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Abstract

Human listeners readily adjust to unfamiliar001
speakers and language varieties through ex-002
posure, but do these adaptation benefits ex-003
tend to state-of-the-art spoken language mod-004
els (SLMs)? We introduce a scalable frame-005
work that allows for in-context learning (ICL)006
in Phi-4 Multimodal (Phi-4-MM) using inter-007
leaved task prompts and audio-text pairs, and008
find that as few as 12 example utterances (∼50009
seconds) at inference time reduce word error010
rates by a relative 19.7% (1.2 pp.) on average011
across diverse English corpora. These improve-012
ments are most pronounced in low-resource013
varieties, when the context and target speaker014
match, and when more examples are provided—015
though scaling our procedure yields diminish-016
ing marginal returns to context length. Overall,017
we find that our novel ICL adaptation scheme018
(1) reveals a similar performance profile to hu-019
man listeners, and (2) demonstrates consistent020
improvements to automatic speech recognition021
(ASR) robustness across diverse speakers and022
language backgrounds. While adaptation suc-023
ceeds broadly, significant gaps remain for cer-024
tain varieties, revealing where current models025
still fall short of human flexibility. We release026
our prompts and code on GitHub1027

1 Introduction028

Variation is inseparable from language—across and029

within accents, speakers, environments, and social030

settings; yet humans rapidly adapt at every level.031

This adaptability persists even when linguistic con-032

tent is unpredictable; the mechanism is thought to033

involve fast (few-trial) re-weighting of acoustic–034

phonetic cues and recalibration of lexical priors035

(Sumner, 2011; Idemaru and Holt, 2014).036

Automatic speech recognition (ASR) systems, in037

contrast, struggle whenever the test speaker, variety,038

or recording conditions diverge from the supervised039

training distribution. For example, word error rates040

1GitHub url will be shared following double-blind review.

(WERs) increase significantly in “non-standard" 041

English varieties relative to high-resource, un- 042

marked settings (Rogers et al., 2004; Ji et al., 2014; 043

Graham and Roll, 2024). Traditional remedies, 044

such as continued pre-training or supervised fine- 045

tuning, are computationally expensive, cognitively 046

implausible, and require often infeasible quantities 047

of data (Azeemi et al., 2022; Nowakowski et al., 048

2023; Bartelds et al., 2023). 049

State-of-the-art ASR systems have taken many 050

forms in recent years. Contrastive learning-based 051

encoder models like Wav2Vec 2.0 (Baevski et al., 052

2020) or self-supervised models like HuBERT 053

(Hsu et al., 2021) have been surpassed in per- 054

formance by encoder-decoder models like Whis- 055

per (Radford et al., 2023). Most recently, a new 056

class of spoken language models (SLMs) such as 057

SALMONN (Tang et al., 2024), Qwen-Audio-Chat 058

(Chu et al., 2023), and Phi-4-Multimodal (Phi-4- 059

MM) (Abouelenin et al., 2025) has pushed encoder- 060

decoder performance even higher—beyond human 061

levels in many settings (Patman and Chodroff, 062

2024; Arora et al., 2025). Phi-4-MM, among the 063

newest of these systems, has the capacity to en- 064

force novel protocols, transcribe non-lexical fea- 065

tures, and—for our purposes—interleave text and 066

audio together in a way that facilitates text-guided 067

audio prompting. 068

In this paper, we ask two questions: (1) Can 069

in-context learning (ICL) unlock human-like adap- 070

tation benefits in a state-of-the-art SLM?, and (2) 071

If so, does this lead to state-of-the-art performance 072

across diverse speakers and language varieties? 073

We craft a simple ICL prompting framework (fig. 1) 074

in which the model is first exposed to a hand- 075

ful of labeled audio-transcript pairs from the tar- 076

get speaker, followed by an unlabeled continua- 077

tion to transcribe. Applying this setup to Phi-4- 078

MM, we find that just a few priming utterances 079

reduce WERs by 5.4–36.4% (rel.) across four cor- 080

pora spanning multiple English varieties (Kominek 081
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Figure 1: Our framework provides an initial description along with N transcribed examples (blue) before tasking the
model to transcribe the final ASR objective audio (red). Phi-4-MM interleaves text (orange) with audio (green).
These are projected into a multimodal embedding space, the context window of the shared decoder.

