FrameShield: Adversarially Robust Video Anomaly

Detection
Mojtaba Nafez Mobina Poulaei *
Department of Computer Engineering Department of Computer Engineering
Sharif University of Technology Sharif University of Technology
mojtaba.nafez.990gmail.com m.poulaei@gmail.com
Nikan Vasei * Bardia Soltani Moakhar
Department of Computer Engineering Department of Industrial Engineering
Sharif University of Technology Sharif University of Technology
nikanvsiuni@gmail.com bardisoltan@gmail.com
Mohammad Sabokrou MohammadHossein Rohban
Machine Learning and Data Science Unit Department of Computer Engineering
Okinawa Institute of Science and Technology Sharif University of Technology
mohammad . sabokrou@oist. jp rohban@sharif.edu
Abstract

Weakly Supervised Video Anomaly Detection (WSVAD) has achieved notable ad-
vancements, yet existing models remain vulnerable to adversarial attacks, limiting
their reliability. Due to the inherent constraints of weak supervision—where
only video-level labels are provided despite the need for frame-level predic-
tions—traditional adversarial defense mechanisms, such as adversarial training,
are not effective since video-level adversarial perturbations are typically weak and
inadequate. To address this limitation, pseudo-labels generated directly from the
model can enable frame-level adversarial training; however, these pseudo-labels
are inherently noisy, significantly degrading performance. We therefore intro-
duce a novel Pseudo-Anomaly Generation method called Spatiotemporal Region
Distortion (SRD), which creates synthetic anomalies by applying severe augmenta-
tions to localized regions in normal videos while preserving temporal consistency.
Integrating these precisely annotated synthetic anomalies with the noisy pseudo-
labels substantially reduces label noise, enabling effective adversarial training.
Extensive experiments demonstrate that our method significantly enhances the
robustness of WSVAD models against adversarial attacks, outperforming state-of-
the-art methods by an average of 71.0% in overall AUROC performance across
multiple benchmarks. The implementation and code are publicly available at
https://github.com/rohban-lab/FrameShield.

1 Introduction

Video Anomaly Detection (VAD) is a fundamental component of surveillance systems, with applica-
tions spanning public safety, healthcare, and industrial monitoring, identifying rare and hazardous
events such as accidents, violence, and equipment malfunctions |Gopalakrishnan| [2012], [Sultani
et al.[[2018]]. In recent years, due to the labor-intensive nature of frame-level labeling, research
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Figure 1: Robustness Assessment of Video Anomaly Detection (VAD) Methods: A comparative
evaluation of SOTA VAD methods on well-established benchmarks: Shanghai, TAD, and UCF Crime,
under both standard conditions and adversarial attack scenarios. The results highlight the vulnerability
of existing SOTA methods and demonstrate the superior robustness and reliability of our proposed
method, FrameShield, in both clean and adversarial settings.

has shifted towards Weakly Supervised Video Anomaly Detection (WSVAD) Majhi et al.| [2021]]
Yang et al.| [2022]] Jia et al.| [2023]] . Ensuring robustness against adversarial attacks is crucial for
deploying machine learning models in critical and high-reliability scenarios Rony et al.|[2019]]. These
attacks introduce subtle, almost imperceptible perturbations into the input video, causing models
to misclassify normal frames as anomalies and vice versa. Although SOTA VAD methods have
demonstrated near-optimal performance under standard conditions, their susceptibility to adversarial
perturbations results in substantial performance degradation, as illustrated in Figure[I] raising serious
concerns about their reliability and robustness in real-world applications.

Despite advances in VAD, WSVAD’s adversarial robustness remains largely unexplored. Enhanc-
ing its robustness presents significant challenges. First, current WSVAD methods rely heavily on
pretrained feature extractors like 13D |Carreira and Zisserman|[2017]], C3D [Tran et al.|[2015]], Swin-
Transformer Liu et al.|[2021]], and CLIP Radford et al.|[2021], which, despite strong representational
power, are highly susceptible to adversarial attacks. Second, adversarial training (AT)—a widely
used defense mechanism for improving model robustness through the augmentation of training data
with adversarial examples—faces unique challenges in WSVAD. This is mainly due to the inherent
constraints of the Multiple Instance Learning (MIL) framework, where only video-level labels are
available during training, while frame-level predictions are required during inference Jafarinia et al.
[2024].

In WSVAD, MIL-based loss functions are commonly employed, where an aggregator function such
as max pooling is applied to frame-level outputs to produce a video-level prediction that matches
the available label, enabling cross-entropy loss for training [Sultani et al.|[2018]]. During adversarial
training, perturbations are applied to the entire video. However, only the features selected by the
aggregator such as the maximum-valued feature are adversarially influenced, since the gradient
primarily flows through that specific component. This design introduces a critical vulnerability.
During training, perturbations are applied only to the features chosen by the aggregator (e.g., the
maximum). In contrast, during inference, attackers are not constrained in this way and can manipulate
entire frames, producing more localized and impactful perturbations across all features. The absence
of frame-level annotations in training constrains adversarial example generation to video-level
supervision, leading to weaker perturbations that reduce the robustness of WSVAD models against
attacksMirzaei et al.|[2024a]],|Chen et al.|[2021]]. We provide a theoretical analysis of this phenomenon
in Section 4] demonstrating how max-based aggregation neglects perturbations on non-maximal
frames, leaving them exposed to attacks during inference.

To address these limitations, we propose FrameShield, a novel end-to-end adversarial training pipeline
designed to address the limitations of pretrained models by fine-tuning the feature extractor. The
training process is structured into two main phases. First, we perform standard training using a
simple yet effective WSVAD method, generating predicted labels that serve as pseudo-labels. In the
second phase, we employ these frame-level pseudo-labels to perform adversarial training, crafting
stronger adversarial examples to enhance model robustness. However, as shown in Table |2} the
localization performance of SOTA WSVAD methods on the anomaly segments of benchmarks
remains suboptimal, often barely surpassing random detection. Our method similarly struggles with
anomaly localization, producing noisy pseudo-labels that lead to false positives and false negatives,
particularly in anomalous videos. In contrast, all frames of normal videos are consistently labeled



without errors. As a result, the presence of noisy pseudo-labels leaves our method vulnerable to
adversarial attacks on anomaly videos |Dong et al.|[2023].

To address this vulnerability, we present Spatiotemporal Region Distortion (SRD), an innovative
Pseudo-Anomaly Video Generation method designed to produce synthetic anomalies with accurate
frame-level annotations. SRD works by randomly selecting an intermediate frame from a normal
video, utilizing Grad-CAM [Selvaraju et al.| [2017] to identify the foreground objects, and then
performing multiple harsh augmentations on the largest connected component within that region.
To simulate the appearance of moving anomalies throughout the video sequence, we introduce
motion irregularities Zhu and Newsam| [2019], |Yang et al.|[2021] by defining a randomly curved
vector, directing the corrupted region’s displacement across consecutive frames with additional harsh
augmentations. This technique enables the generation of synthetic anomaly videos with precise
frame-level labeling, eliminating the need for extra supervision and enhancing adversarial training.
By merging these accurately labeled synthetic anomalies with insights into real anomaly distributions
derived from pseudo-labels, we introduce our adversarially robust WSVAD framework, FrameShield.

Contribution We introduce FrameShield, the first adversarial training pipeline specifically designed
to enhance the robustness of WSVAD models against adversarial attacks. Our method employs frame-
level adversarial training within a weakly supervised setup, leveraging real anomaly distributions
from pseudo-labels and mitigating false positives and negatives error through Spatiotemporal Region
Distortion (SRD) for precise frame-level annotations. We theoretically justify the superiority of
supervised adversarial training over MIL-based approaches. FrameShield is evaluated against strong
attack methods, including PGD-1000 Madry et al.|[2017]], AA [Croce and Hein|[2020], and A*|Liu
et al|[2022]. Experimental results, on average across well-established benchmarks, demonstrate a
near 53% improvement in overall AUROC for robust performance and 68.5% in anomaly segments,
while maintaining competitive performance on standard setup.

2 Related Work

VAD is vital in surveillance, public safety, and automated monitoring. Traditional fully-supervised
methods demand costly frame-level annotations due to the rarity of anomalies. WSVAD addresses
this by using only video-level labels, leveraging Multiple Instance Learning (MIL) to treat each video
as a bag of frames, assuming anomalies exist in positive samples. Early MIL-based VAD methods
faced challenges with noisy labels and weak temporal modeling |Sultani et al.| [2018]]. Improvements
followed with noise suppression, temporal modeling (e.g., MGFN Chen et al.|[2022]]), dual memory
units (UR-DMU [Zhou et al.|[2023]]), and unbiased training (UMIL |Lv et al.| [2023]]) through feature
clustering and contrastive loss. Recently, Vision-Language Models (VLMs) like CLIP enhanced
anomaly detection by capturing visual and semantic cues Joo et al.|[2023],|Wu et al.| [[2024],/Chen
et al.| [2023]]. However, WSVAD models remain vulnerable to adversarial attacks, as they rely
on non-robust pre-trained backbones (e.g., I3D, C3D, Swin Transformer, CLIP)|Schlarmann et al.
[2024], (Chen et al.|[2019], |Li et al.| [2021]]. The lack of frame-level annotations further complicates
adversarial defense, exposing models to real-world threats. For further information and detailed
discussion of the related works, please refer to Appendix [M]

3 Preliminaries

Weakly Supervised Video Anomaly Detection (WSVAD): Video Anomaly Detection (VAD) is
the task of identifying unusual or abnormal events within a video and determining their temporal
locations at the frame level. In the WSVAD setup, only video-level supervision is available during
training, indicating whether a video contains anomalies, without providing specific frame-level labels.
During inference, a model Fg processes a video V' containing /V frames and generates an anomaly
score S;(Fo; V) for each frame i. If the score of a frame surpasses a predefined threshold, that frame
is classified as anomalous; otherwise, it is considered normal.

