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Abstract—Since the introduction of the fractional Fourier
transform by V. Namias in 1980, the subject of fractional
integral transformations has flourished and expanded in different
directions. The Stockwell transform, which is widely used in
frequency analysis, turns out to be related to the continuous
wavelet transform. Several fractional Stockwell and wavelet
transforms have been introduced in the scientific literature
in the last decade. In this talk we discuss the relationship
between the Stockwell and the continuous wavelet transforms
and then present generalizations of these transforms using a
novel convolution operation. Properties of these transforms are
presented.

Index Terms—Fractional transforms, fractional Stockwell
transform, fractional wavelet transforms.

I. INTRODUCTION

Integral transforms are an important mathematical tool used
in many fields, in particular, in physics and engineering.
Chief among these integral transforms are the Fourier and the
continuous wavelet transforms, which because of their utility
in modeling time-frequency and time-scale representations,
have ubiquitous applications in signal and image processing,
data compression, fluid dynamics, texture analysis, and tomog-
raphy.

The significance of these two transforms piqued the interest
of many researchers and prompted them to introduce general-
izations of those transforms. Among the many generalizations
of the Fourier transform is the fraction Fourier transform
introduced by V. Namais in 1980 [?] which is regarded
as the first authentic fractional generalization of the Fourier
transform. This transform depends on an angle 0 ≤ θ ≤ 2π
and reduces to the identity transformation when θ = 0 and to
the standard Fourier transform when θ = π/2. The fraction
Fourier transform has numerous applications in optics and
signal processing [?], [?].

In the last two decades other generalizations of the fraction
Fourier transform were introduced, such as the linear canonical
transform formally introduced by S. Collins in 1970 [?] in his
study of coherent light propagation through lens system. The
linear canonical transform depends on four parameters a, b, c, d
with ad − bc = 1, b ̸= 0, and reduces to Namias’ transform
for a, b, c, d being cos θ, sin θ,− sin θ, cos θ, respectively.

More generally, the set of real canonical transforms may be
viewed as a group of unitary transformations acting on L2(IR)

and it is a representation of the special linear group SL(2, IR)
of unimodular matrices

SL(2, IR) =

{(
a b
c d

)
: a, b, c, d ∈ IR such that ad− bc = 1

}
.

The transform has been the focus of many research articles in
recent years because of its applications in optics, radar system
analysis, and signal processing.

A more general transform than the linear canonical trans-
form is the Special Affine Fourier Transformation (SAFT)
introduced by Abe and Sheridan [?], [?] in their study to
develop an operator formalism to show how the fractional
Fourier transformation of a wave function can be derived from
the rotation of the corresponding Wigner distribution function
in phase-space.

The SAFT depends on 6 parameters (a, b, c, d; p, q) with
ad−bc = 1. In phase space if we denote the position and wave-
number by x and k respectively, the transformation action
maybe described by the equation(

x′

k′

)
=

(
a b
c d

)(
x
k

)
+

(
p
q

)
.

A closely related transform to the special affine Fourier
transform is the offset linear canonical transform introduced
by Pie et al [?]. Sampling results for the SAFT were obtained
by Zayed and Bhandari [?].

The Windowed-Fourier Transform, or Short-time Fourier
transform, of a signal f ∈ L2(IR) which is given by

F (t, w) =
1√
2π

∫
IR

f(x)g(x− t)eiwxdx, w, t ∈ IR,

where g ∈ L2(IR) is the window function, extends the Fourier
transform in a different direction to the time-frequency do-
main. The Gabor transform is a special case of the windowed
Fourier transform where the window function is a Gaussian
function.

R.G. Stockwell et.al. [?] introduced the Stockwell trans-
form, which is commonly referred to as the S transform,
as a generalization of the windowed Fourier transform [?].
They employed a Gaussian window function that dilates and
translates to achieve localization of a signal f ∈ L2(IR).

