
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

WARDROPNET: TRAFFIC FLOW PREDICTIONS VIA
EQUILIBRIUM-AUGMENTED LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

When optimizing transportation systems, anticipating traffic flows is a central el-
ement. Yet, computing such traffic equilibria remains computationally expensive.
Against this background, we introduce a novel combinatorial optimization aug-
mented neural network pipeline that allows for fast and accurate traffic flow pre-
dictions. We propose WardropNet, a neural network that combines classical layers
with a subsequent equilibrium layer: the first ones inform the latter by predicting
the parameterization of the equilibrium problem’s latency functions. Using su-
pervised learning we minimize the difference between the actual traffic flow and
the predicted output. We show how to leverage a Bregman divergence fitting the
geometry of the equilibria, which allows for end-to-end learning. WardropNet
outperforms pure learning-based approaches in predicting traffic equilibria for re-
alistic and stylized traffic scenarios. On realistic scenarios, WardropNet improves
on average for time-invariant predictions by up to 72% and for time-variant pre-
dictions by up to 23% over pure learning-based approaches.

1 INTRODUCTION

With the advent of digitalization, big data, and sharing economies, algorithmic decision support
evolved as a pivotal tool to analyze, design, and operate today’s transportation systems. When de-
signing algorithmic decision support in the context of transport optimization, an element that is cru-
cial at all planning stages is anticipating the transportation system’s response to the decision taken,
e.g., to anticipate traffic flows when taking congestion pricing decisions. In general, transportation
systems converge to equilibrium states in which agents cannot improve their outcome by unilaterally
changing their behavior. Unfortunately, computing such equilibria usually requires a high-fidelity
solver, e.g., a microscopic traffic flow simulation, that is computationally expensive and requires
hours to days when computing an equilibrium state.

Against this background, we study a novel learning paradigm, that, based on knowledge of previ-
ously realized equilibria, allows us to accurately predict traffic flows in a new context within short
computational times. Specifically, we assume access to contextual information x that is correlated
to observed traffic flows y, and place ourselves in a supervised learning setting: we introduce a
hypothesis class H of hypotheses h that map a context x ∈ X to a flow ŷ ∈ Y , and introduce a
loss L(y, ŷ) that measures the difference between target flow y and the predicted flow ŷ. We aim at
finding the hypothesis h ∈ H that minimizes the expected loss

min
h∈H

EX,Y L
(
Y, h(X)

)
. (1)

We assume access to a training set {(xi,yi)}Ni=1 derived from past traffic flow measurements or
through samples obtained by a high-fidelity simulator. Based on this training set, we aim to solve
the empirical supervised learning problem

min
h∈H

1

N

N∑
i=1

L
(
yi, h(xi)

)
, (2)

which is clearly sensitive to the chosen hypothesis class. In this context, we propose WardropNet,
a hybrid pipeline that augments a neural network with an equilibrium layer, as such capturing com-
binatorial interdependencies between flows. Here, the challenge is to derive an end-to-end learning

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

paradigm for the hyprid pipeline as this requires backpropagating the gradient through the, poten-
tially combinatorial, equilibrium layer. Once trained, WardropNet produces efficient traffic predic-
tions at low computational cost as inference only requires a forward pass on this neural network.

Contribution In this work, we derive a combinatorial optimization-augmented machine learning
(COAML) pipeline, called WardropNet, that uses a neural network to learn the parameterization of
latency functions and a combinatorial optimization (CO)-layer to compute the resulting equilibrium
problem. We train this pipeline via imitation learning, intuitively minimizing the Bregman diver-
gence between target and predicted traffic flows. Crucially, we show how to train this pipeline in
an end-to-end fashion by leveraging a suitably defined regularization term arising from the use of
a Fenchel-Young loss. This step is key to determining a meaningful gradient, as a direct approach
results in ill defined and vanishing gradients due to the combinatorial nature of the equilibrium
layer. Additionally, we show that utilizing a Fenchel-Young loss in this context does not only allow
to differentiate through the equilibrium layer, but it is also equivalent to minimizing the Bregman
divergence between the predicted and the target traffic flows.

We present a comprehensive numerical study and show that WardropNet outperforms pure ma-
chine learning (ML) baselines on various realistic and stylized environments in both time-invariant
and time-variant settings, yielding accuracy improvements of up to 75%. Our results show that
WardropNet allows to significantly improve traffic flow predictions compared to pure ML baselines.
Specifically, WardropNet benefits from the synergy between predicting latency function parameter-
izations with a statistical model while preserving the combinatorial structure of the respective flows
within the CO-layer.

Related work Our work relates to two fields: traffic equilibria prediction and CO-augmented
ML. ML approaches for predicting traffic equilibria range from conventional ML approaches (Li
et al., 2014; Hou et al., 2015; Lv et al., 2015) to deep learning approaches that embed physical or
combinatorial solution restrictions within the network architecture (Amos & Kolter, 2017; Smith
et al., 2022; Seccamonte et al., 2023). Alternatively, one can utilize graph neural networks (GNNs)
which allow to embed network specific constraints (Li et al., 2018; Wu et al., 2018; Yu et al., 2018;
Guo et al., 2019; Wu et al., 2019; Bai et al., 2020; Ali et al., 2022; Wu et al., 2023; Jin et al.,
2024). One can also incorporate an equilibrium layer into the deep learning pipeline to directly
predict equilibrium states (Bai et al., 2019; Gu et al., 2020; Li et al., 2020; Marris et al., 2022; Liu
et al., 2023; McKenzie et al., 2023), which can be used to optimize stackelberg games (Sakaue &
Nakamura, 2021). However, these works are either agnostic of combinatorial structures or impose
major restrictions on the equilibrium layers to allow for backpropagation, e.g., the well-posedness of
problems or the restriction to small quadratic programs. Contrarily, the COAML pipeline introduced
in this work allows for backpropagation through general, possibly combinatorial, equilibrium layers.

Recently, COAML pipelines that embed a general CO-layer into a statistical model emerged. These
pipelines aim to minimize the combinatorial error induced by the statistical model during training.
First approaches train the statistical model based on the resulting combinatorial objective value
(Elmachtoub et al., 2020; Elmachtoub & Grigas, 2022), which requires information about target ML
predictions. Recent approaches learn the COAML pipelines in an end-to-end fashion via directly
imitating combinatorial solutions, and have been applied to path problems (Parmentier, 2022) and
contextual multi-stage optimization (Dalle et al., 2022; Baty et al., 2024; Jungel et al., 2024). A
major challenge of these end-to-end COAML pipelines is deriving a gradient of the respective CO
problem to allow for backpropagation (Agrawal et al., 2019). To do so, recent approaches introduced
regularization techniques (Berthet et al., 2020) that allow to differentiate through CO problems,
enabling CO problems as layers in end-to-end ML pipelines (Blondel et al., 2020). The presented
research stream shows the efficiency of COAML pipelines, but the introduced COAML pipelines
have not been studied for predicting traffic equilibria. In general, equilibrium layers have neither
been studied from a theoretical nor practical perspective in the context of COAML pipelines.

2 GENERALIZED WARDROP EQUILIBRIA

We begin by introducing the notion of wardrop equilibrium (WE), as this will be key for the de-
velopment of WardropNet. In doing so, we also generalize the original notion of Wardrop (1952)
to allow for the travel time on each individual arc to depend on the traffic flow on other arcs in the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

network. This enables us to model spill-over effects where the flow on one arc is influenced by that
of neighbouring ones. Moreover, it allows us to introduce a suitable regularization term which is key
for enabling end-to-end learning. For a technical derivation of the formalization, including proofs,
we refer to Appendix A.

We consider a transportation network, represented as a directed graph G = (V,A) with arc-set A
and vertex-set V . Here, we take the non-atomic perspective of the problem and assume that each
commodity j ∈ J has sizeD(j) ∈ R≥0, and is required to travel from its given origin node o(j) ∈ V
to its given destination node d(j) ∈ V . As a result, commodity j places the vector of flows y(j) =

(y
(j)
a)a∈A over the arcs. This flow is feasible if an amount of flowD(j) leaves the origin and reaches

the destination while satisfying conservation of flow at all nodes. Formally, a commodity’s flow
y(j) ∈ Y(j), lives in a (feasible) multiflow polytope Y(j) as detailed in Appendix A. Note that we
can switch between a traditional agent perspective (D(j) = 1), which we adopt in the remainder of
this paper, or a commodity perspective (D(j) ≥ 1), by restricting D(j) accordingly.

Finally, the traffic flow we aim to predict arises by aggregating the individual agents’ flows as

ȳ =
∑
j∈J

yj and Ȳ =
{
ȳ =

∑
j∈J

y(j) : y(j) ∈ Y(j) ∀j ∈ J
}
,

where we note that both Y and Ȳ are, again, polytopes.

Wardrop Equilibrium Originally introduced by Wardrop (1952), a WE describes a set of flows
for each agent such that any unilateral deviation would incur a longer travel time. Here the total
travel time experienced by a flow is obtained by summing the travel time experience over each arc
on its path. In turn, the travel time over each arc is measured by a so-called latency function, i.e.,
an arc-specific function ℓa : R+ → R+, mapping the aggregated flow ȳ in the corresponding travel
time ℓa(ȳ). Note that this novel generalized definition allows for the travel time on each arc to
depend on the aggregated flow on the entire network, and not necessarily only on the flow of that
specific arc.

While there exist different, equivalent, definitions of WEs, in the following we utilize its variational
characterization as derived in Appendix A.
Definition 1 (Wardrop Equilibrium). Given a directed graph D = (V,A), origin-destination pairs
(oj , dj)j∈J , and a vector of latency functions ℓ = {ℓa}a∈A, a WE is a multiflow y = (y(j))j∈J ∈
Y(j) such that

for all j ∈ J and y′(j) ∈ Y(j), ℓ(ȳ)⊤y(j) ≤ ℓ(ȳ)⊤y′(j). (3)

Let us recall that our goal is to embed an equilibrium problem as a (final) layer into a neural network
pipeline. In this case, it appears natural to introduce a family of latency functions and seek the best
approximation among the equilibria via choosing the best latency functions. Accordingly, we aim to
establish a learning algorithm that allows us to learn the parameterization of the respective latency
functions. To do so, it will prove useful if our equilibrium problem remains convex.

Convex characterization In the decomposable case, when the latency ℓ̃a on arc a does only
depend on the flow ȳa, it is well known that the WE exists and is unique, when we have non-
decreasing ℓ̃a, ∀a ∈ A. We now generalize this result to the non-decomposable case. To do so, we
say that latency functions {ℓa}a∈A derive from a potential Φ : Ra+ → R if

ℓa =
∂Φ

∂ya
. (4)

Theorem 1 (Convex characterization). Consider a directed graph D = (V,A), origin-destination
pairs (oj , dj)j∈J , and a vector of latency functions ℓ = {ℓa}a∈A that derive from a potential Φ.

1. A multiflow y = (y(j))j∈J ∈ Y is a WE if and only if it is an optimal solution to
miny∈Y Φ(ȳ) s.t. ȳ =

∑
j yj .

2. A vector ȳ ∈ Ȳ is the aggregated flow of a WE if and only if it is an optimal solution to
minȳ∈Ȳ Φ(ȳ)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

1

12

2
3

3

Drop-off locationPick-up location

1

12

2
3

3

ℓθ2
ℓθ1

ℓθ4

ℓθ6

ℓθ3

φ5

ℓθ8
ℓθ9

ℓθ10

ℓθ12
ℓθ11

ℓθ7

1

12

2
3

3

Context state
x

−−−→

�

�
	

(ML-layer)
Statistical model
θ = φw(x)

Latency functions−−−−−−−−−−→
ℓθ

�
�

�

(CO-layer)
Equilibrium problem

ˆ̄yΩ(θ)
−−−→ Equilibrium

ˆ̄y

Figure 1: Schematic illustration of the WardropNet, implemented as a COAML pipeline. The
pipeline comprises a statistical model φw and an equilibrium problem ˆ̄yΩ(θ). The statistical
model φw receives a context state x and predicts the latency function’s parameterization θ. The
equilibrium problem ˆ̄yΩ(θ) receives the latency function’s parameterization θ, the transportation
network, and origin-destination pairs, and yields the respective traffic equilibrium ˆ̄y.

3. If Φ is strictly convex, then a WE ȳ exists and is unique.

The proof of Theorem 1 is in Appendix A. Note that Theorem 1 allows us to switch between the
decomposable notion and the non-decomposable notion of latency functions.

3 WARDROPNET—LEARNING DATA-DRIVEN WARDROP EQUILIBRIA

Recall that our goal is to predict the aggregated traffic flow ȳ based on contextual information x that
correlates with the observed traffic. Following the supervised learning setting from the introduction,
we assume having access to samples {(xi, ȳi)}Ni=1, and aim at solving the resulting empirical su-
pervised learning problem in Equation 2. In the following, we introduce our WardropNet and the
end-to-end learning paradigm by first detailing the (combinatorial) hypothesis class and the respec-
tive loss function used. We then specify the resulting supervised learning problem and show that it
can be interpreted as minimizing the Bregman divergence between target and predicted traffic flows.