Adversarial Attack on Video Anomaly Detectors: Adversarial attacks, commonly studied in the
context of classification tasks, involve intentionally modifying an input sample = with its correspond-
ing label y to generate a new sample x* that increases the model’s prediction error by maximizing
the loss function ¢(z*; y) [Yuan et al.|[2019], Xu et al.[[2019]]. The resulting input * is referred to as
an adversarial example, and the difference ©* — x is called the adversarial perturbation. To ensure



that the adversarial example remains semantically similar to the original input, the perturbation is
constrained such that its /,,-norm does not exceed a predefined threshold e. Formally, an adversarial
example satisfies the condition z* = arg maxy:. |z /||, <e £(2';y) One of the most commonly used
and effective techniques for crafting adversarial examples is the Projected Gradient Descent (PGD)
method Madry et al.|[2017]], which iteratively updates the input in the direction of the gradient sign
of £(x*; y) using a step size a.

In this work, we adapt the adversarial attack paradigm to the domain of Video Anomaly Detection
(VAD), introducing a targeted, task-specific attack that manipulates videos based on the anomaly
scores of individual frames, rather than optimizing against an overall loss function—most existing
methods in WSVAD rely on MIL-based losses. Our goal is to mislead the model by increasing
the anomaly scores of normal frames and decreasing those of abnormal frames, which we
experimentally demonstrate to be a more effective form of attack (Table[I4). The attack is formulated
as follows. Starting from the original video V;* = V, we iteratively update the adversarial video
using the rule:
1 =V +Y -a-sign(VyS(Fe; Vi),

where S(Fg; V;*) denotes the anomaly scores predicted by the model F for each frame of the video
V7, and o is the step size. The vector Y is defined such that Y; = 41 for normal frames and ¥; = —1
for anomalous frames, with ¢ indexing the frame position.

4 Methods

Theoretical Motivation. We hypothesize that using max as the MIL aggregator results in weak
attacks on instances, or frames. Note that by denoting x = (x1,...,xx) as k video frames, the
gradient of loss with respect to the input x becomes:

vwl(max(f(ml)a ey f(xk»vy) = l/(fa y)vxf(‘rj>7

where j is the index of the frame leading to the maximum, i.e. j = argmax; f(z;) for the specific
input x. This results in the gradient-based attack to be applied only on a single frame. Once such
attack is used for training, the base classifier f would become robust with respect to a subset of frames,
i.e. only those with maximum score. On the other hand, there could be other frames ;' # j, where
f(z;+) is also high, though be a bit smaller than f(z;). The attack does not consider such frames,
and if z; does not follow the same distribution as x;, the model adversarially trained base classifier
based on this attack would fail to generalize robustness on z ;.. One could use other soft versions
of the max, such as Log-Sum-Exp (LSE) to mitigate this issue. However, our experiments in Table
[3lindicate that although LSE outperforms the max function, it remains ineffective in reducing the
performance of clean-trained models to zero under adversarial attacks. We note that such operators
decrease model sensitivity to a single/small number of frames.

For these reasons, we prefer training attacks that are applied on every single frame but does not alter
the max operator to not compromise the model sensitivity to outliers. This could be achieved by
directly attacking f(x;) for all i. Here, the attack is designed based on:

L:= max I(f(zi+6), f(xi)), ¢))

ll6ill oo <€

i.e. make the model to not change its original prediction for every frame in a given input video. Here,
we consider f(z;) as a pseudo-label and design the attack based on it. The loss in Eq. [I] closely
resembles what is known as the “boundary error,” as opposed to “natural error” in the so-called
TRADES method Zhang et al.|[2019a]]. Such attacks could serve as a regularization for robustness.
Here, one could aim for optimizing the standard error added by the adversarial loss in Eq. [T|to achieve
a better trade-off between the standard and adversarial errors. This loss is indeed was shown to be an
almost sharp upper-bound on the difference between the robust risk and optimal standard risk|Zhang
et al. [2019a]:

Rrob(f) - ,R’:Lat S ¢_1(Rl(f) - R?) + E(L)7

where R, and R, ., represent the robust and optimal standard risks, respectively. Furthermore,
is a non-decreasing function, and R; represents the risk with respect to the loss function /, and L is
defined in Eq. [T} Therefore, this loss could be an excellent alternative in weakly supervised scenarios
where the ground truth labels are missing for many instances.
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Figure 2: Overview of the FrameShield Framework: (1) The WSVAD training set is constructed
using frame-level labels for normal data and frame-level pseudo labels for weakly labeled real
anomaly data. Additionally, the Spatiotemporal Region Distortion (SRD) module generates pseudo-
anomaly samples with precise frame-level annotations, further augmenting the training set with
adversarial perturbations. (2) Two predefined prompts, "normal" and "anomaly," are used to extract
text embeddings from the frozen text encoder. (3) Training videos are segmented into chunks and
processed by the XClip-based encoder. The dot product between each chunk’s feature representation
and the text prompt embeddings is computed to obtain normality and abnormality scores, optimizing
the network through chunk-level cross-entropy loss.

Overview. Current WSVAD methods exhibit significant vulnerability to adversarial attacks. Our
experiments and analysis of the MIL-based loss function in Table [3]and Section [6]underscores the
necessity of frame-level labeling to enhance adversarial robustness. To address this challenge, we
introduce FrameShield, a novel approach that strengthens model resilience by leveraging weakly
labeled real abnormal data through pseudo-label generation and precisely labeled chunk-level pseudo-
anomalies. FrameShield operates in two main stages: first, the WSVAD model undergoes standard
training using an MIL-based loss function, allowing it to learn anomaly patterns effectively. This
learned knowledge is then utilized to generate pseudo labels for the anomaly subset of the training
data. In the second stage, the adapted WSVAD model is adversarially trained with both pseudo labels
and pseudo anomalies, providing more granular supervision at the frame level and improving its
robustness against adversarial manipulations. The following sections provide a detailed breakdown
of each stage in FrameShield’s training pipeline.

4.1 First Phase: PromptMIL Training

Our proposed Weakly Supervised Video Anomaly Detection (WSVAD) method, PromptMIL,
partitions each video into m chunks, denoted as v;, where ¢ € {1,2, ..., m}. We employ X-Clip Ma
et al|[2022] as the feature extractor, represented as Fg. Each video chunk v; is processed through
Fo, generating a corresponding feature vector f;.

Additionally, we extract feature vectors for two specific text prompts: '"Normal'' and '""Abnormal",
using the X-Clip text encoder. For each video chunk, the dot product is computed between its feature
vector f; and the feature vectors of the two text prompts. We then apply a softmax function to produce
a probability distribution that represents the likelihood of the chunk being normal or abnormal:

Si(Fe; V), (1 = Si(Fe;V)) = softmax(f; - to, f; - t,,) 2

where Fo represents our FrameShield model, and t,, and t, are the text feature vectors for "Normal"
and "Abnormal," respectively. Here, S;(Fo; V') denotes the predicted anomaly score for the i-th
chunk. After processing all chunks, we obtain the normality and abnormality probabilities for
each chunk. We then aggregate the anomaly scores across all chunks using a Multiple Instance
Learning (MIL) max aggregator, which selects the maximum anomaly score from the chunks. This
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Figure 3: Visualization of Spatiotemporal Region Distortion (SRD): A synthetic anomaly genera-
tion method for precise frame-level labeling, applying harsh augmentations to Grad-CAM-identified
foreground regions and simulating motion irregularities with random curved vectors across frames.

aggregation step is followed by a Binary Cross-Entropy loss calculation, which is directly applied
to the maximum anomaly score rather than summing over all chunks:

L =BCE(max(S1(Fo;V),S2(Fe;V),...,Sm(Fo; V)),y) 3

where m is the total number of chunks, and y is the true label of the video. This formulation
ensures that the model is optimized based on the highest anomaly score across the chunks, which is
particularly effective for identifying the most critical abnormal segments in the video.

Inference. During inference, the video is similarly partitioned into m chunks and processed through
the feature extractor Fig. For each chunk, we perform the dot product operation with the text prompts
and apply the softmax to obtain the normality and abnormality scores. Chunks with abnormality
score > 7 = (.5 are labeled abnormal; others are normal. Frame-level predictions are obtained by
duplicating each chunk’s score across its frames. An ablation on 7 is provided in Appendix [D]

Pseudo Label Generation. Once the PromptMIL model is trained, we utilize it to generate pseudo
labels for each chunk of the anomaly videos in the training set. Notably, frames in normal videos
are inherently labeled as normal and therefore do not require pseudo labeling. At this stage, our
objective is to label the training data—a task that is inherently less challenging, as the model has
already been trained on it. Details regarding the alternative methods for pseudo-label generation and
the performance evaluation of our PromptMIL model can be found in Appendix [B]

4.2 Second Phase: Adversarial Training

During this training phase, we conduct adversarial training on a constructed fully supervised VAD
model by leveraging precise chunk-level labels for normal videos, alongside generated pseudo-labels
for real abnormal chunks. Additionally, we incorporate exact chunk-level annotations for the pseudo-
anomalies generated by our Spatiotemporal Region Distortion (SRD) method. This approach is
specifically designed to mitigate label noise within the pseudo-labeled data, enhancing the model’s
robustness and accuracy. The following sections provide a comprehensive breakdown of our pseudo-
anomaly generation process, the detailed training procedure, the employed loss functions, and the
specifics of the adversarial training strategy.

Spatiotemporal Region Distortion (SRD). Based on our observations in Table [5]and the analysis
presented in Appendix [F} we found that solely relying on adversarial training with our generated
pseudo-labels is ineffective due to the presence of false positives and false negatives, which hinder
proper optimization. To address this issue, we propose a novel yet straightforward pseudo-anomaly
generation method called Spatiotemporal Region Distortion (SRD), designed to provide anomalies
with precise frame-level annotations and rectify the errors in pseudo-labeled videos.