Wei and et al [?], [?] introduced a generalized Stockwell
transform using a general window function ϕ ∈ L1(R)∩L2(R)



instead of a Gaussian function and obtained an inversion
formula for this transform. The Stockwell transform with a
general window function is given as:

Sϕ(b, ξ) =
|ξ|√
2π

∫ ∞

−∞
e−ixξf(x)ϕ(ξ(x− b)) dx , (1)

∀(b, ξ) ∈ R× R∗. The Stockwell transform is widely applied
in geophysics [?] to provide more detailed information about
spectral (frequency) components. For other generalizations of
the Stockwell transform, see [?], [?]

As for generalizations of the wavelet transform, let us
first recall the definition of the continuous wavelet transform
F (a, b) of f ∈ Lp(IR), 1 ≤ p ≤ 2, with respect to a mother
wavelet ψ,

F (a, b) =

∫
IR

f(x)ψa,b(x)dx,

where ψa,b(x) = 1√
|a|
ψ
(
x−b
a

)
, a > 0, b ∈ IR, and ψ

satisfies the admissibility condition∫
IR

|ψ̂(w)|2

|w|
dw <∞, (2)

where ψ̂ is the Fourier transform of ψ.
There is a number of fractional wavelet transforms, such as

the one in which the mother wavelet ψ is replaced by

ψθa,b(x) = ψa,b(x) exp
[
−i(x2 − b2)/2 cot θ

]
;

see also [?], [?].
The aim of this article is to introduce a more general

fractional Stockwell and wavelet transforms that combine
feature of these transforms and the special affine Fourier
transform. The passage to this generalization is through the
connection between the wavelet and the Stockwell transform
which was first reported in [?] and a new convolution theorem
for the Stockwell transform [?].

II. THE MANIN RESULT

First, let us observe that in the wavelet transform if we
replace the dilation parameter a by 1/ξ and set

√
ξψξ,b(x) as

the wavelets, it becomes evident that the Stockwell transform
of a function f is just the wavelet transform of the modulated
version eixξf(x) of f.

Let A =

(
a b p
c d q

)
. Furthermore, for simplification,

we make use of the following notations, λ = bq − dp,.

µp,b(x) = exp
(
i
p

b
x
)

(3)

ΩA(x) = exp

(
i

2b
[ dx2 + 2λx]

)
, (4)

Φa,b(x) = exp
(
i
a

2b
x2

)
(5)

ΨA(x) = exp

(
i

2b
[ dx2 − 2px+ 2λx]

)
, (6)

It is customary in the wavelet transform to denote the
translation and dilation parameters by b and a, respectively.

However, because these symbols appear as parameters in the
matrix A we will replace them by y and ξ respectively.

For a given parameter matrix A, (y, ξ) ∈ R × R∗, and
0 ̸= g ∈ L1(R,C) ∩ L2(R,C), we let

gAy,ξ(x) = |ξ| g(ξ(x− y)) Φa,b(y) Φa,b(x) (7)

× µp−λ,b(y − x) µξ,b(x)∀x ∈ R (8)

and let λ = bq − dp.
Definition 1: Let 0 ̸= g ∈ L1(R,C) ∩ L2(R,C) and f ∈

L2(R,C). For a parameter matrix A, and mother wavelet ψ,
we define the generalized affine wavelet transform (GAWT)
of f as follows.

(Ws
A,ψf)(y, ξ)

=
|ξ|√
2π|b|

∫
R

f(x)ψ(ξ(x− y))

× exp

(
−i
2b

[
a(y2 − x2) + 2((p− λ)(y − x))

])
dx

∀(y, ξ) ∈ R× R∗.

Similarly, we define the generalized fractional Stockwell trans-
form (GFST) of f as follows

(SsA,ψf)(y, ξ) =
1√
2π|b|

∫
R

f(x)ψAy,ξ(x) dx,

=
|ξ|√
2π|b|

∫
R

f(x)ψ(ξ(x− y))

× exp

(
−i
2b

[
a(y2 − x2) + 2((p− λ)(y − x) + ξx)

])
dx

∀(y, ξ) ∈ R× R∗.