Hypothesis class Figure 1 illustrates our novel hypothesis class, which is a COAML pipeline
that combines an equilibrium problem with a statistical model. To leverage this pipeline, i.e., use the
statistical modelφw to feed information that accounts for the context x into the equilibrium problem,
we introduce a parameterized family of latency functions ℓθ, and use the statistical model φw to
predict its parameterization θ = φw(x).

In this context, we generally consider latency functions ℓθ that depend on θ and derive from a
regularized potential of the form

Φθ(ȳ) = ψ(ȳ)− θ⊤σ(ȳ)

where σ is a vector of concave basis functions, and ψ is a strictly convex regularization function
such that Ȳ ⊆ dom(ψ), where dom(ψ) is the domain of ψ. Practically, we consider pipelines with
linear, piecewise linear, and non-linear basis function. We choose this specific structure for Φθ as it
mimics the structure of the Fenchel-Young loss, which will be key to obtain a differentiable end-to-
end learning problem. In the following, we will first consider latency functions ℓθ that derive from a
regularized linear potential, to ease the technical exposition. Afterward, we will provide extensions
to the general case in Section 4. Specifically, we consider

Φθ(ȳ) = ψ(ȳ)− θ⊤ȳ, (5)

where −θ belongs to the positive cone RA+. Theorem 1 ensures that computing a WE then equals
solving the following convex regularized flow problem

max
y∈Y

θ⊤ȳ − ψ(ȳ) where ȳ =
∑
j∈J

y(j). (6)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

This problem can be formulated directly on the aggregated flow polytopes as

ˆ̄yΩ(θ) := argmax
y

θ⊤y − Ω(y) where Ω = ψ + IȲ and IȲ(y) =

{
0 if y ∈ Ȳ,
+∞ otherwise.

(7)

Note that the argmax is unique because Ω is strictly convex. This enables us to define ˆ̄y as a
mapping from the latency parameterization θ to the corresponding observed aggregated flow ˆ̄y(θ).
We can now introduce our hypothesis class formally as

H =
{
hw : x 7→ ˆ̄yΩ ◦ φw(x), w ∈ W

}
.

To get practical hypothesis, we need to choose a regularization Ω as well as a statistical model φw.
We defer the discussion of the specific pipeline architecture to the next section, and for now focus
on the loss definition.

Fenchel-Young loss Instead of stating a loss L̃(ȳ, ˆ̄y) between our target traffic flow ȳ and the
predicted traffic flow ˆ̄y, we define the loss L(θ, ȳ) between the latency parameterization θ = φw(x)
and the target traffic flow ȳ. This loss, which is in our case the Fenchel-Young loss (Blondel et al.,
2020), measures the distance between the target traffic flow ȳ and the traffic flow ˆ̄yΩ(θ) deriving
from the latency parameterization θ. The Fenchel-Young loss evolves from the Fenchel-Young
inequality and leverages the relationship it describes between a convex function and its Fenchel
conjugate. To understand this relationship in our context, we recall that the Fenchel conjugate of a
function f : y 7→ f(y) with domain D is defined as

f∗(θ) = sup
y∈D

θ⊤y − f(y).

Then, we can state the Fenchel conjugate of the regularization Ω as

Ω∗(θ) = max
y∈Ȳ

θ⊤y − Ω(y),

because the domain of Ω is Ȳ , which is compact. Furthermore, we recall that (Ω∗)∗ = Ω, because
the biconjugate of a proper lower semi-continuous convex function f is itself: (f∗)∗ = f .

Then, this relationship allows us to derive a general notion of the Fenchel-Young loss for a regular-
ized flow problem (6) associated to the regularization Ω as stated in Blondel et al. (2020) as

LΩ(θ, ȳ) = Ω∗(θ) + Ω(ȳ)− θ⊤ȳ = max
y∈Ȳ

[
θ⊤y − Ω(y)

]
−

[
θ⊤ȳ − Ω(ȳ)

]
. (8)

The first equality in (8) defines LΩ(θ, ȳ) as the left hand side of the Fenchel-Young inequality. This
guarantees that θ 7→ LΩ(θ, ȳ) is convex, non-negative, and equal to zero if and only if ˆ̄yΩ(θ) = ȳ.

Supervised learning problem Combining our hypothesis class with the Fenchel-Young loss, our
supervised learning problem becomes

min
w

1

N

N∑
i=1

LΩ

(
φw(xi), ȳi

)
, (9)

If Ω∗ is differentiable in θ, the gradient of the Fenchel-Young loss function is equal to

∇θLΩ(θ, ȳ) = ∇Ω∗(θ)− ȳ. (10)

We later introduce regularizations Ω for which (the stochastic version of) this gradient is tractable,
which enables to solve the learning problem 9 using stochastic gradient descent. For the remainder
of this section we focus on showing that solving Problem 9 equals minimizing a Bregman divergence
between the observed and predicted traffic flows.

Interpretation of the Fenchel-Young loss as Bregman divergence Let f : D → R be a con-
tinuously differentiable and strictly convex function with convex domain dom(f) = D. Then, the
Bregman divergence associated to f is

Df (p, q) = f(p)−
[
f(q) + ⟨∇f(q),p− q⟩

]
(11)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

and measures the difference between two points p and q in D based on f . It is a generalization of
the squared Euclidean distance 1

2∥p− q∥2, which we obtain when we choose p 7→ 1
2 ||p||

2 as f .

Our Fenchel-Young loss LΩ(θ, ȳ) is closely related to the Bregman divergence Dψ . To show
this, we need the following notion. A function ψ : dom(ψ) → R is of Legendre type if its do-
main dom(ψ) is non-empty, it is strictly convex, and differentiable on the interior int(dom(ψ)) of
dom(ψ), and lim

i→∞
∇ψ(pi) = +∞ for any sequence (pi) of elements of dom(ψ) converging to a

boundary point of dom(ψ). For instance, p 7→ 1
2∥p∥

2 is of Legendre type with domain Rd.

Supposing that our regularization function ψ is of Legendre type, which is the case for the potentials
we introduce in the next section, Blondel et al. (2020, Proposition 3) show that the Fenchel-Young
loss LΩ introduced above is a convex upper-bound on the Bregman divergence

0 ≤ Dψ

(
ȳ, ˆ̄yΩ(θ)

)︸ ︷︷ ︸
possibly non-convex in θ

≤ LΩ(θ, ȳ)︸ ︷︷ ︸
convex in θ

(12)

leading to equality when the loss is minimized

ˆ̄yΩ(θ) = ȳ ⇔ LΩ(θ, ȳ) = 0 ⇔ Dψ

(
ȳ, ˆ̄yΩ(θ)

)
= 0. (13)

In the special case where Ω = ψ in addition to ψ being Legendre type, we even have,

Dψ

(
ȳ, ˆ̄yΩ(θ)

)
= LΩ(θ, ȳ). (14)

The practical consequences of Equation 12 and Equation 13 are the following: the Bregman diver-
gence Dψ

(
ȳ, ˆ̄yΩ(θ)

)
provides a natural way to measure the difference between the equilibrium we

observe ȳ and the equilibrium we predict ˆ̄yΩ(θ). While directly minimizing this Bregman diver-
gence might lead to non-convex problems, the Fenchel-Young loss is a convex surrogate that fits this
geometry and leads to a tractable learning problem.

4 PIPELINE ARCHITECTURE

In the following, we detail our WardropNet as COAML pipeline by first defining the statistical
model φw before introducing various regularization techniques to obtain tractable equilibrium lay-
ers ˆ̄yΩ.

Statistical model Generally, the statistical model φw can be any arbitrary differentiable model
which maps the context x to the latency parameterization θ. In our setting, we specify the con-
text x as a tuple of vectors

(
(xa)a∈A, (xv)v∈V

)
, each vector xa comprising arc specific attributes,

and each vector xv comprising vertex specific attributes. The output θ can be any set of vectors
which is combinable to the latency coefficients (θk,a)a∈Ak∈{1,...,K}, where K represents the number of
parameters that define the latency function on a given arc a ∈ A. The statistical model φw encodes
its prediction via the parameterization w. In Appendix B we provide a detailed description of the
feedforward neural network (FNN) and GNN models used as statistical model φw.

In the following, we focus on concisely introducing different regularization and modeling techniques
to obtain tractable equilibrium layers ˆ̄yΩ. For an in-depth discussion and a detailed derivation of the
respective gradients, we refer to Appendix C.

Latencies with Euclidean regularization (Details in Appendix C.1) We can obtain a dif-
ferentiable equilibrium layer by utilizing a rather simple Euclidean regularization, considering the
respective squared Euclidean loss ψ(ȳ) = 1

2∥ȳ∥
2. In this case, we retrieve decomposable affine

latency functions of the form

ℓθa(ȳ) =
∂

∂ȳa
Φθ(ȳ) = −θa + ȳa = ℓ̃θa(ȳa), (15)

and the vector θ corresponds to the y-intercept of the latency functions. Then, the equilibrium is the
orthogonal projection of θ on Ȳ , which can be computed using any convex quadratic optimization
solver.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Regularization by perturbation (Details in Appendix C.2) Alternatively, we can regularize our
equilibrium layer by perturbation: let us consider a maximum capacity u and the corresponding
aggregated flow polyhedra

Ȳu = Ȳ ∩
{
ȳ : 0 ≤ ȳ ≤ u

}
.

Let us now introduce a standard Gaussian vector Z on RA. Then, we can use the convex conjugate
of the expectation of the perturbed maximum flow as regularization Ω,

Ω = F ∗ where F (θ) = E
[
max
y∈Ȳu

(θ + Z)⊤y
]
. (16)

Berthet et al. (2020) show that this regularization yields several desirable properties: first F is a
proper convex continuous function, which gives Ω∗ = (F ∗)∗ = F . Second, dom(Ω) = Ȳu, which
explains why we directly defined Ω as F ∗ and not ψ in Section 3. Third, applying Danskin’s lemma
(Bertsekas, 2009, Proposition A.3.2), this second property, gives the differentiability of Ω∗ = F and

ˆ̄yΩ(θ) = ∇Ω∗(θ) = E
[
argmax
y∈Ȳu

(θ + Z)⊤y
]
.

We note that, with probability 1, the argmax is unique on a sampled realization of Z. This last
property is critical from a practical point of view: The exact computation of F (θ), ˆ̄yΩ(θ), and
∇θLΩ(ȳ) require to evaluate intractable integrals. However, F (θ), ˆ̄yΩ(θ), and ∇θLΩ(ȳ) all in-
clude expectations such that we can use Monte-Carlo estimations by solving the maximum flow
problems for a few sampling realizations of Z instead of relying on its exact computation. Lastly,
we note that when using this regularization, the Bregman divergence and the Fenchel-Young loss
coincide LΩ(θ, ȳ) = DΩ

(
ȳ, ˆ̄yΩ(θ)

)
.

Piecewise constant latencies and extended network (Details in Appendix C.3) In practice,
observed latencies often exhibit threshold effects when the traffic on an arc reaches its capacity and
congestion appears, i.e., the latency increases stepwise (Vickrey, 1969). Such effects are poorly
captured by our potential Φθ due to the smooth latency functions ℓa. However, the introduced
methodology can naturally be extended to piecewise constant functions of ȳa: let us suppose that
we want to use the non-regularized latency function

ℓ̃a(ȳa) =

{
θ̃am if τm−1 ≤ ȳa < τm for m ∈ {1, . . . ,M}
+∞ if ȳa > τM ,

where 0 = τ0 < τ1 < . . . < τM . We derive a WE considering piecewise constant latency functions
by solving the non-regularized minimum cost flow miny∈Ȳex θ⊤y on an extended network Gexp =
(V,Aexp). The extended networkGexp allows to encode the piecewise-constant functions in a multi-
graph representation with parallel arcs such that each arc am in a set of parallel arcs with m ∈
{1, . . .M} comprises a threshold cost θ̃am of the original arc a. We can then use the regularization
by perturbation approach for learning.

Polynomial latencies regularized by perturbation (Details in Appendix C.4) Lastly, we in-
troduce monotonously increasing latency functions ℓθa(ȳa) that depend on the respective traffic
flow ȳa. To do so, we introduce a feature mapping σ that maps any component y ∈ R+ to
a feature vector σ(y) = (σk(y))k∈{k,...,K} ∈ RK such that y 7→ σk(y) is convex for each k,
σ : y ∈ Y 7→ σ(y) ∈ RA×K . Then, we consider polynomial latency functions generated by the
mapping (σk)k,

ℓθa(ȳa) =
∑
k

θk,aσk(ȳa) with θk,a ≥ 0 for all k and a. (17)

Here θk,a is the weight coefficient of the k-th basis function in ℓa, and σk is the respective basis
function. The overall equilibrium is therefore parametrized by θ = (θk,a)

a∈A
k∈{1,...,K} with k indexing

the mapping (σk)k. In this work, we restrict ourselves to the polynomial family σ using k =
{0, 1}, and σk(ȳ) = ȳk. Then, the latency function for arc a becomes ℓθa(ȳa) = θ0,a + θ1,a ∗ ȳa,
with ȳa denoting the aggregated flow on arc a. In general, we can use arbitrary complex polynomials
to describe the latency function. The resulting latency function 17 is a convex function, as the
potentials (σk)k are strictly convex for each k. Accordingly, we can extend the regularization by
perturbation to this setting as detailed in Appendix C.4.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

work
home

(a) HE

work
home

(b) LE

work
home

(c) SW

work
home

(d) Berlin

work
home

(e) Berlin-AP

Figure 2: Illustration of the considered traffic scenarios.