We recognize that an effective pseudo-anomaly in the video domain should meet three key criteria.
First, there should be a high likelihood that the distorted data appears abnormal. Second, the generated
data should be near normal samples’ distribution, sharing similar semantic and stylistic attributes.
This aligns with existing literature on adversarial robustness, which emphasizes the benefits of



Table 1: Frame-level detection performance (% AUROC) of various Video Anomaly Detection (VAD)
methods compared to FrameShield across multiple benchmarks, evaluated under both clean settings
and adversarial attacks setup (PGD-1000, ¢ = ﬁ) over the entire test set (AUC)po).

Method Attack Dataset

UCSD Ped2 Shanghai TAD UCF Crime MSAD
RTFM Clean / PGD 98.6/2.4 97.21/85 89.6/63 85.7/17.3 86.6/10.0
TEVAD Clean / PGD 98.7/5.8 98.1/84 923/7.6 84.9/0.0 86.82/6.5
MGFN Clean / PGD 96.3/5.0 93.9/7.1 88.3/9.5 84.3/11.8 84.9/12.1
Base MIL  Clean /PGD 92.3/173 95.2/0.6 89.1/0.9 80.7/4.6 80.5/1.3
UMIL Clean / PGD 94.2/6.9 96.8/2.8 92.9/3.0 86.8 /4.7 83.8/6.1
UR-DMU  Clean/PGD 97.3/4.1 96.2/11.2 -/- 86.75/6.7  86.12/10.2
VAD-CLIP Clean/PGD 98.4/6.3 975/3.6 92.7/5.1 88.0/8.2 -/ -
Ours Clean/PGD 97.1/81.3 895/87.1 85.1/77.2 80.2/78.7 78.9/176.2

Table 2: Frame-level detection performance (% AUROC) of various Video Anomaly Detection (VAD)
methods compared to FrameShield across multiple benchmarks, evaluated under clean settings and
adversarial attacks setup (PGD-1000, ¢ = 2:2) on the anomaly sections of the test set (AUC4).

255
Method Attack Dataset
UCSD Ped2 Shanghai TAD UCF Crime MSAD

RTFM Clean/PGD  98.01/5.1 64.31/85 53.08/50 63.86/102 72.35/3.6
TEVAD Clean/PGD  98.20/7.5 679/10.5 60.5/7.2 60.3/2.6 71.6/7.8
MGFN Clean / PGD 96.3/4.3 669/78 51.56/11.7 649/133 74.53/9.0
Base MIL Clean / PGD 90.4/8.6 63.5/3.3 56.5/4.2 60.6 /4.7 63.5/3.2
UMIL Clean / PGD 91.3/7.2 69.1/5.9 65.8/5.8 68.7/6.2 72.2/8.3
UR-DMU  Clean/PGD 93.5/5.0 65.7/10.4 -/- 68.82/72 68.4/17.3
VAD-CLIP Clean/PGD 96.9/5.7 70.2/5.9 61.9/8.3 69.3/8.0 -/-
Ours Clean/PGD 94.3/91.3 623/61.9 50.9/30.0 60.1/53.4 64.4/60.2

decision boundary samples that are near the distribution for enhancing model robustness Xing et al.
[2022]. Finally, it is crucial to incorporate temporal characteristics into the anomalies, reflecting
unexpected variations over time, such as abrupt speed shifts, sudden motion disruptions, or irregular
event sequences that disrupt the normal flow of activities.

Building on our insights into pseudo-anomaly generation in the video domain, we propose Spatiotem-
poral Region Distortion (SRD). SRD begins by randomly selecting a continuous sequence of frames
from a normal video and extracting the initial frame. To identify object regions, Grad-CAM is applied
using a pre-trained ResNet18 |He et al.| [2016]], Nafez et al.|[2025]] model, effectively highlighting
the most salient foreground areas. The resulting saliency map is then thresholded to isolate the most
prominent features, after which the largest connected component is computed. A bounding rectangle
is fitted around this region (with some randomness introduced for generalization), serving as the
foundation for a binary mask. Finally, we apply k harsh augmentations, randomly chosen from a
predefined set of N aggressive transformations known to disrupt semantic integrity, as supported
by prior research |Sinha et al.| [2021]],|DeVries and Taylor|[2017]], Ghiasi et al. [2021]], [Zhang et al.
[2018]], Mirzaei et al.| [2024b, [2025]]. These augmentations are applied exclusively to the masked
region, maximizing the chances of the transformed video being perceived as abnormal. For further
details, please refer to Appendix A.

To introduce temporal characteristics into the anomaly, SRD defines a randomly curved vector that
originates from the center of the rectangle and extends in a random direction. The masked region
is then duplicated, distorted with a set of new augmentations, and positioned in the subsequent
frame according to the vector’s trajectory. This movement progresses step by step through the frame
sequence, with each step covering a distance proportional to the vector’s total length divided by the
number of frames in the sequence. This synchronized motion effectively simulates spatiotemporal
anomaly propagation throughout the video. An illustrative example of SRD applied to a video
sequence is presented in Figure[3]



Table 3: Frame-level detection performance (% Table 4: Frame-level detection performance (%
AUROC) of various aggregation methods under AUROC) of adversarial attacks (¢ = %) on

adversarial (PGD-1000, ¢ = 2?)5) conditions, our method across three datasets. AUCq and
evaluated only on abnormal test videos (AUC4). AUC| refer to overall and abnormal-only AUC,
respectively.
Aggregator TAD UCF Crime MSAD
Max 454 51.2 48.6 Dataset PGD-1000 AutoAttack A3
Log-Sum-Exp 43.8 39.3 43.0 ATT 3 C
SmoothMax 497 487 47.1 AUGo AUC, AUC, AUC, AUCo AUCA
ABMIL (Attention)  43.6 452 445 TAD 77.2 30.0 73.1 27.3 73.6 272
Frame-level 04 0.0 06 UCF Crime 787 534 721 503 715 487
MSAD 762 602 747 582 736 569

Training Process. In this phase, we leverage the availability of frame-level annotations for normal
videos, real abnormal videos, and the pseudo-anomaly videos generated by SRD. Unlike traditional
MIL-based training, which relies on video-level loss functions, we shift to a fully supervised learning
paradigm. This enables the model to learn more granular representations by directly optimizing
chunk-level predictions. As illustrated in Figure[2] the loss function is computed independently for
each chunk, allowing for fine-grained supervision:

Lenunk—wise(V,Y) =Y BCE(S;(Fo; V), i) “)
i=1

where m is the total number of chunks, and y; is its corresponding ground truth label. Additionally,
Y denotes the complete set of chunk-wise labels. This chunk-wise cross-entropy calculation ensures
that the model is updated with finer granularity. Moreover, this supervised strategy allows us to apply
strong adversarial perturbations to the input video during training, effectively building a more
robust VAD model against adversarial attacks.

Adversarial Training of WSVAD. Given an input video sample V, an adversarial version V,qy is
crafted by introducing a perturbation §* generated through the PGD-10 attack. This perturbation is

constrained by the /., norm with € = % and is optimized according to our chunk-wise loss function:
0" = argmax Lehunk-wise(V +90,Y),  Vigy =V 40" 3)
6]l <e

We have predefined chunk-wise labels for both anomalies and pseudo-anomalies, denoted as Y,
which are utilized during training. The adversarial training follows a min—max optimization strategy,
aiming to adjust the model parameters © to minimize the expected loss over adversarially perturbed
data samples from the training batch B:

min E(V,Y)GB max Echunk_wise(v + (5, Y) . (6)
© l19]oc <e
Analysis of the ¢ Value for Attack and Training. In video anomaly detection models, the input
typically consists of high-dimensional video sequences, often containing at least 100 frames, each
with a resolution of 224x224 pixels. Due to the large size of these inputs, adversarial perturbations
tend to be substantial, which can destabilize adversarial training|Sharma and Chen|[2018]]. To mitigate
this, some approaches like [Shaeiri et al.|[2020] have explored gradually increasing the value of e.
The performance of this strategy is detailed in Appendix [E] In our experiments, we adopt an € value
of % as the default setting for training and evaluation. To validate this choice, we conducted an
experiment on the Shanghai dataset, which provides frame-level annotations for the training set.
Initially, we trained our framework on fully supervised data, representing the optimal scenario. In
this setup, the model achieved near-perfect performance across both overall and anomaly-specific
metrics. However, when we trained the model using higher e values of % and %, the model’s
standard detection performance, even without adversarial attacks, dropped to near-random levels.
In contrast, with € = ;{;f,), the model maintained stable training and exhibited robust performance

against adversarial attacks. Further details of this experiment can be found in Table[I0]

S Experiments

To demonstrate the effectiveness of FrameShield, we conducted extensive experiments across several
well-established benchmarks in the VAD domain. We compared our approach with various SOTA



Table 5: Frame-level detection performance (% AUROC) comparing the baseline with our proposed
contributions: Pseudo Anomaly, Pseudo Label, and their combination. AUCp and AU Cs represent
the AUC computed on the overall test set and only on abnormal test videos, respectively, under clean
and adversarial (PGD-1000, e = %5) conditions.

255
Method Attack TAD UCF Crime MSAD
AUCo AUCy AUCo AUCy AUCo AUCH
Pseudo Anomaly Clean/PGD  75.2/703 53.7/18.7 72.6/682 599/394 67.5/62.0 62.0/49.7
Pseudo Label Clean/PGD 88.2/732 52.6/7.1 83.1/71.3 60.7/154 80.6/642 60.9/21.7

Pseudo Anomaly + Pseudo Label Clean/PGD 85.1/77.2  509/30  80.2/787 60.1/53.4 789/76.2 064.4/60.2

methods, reporting AUROC metrics for both standard setups and adversarial attack scenarios. The
results for the complete test sets of these benchmarks, denoted as AUC, are presented in Table
while the performance metrics specific to the anomaly sections of the test sets, denoted as AUC 4,
representing a more challenging evaluation, are detailed in Table 2] These tables highlight the
shortcomings of existing SOTA methods and emphasize the enhanced robustness and effectiveness
of our proposed approach. A detailed comparison with recent multimodal LLM-based methods is
provided in Appendix [K] In Appendix [[] we further evaluate FrameShield under black-box attack
settings, and Appendix [N] presents comparisons with adversarially trained versions of baseline VAD
methods to ensure fairness in evaluation. Collectively, all experiments consistently confirm the
robustness and overall superiority of FrameShield.