As we pointed out above that the Stockwell transform of a
function f is essentially the wavelet transform of a modulated
version of f, in the above definition similar feature is retained.

Definition 2: [?] Suppose f ∈ Lp(R,C), p = 1 or 2,
g ∈ L1(R,C) and A is a parameter matrix. We define a
novel special affine convolution or a generalized fractional
convolution as follows.

(f ⊗A g)(x) =
Φa,b(x)√

|b|
(Φa,bf ∗ΨAg) (x), ∀x ∈ R,

where ∗ denotes the standard convolution associated with the
Fourier transform, i.e.,

(h1 ∗ h2)(x) =
1√
2π

∞∫
−∞

h1(y)h2(x− y) dy.

.
It follows with some easy calculations that

(SsA,gf)(y, ξ) = [µ−ξ,bf ⊗A Φd,bDξ ˇ̄g](y), ∀(y, ξ) ∈ R× R∗.

In the rest of the paper, we will list some properties of
the generalized fractional Stockwell transform and from which
with minor adjustment, one can drive the analog properties for
the GAWT.



Here we list two important properties of the GFST without
proof since the proofs are long and will be published some-
where else.

Theorem 1: (The Parseval’s identity) Let 0 ̸= g ∈
L1(R,C) ∩ L2(R,C) such that

0 ̸= Cb,g =
1

|b|
√
2π

∫
R

∣∣∣∣ĝ(x− 1

b

)∣∣∣∣2 dx|x| <∞. (9)

Then, for f, h ∈ L2(R,C), we have〈
SsA,gf,SsA,gh

〉
= Cb,g ⟨f, h⟩ .

We sketch the proof but for the complete proof, see [?].
Proof:
Let f, h ∈ L2(R,C). Then〈

SsA,gf,SsA,gh
〉

=
1

2π

∫
R∗

∫
R

(SsA,gf)(y, ξ)(SsA,gf)(y, ξ) dy
dξ

|ξ|

=
1

2π

∫
R∗

∫
R

[µ−ξ,bf ⊗A Φd,bDξ ˇ̄g](y)

× [µ−ξ,bh⊗A Φd,bDξ ˇ̄g](y) dy
dξ

|ξ|

=
1

2π

∫
R∗

∫
R

[SA(µ−ξ,bf ⊗A Φd,bDξ ˇ̄g)](t)

× [SA(µ−ξ,bh⊗A Φd,bDξ ˇ̄g)](t) dt
dξ

|ξ|

=
1

2π

∫
R∗

∫
R

ΩA(t)[SA(µξ,bf)](t)[SA(Φd,bDξ ˇ̄g)A](t)

ΩA(t)[SA(µξ,bh)](t)[SA(Φd,bDξ ˇ̄g)A](t) dt
dξ

|ξ|

=
1

2π

∫
R∗

∫
R

[SAf ](t+ ξ)

× [SAh](t+ ξ)|[SA(Φd,bDξ ˇ̄g)A](t)|2 dt dξ
|ξ|

=
1

2π

∫
R∗

∫
R

[SAf ](t)[SAh](t)

× |[SA(Φd,bDξ ˇ̄g)A](t− ξ)|2 dt dξ
|ξ|

=
1

2π

∫
R

∫
R∗

[SAf ](t)[SAh](t)
1

|b|

∣∣∣∣ĝ( t− ξ − λ

bξ

)∣∣∣∣2 dξ

|ξ|
dt

=
1

2π

∫
R

∫
R∗

[SAf ](t)[SAh](t)
1

|b|

∣∣∣∣ĝ(x− 1

b

)∣∣∣∣2 dx

|x|
dt

=
Cb,g√
2π

∫
R

[SAf ](t)[SAh](t) dt

=
Cb,g√
2π

∫
R

f(y)h(y) dy (by Parseval’s identity for SAFT)

= Cb,g ⟨f, h⟩ .