and Black, 2004; Zhao et al., 2018; Weinberger082

and Kunath, 2011; Byrne et al., 2014). Our find-083

ings demonstrate that (i) in-context learning sig-084

nificantly enhances ASR robustness, especially for085

low-resource varieties; (ii) this adaptation shows086

dynamic speaker- and variety-specific effects that087

evolve with context length; and (iii) prompt design088

plays a crucial role in maximizing these benefits089

for underrepresented varieties.090

2 Background091

Previous work has established that listeners recali-092

brate phonetic categories after minimal exposure to093

systematic variation, whether induced by foreign094

accents, coarticulation, or idiolectal quirks (Brad-095

low and Bent, 2008; Sidaras et al., 2009).096

Phonetic variation is not merely a barrier to over-097

come but serves as a necessary resource for adapta-098

tion. Sumner (2011) showed that listeners exposed099

to variable voice onset times (VOTs) from French-100

accented English speakers successfully shifted their101

phonetic boundaries, while those exposed to invari-102

ant VOTs did not adapt. This demonstrates that103

variation is beneficial—indeed necessary—for ro-104

bust speech perception. Moon and Sumner (2013)105

extended this work by showing that learned sub-106

lexical contrasts generalize across speakers of dif-107

ferent non-native accents, with learned cues prov-108

ing dominant enough to improve word recogni-109

tion when paired with native contrasts. Work by110

de Marneffe et al. (2011) revealed that lexical fre-111

quency alone provides limited benefits—successful112

adaptation requires the interaction of phonetic vari-113

ation with lexical context, not mere repetition.114

Pre–deep learning pipelines relied on maximum115

a posteriori (MAP) adaptation and feature–space 116

transforms such as fMLLR or i–vectors. Neural 117

end–to–end models revived interest through layer– 118

wise re–training, LHUC, and meta-learning (Kle- 119

jch et al., 2018). Yet these methods require either 120

dozens of utterances per speaker or backpropaga- 121

tion at test time. More lightweight ideas use context 122

biasing or rescoring with personalized language 123

models, but benefits remain inconsistent across do- 124

mains (Prabhavalkar et al., 2023). 125

Inspired by text LLM control, researchers have 126

explored prefix tuning, adapters, and LoRA injec- 127

tions to steer multilingual ASR without updating 128

the core model (Le et al., 2021; Roll, 2025). Works 129

such as Le et al. (2021) show that a few frozen 130

vectors per language can close the gap to full fine- 131

tuning on talker–independent tasks, while scaling 132

negligibly in parameters. However, most studies 133

optimize on supervised validation sets and do not 134

test zero–shot adaptation at inference. 135

We are not the first to provide labeled exem- 136

plars directly at inference time. Early sequence–to– 137

sequence ASR treated preceding audio–transcript 138

pairs as an additional context window (Kim et al., 139

2023). Whisper’s dense logits make such prompt- 140

ing tricky, but Wang et al. (2024) and Chen et al. 141

(2024) independently showed sizable WER drops 142

by concatenating audio–text pairs, especially for 143

dialectal Chinese. Later, COSMIC introduced in- 144

struction tuning to reinforce the format, while Phi- 145

4-MM extends the paradigm to low–footprint mod- 146

els. Our work focuses on the specific schema for 147

implementing ICL in SLMs like Phi-4-MM, detail- 148

ing the interleaving of task prompts, ground truth 149

transcriptions, and audio exemplars within a shared 150
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context window while studying the effectiveness,151