Analyzing Results. As shown in Tables[I|and 2] prior SOTA methods such as UMIL, RTFM, and
MGEFN experience significant performance degradation under adversarial conditions, despite achiev-
ing strong results on clean data. These shortcomings motivated the development of FrameShield, our
proposed solution. On average, FrameShield improves robust detection across various datasets by up
to 71.0%. As highlighted in previous research, a slight reduction in clean performance is generally
considered an acceptable trade-off for substantial improvements in robustness (see Appendix [O|for
further discussion).

Implementation Details and Dataset. For training, we used a learning rate of 8 x 10~6 with a chunk
size of 16 frames. The model was trained for 40 epochs using the AdamW optimizer, which effectively
incorporates weight decay. To schedule the learning rate, we applied a Cosine scheduler, which
progressively reduces the learning rate following a cosine decay pattern. This approach promotes
smoother convergence and improved generalization. We evaluate our method on well-established
benchmarks: MSAD [Zhu et al.|[2024]], UCF-Crime Sultani et al.| [2018]], ShanghaiTech Liu et al.
[2018]], TAD [Lv et al. [2021]], and UCSD Ped2 Mahadevan et al.| [2010]]; additional details are
provided in Appendix [A] In the adversarial scenario, we assess each method using the /., PGD-1000
attack with a perturbation magnitude of € = 92 The evaluations under the [ norm are provided in

255
Appendix [G|

6 Ablation Study

In this section, we present a detailed analysis our method’s component and evaluate their effectiveness.

Ablation on Pseudo Supervision Components. To evaluate the effectiveness of our proposed
pseudo-label generator (PromptMIL) and pseudo-anomaly generator (SRD), we conduct an ablation
study, as shown in Table [5] In this experiment, we train and evaluate FrameShield under three
configurations: using only pseudo-label supervision, using only pseudo-anomaly generation, and
using our default setup that incorporates both. The results demonstrate that integrating real anomaly
information with precisely generated pseudo-anomaly labels substantially enhances the model’s
adversarial robustness.

Video-Level Attack vs. Frame-Level Attack In the VAD domain, most models operate at the video
level, utilizing various aggregators in conjunction with MIL-based loss functions for video-level
supervision. As presented in Table 4] we train our PromptMIL model under standard conditions,
without adversarial training, employing different aggregators such as Max, LSE, SmoothMax, and
ABMIL. Following training, we apply adversarial attacks targeting the final video-level scores of this
clean model. Our experiments indicate that even the most effective gradient-flow-based aggregators
are unable to degrade the model’s performance to the point of zero AUC. In contrast, our frame-level



adversarial attack succeeds in entirely deceiving the model, showcasing the superior effectiveness and
robustness of our proposed approach. This highlights the strategic advantage of shifting to frame-level
adversarial training, enabling stronger and more impactful adversarial perturbations. .

Advanced Attacks We employed the PGD attack Madry et al.| [2017]] for both the training and
evaluation phases of our model. To further demonstrate the flexibility and resilience of our proposed
method under various adversarial scenarios, we also assessed its effectiveness against several advance
attack strategies, including AutoAttack Croce and Hein! [2020] and A® (Adversarial Attack Automa-
tion) [Liu et al.| [2022] in Table ] Comprehensive details of our adaptation methods for these attack
types within the VAD context are provided in Appendix [} Notably, the training process remained
straightforward, consistently using the standard PGD-10 configuration to maintain simplicity and
practicality.

Additional Ablation Studies We conducted further experiments to evaluate the impact of the SDR
component, specifically analyzing the effects of Grad-CAM and Motion, as detailed in Appendix [H]
Additionally, we performed an ablation study on training our FrameShield model with MIL-based
adversarial example generation, which is discussed in Appendix [} Furthermore, we investigated the
use of alternative WSVAD methods as pseudo-label generators, with the results also presented in

Appendix [C]

7 Conclusion

We introduced FrameShield, a novel approach to enhance adversarial robustness in Weakly Supervised
Video Anomaly Detection (WSVAD). Our method employs frame-level adversarial training with
chunk-wise pseudo-labels generated from weakly labeled data and introduces Spatiotemporal Region
Distortion (SRD) for precise frame-level anomaly labeling. We demonstrated the vulnerabilities of
SOTA VAD models under adversarial attacks and bridged this gap with FrameShield, establishing a
stronger defense mechanism for robust video anomaly detection in real-world scenarios.
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A Dataset Details

e MSAD: The MSAD (Multi-Scene Anomaly Detection) dataset is a benchmark for video
anomaly detection across a variety of real-world scenes. It contains a total of 920 videos,
comprising 240 abnormal and 680 normal samples. The dataset is split into a training set
with 480 videos (120 abnormal / 360 normal) and a test set with 440 videos (120 abnormal /
320 normal). The videos span multiple surveillance scenarios, including indoor and outdoor
environments, and feature diverse anomalies such as Assault, Explosion, Fighting, Fire, and
more. MSAD is designed to support both frame-level and video-level anomaly detection
tasks, making it suitable for evaluating generalization across heterogeneous scenes.

* UCF Crime: UCF-Crime is a large-scale dataset for surveillance video analysis, comprising
1900 videos that span 13 categories of anomalous events, such as explosions, arrests, and
road accidents. The training set includes video-level annotations with 800 normal and 810
abnormal videos, while the testing set provides frame-level labels for 140 normal and 150
abnormal videos. Due to computational constraints, we used only 50% of the dataset in
our experiments. To ensure balanced representation, we randomly selected the samples
uniformly from both normal and abnormal classes. The final dataset used for training
included 410 normal and 410 abnormal videos, and the test set comprised 75 normal and 75
abnormal videos.

* ShanghaiTech: The ShanghaiTech dataset is a medium-scale collection of street surveillance
videos captured from fixed angles, featuring 13 different background scenes and a total of
437 videos—330 normal and 107 anomalous. Originally intended for anomaly detection
using only normal training data, the dataset is restructured for weakly supervised learning by
incorporating 63 anomalous videos into the training set. This results in 238 training videos
(63 abnormal and 175 normal) and 199 testing videos (44 abnormal and 155 normal), with
both sets covering all 13 background scenes. We follow the same procedure to adapt the
dataset for weak supervision.

* TAD: The TAD dataset consists of real-world traffic scene videos, totaling 25 hours in
duration, with each video averaging 1,075 frames. It includes over seven types of road-
related anomalies. The dataset is divided into a training set of 400 videos and a testing set
of 100 videos, which includes 60 normal and 40 abnormal instances.

* UCSD-Ped2: The UCSD-Ped2 dataset is a small-scale surveillance dataset comprising
28 videos. It is traditionally used for unsupervised video anomaly detection (VAD), as its
training set contains only normal samples. However, to enable fair evaluation of weakly
supervised methods such as VAD-CLIP, we adopt a modified evaluation protocol inspired
by recent literature Zhu et al.|[2024]. Specifically, the dataset is restructured by randomly
selecting six anomalous and four normal videos for training, while the remaining 18 videos
(12 normal and 6 anomalous) are used for testing. This sampling process is repeated ten
times, and the results are averaged to obtain stable and unbiased performance estimates.
This setup allows weakly supervised models—which require video-level anomaly labels—to
be consistently evaluated on Ped2.

B Performance Evaluation of the PromptMIL Framework

In FrameShield, we first trained PromptMIL using a Multiple Instance Learning (MIL)-based ap-
proach with fixed prompts. (We chose not to apply prompt tuning, as we believe fine-tuning CLIP
reduces the benefits of prompt optimization for our task.) In the second stage, the trained PromptMIL
model was used to generate pseudo labels for the training set. These pseudo labels were then em-
ployed for adversarial training, effectively transitioning the framework to a fully supervised setting
by applying a chunk-level loss function.

To assess the effectiveness of this approach, we initially evaluated PromptMIL under clean (non-
adversarial) conditions. As shown in Table[6] the model achieves performance comparable to existing
state-of-the-art methods. It is important to note, however, that this evaluation is conducted on the test
set, whereas PromptMIL is used exclusively to generate pseudo labels for the training set, for which
ground-truth labels are not available.
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Table 6: Frame-level detection performance (%9 AUROC) of our PromptMIL model trained in the
first stage under clean (non-adversarial) condition. AUCp and AUC', represent the AUC computed
on the overall test set and only on abnormal test videos, respectively, under clean and adversarial

(PGD-1000, € = 22) conditions.

Method Attack TAD Shanghai MSAD
AUCy AUCH AUCy AUCA AUCo AUCA
PromptMIL Clean/PGD 90.3/34 557/2.6 964/2.0 67.1/47 812/02 685/3.6

Table 7: Frame-level detection performanc (% AUROC) with Pseudo Labels generated by various

methods under clean and adversarial (PGD-1000, ¢ = %) conditions over the entire test set (AUCp).

Method Attack TAD Shanghai MSAD

RTFM Clean/PGD 84.6/74.8 88.0/852 76.5/74.7
MGFN  Clean/PGD 86.2/78.1 89.1/86.8 79.5/77.3
UMIL Clean/PGD  85.6/76.0 91.3/885 77.5/75.4
Ours Clean/PGD 85.1/77.2 89.5/87.1 78.9/76.2

To further evaluate the robustness of our framework, we replaced our pseudo-anomaly generation
module with those from other leading techniques and assessed performance under adversarial training
scenarios. For additional details, refer to Appendix

C Alternative Pseudo-Labeling Strategies to the PromptMIL Framework

To validate the effectiveness of our PromptMIL model, we replaced our pseudo-anomaly generation
module with those from other leading techniques, such as MGFN, RTFM, and UMIL, while keeping
the second stage of the framework unchanged. As shown in Table|[/] the performance remains largely
consistent across these alternatives.