Here we have used the relation

[SAf ](y − t) = exp

(
i

2b
[d(t2 − 2yt)− 2λt]

)
[SA(µt,bf)](y),

which can be verified with some computations.
The inversion formula for the generalized fraction Stockwell

transform is given in the next theorem without proof. For the
complete proof, see [?].

Theorem 2: (The Inversion Formula) If 0 ̸= g ∈ L1(R,C)∩
L2(R,C) satisfies the admissibility condition (??), then for
each f ∈ L2(R,C), we have

f(x) =
1

Cb,g
√
2π

∫
R∗

µξ,b(x)[SsA,gf ⊗A Φd,bDξg](x)
dξ

|ξ|
,

weakly in L2(R,C).
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[3] Sejdić, E.; Djurović, I.; Stanković, L. Fractional Fourier transform as
a signal processing tool: An overview of recent developments. Signal
Process. 2011, 91, 1351–1369.

[4] S. A. Collins, Lens-system diffraction integral written in terms of matrix
optics, J. Optical Soc. Amer., 60(9): 1168- 1177, (1970)

[5] Abe, S.; Sheridan, J.T. Generalization of the fractional Fourier trans-
formation to an arbitrary linear lossless transformation an operator
approach. J. Phys. 1994, 27, 4179–4187.

[6] Abe, S.; Sheridan, J.T. Optical operations on wave functions as the
Abelian subgroups of the special affine Fourier transformation. Opt. Lett.
1994, 19, 1801–1803.

[7] Pei, S.C.; Ding, J.J. Eigenfunctions of the offset Fourier, fractional
Fourier, and linear canonical transforms. J Opt Soc Am. A. 2003, 20,
522–532.

[8] Bhandari, A.; Zayed, A,I. Shift-invariant and sampling spaces associated
with the special affine Fourier transform. Appl. Comput. Harmon. Anal.
2019, 47, 30–52.

[9] Stockwell, R.G.; Mansinha, L.; Lowe, R.P. Localization of the complex
spectrum: the S transform. IEEE Trans. Signal Process. 1996, 44, 998–
1001.

[10] Xu, D.P.; Guo, K. Fractional S transform part 1: theory. Appl. Geophys.
2012, 9, 73–79.

[11] Wei, D.; Zhang, Y. Fractional Stockwell transform: Theory and appli-
cations. Digit. Signal Process. 2021, 115, 103090

[12] Wei, D.; Zhang, Y.; Li, Y.M. Linear canonical Stockwell transform:
theory and applications. IEEE Trans. Signal Process. 2022, 70, 1333–
1347.

[13] Du, Z.C.; Xu, D.P.; Zhang, J.M. Fractional S-transform-part 2: Appli-
cation to reservoir prediction and fluid identification. Appl. Geophys.
2016, 13, 343–352.

[14] Gupta, B.; Verma, A.K. Linear canonical Stockwell transform and the
associated multiresolution analysis. Math. Methods Appl. Sci. 2024, 47,
9287–9312.

[15] Dar, A.H.; Bhat, M.Y. Special affine Stockwell transform: Theory,
uncertainty principles and applications. Int. J. Wavelets Multiresolut. Inf.
Process. 2024, 22, 2350057.

[16] Shah, F.A.; Tantary, A.Y.; Zayed, A.I. A convolution-based special affine
wavelet transform. Integral Transforms Spec. Funct. 2021, 32, 780–800.

[17] R Roopkumar and R. Kamalakkannan, and A. Zayed, Coupled 2D-
Fractional Wavelet Transform, Contemporary Mathematics, August
2024.

[18] P. Gibson, P. Lamoureux, and G. Margrave, Stockwell and wavelet
transforms, J. Fourier Anal.& Applns., 2006, 12, 713-721.

[19] S. Lakshmanan, R. Roopkumar, and A. Zayed, A Generalization of the
fractional Stockwell transform, submitted.
.