5 NUMERICAL EXPERIMENTS

In the following, we provide a concise discussion of our numerical studies. For de-
tails, we refer to Appendix D regarding the considered traffic scenarios, to Appendix E
regarding our COAML pipelines and baselines, and to Appendix F for an in-depth and
complementary results discussions. The code for reproducing the results presented in
this section is available at https://anonymous.4open.science/r/WardropNet_
Equilibrium-Augmented-Learning.

Traffic Scenarios We consider four stylized scenarios that allow to isolate structural effects as
well as two realistic scenarios to analyze the practical value of our approach. For the first two
out of these six scenarios, we generate traffic samples (xi, yi)

n
i=1 as solutions to a static traffic

equilibrium problem in the form of a WE. Instead, we produce these samples by running the widely-
used dynamic traffic microsimulator MATSim (Horni et al., 2016) for the last four scenarios. We
base our stylized scenarios, namely the high-entropy (HE) scenario, the low-entropy (LE) scenario,
and the square world (SW) scenario (Figures 2a,2b,2c) on the artificial road network proposed by
Eisenstat (2011) but consider different o-d pair distributions. We also consider a time-variant version
(SW-TV) of the SW scenario. In the HE scenario we obtain rather distributed traffic flows and in
the LE scenario rather polarized, combinatorial flows. We expect the HE scenario to be easier
predictable than the LE scenario for a pure ML baseline. Moreover, we consider a realistic Berlin
scenario (Figure 2d) that bases on a district from a realistic MATSim scenario for the city of Berlin,
as well as a Berlin-AP scenario (Figure 2e), where we enforce all trips to artificially start and end in
the respective district.

For all scenarios, we create 9 training instances, 5 validation instances, and 6 test instances. Each
instance consists of a transport network with the respective target traffic flow for each road, con-
textual information, and origin-destination pairs. We run the training for a maximum of 20 hours,
or 100 training epochs. We run the experiments on a computing cluster using 28-way Haswell-EP
nodes with Infiniband FDR14 interconnect and 2 hardware threads per physical core.

Pipelines & Baselines We consider two pure ML baselines, a FNN and a GNN model as de-
tailed in Appendix B, which we trained via supervised learning directly imitating the target traffic
flows ȳ ∈ R|A|

+ in the output layer. For our COAML pipelines, we leverage the very same FNN as
statistical model to predict the latency parameterization θ, but consider three variants for equilibrium
layer as specified in Section 4: the CL-pipeline uses Constant Latencies regularized by perturbation,
the PL-pipeline uses Polynomial Latencies regularized by perturbation, and the ER-pipeline uses
latencies with an Euclidean Regularization.

Our motivation for choosing the same FNN in both the pure ML baselines and the COAML pipelines
stems from the fact that we wish to compare these approaches on equal footing in a way that clearly
demonstrates the impact of the additional combinatorial layer. Moreover, this choice allows us to
minimize the effect that parameter tuning may have on the overall performance.

Performance Analyses Figure 3 shows the performance of our COAML pipeline with differ-
ent equilibrium layers as well as the pure ML baselines for all traffic scenarios. Focusing on our
COAML pipelines, we observe that the CL-pipeline using piecewise constant latencies obtains the
highest accuracy. The PL-pipeline using polynomial latencies obtains a good accuracy that is slightly
worse compared to the CL-pipeline. The ER-pipeline however, falls short in performance compared

8

https://anonymous.4open.science/r/WardropNet_Equilibrium-Augmented-Learning
https://anonymous.4open.science/r/WardropNet_Equilibrium-Augmented-Learning

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

FNN GNN CL PL ER
10−1

100

101

M
A

E

(a) HE

FNN GNN CL PL ER
10−1

100

101

M
A

E

(b) LE

FNN GNN CL PL ER
10−1

100

101

M
A

E

(c) SW

FNN GNN CL PL ER
10−1

100

101

M
A

E

(d) Berlin

FNN GNN CL PL ER
10−1

100

101

M
A

E

(e) Berlin-AP

FNN GNN CL PL ER
10−1

100

101

M
A

E

(f) SW-TV

Figure 3: Benchmark performances on various stylized and realistic traffic scenarios.

to the other two variants, which might be caused by the rather simple latency functions using an
Euclidean regularization. Focusing on the pure ML baselines, we observe that the FNN baseline
slightly outperforms the GNN baseline in all time-invariant scenarios (Figures 3a-3e), while the
GNN baseline slightly outperforms the FNN baseline in a time-variant scenario (Figure 3f).

For conciseness, we focus the remaining discussion of Figure 3 on comparing the best-performing
COAML pipeline with the best performing ML baseline. Focusing on our stylized scenarios (Fig-
ures 3a-3c), the CL-pipeline outperforms the FNN on average by 60%, 75%, and 7% respectively.
We observe that the mean absolute error (MAE) for the FNN increases from 1.75 in the high-entropy
scenario to 4.18 in the low-entropy scenario, which indicates that the high-entropy scenario is in-
deed easier to predict for pure ML baselines as it has a high correlation between the traffic flow and
each road’s context. Remarkably, our CL-pipeline shows a 60% improvement over the FNN even in
the scenario that is easier to predict for a pure ML baseline, but also shows a stable prediction error
over both the high and low entropy scenario. In the square world scenario, which is again favorable
for pure ML baselines due to correlation between flows and the arc features, all approaches yield
a good performance. Still, the CL-pipeline outperforms the FNN baseline by 7%. Focusing on the
realistic, time-invariant scenarios (Figure 3d&3e), the CL-pipeline outperforms the FNN baseline
by 72% and 71% respectively. In both cases, the FNN baseline fails to learn the combinatorial
structure of the respective traffic equilibrium that utilizes main roads between high demand areas
stronger than small roads, while the CL-pipeline succeeds in encoding this structure by combining
the learned latencies with the structure of the CO-layer. In the time-variant scenario (Figure 3f),
the CL-pipeline outperforms the GNN benchmark by 23%. Note that we generally observe a lower
MAE in the time-variant scenario due to an increased amount of zero-valued flows that result from
the time expansion.

Structural Analyses Figure 4 shows an example of the structure of the predicted flows for the
different algorithmic approaches for the Berlin scenario. For brevity, we exclude the visualization
for the GNN and the PL-pipeline as they exhibit a similar structure to the FNN and CL flows, and
refer to Appendix F for a complete visualization of all flows. As can be seen, the FNN predicts good
mean values of the traffic flow but fails on predicting the true structure of the flows. In contrast,
the CL-pipeline succeeds in predicting a realistic traffic flow with high volumes on main roads and

(a) Target (b) FNN (c) CL (d) ER

Figure 4: Visualization of time-invariant traffic flows.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(a) FNN (b) GNN (c) CL (d) PL (e) ER

Figure 5: Comparison of target and predicted traffic flows per arc for the Berlin scenario.

reduced flows on smaller roads. The ER-pipeline fails on predicting realistic flows as the latency
function representation is too limited to inform the equilibrium layer correctly. Figure 5 supports
our analyses and the findings from Figure 4 by showing the distribution of the predicted and target
traffic flows, with the target traffic flows as a reference. As can be seen, the CL and PL pipelines
show a higher correlation between the predicted and target traffic flows than the pure ML baselines
and the ER-pipeline. Finally, Figure 6 shows an example of the structure of the predicted flows for
the time-variant scenario. Again, we omit the FNN and PL visualizations for brevity and refer to
Appendix F for a full visualization. As can be seen, the CL-pipeline succeeds in predicting the right
traffic flow structure, while the GNN succeeds in predicting the right structure but underestimates
the respective absolute flow volumes. The ER-pipeline fails in predicting both the structure and the
absolute values of the respective flows.

(a) Target (b) GNN (c) CL (d) ER

Figure 6: Visualization of time-variant traffic flows.

6 CONCLUSION

In this paper we introduced WardropNet, a hybrid COAML pipeline that augments a neural network
with an equilibrium layer and bases on a novel end-to-end learning paradigm. Specifically, this
pipeline uses a neural network to learn the parameterization of latency functions and a CO-layer to
compute the resulting equilibrium problem. We train this pipeline via imitation learning, intuitively
minimizing the Bregman divergence between target and predicted traffic flows, and showed how to
train this pipeline in an end-to-end fashion by leveraging a Fenchel-Young loss that allows to deter-
mine a meaningful gradient although the pipelines last layer is combinatorial. Finally, we showed
with a comprehensive numerical study that our COAML pipelines outperform pure ML pipelines in
various realistic scenarios by up to 72% on average. We further investigated the prediction accu-
racy of our COAML pipelines on time-variant traffic flows and showed that our COAML pipelines
outperform pure ML baselines by up to 23% on average.

This work lays the foundation for several promising follow up works on integrating (combinatorial)
equilibrium layers into neural networks for traffic flow prediction. As all of our work is open source,
one can easily built upon it to account for further families of latency functions or more complex
statistical models. Additionally scaling the proposed COAML pipeline to larger networks remains
an interesting avenue for future research. Lastly, the presented learning paradigm is not limited to
predict equilibria and can be used to learn arbitrary flow physics given the right training data and
CO-layer, which opens multiple directions for further studies.

ACKNOWLEDGMENTS

This work has been funded by blinded for review

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and J. Zico
Kolter. Differentiable convex optimization layers. In H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019.

Ahmad Ali, Yanmin Zhu, and Muhammad Zakarya. Exploiting dynamic spatio-temporal graph
convolutional neural networks for citywide traffic flows prediction. Neural Networks, 145:233–
247, 2022. ISSN 0893-6080. doi: https://doi.org/10.1016/j.neunet.2021.10.021.

Brandon Amos and J. Zico Kolter. OptNet: Differentiable optimization as a layer in neural networks.
In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International Conference
on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp. 136–145.
PMLR, 06–11 Aug 2017.

Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. Adaptive graph convolutional recurrent
network for traffic forecasting. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 17804–17815. Curran
Associates, Inc., 2020.

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. Deep equilibrium models. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 32. Curran Associates, Inc., 2019.

Hillel Bar-Gera. Origin-based algorithm for the traffic assignment problem. Transportation Science,
36(4):398–417, 2002. doi: 10.1287/trsc.36.4.398.549.

Léo Baty, Kai Jungel, Patrick S. Klein, Axel Parmentier, and Maximilian Schiffer. Combinatorial
optimization-enriched machine learning to solve the dynamic vehicle routing problem with time
windows. Transportation Science, 58(4):708–725, 2024. doi: 10.1287/trsc.2023.0107.

Martin Beckman, C. B. Mcguire, C. B. Winsten, and Tjalling C. Koopmans. Studies in the eco-
nomics of transportation. A Quarterly Journal of Operations Research, 7:146, 1956.

Quentin Berthet, Mathieu Blondel, Olivier Teboul, Marco Cuturi, Jean-Philippe Vert, and Francis
Bach. Learning with differentiable pertubed optimizers. In H. Larochelle, M. Ranzato, R. Hadsell,
M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33,
pp. 9508–9519. Curran Associates, Inc., 2020.

Dimitri P. Bertsekas (ed.). Convex Optimization Theory. Athena Scientific, Belmont, Mass, 2009.
ISBN 978-1-886529-31-1.

Mathieu Blondel, André F.T. Martins, and Vlad Niculae. Learning with fenchel-young losses. Jour-
nal of Machine Learning Research, 21(35):1–69, 2020.

José R. Correa and Nicolás E. Stier-Moses. Wardrop Equilibria. John Wiley & Sons, Ltd, 2011.
ISBN 9780470400531. doi: https://doi.org/10.1002/9780470400531.eorms0962.

Guillaume Dalle, Léo Baty, Louis Bouvier, and Axel Parmentier. Learning with combinatorial
optimization layers: a probabilistic approach, 2022.

David Eisenstat. Random road networks: the quadtree model, 2011.

Adam N. Elmachtoub and Paul Grigas. Smart “predict, then optimize”. Management Science, 68
(1):9–26, 2022. doi: 10.1287/mnsc.2020.3922.

Adam N. Elmachtoub, Jason Cheuk Nam Liang, and Ryan Mcnellis. Decision trees for decision-
making under the predict-then-optimize framework. In Hal Daumé III and Aarti Singh (eds.),
Proceedings of the 37th International Conference on Machine Learning, volume 119 of Proceed-
ings of Machine Learning Research, pp. 2858–2867. PMLR, 13–18 Jul 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Fangda Gu, Heng Chang, Wenwu Zhu, Somayeh Sojoudi, and Laurent El Ghaoui. Implicit graph
neural networks. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.),
Advances in Neural Information Processing Systems, volume 33, pp. 11984–11995. Curran As-
sociates, Inc., 2020.

Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. Attention based spatial-
temporal graph convolutional networks for traffic flow forecasting. Proceedings of the AAAI Con-
ference on Artificial Intelligence, 33(01):922–929, Jul. 2019. doi: 10.1609/aaai.v33i01.3301922.

Andreas Horni, Kai Nagel, and Kay W Axhausen. The Multi-Agent Transport Simulation MATSim.
Ubiquity Press, London, GBR, 2016. ISBN 1909188751.

Yi Hou, Praveen Edara, and Carlos Sun. Traffic flow forecasting for urban work zones. IEEE
Transactions on Intelligent Transportation Systems, 16(4):1761–1770, 2015. doi: 10.1109/TITS.
2014.2371993.