It is worth noting that PromptMIL is not considered a state-of-the-art model for pseudo-anomaly
generation. However, its results are comparable to—or in some cases better than—those achieved
using more advanced models. This outcome supports the hypothesis that pseudo labels generated for
the training set tend to yield strong results, even when the underlying model does not generalize well
to unseen test data.

D Analysis of Sensitivity to the Pseudo-Labeling Threshold 7

We conduct a comprehensive analysis of the pseudo-labeling threshold 7 used in our framework. As
discussed in the paper, one of the motivations behind the SRD module is to mitigate false positives
and false negatives during pseudo-label generation. The threshold 7 directly governs this balance:

* Lower 7 values (classifying more frames as normal) tend to increase false positives.

» Higher 7 values (classifying more frames as abnormal) tend to increase false negatives.

Since our task is binary classification, setting 7 = 0.5 serves as a natural and well-defined decision
boundary. In clean evaluation settings, model predictions are typically confident, so small changes in
7 (e.g., 0.4-0.6) have minimal effect on overall performance.

Within the adversarial training framework, particularly under strong attacks such as PGD, model
predictions become less confident. In these cases, false positives and false negatives during pseudo-
label generation become more consequential, and the choice of 7 plays a more critical role in balancing
these errors. Consequently, the model’s performance varies more noticeably across different threshold
values under attack conditions.

All results in Table 8| correspond to the adversarially trained model. The increased sensitivity to 7
under adversarial attacks reflects the amplified impact of pseudo-labeling errors in such challenging
scenarios. Overall, 7 = 0.5 achieves the best balance between clean and adversarial performance,
confirming it as a robust and principled choice within our framework.
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Table 8: Sensitivity analysis of the pseudo-labeling threshold 7. Results are reported as Clean / PGD
for both AUCqp and AUC,. Performance is stable around 7 = 0.5, while deviations cause more
variation under adversarial attacks.

Threshold (7) TAD Shanghai MSAD

AUCo AUCH AUCo AUCy AUCo AUCH
0.3 91.3/81.2 587/11.0 954/893 656/21.7 81.2/771 659/29.3
04 86.2/783 53.6/23.7 920/89.0 635/499 805/77.3 63.6/53.2
0.5 85.1/77.2 509/30.0 895/871 623/61.9 789/76.2 64.4/60.2
0.6 85.8/781 51.1/23.6 923/88.9 060.5/53.6 80.1/75.6 59.0/54.1
0.7 90.0/80.7 49.1/12.8 93.8/88.5 59.6/234 80.6/76.0 589/27.2

Table 9: Comparison of frame-level detection performance (%AUROC) between fixed and progres-

sively increasing e during adversarial training. Results show that gradually increasing e from % to

225% does not yield significant improvement over using a fixed .

Method Attack TAD Shanghai MSAD
AUCo AUCA AUCo AUCA AUCo AUCA

Gradually Increase ¢  Clean/PGD  86.2/73.0 51.3/31.7 88.1/86.5 61.2/593 79.4/759 65.1/59.3
Ours Clean/PGD 85.1/77.2 50.9/30.0 89.5/871 623/61.9 789/762 644/60.2

E Detailed Analysis of ¢ Values During Training and Testing

In this section, we analyze the effect of different € values. First, we explore a method aimed at
enhancing adversarial robustness for larger € values and high-dimensional data.

Shaeiri et al.|[2020], building on the intuition behind weight initialization strategies in deep learn-
ing—commonly effective in various optimization scenarios |L1 et al.| [2018]—propose a progressive
approach to adversarial training. Specifically, they suggest starting with a small perturbation magni-
tude € and gradually increasing it throughout training. As shown in Table[9} we implemented this
by linearly increasing € from £:L to 22 across epochs. However, the results indicate no significant

improvement over training with a fixed € value.

Next, we examine the impact of training with higher ¢ values in the context of Video Anomaly
Detection (VAD). We selected € = % for training and evaluation, as we observed that excessive
perturbation magnitudes can destabilize training and severely degrade even the clean performance of
the model. To validate this, we conducted an experiment on the Shanghai dataset, which includes
frame-level ground truth annotations for both the training and test sets. We trained FrameShield using
the real labels in a supervised setting. Under normal conditions (i.e., without attack), the model is
expected to perform well. However, as shown in Table training with € = % or e = % leads
to unstable behavior and poor clean performance. In contrast, training with lower € values results
in stable learning and satisfactory performance both under clean and adversarial conditions, thus

supporting our hypothesis.

F Effect of Label Noise in Adversarial Training

Adversarial training based solely on pseudo-labeled data is impractical due to the inherent inaccuracies
introduced by pseudo-labeling methods. These inaccuracies, typically in the form of false positives
(FP) and false negatives (FN), contribute to what is commonly referred to as label noise. To mitigate
this issue, we incorporate pseudo-anomalies into our training process.

In this section, we explain the effect of label noise and why we believe that label noise in the
adversarial training setup can be even more detrimental.

Label noise—especially in tasks involving anomaly detection—can significantly degrade the learning
process. False positives introduce normal instances that are incorrectly labeled as anomalous, while
false negatives cause true anomalies to be mistakenly treated as normal. In standard supervised
learning, such noise reduces classification accuracy and generalization. However, in adversarial
training, the impact is amplified for the following reasons:
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Table 10: Frame-level detection performance (% AUROC) of our model trained under different PGD
attack strengths (e values) on the fully supervised Shanghai dataset. All test-time PGD attacks in the
table (bold and black numbers) are performed with € = gé%' AUCq and AUC\ represent the AUC
on the entire test set and on abnormal test videos only, respectively.

Dataset Training-time e values

- 0 — 03 — 05 - 1 - 2
€ = 555 (Clean) €= 255 €= 255 €= 255 = 355

AUCo AUC, AUCo AUC, AUCo AUC, AUCo AUC, AUCo AUC,
Shanghai  98.1/2.1 83.6/14 962/828 753/60.6 954/90.1 71.6/67.2 068.1/261 069.7/154 63.4/239 653/12.9

€

Table 11: Evaluation of FrameShield’s robustness when trained using PGD-10 with an ¢, norm at

€= %, and tested against PGD-1000 attacks using #2 norms with varying e values. The results

indicate that the model maintains consistent robustness across different attack types.

€ TAD Shanghai MSAD
AUCo AUC, AUCo AUCy AUCo AUCH
Clean 851 509 895 623 789  64.4
e 796 342 857 600 764 599
o 784 312 845 598 753 580
g 658 205 704  5L7 629  49.3

255

First, consider a case where a real anomaly is mistakenly assigned a "normal” pseudo-label. Adver-
sarial training will push this instance deeper into the "anomaly" region of the feature space. However,
the loss function (e.g., cross-entropy) will penalize the model for predicting such an instance as
normal—even though the label is incorrect—thus introducing contradictory signals. Conversely, if
a normal sample is wrongly labeled as an anomaly, adversarial training will exaggerate its normal
characteristics. The model is then simultaneously forced to treat this increasingly normal instance as
"anomalous." These contradictions lead the model to overfit on noisy labels and attempt to learn a
complex, unstable decision boundary.

An interesting phenomenon we observed occurs when applying a MIL-based loss function with a
max-aggregator. If a false negative (i.e., an anomalous instance labeled as normal) is present in a
bag (e.g., a video with many frames), adversarial training tends to amplify the anomaly traits of that
instance. Consequently, the model assigns it a high anomaly score. Due to the max aggregation
strategy, this high-scoring instance dominates the bag-level prediction. The model then applies the
cross-entropy loss to force the prediction back toward "normal," despite the fact that the instance is
truly anomalous.

As a result, during training, false negatives are consistently selected during the aggregation step due
to the effect of adversarial perturbations. The loss is therefore repeatedly computed on incorrectly
labeled samples. This persistent misalignment between the label and the actual instance leads the
MIL loss under adversarial training to fail to train properly, ultimately preventing the model from
converging when noisy labels are present.

G Robustness Evaluation Against PGD Attacks with /; Norm

To evaluate the robustness of our model, we conducted an experiment in which FrameShield was
trained and tested using PGD attacks under the same ., norm with varying € values. Specifically,
the € used during training matched the one used during evaluation. As shown in Table|l 1] the results
demonstrate that FrameShield maintains strong performance across a range of e values, indicating its
robustness to different levels of adversarial perturbation.

H Component-wise Ablation Study of the SRD Module

In this section, we assess the effectiveness of the individual components of our SRD module. As
shown in Table we first replace the Grad-CAM-based foreground selection with a baseline that
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Table 12: Comparison between our Grad-CAM-based foreground selection and a random region base-
line. The results demonstrate that using Grad-CAM significantly improves foreground localization,
validating its effectiveness within the SRD module.

Method Attack TAD Shanghai MSAD

AUCo AUCA AUCo AUCH AUCo AUCh
Random Region Distortion Clean/PGD 81.0/66.2 51.6/19.8 84.2/783 060.4/475 73.6/65.9 060.7/47.1
Ours (Grad-CAM) Clean/PGD 85.1/772 509/30.0 89.5/87.1 623/61.9 789/762 64.4/60.2

Table 13: Performance comparison of our curved vector-based motion approach with two alternatives:
no motion and random location transfer. Our method consistently outperforms both, highlighting the
importance of structured temporal transformations in anomaly modeling.
Method Attack TAD Shanghai MSAD
AUCo,  AUC,  AUCo  AUCy  AUCo,  AUC,

No Motion Clean/PGD  779/53.2 503/9.7 825/724 60.2/288 71.6/589 59.9/31.2
Random Location Transfer Clean/PGD 82.3/64.1 50.3/21.8 82.1/752 0614/458 70.2/62.7 61.8/43.5
Ours Clean/PGD 85.1/ 772 50.9/30.0 89.5/871 62.3/61.9 789/76.2 64.4/60.2

selects a random region in the frame and applies a curved vector in a random direction. The results
demonstrate the clear advantage of our method in identifying foreground objects. Nonetheless, we
acknowledge that Grad-CAM is not an optimal solution; in future work, the foreground detection
component could be enhanced using more advanced models, such as pretrained object detectors.

