-
tion. To prevent the agent from generalizing via augmentation, we disable the SO(2) augmentation
in the buffer. As shown in Figure 10, Equivariant SACfD generalizes better than the baselines. Even
though the equivariant network is presented with only one orientation during training, it successfully
generalizes over random orientation whereas none of the baselines can.

7 DISCUSSION

This paper defines a class of group-invariant MDPs and identifies the invariance and equivariance
characteristics of their optimal solutions. This paper further proposes Equivariant SAC and a new
variation of Equivariant DQN for continuous action space and discrete action space, respectively. We
show experimentally in the robotic manipulation domains that our proposal substantially surpasses
the performance of competitive baselines. A key limitation of this work is that our definition of
G-invariant MDPs requires the MDP to have an invariant reward function and invariant transition
function. Though such restrictions are often applicable in robotics, they limit the potential of the
proposed methods in other domains like some ATARI games. Furthermore, if the observation is
from a non-top-down perspective, or there are non-equivariant structures in the observation (e.g.,
the robot arm), the invariant assumptions of a G-invariant MDP will not be directly satisfied.

9

Published as a conference paper at ICLR 2022

ACKNOWLEDGMENTS

This work is supported in part by NSF 1724257, NSF 1724191, NSF 1763878, NSF 1750649, and
NASA 80NSSC19K1474. R. Walters is supported by the Roux Institute and the Harold Alfond
Foundation and NSF grants 2107256 and 2134178.

REFERENCES

Michel Breyer, Fadri Furrer, Tonci Novkovic, R. Siegwart, and J. Nieto. Comparing task simplifica-
tions to learn closed-loop object picking using deep reinforcement learning. IEEE Robotics and
Automation Letters, 4:1549–1556, 2019.

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.

Serkan Cabi, Sergio G’omez Colmenarejo, Alexander Novikov, Ksenia Konyushkova, Scott E.
Reed, Rae Jeong, Konrad Zolna, Yusuf Aytar, D. Budden, Mel Vecerı́k, Oleg O. Sushkov, David
Barker, Jonathan Scholz, Misha Denil, N. D. Freitas, and Ziyun Wang. Scaling data-driven
robotics with reward sketching and batch reinforcement learning. arXiv: Robotics, 2020.

Taco Cohen and Max Welling. Group equivariant convolutional networks. In International confer-
ence on machine learning, pp. 2990–2999. PMLR, 2016a.

Taco Cohen, Mario Geiger, and Maurice Weiler. A general theory of equivariant cnns on homoge-
neous spaces. arXiv preprint arXiv:1811.02017, 2018.

Taco S Cohen and Max Welling. Steerable cnns. arXiv preprint arXiv:1612.08498, 2016b.

Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games,
robotics and machine learning. GitHub repository, 2016.

David S Dummit and Richard M Foote. Abstract algebra, volume 1999. Prentice Hall Englewood
Cliffs, NJ, 1991.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018.

Brian C Hall. Lie groups, Lie algebras, and representations: an elementary introduction, volume 10.
Springer, 2003.

Peter J. Huber. Robust estimation of a location parameter. The Annals of Mathematical Statistics, 35
(1):73–101, 1964. ISSN 00034851. URL http://www.jstor.org/stable/2238020.

Stephen James, Paul Wohlhart, Mrinal Kalakrishnan, Dmitry Kalashnikov, A. Irpan, J. Ibarz, Sergey
Levine, R. Hadsell, and Konstantinos Bousmalis. Sim-to-real via sim-to-sim: Data-efficient
robotic grasping via randomized-to-canonical adaptation networks. 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 12619–12629, 2019.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Qt-opt: Scalable deep
reinforcement learning for vision-based robotic manipulation. arXiv preprint arXiv:1806.10293,
2018.

Ozsel Kilinc, Yangfan Hu, and G. Montana. Reinforcement learning for robotic manipulation using
simulated locomotion demonstrations. ArXiv, abs/1910.07294, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020.

10

http://www.jstor.org/stable/2238020

Published as a conference paper at ICLR 2022

Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and Aravind Srinivas. Re-
inforcement learning with augmented data. arXiv preprint arXiv:2004.14990, 2020a.