scaling, and cognitive plausibility of ICL.152

Evidence from bilingual production suggests153

that talker-specific traits such as speaking rate154

(Bradlow et al., 2017; Graham and Nolan, 2019) or155

tonal structure (Graham and Post, 2018) carry over156

from L1 to L2 . For ASR, cross–lingual prompts157

or multilingual adapter stacks can leverage high-158

resource L1 data to bootstrap L2 decoding (Hsu159

et al., 2024). Our work intersects these lines by160

probing whether an English–centric SLM can nev-161

ertheless exploit talker-specific cues shared across162

dialects and second languages. To our knowledge,163

this is the first study to apply in-context learning for164

speaker adaptation in ASR across multiple speech165

corpora, and the first to apply these paradigms in166

multimodal language models.167

3 Data168

Our experiments leverage four English speech cor-169

pora that collectively span diverse speaker demo-170

graphics, accent varieties, and speech contexts.171

This selection enables comprehensive evaluation172

of in-context adaptation across different types of173

linguistic variation while maintaining experimental174

rigor through controlled comparisons.175

3.1 L2-ARCTIC176

L2-ARCTIC (Zhao et al., 2018) contains high-177

quality recordings from 24 non-native English178

speakers representing six major world languages:179

Hindi, Korean, Mandarin, Spanish, Arabic, and180

Vietnamese. Each first language group includes181

two male and two female speakers, providing182

balanced gender representation. Each speaker183

recorded approximately one hour of read speech184

consisting of 1,132 phonetically balanced sen-185

tences adapted from the CMU ARCTIC prompt186

set (Kominek and Black, 2004).187

3.2 CMU-Arctic188

CMU-Arctic (Kominek and Black, 2004) is com-189

prised of approximately 18 hours of phonetically190

balanced American English read speech across 18191

speakers. Each speaker read the same set of approx-192

imately 1,200 utterances designed for comprehen-193

sive coverage of American English phonetic con-194

texts. While featuring primarily American English195

speakers, the corpus also includes speakers with196

German, Indian, and other regional backgrounds,197

providing some accent diversity within the “native”198

category.199

3.3 Hispanic-English Corpus (HEC) 200

The Hispanic-English Corpus (Byrne et al., 2014) 201

contains approximately 30 hours of bilingual 202

speech data from 22 Spanish heritage speakers re- 203

siding in the United States. Speakers were adult 204

native Spanish speakers from Central and South 205

America who had lived in the United States for at 206

least one year. For this study, we use only the En- 207

glish read speech portions to maintain consistency 208

with other corpora. 209

3.4 Speech Accent Archive (SAA) 210

The Speech Accent Archive (Weinberger and Ku- 211

nath, 2011) contains approximately 23 hours of En- 212

glish speech from over 2,500 speakers representing 213

more than 200 first language backgrounds world- 214

wide. All speakers read the identical 69-word para- 215

graph beginning with “Please call Stella...”. This 216

uniform elicitation enables systematic comparison 217

across accent types while controlling for lexical 218

and syntactic factors. Given the identical elicitation 219

paragraph, we utilized SAA to benchmark 0-shot 220

ASR performance disparities across a wide range 221

of accents within the Phi-4-MM specifically, and 222

not to evaluate the proposed ICL framework. 223

3.5 Data Selection Rationale 224

These four corpora were selected to provide com- 225

plementary perspectives on accent adaptation while 226

enabling rigorous experimental control. The shared 227

elicitation materials between L2-ARCTIC and 228

CMU-Arctic enable direct comparison of adapta- 229

tion effects for native versus non-native speakers 230

under identical linguistic conditions. Together, the 231

corpora span native American English, major world 232

language varieties, Spanish heritage varieties, and 233

global accent diversity, providing comprehensive 234

coverage of English pronunciation variation. 235

For this study, we filtered speakers to ensure ad- 236

equate context examples for few-shot evaluation, 237

including only speakers with at least 13 valid ut- 238

terances (minimum 2.5 seconds duration) and vari- 239

eties represented by at least two speakers. This en- 240

sured that both test and context utterances could be 241

drawn from the same variety with sufficient speech 242

material to construct few-shot prompts of varying 243

lengths. For each test utterance, we randomly sam- 244

pled a fixed number of non-overlapping utterances 245

from either the same speaker or a different speaker 246

of the same variety, depending on the experimental 247

condition. This procedure was repeated for all shot 248
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count conditions (0-12). After filtering, our anal-249