To further assess the contribution of temporal modeling, we conducted additional ablation studies.
In these experiments, we replaced the curved vector-based motion with two alternative strategies:
(1) No Motion, and (2) Random Location Transfer. In the first setting, all frames were distorted in
the same region without any motion, but with newly applied harsh augmentations. In the second
setting, after distorting a region in the first frame of a sequence, we randomly selected a position in
the subsequent frame and pasted the distorted region from the first frame onto it, again applying a
new set of harsh augmentations. As shown in Table our method outperforms both alternatives,
highlighting the effectiveness of our temporal modeling strategy.

I Detail of adaptation methods for various attack

Adversarial attacks were initially introduced for classification tasks. These attacks involve adding
small, imperceptible perturbations to the input data of a neural network to increase its loss function.
In classification, the input is typically a single image, and the output consists of logits corresponding
to each class, representing the probability of the input being classified into a specific category. One
of the most widely adopted and well-established attacks in this domain is PGD-1000, which we
thoroughly describe in Section 3, including its adapted version for VAD. Subsequently, researchers
have proposed even more powerful attacks to further challenge model robustness—among the most
notable are AutoAttack and A3 (Adaptive AutoAttack). We also adapt these attacks to suit the VAD
setting by reinterpreting their classification-based evaluation strategies. In such settings, models
output class logits, and attacks typically optimize losses like cross-entropy or DLR. However, these
formulations do not directly translate to Video Anomaly Detection (VAD), where models output
continuous, chunk-wise anomaly scores rather than class probabilities. To adapt these attacks to VAD,
we define a task-specific loss function:

M
Lvan(V) = > Vi 8i(Fe; V) @)

m=1

Here Y; € {—1, 41} is the attack direction label: +1 for normal chunks (to increase score), —1 for
abnormal chunks (to decrease score), and m is the total number of chunks. We adapted AutoAttack by
replacing the cross-entropy and DLR losses in its APGD and FAB components with Lyap (V). The
DLR loss, which assumes at least three output logits, was removed entirely due to its incompatibility
with scalar outputs. The Square Attack component remained unchanged, as it operates independently
of the loss formulation and is inherently compatible with score-based tasks like VAD. The A*
framework was also adapted for the VAD setting. Unlike AutoAttack, which combines multiple
attack methods, A® is a standalone attack strategy that enhances robustness evaluation through two
core mechanisms: Adaptive Direction Initialization (ADI) and Online Statistics-based Discarding
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Table 14: Adversarial training results of PromptMIL using video-level perturbations generated by
a MIL-based attack with a Max aggregator. The results indicate no significant improvement in
robustness, underscoring the weakness of this adversarial training strategy.

Method Attack TAD Shanghai MSAD

AUCo AUCA AUCo AUC\ AUCo AUCy
MIL-Base Loss Adv Training Clean/PGD  86.2/26.1 527/59 873/371 59.7/152 79.1/26.6 65.0/11.3
Ours Clean/PGD  85.1/772 509/30.0 89.5/871 623/61.9 789/76.2 064.4/60.2

(OSD). To apply A® in the context of video anomaly detection, we retained our custom VAD-
specific loss function—used also in the PGD adaptation—that manipulates anomaly scores to degrade
detection performance. The ADI component accelerates convergence by learning model-specific
perturbation directions from successful restarts and reusing them to generate more effective adversarial
examples. Meanwhile, OSD improves efficiency by identifying and discarding hard-to-attack video
segments during the attack process, thereby reallocating computational effort toward easier-to-
attack samples. These two mechanisms work together within A to generate adversarial videos that
effectively degrade a model’s ability to distinguish between normal and abnormal chunks under a
limited computational budget.

J Training FrameShield with MIL-based Loss

As shown in Table 3, video-level adversarial attacks based on the MIL framework are relatively
weak and ineffective. To further investigate this limitation, we train our PromptMIL model using
a MIL-based loss function and adversarial examples generated through video-level perturbations,
utilizing a Max aggregator. As reported in Table [I4} this adversarial training strategy fails to enhance
model robustness, further confirming the inadequacy of using such weak adversarial examples for
training.

K Comparison with Multimodal LLLM-based Methods

Recent advances in video anomaly detection (VAD) have introduced multimodal large language
model (LLM)-based approaches such as Holmes-VAU [Zhang et al.| [2024]] and LAVAD |Zanella
et al.|[2024]], which integrate visual encoders with pretrained language models for video semantic
understanding. These methods can exhibit stronger general robustness to low-level pixel perturbations
than traditional MIL or feature aggregation models. To investigate whether such video-understanding-
based approaches are also vulnerable to adversarial perturbations, we conducted targeted adversarial
attacks on both Holmes-VAU and LAVAD under conditions consistent with our evaluation setup.

Both Holmes-VAU and LAVAD employ captioning-based pipelines in which visual encoders produce
embeddings that are then decoded into textual descriptions by LLMs. Specifically, Holmes-VAU
uses InternVL2-2B, combining the InternViT-300M image encoder with InternLM2-Chat-1.8B as
the language model. LAVAD adopts BLIP-2, which integrates a pretrained CLIP image encoder, a
Q-former, and OPT-6.7B as the text decoder.

Adversarial Attack Setup. We treated each captioning model as an end-to-end system and applied
PGD-1000 attacks to generate adversarial examples designed to alter the generated captions. For
Holmes-VAU, we uniformly sampled 12 frames from each video and used a prompt such as: “Could
you specify the anomaly events present in the video?” Under adversarial perturbations, we enforced
target captions to induce misclassification. For normal videos, we forced the model to output: “There
is an anomaly in the video; two cars have an accident.” For anomalous videos, we guided the model
to output: “There is no abnormal event; everything goes normal.”

To adapt the attack to the autoregressive decoding process of LLMs, the target captions were injected
into the context window rather than allowing the model to condition on its own previous tokens. A
similar procedure was applied to LAVAD, where adversarial frames were fed to the BLIP-2 model to
produce misleading captions subsequently used for downstream anomaly scoring.

Results and Analysis. We evaluated both models under PGD-1000 attacks on the UCF-Crime and
ShanghaiTech datasets and compared them with FrameShield. Results are summarized in Table T3]
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Table 15: Comparison with multimodal LLM-based video-understanding methods under PGD-1000
attack. Results are reported as Clean / PGD AUCgq (%). FrameShield maintains high robustness,
while Holmes-VAU and LAVAD exhibit substantial degradation under attack.

Method Shanghai UCF-Crime
Holmes-VAU 95.6/16.0  83.9/14.2
LAVAD 91.0/214 80.3/18.7

FrameShield (Ours) 89.5/87.1 80.2/178.7

Table 16: Evaluation of FrameShield under white-box (PGD-1000) and black-box (NES, Bandit)
attack settings. Results are reported as AUCo / AUCy (%). FrameShield maintains strong robustness
across both threat models.

Attack TAD UCEF-Crime MSAD

Clean 85.1/509 80.2/60.1 78.9/64.4
PGD-1000 (White-box) 77.2/30.0  78.7/53.4  76.2/60.2
NES (Black-box) 842/445 79.8/581  78.4/64.1
Bandit (Black-box) 83.5/439 79.3/577 77.9/63.8

Although multimodal LLM-based methods show stronger baseline robustness than traditional MIL-
based approaches, both are still highly susceptible to strong, targeted adversarial perturbations.
Notably, Holmes-VAU—processing 12 frames jointly—was more vulnerable than LAVAD due to its
higher input dimensionality. FrameShield achieved significantly higher robustness while maintaining
competitive clean performance.

These results indicate that although multimodal LLM-based frameworks like Holmes-VAU and
LAVAD possess enhanced semantic understanding and resilience to benign noise, they remain highly
vulnerable to carefully crafted adversarial perturbations. FrameShield consistently outperforms both
methods under attack, highlighting its effectiveness in preserving robustness against adversarial
manipulations targeting both visual and semantic cues.

L Evaluating FrameShield in the Black-box Setup

To further assess the robustness of FrameShield beyond the white-box setting, we evaluate its
performance under black-box adversarial attacks. Unlike white-box attacks—where the adversary
has full access to model parameters and gradients—black-box attacks assume limited knowledge,
relying only on model queries to estimate gradients. Although white-box attacks are less common in
real-world applications, they provide a rigorous benchmark for stress-testing robustness. Importantly,
models that demonstrate resilience in the white-box setting often maintain robustness against weaker
black-box perturbations.

To validate this hypothesis, we conducted black-box experiments using two representative query-
based attack algorithms: the Natural Evolution Strategy (NES) [Ilyas et al.| [2018]] and the Bandit
attack [[lyas et al.|[2019]. Both methods iteratively approximate gradients through queries without
direct access to model internals.

Table [T6] summarizes the results on three representative benchmarks. As expected, FrameShield
exhibits smaller performance degradation under black-box settings compared to white-box PGD-1000
attacks, confirming that robustness acquired through adversarial training effectively transfers to more
realistic threat models. These findings demonstrate that FrameShield maintains strong resistance to
both white-box and black-box adversarial perturbations.

M More Detailed Related Work

Video anomaly detection (VAD) is a critical computer vision task with real-world applications in
manufacturing, healthcare, and public safety, where detecting abnormal events such as accidents,
fights, or equipment failure can mitigate risks and prevent losses. However, annotating anomaly data
at the frame level is extremely expensive and time-consuming due to the rare and ambiguous nature
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of anomalous events. This challenge has motivated two dominant research paradigms: unsupervised
methods, which learn only from normal data, and weakly-supervised methods, where only video-level
anomaly labels are provided without precise temporal annotations. In recent years, the weakly
supervised video anomaly detection (WSVAD) setting has gained significant traction due to its good
balance between annotation burden and detection performance.