Guangyin Jin, Yuxuan Liang, Yuchen Fang, Zezhi Shao, Jincai Huang, Junbo Zhang, and Yu Zheng.
Spatio-temporal graph neural networks for predictive learning in urban computing: A survey.
IEEE Transactions on Knowledge and Data Engineering, 36(10):5388–5408, 2024. doi: 10.
1109/TKDE.2023.3333824.

Kai Jungel, Axel Parmentier, Maximilian Schiffer, and Thibaut Vidal. Learning-based online opti-
mization for autonomous mobility-on-demand fleet control, 2024.

Jiayang Li, Jing Yu, Yu Nie, and Zhaoran Wang. End-to-end learning and intervention in games.
In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural
Information Processing Systems, volume 33, pp. 16653–16665. Curran Associates, Inc., 2020.

Li Li, Xiqun Chen, and Lei Zhang. Multimodel ensemble for freeway traffic state estimations. IEEE
Transactions on Intelligent Transportation Systems, 15(3):1323–1336, 2014. doi: 10.1109/TITS.
2014.2299542.

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural net-
work: Data-driven traffic forecasting. In International Conference on Learning Representations,
2018.

Zhichen Liu, Yafeng Yin, Fan Bai, and Donald K. Grimm. End-to-end learning of user equilibrium
with implicit neural networks. Transportation Research Part C: Emerging Technologies, 150:
104085, 2023. ISSN 0968-090X. doi: 10.1016/j.trc.2023.104085.

Yisheng Lv, Yanjie Duan, Wenwen Kang, Zhengxi Li, and Fei-Yue Wang. Traffic flow predic-
tion with big data: A deep learning approach. IEEE Transactions on Intelligent Transportation
Systems, 16(2):865–873, 2015. doi: 10.1109/TITS.2014.2345663.

Luke Marris, Ian Gemp, Thomas Anthony, Andrea Tacchetti, Siqi Liu, and Karl Tuyls. Turbocharg-
ing solution concepts: Solving nes, ces and cces with neural equilibrium solvers. In S. Koyejo,
S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information
Processing Systems, volume 35, pp. 5586–5600. Curran Associates, Inc., 2022.

Daniel McKenzie, Howard Heaton, Qiuwei Li, Samy Wu Fung, Stanley Osher, and Wotao Yin.
Operator splitting for learning to predict equilibria in convex games, 2023.

Axel Parmentier. Learning to approximate industrial problems by operations research classic prob-
lems. Operations Research, 70(1):606–623, 2022. doi: 10.1287/opre.2020.2094.

Shinsaku Sakaue and Kengo Nakamura. Differentiable equilibrium computation with decision di-
agrams for stackelberg models of combinatorial congestion games. In M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information
Processing Systems, volume 34, pp. 9416–9428. Curran Associates, Inc., 2021.

Francesco Seccamonte, Ambuj K. Singh, and Francesco Bullo. Inference of infrastructure net-
work flows via physics-inspired implicit neural networks. In 2023 IEEE Conference on Control
Technology and Applications (CCTA), pp. 1040–1045, 2023. doi: 10.1109/CCTA54093.2023.
10252477.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Kevin D. Smith, Francesco Seccamonte, Ananthram Swami, and Francesco Bullo. Physics-informed
implicit representations of equilibrium network flows. In S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems,
volume 35, pp. 7211–7221. Curran Associates, Inc., 2022.

M.J. Smith. The existence, uniqueness and stability of traffic equilibria. Transportation Research
Part B: Methodological, 13(4):295–304, 1979. ISSN 0191-2615. doi: 10.1016/0191-2615(79)
90022-5.

William S. Vickrey. Congestion theory and transport investment. The American Economic Review,
59(2):251–260, 1969. ISSN 00028282.

J G Wardrop. Some theoretical aspects of road traffic research. Proceedings of the Institution of
Civil Engineers, 1(3):325–362, 1952. doi: 10.1680/ipeds.1952.11259.

Liming Wu, Zhichao Hou, Jirui Yuan, Yu Rong, and Wenbing Huang. Equivariant spatio-temporal
attentive graph networks to simulate physical dynamics. In A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing Systems,
volume 36, pp. 45360–45380. Curran Associates, Inc., 2023.

Yuankai Wu, Huachun Tan, Lingqiao Qin, Bin Ran, and Zhuxi Jiang. A hybrid deep learning based
traffic flow prediction method and its understanding. Transportation Research Part C: Emerging
Technologies, 90:166–180, 2018. ISSN 0968-090X. doi: https://doi.org/10.1016/j.trc.2018.03.
001.

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Graph wavenet for
deep spatial-temporal graph modeling. In Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI-19, pp. 1907–1913. International Joint Conferences
on Artificial Intelligence Organization, 7 2019. doi: 10.24963/ijcai.2019/264.

Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks: a
deep learning framework for traffic forecasting. In Proceedings of the 27th International Joint
Conference on Artificial Intelligence, IJCAI’18, pp. 3634–3640. AAAI Press, 2018. ISBN
9780999241127.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A GENERALIZED WARDROP EQUILIBRIA

In the following, we introduce a generalized notion of a WE, where we allow for the travel time on
each individual arc to depend on the traffic flow of other arcs. This allows us to model spill-over
effects where the flow on one arc is influenced by that of neighbouring ones. Moreover, it allows us
to introduce a suitable regularization which is key for enabling end-to-end learning.

We consider a transportation network, represented as a directed graph G = (V,A) with arc-set A
and vertex-set V . Considering a vertex v ∈ V , we denote the set of outgoing and ingoing arcs
with δ+(v), and δ−(v). The transportation network is utilized by a set of agents j ∈ J that travel
from their origin node o(j) ∈ V to their destination node d(j) ∈ V , having a demand D(j) of 1 in
its origin and -1 in its destination node. The traveling agents induce a traffic flow equilibrium y =
(ȳa)a∈A, formed by the emergent traffic flow ȳa on all arcs a ∈ A. To formally describe this
equilibrium, we denote by Y ⊂ RA×J the multi-flow polytope over D,

Y =
{
y = (y(j))j : y

(j) ∈ Y(j)
}
. (18)

This multi-flow polytope Y is decomposable into flow polytope Y(j) = F(b(j)) for each agent
j ∈ J with Y(j) ⊂ RA, and b(j) ⊂ RV . To link the respective per-agent flows to per-arc aggregated
flows, we define

F(b) =
{
y = (ya)a∈A :

∑
a∈δ+(v)

ya −
∑

a∈δ−(v)

ya = bv for all v ∈ V
}

where b(j) =
(
b(j)v

)
v∈V with b(j)v =

D(j) if v = o(j)

−D(j) if v = d(j)

0 otherwise.
for all v ∈ V.

(19)

With these definitions, we can describe solutions in the multi-flow polytope Y that describe the
traffic flow for each agent j ∈ J . Accordingly, we can define an aggregated flow polytope

Ȳ =
{
ȳ =

∑
j∈J

y(j) : y(j) ∈ Y(j) for all j in J
}

(20)

that describes the traffic we observe on each arc in a city’s street network. Note that in this context,
Ȳ is again a polytope as it results from the intersection of a sum of finitely many polytopes. In this
context, it is worthwhile to remark that the inclusion

Ȳ ⊂ F
(∑
j∈J

b(j)
)

is, in general, a strict inclusion because the flow polytope may contain flows on paths from one
agent’s origin to another agent’s destination. Independent of this ambiguity, it is well known that
any flow in Y(j) admits the following decomposition

y(j) =
∑

P∈P(j)

α
(j)
P eP +

∑
C∈C

β
(j)
C eC , (21)

where P(j) is the set of elementary o(j)-d(j) paths in G, and C is the set of cycles in G, while eP
and eC in {0, 1}A are the indicator vectors of P and C, with ePa (resp. eCa) being equal to one
if a belongs to P (resp. C) and zero otherwise. Here, we observe that β = 0 in any meaningful
solution as a positive β amount to agents cycling, and w.l.o.g. ignore the β term for the remainder of
this paper. Moreover, we note that the decomposition introduced above may not be unique, i.e., one
can always find a decomposition from a flow in Y(j) to y(j) but there exists no bijection that allows
mapping from y(j) to Y(j). The non-existence of this bijection holds even in the absence of the β
terms.

Wardrop Equilibrium To find a WE in this context, we are seeking a set of flows in Y such that
each agent travels on a path in Y(j) where unilaterally deviating from this path would always incur a

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

longer travel time for the agent. In this context, the decision of one agent affects the decision of the
other agents as travel times on each arc depend on its aggregated flow. To describe this dependency,
we introduce arc-specific latency functions ℓa : R+ → R+ for each arc a ∈ A, which describe the
travel time ℓa(ȳ) on a for an aggregated flow ȳ. Then, we can define a WE as follows.
Definition 2 (Wardrop Equilibrium). Given a directed graph D = (V,A), origin-destination pairs
(o(j), d(j))j∈J , demands (D(j))j∈J , and a vector of latency functions ℓ = {ℓa}a∈A, a multiflow
y = (y(j))j∈J ∈ Y is a WE if there exists a path decomposition α(j) = (α

(j)
P)P∈P(j) , β(j) =

(β
(j)
C)C∈C(j) for each j in J such that

∀P ∈ P(j), α
(j)
P = 0 if P /∈ argmin

P∈P(j)

∑
a∈P

ℓa(ȳ) and ∀C ∈ C, β(j)
C = 0 (22)

where ȳ =
∑
j∈J y

(j) is the aggregated flow corresponding to y and αP is a path decomposition.

Our definition of a WE is a generalization of the usual notion of WE, where the latency on arc a
depends only on the aggregated traffic on the respective arc, i.e.,

ℓa(ȳ) = ℓ̃a(ȳa) for some ℓ̃a : R+ → R+.

This generalization is meaningful for the practical application of traffic equilibrium approximators
as the flow on an arc can have a spill-over effect on the flow of neighboring arcs. Thus, considering
the flow of neighboring arcs for the approximation of the traffic flow on a specific arc might ease
accurate predictions. From a theoretical perspective, we will later show that this generalized for-
mulation of WEs allows us to equip latency functions with regularization terms which is crucial to
derive an end-to-end learning framework.

Variational characterization: To establish our learning-based approximation, we are interested in
obtaining a more aggregated notion of a WE. To this end, we show that one can define the condition
for a Wardrop equilibrium without using the path decomposition of yj .
Proposition 1 (Wardrop Equilibrium (Variational)). Given a directed graph D = (V,A), origin-
destination pairs (oj , dj)j∈J , and a vector of latency functions ℓ = {ℓa}a∈A, a multiflow y =

(y(j))j∈J ∈ Y is a WE if and only if

for all j ∈ J and y′(j) ∈ Y(j), ℓ(ȳ)⊤y(j) ≤ ℓ(ȳ)⊤y′(j) (23)

where Y(j) represents the flow polytope of Agent j.

This flow polytope Y(j) ⊆ R|A| ensures that any feasible solution yj is non-negative and sends one
unit of flow from origin oj to destination dj , while ensuring mass conservation at the nodes of the
network G(V,A).

Proof.
i) Forward direction: We first prove that 22 implies 23.

Let A = minP∈P(j)

∑
a∈P ℓa(ȳ). Then, 21 gives the decompositions y′(j) =

∑
P∈Pj α′

P eP
and y(j) =

∑
P∈Pj αP eP . Taking the dot product with ℓ(ȳ) gives

ℓ(ȳ)⊤(y′(j)) = ℓ(ȳ)⊤
(∑
P∈P(j)

α′
P eP

)
=

∑
P∈P(j)

α′
P e

⊤
P ℓ(ȳ) ≥ D(j)A

ℓ(ȳ)⊤(y(j)) = ℓ(ȳ)⊤
(∑
P∈P(j)

αP eP
)
=

∑
P∈P(j)

αP e
⊤
P ℓ(ȳ)︸ ︷︷ ︸
=A

= D(j)A

which gives ℓ(ȳ)⊤(y(j)) ≤ ℓ(ȳ)⊤(y′(j)).
ii) Backward direction: Let us now prove that 23 implies 22.

To that purpose, consider a y such that Equation 22 is not satisfied. We prove the result by
exhibiting y′(j) such that ℓ(ȳ)⊤y(j) > ℓ(ȳ)⊤y′(j). Let Po = argminP∈P(j) ℓ(ȳ)⊤eP and
A = minP∈P(j) ℓ(ȳ)⊤eP . We have

ℓ(ȳ)⊤(y(j)) =
∑
P∈Po

αP ℓ(ȳ)⊤eP︸ ︷︷ ︸
=A

+
∑

P∈P(j)\Po

αP ℓ(ȳ)⊤eP︸ ︷︷ ︸
>A

> D(j)A,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

with the last inequality being true because
∑
P∈P(j)\Po αP > 0 by hypothesis and

∑
P∈P(j) αP =

D(j) because y(j) ∈ Y(j). Let us now pick a P inPo, and set y′(j) = D(j)eP . We have y′(j) ∈ P(j)

and ℓ(ȳ)⊤y(j) > D(j)A = ℓ(ȳ)⊤y′(j), which concludes the proof.