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised representa-
tions for reinforcement learning. In International Conference on Machine Learning, pp. 5639–
5650. PMLR, 2020b.

Yijiong Lin, Jiancong Huang, Matthieu Zimmer, Yisheng Guan, Juan Rojas, and Paul Weng. In-
variant transform experience replay: Data augmentation for deep reinforcement learning. IEEE
Robotics and Automation Letters, 5(4):6615–6622, 2020.

Arnab Kumar Mondal, Pratheeksha Nair, and Kaleem Siddiqi. Group equivariant deep reinforce-
ment learning. arXiv preprint arXiv:2007.03437, 2020.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
tive coding. arXiv preprint arXiv:1807.03748, 2018.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
PyTorch. In NIPS Autodiff Workshop, 2017.

Deirdre Quillen, Eric Jang, Ofir Nachum, Chelsea Finn, J. Ibarz, and Sergey Levine. Deep re-
inforcement learning for vision-based robotic grasping: A simulated comparative evaluation of
off-policy methods. 2018 IEEE International Conference on Robotics and Automation (ICRA),
pp. 6284–6291, 2018.

Balaraman Ravindran and Andrew G Barto. Symmetries and model minimization in markov deci-
sion processes, 2001.

Balaraman Ravindran and Andrew G Barto. Approximate homomorphisms: A framework for non-
exact minimization in markov decision processes. 2004.

Vishal Satish, Jeffrey Mahler, and Ken Goldberg. On-policy dataset synthesis for learning robot
grasping policies using fully convolutional deep networks. IEEE Robotics and Automation Let-
ters, 4(2):1357–1364, 2019.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

Elise van der Pol, Thomas Kipf, Frans A Oliehoek, and Max Welling. Plannable approximations to
mdp homomorphisms: Equivariance under actions. arXiv preprint arXiv:2002.11963, 2020a.

Elise van der Pol, Daniel Worrall, Herke van Hoof, Frans Oliehoek, and Max Welling. Mdp homo-
morphic networks: Group symmetries in reinforcement learning. Advances in Neural Information
Processing Systems, 33, 2020b.

Ulrich Viereck, Kate Saenko, and Robert W. Platt. Learning visual servo policies via planner
cloning. ArXiv, abs/2005.11810, 2020.

Dian Wang, Colin Kohler, and Robert Platt. Policy learning in se (3) action spaces. arXiv preprint
arXiv:2010.02798, 2020a.

Dian Wang, Robin Walters, Xupeng Zhu, and Robert Platt. Equivariant q learning in spatial action
spaces. In 5th Annual Conference on Robot Learning, 2021. URL https://openreview.
net/forum?id=IScz42A3iCI.

Rui Wang, Robin Walters, and Rose Yu. Incorporating symmetry into deep dynamics models for
improved generalization. arXiv preprint arXiv:2002.03061, 2020b.

Maurice Weiler and Gabriele Cesa. General e(2)-equivariant steerable cnns. arXiv preprint
arXiv:1911.08251, 2019.

11

https://openreview.net/forum?id=IScz42A3iCI
https://openreview.net/forum?id=IScz42A3iCI

Published as a conference paper at ICLR 2022

Andy Zeng, Shuran Song, Stefan Welker, Johnny Lee, Alberto Rodriguez, and Thomas Funkhouser.
Learning synergies between pushing and grasping with self-supervised deep reinforcement learn-
ing. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp.
4238–4245. IEEE, 2018a.

Andy Zeng, Shuran Song, Kuan-Ting Yu, Elliott Donlon, Francois R Hogan, Maria Bauza, Daolin
Ma, Orion Taylor, Melody Liu, Eudald Romo, et al. Robotic pick-and-place of novel objects in
clutter with multi-affordance grasping and cross-domain image matching. In 2018 IEEE interna-
tional conference on robotics and automation (ICRA), pp. 3750–3757. IEEE, 2018b.

Andy Zeng, Pete Florence, Jonathan Tompson, Stefan Welker, Jonathan Chien, Maria Attarian,
Travis Armstrong, Ivan Krasin, Dan Duong, Vikas Sindhwani, et al. Transporter networks: Rear-
ranging the visual world for robotic manipulation. arXiv preprint arXiv:2010.14406, 2020.