Most SOTA WSVAD methods leverage the Multiple Instance Learning (MIL) framework, treating
each video as a bag of instances (snippets) under the assumption that at least one snippet in an
anomalous video exhibits abnormal behavior. Although recent WSVAD methods have achieved
near-perfect performance on standard metrics, their vulnerability to adversarial attacks remains a
critical issue that threatens their reliability in real-world deployments.

Current WSVAD models predominantly rely on frozen pretrained architectures such as I3D, C3D,
SwinTransformer, and CLIP, which are originally trained on large-scale datasets. These models serve
to reduce dimensionality and extract meaningful embeddings for anomaly detection. However, they
are inherently susceptible to adversarial manipulations, as demonstrated by |[Schlarmann et al.| [2024]],
Chen et al.|[2019], IL1 et al.| [2021]], indicating a substantial gap in adversarial robustness within the
WSVAD landscape.

The introduction of WSVAD as a MIL-based problem began with Sultani et al.|[2018]], who proposed
a large-scale dataset alongside a straightforward yet effective MIL-based method that relies on
selecting snippets that look most suspicious. Despite its effectiveness, standard MIL approaches often
suffer from label noise and limited temporal granularity, which can impair detection accuracy.

To address these issues, [Zhong et al.|[2019]] reformulated WSVAD as a binary classification problem
with noisy labels and employed a graph convolutional network (GCN) to suppress noise. While
effective, this approach is computationally intensive and can produce an unconstrained feature
space. To overcome these limitations, [Tian et al.[[2021] proposed RTFM, which learns from feature
magnitudes—encouraging higher magnitudes for abnormal snippets—and introduced a Multi-scale
Temporal Network (MTN) to model both short- and long-range temporal dependencies, enhancing
robustness against noisy frames. Subsequently, MGFN |Chen et al.|[2022] improved the modeling of
temporal relations by employing a transformer-based glance-and-focus mechanism with a contrastive
loss to better distinguish between normal and abnormal patterns. Additionally, UR-DMU [Zhou et al.
[2023] introduced dual memory units and uncertainty modeling to better distinguish between normal
and anomalous data. Further advancements include UMIL [Lv et al.| [2023]] , which addresses the bias
in traditional MIL by proposing an unbiased training framework that leverages both confident and
ambiguous snippets. It applies feature-space clustering to identify latent pseudo-labels for uncertain
snippets and incorporates them into the training using contrastive loss and end-to-end fine-tuning.

A recent wave of research explores the integration of Vision-Language Models (VLMs) like CLIP for
WSVAD. These models leverage semantic richness and textual understanding to enhance anomaly
detection. For instance, UMIL utilizes CLIP as a feature extracto. CLIP-TSA Joo et al.| [2023]]
employs CLIP as a visual feature extractor and models long- and short-range temporal dependencies
through Temporal Self-Attention (TSA). Additionally, CLIP-VAD|Wu et al.|[2024] enhances anomaly
detection by incorporating extra supervision for different types of anomalies in videos (e.g., abuse,
arrest, assault, etc.) along with learnable prompts. It also integrates a Local-Global Temporal Adapter
(LGT-Adapter) to effectively capture both short-term and long-term dependencies. Furthermore,
TEVAD Chen et al.|[2023] proposes the use of SwinBERT (vulnerable backbone) for video captioning
to enhance semantic understanding. It then fuses these caption-based features with I3D-extracted
visual features through Multi-Scale Temporal Networks (MTN).

Overall, the evolution of WSVAD methods reflects a shift towards more sophisticated temporal model-
ing, enhanced feature extraction, and the integration of multi-modal approaches like vision-language
models. However, despite these advancements, the reliance on vulnerable feature extractors and
the lack of real frame-level labels hinder the practical application of adversarial training, leaving
these models notably unrobust and vulnerable to attacks.

N Adversarial Training of Baseline Methods

To ensure a fair comparison, we additionally adversarially trained several baseline methods using the
same adversarial training protocol as FrameShield. While the original versions of these models were
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Table 17: Comparison of adversarially trained baselines under clean and PGD-1000 attack settings.
Results are reported as Clean / PGD AUC (%). FrameShield maintains superior robustness while
preserving competitive clean performance.

Method Attack Shanghai TAD MSAD

AUCo AUCH AUCo AUCH AUCo AUC\
RTFM Clean/PGD 88.7/17.3 63.1/65 834/160 51.0/8.0 80.1/21.6 67.9/3.2
VAD-CLIP Clean/PGD 93.1/154 61.5/9.7 884/142 539/10.3 —/= —/=
Base MIL Clean/PGD 89.0/17.2 61.2/49 829/143 485/33 77.6/19.8 060.5/2.1
UMIL Clean/PGD 91.4/183 633/9.0 87.8/19.7 49.7/7.5 788/231 066.7/4.5

FrameShield (Ours) Clean/PGD 89.5/87.1 623/61.9 85.1/77.2 509/30.0 789/76.2 64.4/60.2

trained only under standard conditions, this extension allows a direct evaluation of how well existing
approaches adapt to adversarial optimization. The results—covering both clean and adversarial
(PGD) performance—are summarized in Table

Across all datasets, the adversarially trained baselines exhibit substantial degradation in clean accuracy
and limited improvement in robustness. In contrast, FrameShield maintains strong performance
under both clean and adversarial conditions. This discrepancy can be attributed to several key
limitations in prior works. Methods such as RTFM and VAD-CLIP employ frozen feature extractors
(e.g., I3D or CLIP), preventing the backbone from adapting to adversarial perturbations during
training. MIL-based models like Base MIL and UMIL rely on hard MAX temporal aggregation,
which restricts gradient propagation and undermines the effectiveness of adversarial optimization.
Moreover, approaches such as UMIL are highly sensitive to noise in pseudo-labels, and this issue is
further amplified under adversarial perturbations.

FrameShield addresses these limitations through three main design strategies. First, the model is
trained in a fully end-to-end manner, allowing the backbone to adapt to adversarially perturbed data.
Second, frame-level binary pseudo labels replace unstable MAX aggregation, resulting in smoother
gradient flow and more stable optimization. Finally, the synthetic region disturbance (SRD) module
introduces controlled perturbations that reduce the impact of false positives and false negatives,
improving robustness against label noise. Together, these design choices enable FrameShield to
achieve both high clean accuracy and strong adversarial robustness, significantly outperforming other
methods even when they are adversarially trained.

O Discussion on Clean vs. Adversarial Trade-off

A common concern in adversarial robustness research is the trade-off between clean and adversarial
performance. We provide additional clarification and empirical evidence here. While FrameShield
shows a reduction in clean accuracy under adversarial training, this outcome is consistent with a
well-established phenomenon: improving adversarial robustness often comes at the cost of reduced
clean performance. This trade-off is not a limitation unique to our approach but is intrinsic to robust
optimization in general. As noted in the limitations section, the tension between clean accuracy
and robustness has been extensively studied in prior work Tsipras et al.|[2019]]. For instance, on
ImageNet, the robust variant of ResNet-50 has been reported to drop from 75.8% to 65.8% in clean
conditions|Singh et al.[[2023]], emphasizing that such declines are expected and not indicative of design
flaws. Importantly, when FrameShield is trained without adversarial perturbations, it demonstrates
competitive clean accuracy, validating its effectiveness under standard training conditions. This
outcome underscores that the observed trade-off is an inherent characteristic of adversarial training
methodologies rather than a limitation of the FrameShield technique. The results are summarized in
Table[I8] Overall, we emphasize that this trade-off is a natural and widely recognized consequence
of adversarial training, not a sign of underperformance.

Experiments with TRADES Loss. We also explored alternative adversarial training objectives to
better balance clean and robust performance. In particular, we incorporated the TRADES loss Zhang
et al.| [2019b] into FrameShield. TRADES explicitly separates natural and boundary losses, encour-
aging the model to align predictions on adversarially perturbed frames with those on original frames
via a cross-entropy consistency term.
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Table 18: AUCq scores (%) under clean and PGD adversarial settings. Results are reported as Clean
/ PGD. FrameShield (ours) demonstrates strong robustness while maintaining competitive clean
performance.

Method Attack UCSD Ped2  Shanghai TAD UCF Crime MSAD
RTFM Clean / PGD 98.6/2.4 97.2/8.5 89.6/6.3 85.7/17.3 86.6/10.0
UMIL Clean/PGD  94.2/6.9 96.8/2.8  92.9/3.0 86.8/4.7 83.8/6.1
VAD-CLIP Clean / PGD 98.4/6.3 97.5/3.6 92.7/5.1 88.0/8.2 /=

Ours (Adyv. trained) Clean/PGD  97.1/81.3 89.5/87.1 85.1/772 802/78.7 78.9/76.2
Ours (Clean trained) Clean/PGD 98.6/8.0 97.4/54 934/174 87.8/9.3 86.3/8.6

Table 19: Comparison between FrameShield trained with the standard adversarial loss and the
TRADES loss. Results are reported as Clean / PGD. While TRADES improves clean accuracy
slightly, it reduces robustness under PGD attack.

Method Attack Shanghai TAD UCF Crime MSAD

AUCyo AUCA AUCo AUCA AUCo AUCA AUCo AUCA
Ours (Adapted TRADES Loss) Clean/PGD  93.2/78.9 64.1/32.7 90.1/61.5 55.1/152 824/67.1 60.8/256 80.5/648 67.8/34.7
Ours (Default Loss) Clean/PGD 89.5/87.1 623/61.9 85.1/77.2 50.9/30.0 80.2/78.7 60.1/534 789/762 64.4/60.2

Table [19)summarizes the results. While the TRADES loss led to slightly improved clean accuracy
compared to standard adversarial training, it also caused a noticeable drop in robustness across all
datasets. This aligns with observations in prior research that TRADES can provide smoother decision
boundaries but sometimes reduces robustness under strong perturbations. Overall, FrameShield’s de-
fault loss yields a more favorable balance for video anomaly detection, maintaining higher robustness
while remaining competitive in clean conditions.