Here, the latency function ℓa : R≥0 → R≥0 describes the travel time ta = ℓa(ȳa) on arc a as
a function of its aggregated flow ȳa =

∑
j∈J y

(j)
a . Clearly, a WE in line with Proposition 1 is

sensitive to the respective latency functions in ℓ.

Let us recall that our goal is to approximate an equilibrium by a surrogate, which, in our case, is a
learning-enriched WE. In this case, it appears natural to introduce a family of latency functions and
seek the best approximation among the equilibria generated by this family. Accordingly, we aim to
establish a learning algorithm that allows us to learn the parameterization of the respective latency
functions. To do so, it will prove useful if our equilibrium problem remains convex.

Convex characterization In the decomposable case, it is well known that the WE exists, is unique,
and is characterized when all ℓ̃a are non-decreasing. We now generalize this result to the non-
decomposable case. To do so, we consider latency functions (ℓa)a that derive from a potential
Φ : Ra+ → R if

ℓa =
∂Φ

∂ya
. (24)

Theorem 1 (Convex characterization). Consider a directed graph D = (V,A), origin-destination
pairs (oj , dj)j∈J , and a vector of latency functions ℓ = {ℓa}a∈A that derive from a potential Φ.

1. A multiflow y = (y(j))j∈J ∈ Y is a WE if and only if it is an optimal solution to

min
y∈Y

Φ(ȳ) s.t. ȳ =
∑
j

yj . (25)

2. A vector ȳ ∈ Ȳ is the aggregated flow of a WE if and only if it is an optimal solution to

min
ȳ∈Ȳ

Φ(ȳ) (26)

3. If Φ is strictly convex, then a WE ȳ exists and is unique.

Proof. First, we prove that a flow is a user equilibrium if and only if it satisfies the first-order
conditions of the optimization problem, even if it is not convex. Using the path variables αP of
Equation 21, we can rewrite the convex optimization problem,

min
y∈Y

Φ(ȳ) s.t. ȳ =
∑
j

yj . (27)

as follows:

min
α

Φ
(∑
P∈P

αPeP

)
(28a)

s.t.D(j) =
∑

P∈P(j)

αP ∀j ∈ J (28b)

αP ≥ 0 ∀P ∈ P (28c)

with P being the union of the disjoint P(j). Note that the agent-specific paths P(j) remain disjoint,
as we model each agent with a unique origin-destination pair.

Denoting by λj and µP the dual variables of constraints 28b and 28c, we obtain the Lagrangian

L(y,λ,µ) = Φ
(∑
P∈P(j)

αPeP

)
+

J∑
j=1

λj

(
D(j) −

∑
P∈P(j)

αP

)
+

∑
P∈P

µPαP

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

We have
∂Φ(ȳ)

∂αP
=

∑
a∈P

∂Φ(ȳ)

∂ya
=

∑
a∈P

ℓa(ȳ) = ℓP (ȳ) which gives
∂L(y,λ,µ)

∂αP
= ℓP (ȳ)− λj + µP .

The KKT conditions for 28 are therefore
∂L(y,λ,µ)

∂αP
= ℓP (ȳ)− λj + µP = 0 ∀P ∈ P(j),∀j ∈ J

∂L(y,λ,µ)
∂µj

= D(j) −
∑

P∈P(j)

αP = 0 ∀j ∈ J

µP = 0 or αP = 0 ∀P ∈ P
µP ≤ 0, αP ≥ 0 ∀p ∈ P

Then a flow ȳ satisfies the KKT conditions if it satisfies for all origin-destination pairs j ∈ J and all
paths P ∈ P(j)

ℓP (ȳ) = λj if αP > 0

ℓP (ȳ) ≥ λj if αP = 0

If the path P ∈ P(j) is used, then its cost is λj , and all other paths P ′ ∈ P(j) have a greater or equal
cost. This is just the characterization of a WE in Definition 2.

The characterization of aggregate flows in the second point of the theorem is a direct consequence
of the first and of the definition of Ȳ .

Existence and uniqueness of the solution ȳ come from the existence (and uniqueness) of the opti-
mum of a (strictly) convex optimization problem on a convex polytope (which is also compact).

Theorem 1 allows us to switch between the decomposable notion of latency functions and a non-
decomposable notion of latency functions as shown in Example 1.

Example 1. If ℓ is decomposable, ℓa(ȳ) = ℓ̃a(ȳa), then defining

La(ȳa) =

∫ ya

0

ℓ̃a(u) du

we get that ℓ derives from the potential

Φ(ȳ) =
∑
a

La(ȳa).

And Theorem 1 becomes the classic characterization of WE as a convex optimization problem.

B STATISTICAL MODELS

edge
features

Feedforward
layer

edge
parameters

MLP

MLP

Parallel
multilayer

perceptrons
(MLPs)

Figure 7: FNN model.

FNN: Our FNN model (Figure 7) comprises a set of
parallel multi layer perceptrons (MLPs). Each MLP re-
ceives as input a vector of features xa describing the at-
tributes of arc a and outputs an embedding vector. Each
MLP consists of 5 layers, with [100, 500, 100, 10, 5]
nodes. We consider relu activation functions between the
layers. If the MLP is the last module in the pipeline there
is an output layer of 1 node convoluting the embedding
layer to the output dimension. The activation function
in the output layer is pipeline dependent: In the case,
when the FNN directly outputs y the last dense layer does
not consider any activation function. In the case, when
the FNN outputs the latency parameters (φFNN

w (xa) =
(θk,a)k∈{1,...,K})a∈A = (θk,a)

a∈A
k∈{1,...,K}, then the last dense layer considers a softplus activation

function. We specify the considered features in Appendix B.1.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

GNN: Our GNN model considers a graph message passing module and two subsequent FNN mod-
ules (Figure 8). The message passing module receives as input the set of arc feature vectors (xa)a∈A
and the set of vertex feature vectors (xv)v∈V . The GNN applies 3 message passing convolutions
and outputs the latent node embeddings. Here, each convolution considers embeddings of length 20
and feedforward layers with [20, 20] nodes with relu activation functions. Then, the GNN inputs the
combined feature sets of latent vertex embeddings from arc-starting nodes, and original arc features
into an FNN that outputs the arc embeddings. Subsequently, the GNN inputs the arc embeddings
into an FNN to output the arc parameters. We specify the considered features in Appendix B.1.

node features

edge features

Graph message
passing

Feedforward
layer

latent node
embeddings

latent edge
embeddings

Feedforward
layer

edge
parameters

MLP

MLP

Parallel
multilayer

perceptrons
(MLPs)

Convolutional
layers

MLP

MLP

Parallel
multilayer

perceptrons
(MLPs)

Figure 8: GNN model.

B.1 FEATURES

In Table 1 we summarize the features considered in the COAML pipeline benchmarks and the FNN
benchmark. In Table 2 we summarize the features considered in the GNN benchmark. The area
factor describes the radius considered for computing the features: Max distance between nodes in network

Area Factor . We
standardize all features with its mean values.

Table 1: Features considered in the FNN.

Arc features

number of home locations (area factors: 1; 2; 5; 10; 15)
number of work locations (area factors: 1; 2; 5; 10; 15)
number of nodes (area factors: 1; 2; 5; 10; 15)
number of arcs (area factors: 1; 2; 5; 10; 15)
number of arcs with capacity ¿ 1000 (area factors: 1; 2; 5; 10; 15)
arc length
arc speed
arc capacity
arc number of lanes
arc number of lanes
arc transit time
number of starting arcs at starting node
number of ending arcs at starting node
number of starting arcs at ending node
number of ending arcs at ending node

Arc features when learning time-variant flow

distance from time morning rush hour in seconds
(distance from time morning rush hour in seconds)2

(distance from time morning rush hour in seconds)3

remaining time in seconds
simulation time in seconds
distance time from start evening rush hour in seconds
(distance time from start evening rush hour in seconds)2

(distance time from start evening rush hour in seconds)3

Arc features when learning piecewise constant latencies

capacity index ζ of arc

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 2: Features considered in the GNN.

Arc features

arc length
arc speed
arc capacity
arc number of lanes
arc number of lanes
arc transit time
number of starting arcs at starting node
number of ending arcs at starting node
number of starting arcs at ending node
number of ending arcs at ending node

Arc features when learning time-variant flow

distance from time morning rush hour in seconds
(distance from time morning rush hour in seconds)2

(distance from time morning rush hour in seconds)3

remaining time in seconds
simulation time in seconds
distance time from start evening rush hour in seconds
(distance time from start evening rush hour in seconds)2

(distance time from start evening rush hour in seconds)3

Node features

number of home locations (area factors: 1; 2; 5; 10; 15)
number of work locations (area factors: 1; 2; 5; 10; 15)
number of nodes (area factors: 1; 2; 5; 10; 15)
number of arcs (area factors: 1; 2; 5; 10; 15)
number of arcs with capacity ¿ 1000 (area factors: 1; 2; 5; 10; 15)

Node features when learning time-variant flow

simulation time in seconds

C EQUILIBRIUM LAYERS

In this section, we provide background on the equilibrium layers introduced in Section 4.

C.1 BACKGROUND ON LATENCIES WITH EUCLIDEAN REGULARIZATION

We can obtain a differentiable equilibrium layer by utilizing a rather simple Euclidean regularization,
considering the respective squared Euclidean loss

ψ(ȳ) =
1

2
∥ȳ∥2.

In this case, we retrieve decomposable affine latency functions of the form

ℓθa(ȳ) =
∂

∂ȳa
Φθ(ȳ) = −θa + ȳa = ℓ̃θa(ȳa), (29)

and the vector θ corresponds to the y-intercept of the latency functions. In this case, the equilibrium
problem 6 becomes

ˆ̄yΩ(θ) = argmax
y∈Ȳ

θ⊤y − 1

2
∥y∥2 = argmax

y∈Ȳ

1

2
∥θ − y∥2. (30)

In other words, the equilibrium is the orthogonal projection of θ on Ȳ and can be efficiently com-
puted using any convex quadratic optimization solver. In the learning problem 9, we need the gradi-
ent ∇Ω∗(θ) of Ω∗(θ) = maxy∈Y θ⊤y − 1

2∥y∥
2. Danskin’s lemma ensures that

∇Ω∗(θ) = argmax
y∈Ȳ

θ⊤y − 1

2
∥y∥2 = ˆ̄yΩ(θ).

C.2 BACKGROUND ON REGULARIZATION BY PERTURBATION

Alternatively, we can regularize our equilibrium layer by perturbation: let us a consider a maximum
capacity u and the corresponding aggregated flow polyhedra

Ȳu = Ȳ ∩
{
ȳ : 0 ≤ ȳ ≤ u

}
.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Let us now introduce a standard Gaussian vector Z on RA. Then, we can use the convex conjugate
of the expectation of the perturbed maximum flow as regularization Ω,

Ω = F ∗ where F (θ) = E
[
max
y∈Ȳu

(θ + Z)⊤y
]
. (31)

Berthet et al. (2020) show that this regularization yields several desirable properties: first F is a
proper convex continuous function, which gives Ω∗ = (F ∗)∗ = F , second, dom(Ω) = Ȳu. Third,
applying Danskin’s lemma, this second property, gives the differentiability of Ω∗ = F and

ˆ̄yΩ(θ) = ∇Ω∗(θ) = E
[
argmax
y∈Ȳu

(θ + Z)⊤y
]
.

We note that the argmax is unique with probability 1 on the sampling of Z. This last property is
critical from a practical point of view. Indeed, while the exact computation of F (θ), ˆ̄yΩ(θ), and
∇θLΩ(ȳ) require to evaluate intractable integrals, they are all expectations for which Monte-Carlo
estimations can be computed by sampling a few realizations of Z and computing the corresponding
maximum flow problem.

Finally, Bregman divergence and Fenchel-Young loss coincide for this regularization LΩ(θ, ȳ) =
DΩ(ȳ, ˆ̄yΩ(θ)

)
. This follows from Equation 14, even though Ω is not Legendre type as a function

on RA, because it is not even differentiable since its domain Ȳu is not full dimensional. Indeed, if
we consider the restriction of F and Ω to the direction of the affine hull of Ȳu, which is equal to
the linear span of Ȳu since 0 ∈ Ȳu, then Ω is Legendre type. Equation 14 gives the equality on the
linear span, which can be extended to RA since the component of θ in the orthogonal of the linear
span does not impact a role in the argmax.

C.3 BACKGROUND ON PIECEWISE CONSTANT LATENCIES AND EXTENDED NETWORK

In practice, observed latencies often exhibit threshold effects when the traffic on an arc reaches its
capacity and congestion appears, i.e., the latency increases stepwise (Vickrey, 1969). Such effects
are poorly captured by our potential Φθ due to the smooth latency functions ℓa.

However, the methodology that we introduced can naturally be extended to the case where such a
latency function can be modeled by piecewise constant functions of ȳa: let us suppose that we want
to use the non-regularized latency function

ℓ̃a(ȳa) =

{
θ̃a,m if τm−1 ≤ ȳa < τm for m ∈ {1, . . . ,M}
+∞ if ȳa > τM ,

where 0 = τ0 < τ1 < . . . < τM . Such latency functions are in line with traffic physics: an arc might
allow free floating traffic till a certain threshold capacity is reached. Then the latency increases step-
wise, e.g., with the traffic experiencing reduced speed, stop-and-go, and finally, congestion (Vickrey,
1969).