Albert Zhan, Philip Zhao, Lerrel Pinto, Pieter Abbeel, and Michael Laskin. A framework for effi-
cient robotic manipulation. arXiv preprint arXiv:2012.07975, 2020.

12

Published as a conference paper at ICLR 2022

A PROOF OF PROPOSITION 4.1

The proof in this section follows Wang et al. (2021). Note that the definition of group action · : G×
X → X implies that elements g ∈ G act by bijections on X since the action of g−1 gives a two-
sided inverse for the action of g. That is, g permutes the elements of X .

Proof of Proposition 4.1. For g ∈ G, we will first show that the optimal Q-function is G-invariant,
i.e., Q∗(s, a) = Q∗(gs, ga), then show that the optimal policy is G-equivariant, i.e., π∗(gs) =
gπ∗(s).

(1) Q∗(s, a) = Q∗(gs, ga): The Bellman optimality equations for Q∗(s, a) and Q∗(gs, ga) are,
respectively:

Q∗(s, a) = R(s, a) + γ sup
a′∈A

∫
s′∈S

T (s, a, s′)Q∗(s′, a′), (10)

and

Q∗(gs, ga) = R(gs, ga) + γ sup
a′∈A

∫
s′∈S

T (gs, ga, s′)Q∗(s′, a′). (11)

Since g ∈ G merely permutes the elements of S, we can re-index the integral using s̄′ = gs′:

Q∗(gs, ga) = R(gs, ga) + γ sup
ā′∈gA

∫
s̄′∈gS

T (gs, ga, s̄′)Q∗(s̄′, ā′) (12)

= R(gs, ga) + γ sup
a′∈A

∫
s′∈S

T (gs, ga, gs′)Q∗(gs′, ga′). (13)

Using the Reward Invariance and the Transition Invariance in Definition 4.1, this can be written:

Q∗(gs, ga) = R(s, a) + γ sup
a′∈A

∫
s′∈S

T (s, a, s′)Q∗(gs′, ga′). (14)

Now, define a new function Q̄ such that ∀s, a ∈ S × A, Q̄(s, a) = Q(gs, ga) and substitute into
Eq. 14, resulting in:

Q̄∗(s, a) = R(s, a) + γ sup
a′∈A

∫
s′∈S

T (s, a, s′)Q̄∗(s′, a′). (15)

Notice that Eq. 15 and Eq. 10 are the same Bellman equation. Since solutions to the Bellman
equation are unique, we have that ∀s, a ∈ S ×A, Q∗(s, a) = Q̄∗(s, a) = Q∗(gs, ga).

(2) π∗(gs) = gπ∗(s): The optimal policy for π∗(s) and π∗(gs) can be written in terms of the
optimal Q-function, Q∗, as:

π∗(s) = arg max
a∈A

Q∗(s, a) (16)

and
π∗(gs) = arg max

ā∈A
Q∗(gs, ā) (17)

Using the invariant property of Q∗ we can substitute Q∗(gs, ā) with Q∗(s, g−1ā) in Equation 17:

π∗(gs) = arg max
ā∈A

Q∗(s, g−1ā) (18)

Let ā = ga, Equation 18 can be written as:

π∗(gs) = g[arg max
a∈A

Q∗(s, g−1ga)] (19)

Cancelling g−1 and g and substituting Equation 16 we have,

π∗(gs) = gπ∗(s). (20)

13

Published as a conference paper at ICLR 2022

B EQUIVARIANCE OVERCONSTRAIN

Proposition B.1. Let f : Vreg⊕Vreg → Vtriv be a linear Cn-equivariant function. Then f(v, w) =
a
∑
i vi + b

∑
i wi.

Proof. By Weyl decomposibility (Hall, 2003), Vreg decomposes into irreducible representations for
Cn each with multiplicity determined by its dimension. Among these is the trivial representation
with multiplicity 1. By Schur’s lemma (Dummit & Foote, 1991), the mapping Vreg ⊕ Vreg → Vtriv
must factor through the trivial representation embedded in Vreg . The projection onto the trivial
representation is given v 7→ a

∑
i vi. The result follows by linearity.