P Implementation Details

We conducted adversarial training for 40 epochs using the AdamW optimizer with a learning rate of
8 x 1075, a chunk size of 16 frames and € = %. A cosine scheduler was employed to gradually
decrease the learning rate. We conducted our experiments on 2 NVIDIA GeForce RTX 4090 GPUs
(24 GB), with the pipeline completing in approximately 30 hours. Additionally, to train PromptMIL
with X-Clip[Ma et al.|[2022] as a feature extractor and get pseudo-labels, we required approximately

4 hours.

Q Detailed Results

Table @] summarizes the performance of our method (Mean + STD %) under both clean and
adversarial conditions across five video anomaly detection datasets: UCSD-Ped2, ShanghaiTech,
TAD, UCF Crime, and MSAD. The standard deviation is computed over five runs with different
random seeds. The consistently low variance observed across all datasets and evaluation scenarios
demonstrates the robustness and reliability of our approach.

R Discussion on Foreground Detection in the SRD Module

A common concern regarding SRD is whether Grad-CAM, which we employ in the SRD module, is
an optimal choice for foreground detection. Alternative methods such as object detectors or attention
maps (e.g., from DINOv2) might appear better suited for identifying meaningful regions. We address
this concern below with additional analysis and experiments. First, we acknowledge that Grad-CAM
is not a dedicated foreground detection tool. This limitation is explicitly noted in the main paper.
However, its use in the SRD module is motivated by its simplicity, interpretability, and compatibility
with our adversarial training framework.

Experiments with Alternative Localizers. To evaluate the importance of localization, we sub-
stituted Grad-CAM with more semantically grounded approaches: DINO attention maps [Caron
et al.|[2021]], YOLO [Tian et al.|[2025]], and Fast R-CNN [Ren et al.|[2016]. All other SRD compo-
nents—including motion trajectory modeling, temporal coherence, and perturbation generation—were
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Table 20: Frame-level detection performance (Mean £ STD %) under clean and adversarial conditions
across selected datasets over the entire test videos (AU Cop).

Statistics Eval Type UCSD-Ped2 Shanghai TAD UCF MSAD
Mean + STD Clean 97.1+12 89.5+1.7 851+£0.7 802413 789+1.6
- Adv 81.3+£09 87.1+£20 7724+14 787£08 762+1.8

Table 21: Comparison of different foreground detection methods under clean and PGD settings.
Values are reported as Clean / PGD. Results show that while stronger localizers (YOLO, Fast R-CNN,
DINO) yield comparable performance, the SRD module’s temporal modeling and perturbation design
play a more critical role than localization precision.

Method Attack TAD Shanghai MSAD

AUCo AUCH AUCo AUCH AUCo AUCH
YOLO Clean/PGD 85.7/752 51.2/31.2 90.3/884 060.7/59.8 76.8/743 63.8/589
Fast R-CNN Clean/PGD  82.6/73.5 483/26.7 87.7/842 589/59.2 742/71.8 64.1/60.7
DINO Attention Clean/PGD  86.7/78.1 523/33.1 883/86.5 060.8/60.3 79.1/759 064.5/59.8

Ours (Grad-CAM) Clean/PGD 85.1/77.2 509/30.0 89.5/871 623/61.9 789/762 064.4/60.2

kept unchanged, allowing us to isolate the effect of localization. The results are summarized in
Table Across all experiments, replacing Grad-CAM with YOLO, Fast R-CNN, or DINO attention
did not yield significant improvements. This suggests that the SRD module’s strength lies more in its
perturbation generation and temporal modeling than in precise foreground detection.

S Pseudo-Anomaly Examples

In this section, we present examples of pseudo-anomalous data generated by our SRD module, along
with their corresponding Grad-CAM visualizations. In Figure d] we illustrate the distortion process
across a sequence of frames. The top row shows the original (normal) frame sequence and the
Grad-CAM heatmap of the first frame, while the bottom row displays the corresponding distorted
(anomalous) frames.

T Pseudocode of FrameShield

We present the pseudocode in Algorithm [I|for our FrameShield framework, which comprises two
sequential phases: (1) weakly supervised training using the proposed PromptMIL formulation, and (2)
fully supervised adversarial training using pseudo-anomalies generated by our SRD (Spatiotemporal
Region Distortion) module.
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Algorithm 1 FrameShield: Robust Video Anomaly Detection

Require: Training set of videos D = {(V;, y;)} with video-level labels, pretrained X-Clip model,
text prompts ¢,, ("Normal") and ¢, ("Abnormal")
Ensure: Robust anomaly detector

1: // Phase 1: PromptMIL Training
2: for each video V; in D do

3 Partition V; into m chunks: V; = {v1,va, ..., v }
4:  for each chunk v; do

5: Extract feature: f; < Fo(v;)
6

7

8

Compute dot products: s§ < f; - ta, 87 < fj - tn
Compute softmax: S; «— softmax(s{, s7)
end for
9:  Aggregate anomaly score: \S; < max; S;
10:  Compute loss: L; + BCE(S;, v;)
11: end for
12: Update model Fg using total loss >, L;

13: // Generate Pseudo-Labels

14: for each abnormal video in D do

15 Recompute S; for each chunk using trained Fg

16:  Assign pseudo-labels: g; <— W[S; > 7] (thresholded)
17: end for

18: // Phase 2: Adversarial Training with SRD
19: for each normal video V' do
20:  if random() < psrp then {With probability psrp, generate a pseudo-anomaly using SRD}

21: Generate SRD pseudo-anomalies V':

22: Select random frame sequence; apply Grad-CAM to locate salient region
23: Apply mask and augmentations to create spatial distortions

24: Introduce motion trajectory for temporal distortion

25: Assign label gsgp + 1

26:  end if

27: end for

28: Merge real videos with pseudo-labeled and SRD-augmented data

29: for each video V' with chunk-wise labels Y = {y1, ..., ym } do
30:  for each chunk v; do

31: Compute anomaly score S; < Fo(v;)
32: Compute loss: L; < BCE(S;, y;)
33:  end for

34:  Totalloss Ly « >, L;

35:  Generate adversarial perturbation §* «— arg max s < Lv(V +0,Y)
36:  Update Fg with (V 4 ¢*,Y") using min-max optimization

37: end for

U Limitations

Clean Performance in Video Anomaly Detection This work focuses on enhancing the robustness of
video anomaly detection models against adversarial attacks. While our approach shows notable gains
in adversarial detection, its performance on clean (non-adversarial) data remains below that of current
SOTA methods. This reflects the well-known trade-off between clean and adversarial performance,
as highlighted in prior studies Zhang et al. [2019b]; [Tsipras et al.| [2019]; Madry et al.| [2018]] and
Raghunathan et al.| [2020].

Using Grad-CAM for Object Localization While Grad-CAM serves as a practical tool for identify-
ing salient regions in static frames, its use within SRD brings certain inherent limitations. Grad-CAM
is a gradient-based visualization technique developed primarily for classification models and does not
explicitly model objectness or spatial boundaries. As a result, highlighted regions may be diffuse or

25



imprecise, potentially including background clutter or missing parts of coherent objects. Furthermore,
since Grad-CAM relies on the internal feature activations of a pre-trained network like ResNet18
He et al.|[2016]], its saliency maps reflect class-discriminative attention rather than true object local-
ization. This can lead to suboptimal or inconsistent masks, especially in complex or low-saliency
scenes. Employing dedicated object detectors in place of Grad-CAM could yield more accurate and
semantically meaningful regions, improving both the realism and control of the generated anomalies.
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Figure 4: Visualization of pseudo-anomalous data generated by the SRD module. The top row shows
the original (normal) sequence of frames along with the Grad-CAM heatmap of the first frame. The
bottom row displays the corresponding distorted (pseudo-anomalous) frames created by applying the
SRD distortion strategy.
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Figure 5: Visualization of pseudo-anomalous data generated by the SRD module. The top row shows
the original (normal) sequence of frames along with the Grad-CAM heatmap of the first frame. The
bottom row displays the corresponding distorted (pseudo-anomalous) frames created by applying the
SRD distortion strategy.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract effectively summarizes the paper’s contribution and provides a
concise overview of our approach. Additionally, the introduction accurately outlines the
scope and applications of our work, while also emphasizing our key contributions.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We specifically created a section dedicated to our work’s limitations in Ap-
pendix [U] Importantly, we believe our assumptions are relevant to real-world scenarios and
can be easily justified.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the code necessary to reproduce our results and all implementation
details are explained in Section[5]and Appendix [B]

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All the datasets and processing pipelines we use are thoroughly detailed, except
for the MSAD dataset, which is private. We obtained research access to it through its official
website.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide detailed explanations on our training and test details in Appendix
Al
Guidelines:
* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The mean and standard deviation of our method’s performance over multiple
runs, along with additional details of the main experiment, are provided in Appendix [Q}

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Appendix [P} we present details on computational resources and execution
time.

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: After carefully reviewing the NeurIPS Code of Ethics, we firmly believe that
our work fully adheres to its principles. We have taken care to ensure that no aspect of our
research—including the code and publicly available datasets used.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss the social impacts of our work in Section I}

Guidelines:
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» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: The methods we propose are designed to enhance the reliability of existing
models and are not intended for applications that could lead to harmful consequences.
Moreover, our work builds upon established techniques, none of which have been associated
with safety concerns.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All previous works which our work is built upon are mentioned and cited in
sections E] and@ Furthermore, all datasets used are thoroughly credited and their licenses, if
available, are mentioned in Appendix

Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets

has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our method does not introduce any new assets. Most of the datasets are
publicly available with accompanying documentation. The MSAD dataset, while not openly
accessible, can be obtained by submitting an access request via email—no payment is
required.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

¢ At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve the collection of any crowdsourced or human
subjected datasets.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]

Justification: Our paper does not involve crowdsourcing, and all datasets used are cited and
publicly available. Therefore, IRB approvals are not applicable to our work.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method development in this research does not involve the use of

Large Language Models (LLMs) as important, original, or non-standard components. LLMs
were not used in the design, implementation, or evaluation of the proposed approach.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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