We derive piecewise constant latency functions by solving the non-regularized WE as a minimum
cost flow

min
y∈Ȳex

θ⊤y

on an extended network Gexp = (V,Aexp) that allows to encode the piecewise-constant functions
in a multi-graph representation with parallel arcs.

Specifically, we construct the extended network Gexp = (V,Aexp) based on the transporation net-
work G = (V,A) as follows: Vertices are the same, but for each arc a in A, there are M copies

Figure 9: Evolution from G to expanded Gexp.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

(ãm)m∈{1,...,M} of a in Aexp (see Figure 9). We then define the capacity uã,m = τm − τm−1. Note
that we can only consider equal capacities uã,m = uã ∀m ∈ {1, . . .M}. The equivalence in the
non-regularized case is straightforward. For example, in a setting with a capacity uã,m = 3: The
first three agents traversing arc a experience the cost θa,1, the second three agents traversing arc a
experience the cost θa,2, etc. We can then use the two previously introduced regularizations. Squared
Euclidean regularization now involves an orthogonal projection of θ on Ȳexp

u , while Monte-Carlo
approximations in the perturbation case involve solving a maximum cost flow on Ȳexp

u .

C.4 BACKGROUND ON POLYNOMIAL LATENCIES REGULARIZED BY PERTURBATION

Lastly, we introduce monotonously increasing latency functions ℓθa(ȳa) that depend on the respective
traffic flow ȳa. To do so, we introduce a feature mapping σ that maps any component y ∈ R+ to a
feature vector σ(y) = (σk(y))k∈{k,...,K} ∈ RK such that y 7→ σk(y) is convex for each k,

σ : y ∈ Y 7→ σ(y) ∈ RA×K .

Then, we consider polynomial latency functions generated by the mapping (σk)k,

ℓθa(ȳa) =
∑
k

θk,aσk(ȳa) with θk,a ≥ 0 for all k and a. (32)

Here θk,a is the weight coefficient of the k-th basis function in ℓa, and σk is the respective basis
function. The overall equilibrium is therefore parametrized by θ = (θk,a)

a∈A
k∈{1,...,K} with k indexing

the mapping (σk)k. Clearly, in this context, choosing the right family of function σ is a crucial
design decision: it should be simple enough to lead to tractable WEs for any θ ≥ 0, and at the same
time sufficiently expressive to allow for good approximations.

In this work, we restrict ourselves to the polynomial family σ using k = {0, 1}, and σk(ȳ) = ȳk.
Then, the latency function for arc a becomes

ℓθa(ȳa) = θ0,a + θ1,a ∗ ȳa,
with ȳa denoting the aggregated flow on arc a. We can interpret this latency function as follows:
the intercept θ0,a represents the traffic-free latency, and the slope θ1,a represents the induced latency
per agent on arc a. In general, we can use arbitrary complex polynomials to describe the latency
function. The resulting latency function 32 is a convex function, as the basis functions (σk)k are
strictly convex for each k.

We can extend the regularization by perturbation to that setting. Let us define C = conv(σ(Ȳ)).
Remark that C is closed and convex but no more a polyhedron. We can now define the generalizations

F (θ) = E
[
max
µ∈C

(θ + Z)⊤µ
]
= E

[
max
y∈Ȳ

(θ + Z)⊤σ(y)
]
, and Ω(µ) = F ∗.

We still have F = Ω∗. The prediction is however now on C

µ̂Ω(θ) = E
[
argmax

µ∈C
(θ+Z)⊤µ

]
= argmax

µ∈C
θ⊤µ−Ω(µ) ̸= argmax

y∈Ȳ
θ⊤σ(y)−Ω(σ(y)). (33)

We retrieve a prediction ˆ̄y by taking the projection on Ȳ
ˆ̄y(θ) = E

[
argmax

y∈Ȳ
(θ + Z)⊤σ(y)

]
.

It leads to the learning problem and Fenchel-Young loss

min
w

1

N

N∑
i=1

LΩ

(
φw(xi), σ(ȳi)

)
where LΩ(θ, µ̄) = Ω∗(θ) + Ω

(
µ̄)− θ⊤µ.

Again, we can obtain Monte-Carlo evaluation of the gradient

∇θLΩ(θ, µ̄) = E
[
argmax

µ∈C
(θ + Z)⊤µ

]
− µ̄ = E

[
argmax

y∈Ȳ
(θ + Z)⊤σ(y)

]
− µ̄

which is quite convenient as we can make the computations on Ȳ . Using a squared Euclidean
regularization is not as convenient computationally as we would need to optimize over µ instead of
ȳ due to the inequality in Equation 33.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

D TRAFFIC SCENARIOS

We consider four stylized and two realistic scenarios for our experiments. While the stylized scenar-
ios allow us to isolate effects that highlight the differences between our COAML pipelines and pure
ML approaches, the realistic scenarios allow us to highlight the efficiency of our COAML pipelines
in practice.

The stylized scenarios consider randomly generated networks using the model from Eisenstat
(2011) similar to Figures 2a, 2b, and 2c. All roads in these networks have the same characteristics
with respect to capacity. We further consider 100 home and 100 work locations in the network and
a set of 200 planned trips in the form of origin-destination pairs. Precisely, we consider 100 planned
trips starting at the home locations and driving to the work locations and 100 planned trips starting
at the work locations and driving to the home locations.

In the first two scenarios, we derive the target traffic equilibrium via solving a time-expanded WE
with 20 discrete time steps. The WE considers a latency function ℓa(ȳa) = da + ȳa with da
representing the length of arc a and ȳa denoting the aggregated flow on arc a.

High-entropy (HE) scenario: The high-entropy scenario comprises instances that each consist
of a randomly generated network and uniformly distributed home and work locations across the
respective network (see Figure 2a). This uniform distribution of home and work locations leads to
an evenly distributed traffic flow with increasing traffic flow in the center of the network and a lower
traffic flow in the outer area of the network. This scenario provides a traffic equilibrium that highly
correlates with the context of the network. Precisely, the traffic flow of an arc correlates with the
location of the respective arc in the network. Thus, context features like the coordinates of an arc
and the location of the arc within the network have a high correlation with the traffic flow. From
a theoretical perspective, this scenario is good for learning traffic equilibrium prediction with pure
ML approaches: the high correlation between context features and the target traffic flow allows us
to learn a direct mapping from features to traffic flow independent of the combinatorial nature of
traffic flows.

Low-entropy (LE) scenario: In the low-entropy scenario each instance consists of a randomly
generated network with home locations located in the upper right corner and work locations in
the bottom left corner (Figure 2b). In such a scenario, the resulting traffic flow strongly depends
on the combinatorial trip information: Trips start at the home locations in the upper right corner
and end at the work locations in the bottom left corner and vice versa. In comparison to the
high-entropy scenario, the traffic equilibrium resulting in the low-entropy scenario is less context-
sensitive but more sensitive to the combinatorial relation between home and work locations. From a
theoretical perspective, pure ML approaches are not expected to yield good solutions in this scenario.

For the remaining scenarios, we derive the target traffic equilibrium by running the agent-based
transport simulation MATSim. We refer to Appendix D.1.2 for detailed information on the MATSim
simulation.

Square-world (SW) scenario: The square-world scenario utilizes the road network of the stylized
scenario, but the origin and destination locations are distributed according to the distribution of roads
in the respective network. We simulate a one-hour epoch, with all agents starting their trips from
their home locations to their work locations at minute zero to mimic the morning rush hour, and
their trips from their work locations to their home locations after 30 minutes to mimic the evening
rush hour. This scenario complements our set of stylized scenarios: it does not mimic a real-world
setting but allows to generate insights on the performance of COAML pipelines in comparison to
pure ML pipelines when it comes to predicting combinatorial information.

Berlin scenario: The Berlin scenario comprises instances that consist of district networks (Figure
2d) extracted from a realistic road network of the city of Berlin. The origin-destination pairs are
extracted from a calibrated real-world MATSim scenario.1 If a trip passes the district but has an

1https://github.com/matsim-scenarios/matsim-berlin?tab=readme-ov-file

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

origin/destination outside of the district, we set the origin/destination of the respective trip to the
border of the district. Thus, this scenario serves to generate insights into how well our benchmarks
can predict traffic equilibria for certain districts when contextual information is only available for
the respective district, but the contextual information for the outer area of the district is unavailable,
e.g., investigating a traffic management effect on a certain district, when census data of the outer
area of the district is unavailable.

Berlin artificial population (Berlin-AP) scenario: The Berlin artificial population scenario
comprises instances that consist of district networks extracted from a realistic road network of the
city of Berlin, but the population plans are artificially generated so that all trips start and end within
the district network and there are no trips passing through the district network (Figure 2e). The home
and work locations are distributed according to the density of the street networks, with more home
and work locations in areas with a dense arc network and fewer home and work locations in areas
with a sparse arc network.

Square-world time-variant (SW-TV) scenario: In the aforementioned scenarios, we only
focused on the aggregated traffic flow over time. However, in many traffic applications, traffic flow
needs to be predicted over time. Therefore, we consider a square-world time-variant scenario,
which investigates the performance of our benchmarks when predicting traffic flow over time. The
challenge is that MATSim yields a traffic flow over constant time, but our benchmarks predict a
traffic flow over discrete time. To circumvent this problem, we discretize the target traffic flow de-
rived from the MATSim simulation over time. To do so, we apply a time expansion on the transport
networks G of the square-world scenario and measure the MAE on the time-expanded transport
networks. Specifically, a time-expansion on the transport network G refers to discretizing time into
disjoint epochs T ; then each arc a ∈ A|A|×|T | in the time-expanded network represents an arc with
a specific time index t ∈ T . On the spatial dimension, the length of an arc specifies the spatial
distance from the start location to the end location of the arc, and from a temporal perspective,
the length of an arc specifies the time it takes to traverse the respective arc. Note that in such a
setting, the latency on arc a at time t1 ∈ T does only depend on the time-variant traffic flow ȳa,t1
on the respective arc, but not from the flow ya,t2 at another point in time t2 ∈ T . Intuitively,
we assume that the traffic flow on an arc is independent of previous traffic flows on the respective arc.

For all scenarios, we create 9 training instances, 5 validation instances, and 6 test instances. We
run the training for a maximum of 20 hours, or 100 training epochs. We run the experiments on
a computing cluster using 28-way Haswell-EP nodes with Infiniband FDR14 interconnect and 2
hardware threads per physical core. We report the MAE on the test instances.

D.1 WARDROP EQUILIBRIUM SOLVERS

In general, WE solvers seek a set of flows in Y such that each agent j travels on a path in Y(j) where
unilaterally deviating from this path would always incur a longer travel time for the agent. Correa
& Stier-Moses (2011) provide a good intuition for WEs and respective solvers.

In general, we can divide WE solvers into analytical solvers and simulation-based solvers. Analyti-
cal solvers require knowledge about the system’s latency functions to allow the computation of the
respective equilibria, which is why they are frequently used for stylized or synthetic analyses. In
practice, these latency functions are usually not known and consequently simulation-based solvers
are used to determine the respective equilibria. The drawback of such simulation-based solvers is
their computational time, which can easily exceed several hours depending on the size of the case
study and the hyperparameters chosen.

Our approach aim to bridge the gap between the accuracy of simulation-basd solvers and the
tractability of analytical solvers by learning the parameterization of the respective latency functions
and embedding them into a CO-layer. In the following, we give an overview of related analytical
and simulation-based solvers.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

D.1.1 ANALYTICAL SOLVERS.

Analytical solvers leverage mathematical formulations and iterative approaches. The analytical
solvers mainly base on two intuitions:

1. The Beckmann formulation (Beckman et al., 1956) interprets the WE problem as a multi-
commodity flow problem (MCFP) and states that the convex optimization problem

min
y∈Ȳ

Z(y) =
∑
a∈A

∫ ya

0

ℓa(x)dx (34)

that satisfies the flow conservation and the non-negativity of flows yields a WE.

2. We can formulate the notion of a WE as a variational inequality (Smith, 1979). Then a
flow y is a WE when ∑

a∈A
ℓa(ȳa)ȳa ≤

∑
a∈A

ℓa(ȳa)xa, ∀x ∈ Ȳ (35)

holds.

In the following, we provide an overview over the most common analytical WE solvers.

Frank-Wolfe Algorithm The Frank-Wolfe algorithm is an iterative approach solving Problem 34.
Intuitively, the Frank-Wolfe algorithm starts with an initial flow, updates the travel times depending
on the flow, and derives an direction to update the flow such that it reduces Z(y). Iteratively, the
algorithm updates the traffic flow y to finally determine a WE. Formally, we detail this process in
Algorithm 1.

Algorithm 1 Frank-Wolfe Algorithm

Require: ȳ(0) ▷ Set initial flow
k ← 0
while WE not found do

x← minx
∑
a∈A ℓa(ȳ

(k)
a) ∗ xa ▷ Get direction to update ȳ(k)

α(k) ← argminα Z(ȳ
(k) + α ∗ (x− ȳ(k))) ▷ Line search

ȳ(k+1) ← ȳ(k) + α(k) ∗ (x− ȳ(k)) ▷ Update flow
k ← k + 1

end while

Successive Averages Algorithm The Successive Averages algorithm is an heuristic iterative algo-
rithm similar to the Frank-Wolfe Algorithm but different in the flow update process. We depict the
process in Algorithm 2.