As a corollary, we find that Cn-equivariant maps Vreg ⊕ Vreg → Vtriv are actually Cn × Cn-
equivariant. Let (g1, g2) ∈ Cn × Cn, then applying the Proposition f(g1v, g2w) = a

∑
i(gv)i +

b
∑
i(gw)i = a

∑
i vi + b

∑
i wi = f(v, w).

C ENVIRONMENT DETAILS

Figure 11: The object set for
Object Picking environment

In all environments, the environment reset is conduced by randomly
initializing the objects with random positions and orientations in-
side the workspace. The arm is always initialized at the same con-
figuration. The workspace has a size of 0.4m × 0.4m × 0.24m.
All environments have a sparse reward, i.e., the agent acquires a +1
reward when reaching the goal state, and 0 otherwise. In the Py-
Bullet simulator, the robot joints have enough compliance to allow
the gripper to apply force on the block in the Corner Picking task.

We augment the state image with an additional binary channel (i.e.,
either all pixels are 1 or all pixels are 0) indicating if the gripper is
holding an object. Note that this additional channel is invariant to
rotations (because all pixels have the same value) so it won’t break
the proposed equivariant properties.

The Block Pulling requires the robot to pull one block to make contact with the other block. The
Object Picking requires the robot the pick up an object randomly sampled from a set of 11 objects
(Figure 11). The Drawer Opening requires the robot to pull open a drawer. The Block Stacking
requires the robot to stack one block on top of another. The House Building requires the robot to
stack a triangle roof on top of a block. The Corner Picking requires the robot to slide the block from
the corner and then pick it up.

D NETWORK ARCHITECTURE

Our equivariant models are implemented using the E2CNN (Weiler & Cesa, 2019) library with
PyTorch (Paszke et al., 2017).

D.1 EQUIVARIANT DQN ARCHITECTURE

In the Equivariant DQN, we use a 7-layer Steerable CNN defined in the group C4 (Figure 12a). The
input Fs is encoded as a 2-channel ρ0 feature map, and the output is a 18-channel 3 × 3 ρ0 feature
map where the channel encodes the invariant actions Ainv and the spatial dimension encodes Axy .

D.2 EQUIVARIANT SAC ARCHITECTURE

In the Equivariant SAC, there are two separate networks, both are Steerable CNN defined in the
group C8. The actor π (Figure 12b top) is an 8-layer network that takes in a 2-channel ρ0 feature
map (Fs) and outputs a mixed representation type 1 × 1 feature map (ā) consisting of 1 ρ1 feature
for axy and 8 ρ0 features for ainv and aσ . The critic (Figure 12b bottom) is a 9-layer network that
takes in both Fs as a 2-channel ρ0 feature map and a as a 1 × 1 mixed representation feature map

14

Published as a conference paper at ICLR 2022

(a) Equivariant DQN Network Architecture

(b) Equivariant SAC Network Architecture

Figure 12: The architecture of the Equivariant DQN (a) and the Equivariant SAC (b). ReLU nonlin-
earity is omitted in the figure. A convolutional layer with a suffix of R indicates a regular represen-
tation layer (e.g., 16R is a 16-channel regular representation layer); a convolution layer with a suffix
of T indicates a trivial representation layer (e.g., 1T is a 1-channel trivial representation layer).

consisting of 1 ρ1 feature for axy and 3 ρ0 for ainv. The upper path e encodes Fs into a 64-channel
regular representation feature map s̄ with 1 × 1 spatial dimensions, then concatenates it with a.
Two separate Q-value paths q take in the concatenated feature map and generate two Q-estimates
in the form of 1 × 1 ρ0 feature. The non-linear maxpool layer is used for transforming regular
representations into trivial representations to prevent the equivariant overconstraint (Section 5.2).
Note that there are two Q outputs based on the requirement of the SAC algorithm.

E BASELINE DETAILS

Figure 13 shows the baseline network architectures for DQN and SAC. The RAD (Laskin et al.,
2020a) Crop baselines, CURL (Laskin et al., 2020b) baselines, and FERM (Zhan et al., 2020) base-
lines use random crop for data augmentation. The random crop crops a 142 × 142 state image to
the size of 128 × 128. The contrastive encoder of CURL baselines has a size of 128 as in Laskin
et al. (2020b), and that for the FERM baselines has a size of 50 as in Zhan et al. (2020). The FERM
baseline’s contrastive encoder is pretrained for 1.6k steps using the expert data as in Zhan et al.
(2020). The DrQ (Kostrikov et al., 2020) Shift baselines use random shift of ±4 pixels for data aug-
mentation as in the original work. In all DrQ baselines, the number of augmentations for calculating
the target K and the number of augmentations for calculating the loss M are both 2 as in Kostrikov
et al. (2020).

F TRAINING DETAILS

We implement our experimental environments in the PyBullet simulator (Coumans & Bai, 2016).
The workspace’s size is 0.4m×0.4m×0.24m. The pixel size of the visual state I is 128×128 (except
for the RAD Crop baselines, CURL baselines, and FERM baselines, where I’s size is 142 × 142
and will be cropped to 128 × 128). I’s FOV is 0.6m × 0.6m. During training, we use 5 parallel
environments. We implement all training in PyTorch (Paszke et al., 2017). Both DQN and SAC use
soft target update with τ = 10−2.

In the DQN experiments, we use the Adam optimizer (Kingma & Ba, 2014) with a learning rate
of 10−4. We use Huber loss (Huber, 1964) for calculating the TD loss. We use a discount factor
γ = 0.95. The batch size is 32. The buffer has a capacity of 100,000 transitions.

15

Published as a conference paper at ICLR 2022

(a) Baseline DQN Network Architecture

(b) Baseline SAC Network Architecture

Figure 13: The architecture of the baseline conventional CNN DQN (a) and the baseline conven-
tional CNN SAC (b). The baseline CNN architectures have similar amount of trainable parameters
as the equivariant architectures. Specifically, Equivariant DQN has 2.6M parameters, and baseline
DQN has 3.9M parameters; Equivariant SAC has 2.3M parameters, and baseline SAC has 2.6M
parameters. ReLU nonlinearity is omitted in the figure.

(a) Block Pulling (b) Object Picking (c) Block Pulling (d) Object Picking

Figure 14: (a)-(b): additional results for Section 6.3. (c)-(d): additional results for Section 6.4.
The plots show the evaluation performance of the greedy policy in terms of the discounted reward.
The evaluation is performed every 500 training steps. Results are averaged over four runs. Shading
denotes standard error.

In the SAC (and SACfD) experiments, we use the Adam optimizer with a learning rate of 10−3. The
entropy temperature α is initialized at 10−2. The target entropy is -5. The discount factor γ = 0.99.
The batch size is 64. The buffer has a capacity of 100,000 transitions. SACfD uses the prioritized
replay buffer (Schaul et al., 2015) with prioritized replay exponent of 0.6 and prioritized importance
sampling exponent β0 = 0.4 as in Schaul et al. (2015). The expert transitions are given a priority
bonus of εd = 1.

G ADDITIONAL EXPERIMENTAL RESULTS FOR EQUIVARIANT SACFD

Figure 14 (a)-(b) shows the results for the experiment of Section 6.3 in Block Pulling and Object
Picking environments. The Equivariant SACfD outperforms all baselines in those two environments.

Figure 14 (c)-(d) shows the results for the experiment of Section 6.4 in block Pulling and Object
Picking environments. Similarly as the results in Figure 9, our Equivariant SACfD outperforms
both RAD and DrQ equipped with SO(2) dat augmentation.

16

Published as a conference paper at ICLR 2022

(a) Block Pulling (b) Object Picking (c) Drawer Opening

(d) Block Stacking (e) House Building (f) Corner Picking

Figure 15: Ablation of using equivariant network solely in actor network or critic network. The plots
show the evaluation performance in terms of discounted reward during training. The evaluation is
performed every 500 training steps. Results are averaged over four runs. Shading denotes standard
error.

(a) Block Pulling (b) Object Picking (c) Drawer Opening

(d) Block Stacking (e) House Building (f) Corner Picking

Figure 16: Ablation of using different symmetry groups (C8, C4, or C2), in Equivariant SACfD.
The plots show the evaluation performance of the greedy policy in terms of the discounted reward.
The evaluation is performed every 500 training steps. Results are averaged over four runs. Shading
denotes standard error.