Algorithm 2 Successive Averages Algorithm

Require: ȳ(0) ▷ Set initial flow
k ← 0
while WE not found do

x← minx
∑
a∈A ℓa(ȳ

(k)
a) ∗ xa ▷ Get direction to update ȳ(k)

ȳ(k+1) ← ȳ(k) + 1
k+1 ∗ (x− ȳ(k)) ▷ Update flow

k ← k + 1
end while

Decomposition Algorithms Decomposition algorithms decompose the problems into subprob-
lems in the sense that they separate flows by node of origin. The best known algorithm is the
Bar-Gera’s algorithm (Bar-Gera, 2002) that we show in Algorithm 3.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Algorithm 3 Bar-Gera’s Algorithm

Require: ȳ(0) ▷ Set initial flow
k ← 0
while WE not found do

for o ∈ V do ▷ Iterate over all origins in the network
ȳo ← minȳo∈Ȳo

∑
a∈A ℓa(ȳ

(k)
a) ∗ ȳoa ▷ Distribute flows from origin o

end for
ȳ(k+1) ← ∪o∈V ȳo ▷ Combine flows from all origins
k ← k + 1

end while

Projection Methods Projection methods leverage the variational intequalities 35 and project flows
onto feasible flow sets. We can reformulate the variational inequalities as an optimization problem,

find y ∈ Y such that ⟨ℓ(ȳ),x− ȳ⟩ ≥ 0, ∀x ∈ Ȳ (36)

then the objective is to find a traffic flow y that satisfies the variational inequalities, and we receive
this traffic flow with the following Algorithm 4.

Algorithm 4 Projection Methods

Require: ȳ(0) ▷ Set initial flow
k ← 0
while WE not found do

x← ȳ(k) − λℓ(ȳ(k)) ▷ Get new flow proposition
ȳ(k+1) ← PȲ(x) ▷ Project flow proposition onto the feasible flow set Ȳ
k ← k + 1

end while

Mathematical programming Depending on the on form of the latency function ℓ we can apply
various mathematical programming methods like, e.g., Barrier Methods or Interior Point Methods
to find a WE via solving the Beckman formulation, Problem 34.

D.1.2 SIMULATION-BASED SOLVERS: MATSIM

In comparison to analytical solvers we can also leverage agent-based simulations that simulate the
actions of each agent individually, and by following a selfish behaviour of each agent yielding a
WE. Instead of presenting various different simulation approaches, we present MATSim (Horni
et al., 2016), as we also consider MATSim in Section 5 to yield target traffic flows ȳ∗.

MATSim is an agent-based transport simulation. Specifically, each agent in the simulation follows
an agent-specific plan. This agent plan details the agent’s daily trips, including starting times and the
respective routes. The simulation follows a queue-based approach such that when a vehicle enters
a network link from an intersection, the simulation adds the vehicle to the tail of vehicles waiting
to traverse the link (Vickrey, 1969). The waiting time depends on storage capacity and the flow
capacity of the respective link. The resulting traffic flow ȳ∗ results from a co-evolutionary optimiza-
tion approach with each agent representing a single species, meaning that each agent optimizes its
respective plan individually. Specifically, in each evolution step, each agent considers a plan. Then,
the simulation simulates all plans in the system and distributes scores for each individual plan de-
pending on waiting times and deviations from initial schedules. Subsequently, the co-evolutionary
approach updates each agent’s plan via inheriting from previous plans from the same agent, mu-
tation, and recombination actions. Thus, this co-evolutionary process improves each agent plan
individually, dependent on all other plans in the system. Finally, this co-evolutionary approach leads
to a stochastic user equilibrium ȳ∗. In this equilibrium, no agent can unilaterally improve its plan.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

E WARDROPNET PIPELINES AND ML BASELINES

This section details all the benchmarks that we consider in our numerical study. While the first two
benchmarks are pure deep learning benchmarks, the last three benchmarks relate to the COAML
pipelines introduced in Section 4.

FNN: we consider a pure ML pipeline f(x) = ȳ with an FNN model that was trained via super-
vised learning. To this end, we consider the FNN model and the related features presented
in Appendix B.

GNN: we consider a pure ML pipeline f(x) = ȳ with a GNN model that was trained via supervised
learning. To this end, we consider the GNN model and the related features presented in
Appendix B.

Constant latencies (CL): we consider a COAML pipeline using constant latencies regularized by
perturbation. The COAML pipeline solves a MCFP with piecewise decomposed latency
functions. We enable the piecewise decomposition by applying the network expansion trick
as detailed in Appendix C.3: we multiply each arc M -times and set arc-specific capacities
on each arc. We further consider a statistical model φw similar to the FNN model used in
the FNN benchmark. We only add a last layer with a softplus function which additionally
negates the output. Recall that we need to enforce the statistical model to predict negative
latencies as we solve the equilibrium problem, which normally minimizes the latencies for
all agents, as a maximization problem (cf. Equations 5-7) to allow the formulation of the
Fenchel-Young loss (cf. Equation 8).

Polynomial latencies (PL): we consider a COAML pipeline using polynomial latencies regular-
ized by perturbation. The COAML pipeline solves a WE. We assume a polynomial latency
function with k = {0, 1}, and σk(y) = yk. In this setting, we consider two branches of
FNNs (φw0 , φw1) to predict the intercept θ0 and the slope parameter θ1 of the latency
function. Each FNN branch equals the FNN model used in the FNN benchmark.

Euclidean regularization (ER): we consider a COAML pipeline using latencies with Euclidean
regularization. The COAML pipeline solves a WE. We assume a polynomial regulariza-
tion term Ω(y) = 1

2 ||ȳ||
2. This enables us to learn the pipeline considering the WE as a

regularized minimum cost flow problem. The statistical model is a FNN model similar to
the statistical model considered in the FNN benchmark.

Discussion: The pure ML benchmarks, namely the FNN and the GNN benchmarks are not state-
of-the-art deep learning benchmarks for predicting traffic equilibria. However, using the same deep
learning models in the pure ML benchmarks and the COAML pipelines, namely the CL, PL, and
ER benchmarks, allows meaningful comparison with respect to the impact of structured learning in
comparison to purely supervised learning. A comprehensive tuning of deep learning benchmarks
would lead to a standalone paper that focuses on deep learning architectures in the realm of traffic
equilibrium prediction. However, the focus of this paper is to introduce the effectiveness of combin-
ing ML and CO in COAML pipelines.

F IN-DEPTH RESULTS DISCUSSION

This section presents our numerical results. In this section, we first focus on the results of the
COAML pipelines and the pure ML pipelines on the stylized and realistic scenarios. Second, we
present a structural analysis to generate insights on the contribution of the benchmarks by visualizing
the predictions of the COAML pipelines and the pure ML pipelines. Finally, we present the results
of the benchmarks for the time-variant predictions.

Stylized scenarios Figure 10a shows the results for the various benchmarks on the high-entropy
scenario. All the COAML benchmarks, namely CL, PL, and ER outperform the pure ML bench-
marks FNN and GNN. Precisely, the CL benchmark outperforms the pure ML benchmarks by around
60% on average, while the PL benchmark outperforms the ML benchmark by around 52% on aver-
age. Recall that predicting the traffic equilibrium in such a scenario depends less on the combinato-
rial trip information but rather on the location of an arc in the network, as the traffic flow is evenly
distributed with increasing traffic flow to the center. Therefore, from a theoretical perspective, the

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

FNN GNN CL PL ER
10−1

100

101

M
A

E

(a) HE

FNN GNN CL PL ER
10−1

100

101

M
A

E

(b) LE

FNN GNN CL PL ER
10−1

100

101

M
A

E

(c) SW

FNN GNN CL PL ER
10−1

100

101

M
A

E

(d) Berlin

FNN GNN CL PL ER
10−1

100

101

M
A

E

(e) Berlin-AP

FNN GNN CL PL ER
10−1

100

101

M
A

E

(f) SW-TV

Figure 10: Benchmark performances on various stylized and realistic traffic scenarios.

pure ML pipeline should yield good results in this scenario, as there is a high correlation between
the traffic flow and the context features describing the location of an arc within the network. The
results show the superiority of COAML pipelines over pure ML pipelines, even in scenarios that
exhibit a structure that is easy to capture with pure ML pipelines.

Figure 10b shows the results on the low-entropy scenario. The MAE for the FNN benchmark in-
creased from around 1.75 in the high-entropy scenario to around 4.18 in the low-entropy scenario.
This indicates that the low-entropy scenario is indeed more challenging to predict for pure ML
pipelines in comparison to the high-entropy scenario as the correlation between the arc flow and
the context features is lower. Comparing the different benchmarks, we observe that the COAML
pipelines again outperform the pure ML pipelines. Remarkably, the prediction error of the COAML
pipelines in the low-entropy scenario equals the prediction error in the high-entropy scenario.
Specifically, the CL benchmark decreases the prediction error of the FNN benchmark by around
75% on average, and the PL benchmark decreases the prediction error of the FNN benchmark by
around 72% on average. The experiments on the high-entropy scenarios and the low-entropy sce-
narios indicate that the COAML pipeline learns to leverage the statistical model and the equilibrium
layer depending on the underlying task outperforming pure ML pipelines, even in settings when
pure ML pipelines are expected to perform well: while the contribution of the statistical model is
particularly important in the high-entropy scenario when it comes to extracting the right context
features, the equilibrium layer is particularly important in the low-entropy scenario when it comes
to processing combinatorial information. Surprisingly, the GNN benchmark does not perform well
in both scenarios. This can be attributed to two reasons: first, while the GNN models perform partic-
ularly well when predicting temporal traffic forecasts in a receding horizon manner, the GNN model
might be less well-suited when predicting aggregated traffic flows. Second, in comparison to an
FNN model, the GNN model accounts for irregular structures with many intertwined dependencies
of neighboring nodes and therefore is prone to over-smoothing. Thus, a simple GNN model might
not be able to extract notable features.

Figure 10c shows the results for the square-world scenario. Here, all approaches outperform the
ER benchmark. Still, the CL benchmark and the PL benchmark outperform the FNN benchmark by
around 7% on average. The pure ML pipelines reach a similar absolute performance as in the high-
entropy scenario, and the COAML pipelines reach a lower absolute performance in comparison
to the high-entropy scenario and the low-entropy scenario. Here, a similar effect arises as in the
high-entropy scenario: Roads located in a higher populated area have a higher traffic flow. Thus,
there is a correlation between the arc context, namely the amount of work and home locations in
the closer neighborhood, and the resulting traffic flow. So, from a theoretical perspective, the pure

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

ML benchmarks should yield good results in this scenario. However, the COAML benchmarks still
outperform the pure ML benchmarks.

Realistic scenarios Figure 10d shows the results for the Berlin scenario. Here, the COAML
pipelines CL and PL significantly outperform the pure ML pipelines. Precisely, the CL benchmark
reduces the prediction error by around 72% on average in comparison to the FNN benchmark, and
the PL benchmark reduces the prediction error by around 64% on average. Note that the results
are biased due to many trips starting and ending at the border of the network. Intuitively, the trips
starting and ending at the border of the network are long trips passing through the Berlin district
network. Thus, most of these trips focus on large roads with large capacity and free speed, mainly
highways. From the pure ML perspective, it is difficult to learn the focus of these through-passing
trips on single roads, i.e., roads forming the shortest path from one side of the district to the other side
of the district, and the high difference in traffic flow between these shortest-path-forming roads and
feeder roads. Moreover, the origin locations and destination locations of these trips depend on the
outer context that is not included in the scenario context, making it even more difficult for pure ML
benchmarks to learn the relationship between the scenario context at hand and the focus of the traffic
on single main roads. On the other side, the COAML benchmarks can leverage the equilibrium layer
to learn the combinatorial effects of many trips, focusing on the shortest-path-forming roads.

Figure 10e shows the results of the Berlin artificial population scenario. Recall the scenario equals
the Berlin scenario, but instead of the calibrated Berlin population, the scenario considers an arti-
ficially generated population restricted to the respective districts. Still, the results are similar to the
results for the Berlin scenario: The CL and PL benchmarks outperform all pure ML benchmarks.
Precisely, the CL and the PL benchmarks outperform the FNN benchmark by around 71% and 67%
on average, respectively. Intuitively, we observe a similar effect as in the Berlin scenario with the
traffic flow focusing on the main roads forming shortest paths between areas with high densities of
work and home locations. While pure ML benchmarks fail to account for the combinatorial nature
of the resulting traffic flow, the COAML pipelines leverage the statistical model and the equilib-
rium layer to combine the processing of contextual information with the combinatorial nature of
traffic equilibria focusing on high-volume roads. Surprisingly, the CL benchmark outperforms the
PL benchmark in all scenarios, although the CL benchmark solves a MCFP in the CO-layer and
the PL solves a WE in the CO-layer. Originally, the CL benchmark was introduced as an efficient
approximation for COAML pipelines solving a complex WE in the CO-layer. However, the superior
performance of the CL benchmark might have a natural reason: According to Vickrey (1969), we
can model flows with a queueing approach – also MATSim leverages such a queueing approach –
such that latencies of an arc only increase when its respective queue reaches a certain length. We
can interpret this stepwise increase of latencies depending on the number of agents in a queue as a
piecewise latency function, similar to how we model it in the CL-pipeline. This observation would
lead to the assumption, that stepwise latency functions as used in the CL-pipeline lead to better
traffic equilibrium approximations as polynomial latency functions as used in the PL-pipeline.