H ABLATION STUDIES

H.1 USING EQUIVARIANT NETWORK ONLY IN ACTOR OR CRITIC

In this experiment, we investigate the effectiveness of the equivariant network in SACfD by only
applying it in the actor network or the critic network. We evaluate four variations: 1) Equi Actor +
Equi Critic that uses equivariant network in both the actor and the critic; 2) Equi Actor + CNN Critic
that uses equivariant network solely in the actor and uses conventional CNN in the critic; 3) CNN
Actor + Equi Critic that uses conventional CNN in the actor and equivariant network in the Critic;
4) CNN Actor + CNN Critic that uses the conventional CNN in both the actor and the critic. Other
experimental setup mirrors Section 6.3. As is shown in Figure 15, applying the equivariant network

17

Published as a conference paper at ICLR 2022

(a) Block Pulling (b) Drawer Opening

Figure 17: Ablation of using equivariant architecture in non-symmetric tasks. The plots show the
evaluation performance of the greedy policy in terms of the discounted reward. The evaluation is
performed every 500 training steps. Results are averaged over four runs. Shading denotes standard
error.

(a) Block Pulling (b) Object Picking (c) Drawer Opening

(d) Block Stacking (e) House Building (f) Corner Picking

Figure 18: Ablation of comparing against rotational augmentation baselines applied with rotational
buffer augmentation. The plots show the evaluation performance of the greedy policy in terms of
the discounted reward. The evaluation is performed every 500 training steps. Results are averaged
over four runs. Shading denotes standard error.

in the actor generally helps more than applying the equivariant network in the critic (in 5 out of 6
experiments), and using the equivariant network in both the actor and the critic always demonstrates
the best performance.

H.2 DIFFERENT SYMMETRY GROUPS

This experiment compares the equivariant networks defined in three different symmetry groups: C8,
C4, and C2. We run this experiment in SACfD with the same setup as in Section 6.3. As is shown
in Figure 16, the network defined in C8 generally outperforms the network defined in C4, followed
by the network defined in C2.

H.3 EQUIVARIANT SACFD IN NON-SYMMETRIC ENVIRONMENTS

This experiments evaluates the performance of Equivariant SACfD in non-symmetric tasks where
the initial orientation of the environments are fixed rather than random. (Similarly as in Section 6.5
but both the training and the evaluation environments have the fix orientation.) Specifically, in Block
Pulling, the two blocks in the training environment is initialized with a fixed relative orientation;
in Drawer Opening, the drawer is initialized with a fixed orientation. As is shown in Figure 17,
when the environments do not contain SO(2) symmetries, the performance gain of using equivariant
network is less significant.

18

Published as a conference paper at ICLR 2022

H.4 ROTATIONAL AUGMENTATION + BUFFER AUGMENTATION

Section 6.4 compares our Equivariant SACfD with rotational data augmentation baselines. This
experiment shows the performance of those baselines (and an extra CNN SACfD baseline that uses
conventional CNN) equipped with the data augmentation buffer. As is mentioned in Section 6.2, the
data augmentation baseline creates 4 extra augmented transitions using random SO(2) rotation every
time a new transition is added. Figure 18 shows the result, where none of the baselines outperform
our proposal in any tasks. Compared with Figure 9, the data augmentation buffer hurts RAD and
DrQ because of the redundancy of the same data augmentation.

19

	Introduction
	Related Work
	Background
	Problem Statement
	Group-invariant MDPs
	SO(2)-Invariant MDPs in Visual State Spaces

	Approach
	Equivariant DQN
	Equivariant SAC
	Equivariant SACfD

	Experiments
	Equivariant DQN
	Equivariant SAC
	Equivariant SACfD
	Comparing with Learning Equivariance Using Augmentation
	Generalization Experiment

	Discussion
	Proof of Proposition 4.1
	Equivariance Overconstrain
	Environment Details
	Network Architecture
	Equivariant DQN Architecture
	Equivariant SAC Architecture

	Baseline Details
	Training Details
	Additional Experimental Results for Equivariant SACfD
	Ablation Studies
	Using Equivariant Network Only in Actor or Critic
	Different Symmetry Groups
	Equivariant SACfD in Non-Symmetric Environments
	Rotational Augmentation + Buffer Augmentation