Overall, we can conclude that the COAML benchmarks outperform the pure ML benchmarks on
all tested scenarios, also in scenarios that in particular serve to yield good predictions for pure
ML benchmarks. In Appendix F.1, we introduce further stylized experiments and report respective
results.

Structural analysis: In this paragraph, we provide a structural analysis to substantiate the intuition
on why the COAML benchmarks outperform pure ML benchmarks in predicting traffic equilibria.
Figure 11 shows the target (11a) and predicted (FNN: 11b; GNN: 11c; CL: 11d; PL: 11e; ER: 11f)
traffic flow aggregated over time for the various benchmarks on the Berlin scenario (Figure 2d).
Note that in Figure 11a the main traffic flow focuses on the main roads, i.e., roads forming the short-
est paths between areas of interest, while there is only a low flow on small roads, i.e., local roads
in residential areas. As can be seen, the pure ML benchmarks (Figures 11b and 11c) focus on pre-
dicting good mean values for the traffic flow but fail to map realistic traffic flow patterns that reveal
high traffic flows on main roads. Analyzing the difference between the pure ML benchmarks, the
GNN benchmark yields a more realistic traffic flow pattern than the FNN benchmark. This observa-
tion is in line with the different architectures of the FNN benchmark and the GNN benchmark: the
GNN benchmark allows the processing of contextual information and embeddings from neighboring
roads and enables the detection of main roads to represent consistent flow attributes. Contrarily, the

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

(a) Target (b) FNN (c) GNN

(d) CL (e) PL (f) ER

Figure 11: Visualization of time-invariant traffic flows.

FNN benchmark only considers an arc-specific context and thus yields uncorrelated traffic predic-
tions between roads (Figure 11b). Still, the FNN benchmark outperforms the GNN with respect to
accuracy due to the better performance in predicting traffic flows on small roads. In contrast, the
COAML benchmarks, namely the CL and PL benchmarks (Figure 11d and 11e) predict a realistic
traffic equilibrium with a high traffic flow on main roads and a low traffic flow on small roads. The
remaining ER benchmark, which is also a COAML pipeline, fails to mimic realistic traffic equilibria
but focuses more on predicting small traffic flows on rarely used small roads. This might be due to
the restricted latency function used in the ER benchmark that only allows us to learn the y-intercept,
which is a strong limitation when it comes to predicting complex traffic patterns. Studying richer
latency functions remains an interesting avenue for future work in this context.

Figure 12 shows the mapping from target traffic flow values to predicted traffic flow values and
substantiates our conclusions drawn from analyzing Figure 11. Intuitively, in the case of a perfect
correlation between the target and the predicted traffic flow, all points would be on the diagonal.
However, focusing on the pure ML benchmarks, namely the FNN (Figure 12a) and GNN (Fig-
ure 12b) benchmarks their predictions have a low correlation with the target traffic flows especially
for high traffic flow values on main roads and thus fail to represent a realistic traffic equilibrium
pattern. In comparison, the COAML benchmarks, namely the CL (Figure 12c), the PL (Figure 12d),
and the ER (Figure 12e) benchmarks yield predictions with a high correlation to the target traffic
flows especially for high traffic flow values on the main roads.

Overall, our structural analyses show the limitations of pure ML pipelines compared to COAML
pipelines: pure ML pipelines fail to learn the combinatorial dynamics of the underlying traffic pat-
terns and thus yield predictions with a low correlation to the target traffic flow values, especially for
high traffic flow values on the main roads. From a pure ML perspective, it is difficult to learn that
the traffic flows often spread largely over a limited number of main roads. In contrast, the COAML

(a) FNN (b) GNN (c) CL (d) PL (e) ER

Figure 12: Comparison of target and predicted traffic flows per arc for the Berlin scenario.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

(a) Target (b) FNN (c) GNN

(d) CL (e) PL (f) ER

Figure 13: Visualization of time-variant traffic flows.

benchmarks leverage the equilibrium layer to learn the combinatorial nature of traffic equilibria and
thus allow the prediction of realistic traffic patterns.

Time-variant traffic flows: Figure 10f shows the results of the square-world time-variant sce-
nario. As can be seen, the CL and the PL benchmarks outperform all other benchmarks. More
specifically, the CL benchmark reduces the prediction error in comparison to the FNN benchmark
by around 33% on average and the PL benchmark reduces the prediction error in comparison to
the FNN benchmark by around 22% on average. Note that in this setting, we did not learn piece-
wise decomposed latency functions but expanded the underlying transport network graph over time.
The time expansion of the WE problem significantly increases the runtime for finding the WE in
the CO-layer. To circumvent long training times, we ignored the perturbation during training as the
aggregated traffic flow ȳ acts similarly to a regularization term. However, the missing perturba-
tion explains the slightly worse performance of the PL benchmark compared to the CL benchmark.
In general, the MAE of the benchmarks is lower than in the other scenarios, which is due to the
many zero values in the target traffic equilibrium over the time-expansion. Note that the ER bench-
mark fails to account for the time-expansion, because the benchmark only allows for learning the
y-intercept, and embedding time-related information and spatial-related information within a single
y-intercept remains difficult. Figure 13 visualizes the prediction of the traffic flow over time. We
recall that agents schedule trips from home to work at minute zero, which reflects the morning rush
hour, and from work to home after 30 minutes which reflects the evening rush hour. When compar-
ing the target traffic flow values (Figure 13a) with the ML benchmarks (FNN: 13b, GNN 13), we see
that the ML benchmarks underestimate the traffic flow and focus more on predicting a good mean
value. The COAML benchmarks (CL: Figure 13d, PL: 13e) predict realistic traffic flow patterns in
line with the target traffic flow (Figure 13). This insight is consistent with the observations made
when predicting traffic flows aggregated over time (cf. Figure 11). The ER benchmark (Figure 13f)
fails to account for the time component such that the traffic distributes equally over time. This effect
might results from the simplified latency function used in the ER benchmark that only allows us to
learn the y-intercept.

F.1 COMPLEMENTARY STYLIZED EXPERIMENTS

In this section, we present benchmark performances for 16 different scenarios. Each scenario is a
combination of an environment and an underlying oracle. While the environment details the under-
lying street network which is generated from the model of Eisenstat (2011) and the population with
the respective agent plans, the oracle defines how to derive the target traffic equilibrium. In each

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

work
home

(a) LE

work
home

(b) LEU

work
home

(c) HE

work
home

(d) HEU

work
home

(e) SW

Figure 14: Illustration of the environments.

scenario, we consider 100 agents, and each agent has a home and work location. Each agent travels
in the morning from its home location to its work location and in the evening from its work location
to its home location. We solve all scenarios in a time-expanded setting with 20 discrete time steps.

We consider the environments shown in Figure 14:

Low-entropy (LE): A randomly generated street network. All home locations are in the upper right
corner and all work locations are in the lower left corner. Each instance of this scenario
considers a random street network and random home and work locations.

Low-entropy uniform (LEU): A grid street network. All home locations are in the upper right
corner and all work locations are in the lower left corner. Each instance of this scenario
considers random home and work locations.

High-entropy (HE): A randomly generated street network. All home locations and work locations
are uniformly distributed. Each instance of this scenario considers a random street network
and random home and work locations.

High-entropy uniform (HEU): A grid street network. All home locations and work locations are
uniformly distributed. Each instance of this scenario considers random home and work
locations.

Square world (SW): A randomly generated street network. All home locations and work locations
are distributed according to the distribution of the roads. Each instance of this scenario
considers a random street network and random home and work locations.

We consider the following oracles:

EasyMCFP: The oracle solves a MCFP. The costs of the MCFP equal the street length.
EasyWE: The oracle solves a WE. The latency function of the WE for arc a is da + ȳa with da

representing the length of arc a and ȳa denoting the aggregated flow on arc a.
randomMCFP: The oracle solves a MCFP. The costs of the MCFP are uniformly distributed ca ∼

U(0, 100).
randomWE: The oracle solves a WE. The latency function of the WE for arc a is θ1,a + θ2,a ∗ ȳa

with θ1,a ∼ U(1, 100) randomly distributed, θ2,a ∼ U(1, 20) randomly distributed, and ȳa
denoting the aggregated flow on arc a.

Figure 15 shows the performance of the benchmarks introduced in Appendix E over the introduced
scenarios. In general, the COAML benchmarks, namely the CL and the PL benchmarks, outperform
the pure ML benchmarks, namely the FNN and GNN in almost all scenarios. The ER benchmark has
a mixed performance over the scenarios, which can be attributed to the simplified latency functions
that only allows learning the y-intercept. In the following, we interpret the results depicted in Fig-
ure 15. We first focus on scenarios considering an EasyMCFP oracle to yield target traffic equilibria.
In these scenarios, the resulting traffic flow only depends on the shortest paths in the network with
respect to arc lengths, but no traffic effects are considered. Intuitively, the CL pipeline yields the
best results in all scenarios. Here, the CL would mimic the oracle when it learns to focus only on the
arc length in the statistical model. In general, over all scenarios considering an EasyMCFP oracle
the differences in accuracy between the benchmarks are rather small. In the scenarios that consider
an EasyWE oracle to yield target traffic equilibria, the differences in accuracy between the different
benchmarks are larger. This is intuitive, as the oracle yields target traffic equilibria that depend on
actual congestion states. Thus, these target traffic equilibria are difficult to predict with pure ML

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

FNN GNN CL PL ER
10−2

10−1

100

101

M
A

E

(a) LE-easyMCFP

FNN GNN CL PL ER
10−2

10−1

100

101

M
A

E

(b) LE-easyWE

FNN GNN CL PL ER
10−2

10−1

100

101

M
A

E

(c) LE-randomMCFP

FNN GNN CL PL ER
10−2

10−1

100

101

M
A

E

(d) LE-randomWE

FNN GNN CL PL ER
10−2

10−1

100

101

M
A

E

(e) LEU-EasyMCFP

FNN GNN CL PL ER
10−2

10−1

100

101

M
A

E

(f) LEU-EasyWE

FNN GNN CL PL ER
10−2

10−1

100

101

M
A

E

(g) LEU-randomMCFP

FNN GNN CL PL ER
10−2

10−1

100

101

M
A

E

(h) LEU-randomWE

FNN GNN CL PL ER
10−2

10−1

100

101

M
A

E

(i) HE-easyMCFP

FNN GNN CL PL ER
10−2

10−1

100

101

M
A

E

(j) HE-easyWE

FNN GNN CL PL ER
10−2

10−1

100

101

M
A

E

(k) HE-randomMCFP

FNN GNN CL PL ER
10−2

10−1

100

101

M
A

E

(l) HE-randomWE

FNN GNN CL PL ER
10−2

10−1

100

101

M
A

E

(m) HEU-easyMCFP

FNN GNN CL PL ER
10−2

10−1

100

101

M
A

E

(n) HEU-easyWE

FNN GNN CL PL ER
10−2

10−1

100

101

M
A

E

(o) HEU-randomMCFP

FNN GNN CL PL ER
10−2

10−1

100

101

M
A

E

(p) HEU-randomWE

FNN GNN CL PL ER
10−2

10−1

100

101

M
A

E

(q) SW-easyMCFP

FNN GNN CL PL ER
10−2

10−1

100

101

M
A

E

(r) SW-easyWE

FNN GNN CL PL ER
10−2

10−1

100

101

M
A

E

(s) SW-randomMCFP

FNN GNN CL PL ER
10−2

10−1

100

101

M
A

E

(t) SW-randomWE

Figure 15: Performance of benchmarks on different scenarios.

benchmarks when only considering contextual information. In this setting, the COAML pipelines
yield good results. Especially the PL and CL benchmarks perform well in all scenarios. While the
PL benchmark performs particularly well in the low-entropy uniform scenario and the high-entropy
uniform scenario, the CL benchmark performs particularly well in the square-world scenario. The
pure ML benchmarks lead to the worst results over all scenarios. All the tests on scenarios with the
RandomMCFP and the RandomWE oracle yield bad accuracy values over all benchmarks. This is
intuitive as the target traffic equilibria follow a random structure that is completely independent of
the underlying context. Thus, the prediction accuracies on these scenarios are worse than the pre-
diction accuracies on the scenarios that are based on the EasyMCFP and the EasyWE oracle over all
tested benchmarks. Although the benchmarks can not use any reasonable contextual information,
the COAML benchmarks can leverage combinatorial information with respect to the origin and des-
tination location of trips in the network and, therefore, slightly outperform the pure ML benchmarks
for these scenarios.

32

	Introduction
	Generalized Wardrop Equilibria
	WardropNet—Learning data-driven Wardrop equilibria
	Pipeline architecture
	Numerical experiments
	Conclusion
	Generalized Wardrop Equilibria
	Statistical models
	Features

	Equilibrium Layers
	Background on latencies with Euclidean regularization
	Background on regularization by perturbation
	Background on piecewise constant latencies and extended network
	Background on polynomial latencies regularized by perturbation

	Traffic scenarios
	Wardrop equilibrium solvers
	Analytical solvers.
	Simulation-based solvers: MATSim

	WardropNet pipelines and ML baselines
	In-depth Results Discussion
	Complementary stylized experiments