ysis included 15 speakers from CMU-Arctic, 14250

speakers from L2-ARCTIC, 7 speakers from HEC,251

and the full SAA corpus for zero-shot evaluation252

of the Phi-4 model.253

4 Model: Phi-4-MM254

Phi-4-MM builds on a frozen Phi-4-Mini-Instruct255

core by integrating dedicated encoders for vision256

and audio via lightweight LoRA, enabling unified257

text generation from multimodal inputs (Aboue-258

lenin et al., 2025). The model supports up to 128259

thousand tokens of context and generates outputs260

in dozens of languages.261

For speech/audio, Phi-4-MM accepts 80-262

dimensional log-Mel filter-bank frames and pro-263

cesses them through a convolutional front end fol-264

lowed by Conformer blocks (Gulati et al., 2020). A265

two-layer projector then maps encoded audio into266

the text embedding space, where modality-specific267

LoRA adapters interface with the frozen layers.268

Pre-training aligns the audio encoder and269

frozen text decoder using approximately 2 million270

hours of anonymized speech–text pairs spanning271

eight languages (Chinese, English, French, Ger-272

man, Italian, Japanese, Portuguese, Spanish). This273

stage uses only paired ASR data to teach the model274

cross-modal semantic alignment.275

Instruction fine-tuning After the pre-training276

phase, Phi-4-MM is fine-tuned on roughly 100 mil-277

lion curated speech and audio samples—covering278

ASR, speech translation, question answering,279

summarization, and broader audio understand-280

ing—across the same eight languages. Maximum281

audio lengths vary by task (from 30 seconds for282

ASR to 30 minutes for summarization), ensuring283

the model learns both short-form and long-form284

speech processing in diverse linguistic contexts.285

5 Methods286

5.1 In-Context Learning Framework287

We introduce a novel prompting framework that288

enables Phi-4-MM to perform fast, low-data adap-289

tation through ICL. Our approach leverages the290

multimodal capabilities of the model by interleav-291

ing transcribed audio-text pairs as exemplars before292

presenting target audio for transcription. Unlike293

traditional ASR adaptation methods that require pa-294

rameter updates or extensive speaker-specific data,295

our approach achieves adaptation purely through296

prompt engineering at inference time.297

The framework operates by providing N audio- 298

transcript example pairs (“shots”) followed by a 299

target audio segment to be transcribed. We sys- 300

tematically evaluated 0 through 12 in-context ex- 301

amples to capture both initial adaptation effects 302

and scaling effects. Each prompt includes a series 303

of <|user|> audio inputs paired with <|assistant|> 304

transcriptions, followed by an unlabeled test audio 305

segment. Full prompt templates and token format- 306

ting are provided in Appendix 7. 307

5.2 Prompt Design and Speaker Context 308

Conditions 309

We developed two prompting strategies to inves- 310

tigate format specificity effects. For zero-shot 311

evaluation, we employed both a standard prompt 312

(“Transcribe the audio clip into text”) and a varia- 313

tion explicitly mentioning non-native speech. Our 314

few-shot framework follows a structured conver- 315

sation format that begins with explicit instruc- 316

tions, includes model acknowledgment, presents 317

each audio-transcript pair individually, and con- 318

cludes with the transcription request. The variation 319

prompt includes explicit “Transcription:” markers 320

designed to provide clearer structural cues that may 321

benefit lower-resource varieties. 322

To investigate adaptation specificity, we exam- 323

ined two context conditions that map onto hu- 324

man perceptual learning paradigms: same-speaker 325

(within-talker evidence from the identical individ- 326

ual as the target) and different-speaker (within- 327

variety evidence from other speakers of the same 328

language variety). 329

5.3 Model Configuration and Preprocessing 330

All experiments used Phi-4-MM with greedy de- 331

coding to ensure deterministic outputs suitable for 332

controlled evaluation. Technical implementation 333

details, including a minor code adjustment to the 334

model’s num_logits_to_keep parameter to en- 335

sure correct behavior with our generation settings, 336

are provided in Appendix 7. 337

Audio preprocessing involved resampling to 16 338

kHz, normalization to float32 to preserve dynamic 339

range and numerical precision during downstream 340

processing, and filtering clips shorter than 2.5 sec- 341

onds. This duration cutoff ensures coverage of the 342

"few-trials" regime documented in human adapta- 343

tion literature while maintaining sufficient acous- 344

tic information for analysis. Standard text pre- 345

processing included lowercasing, punctuation re- 346

moval, and whitespace normalization to ensure fair 347
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Figure 2: In-context learning consistently reduces WERs across all corpora with diminishing returns. (Left) WER
trajectories by shot count show rapid initial improvement plateauing around 6-10 examples. (Right) Aggregated
results across shot buckets (0-3, 4-8, 9-12) demonstrate strictly decreasing WERs with more examples. CMU-Arctic
(native speakers) achieves lowest WERs across all conditions.

and consistent word error rate (WER) calculation.348

Comprehensive preprocessing specifications are de-349

tailed in Appendix 7.350

5.4 Experimental Design and Evaluation351

We applied strict filtering criteria to ensure robust352

evaluation: varieties required at least two speakers,353

speakers needed at least 13 valid utterances (en-354

abling 12-shot evaluation), and we limited analysis355

to 50 utterances per speaker. This was to maintain356

a consistent evaluation budget across speakers and357

prevent over-representation of any individual voice.358

Context examples were selected using controlled359

randomization with fixed seeds for reproducibility,360

excluding examples with identical transcripts to the361

test audio.362

Our primary evaluation metric was WER, com-363

puted using the jiwer library. Results were aggre-364

gated across trial, speaker, language variety, and365

corpus levels to provide comprehensive analysis of366

adaptation effects. We conducted up to 50 trials per367

speaker per condition, with experiments running368

on NVIDIA A100 GPUs requiring approximately369

8-12 hours per corpus for complete evaluation.370

The experimental design systematically tested371

all combinations of shot counts (0-12), speaker372

conditions (same/different), and prompt types (stan-373

dard/variation) across the four speech corpora. This374

comprehensive approach enables detailed analy-375

sis of how adaptation benefits vary across differ-376

ent linguistic populations and experimental condi-377

tions. Speaker-level results comparing 0-shot and378

12-shot performance are presented in Appendix 7379

and grouped results are shown in fig. 2.380

6 Results 381

Our experiments demonstrate that providing in- 382

context audio-transcript examples consistently im- 383

proves ASR performance across all tested corpora, 384

with the magnitude and pattern of improvements 385

varying systematically across speaker populations 386

and experimental conditions. 387

6.1 In-Context Learning Effectiveness 388

Figure 2 shows that in-context learning produces 389

substantial and generally consistent improvements 390

across all corpora with 9-12 examples significantly 391

better than 0-3 at a 95% confidence level (two- 392

sample t-test). The left panel reveals character- 393

istic diminishing returns: the largest gains occur 394

between 0 and 1 shots, with performance improve- 395

ments plateauing around 6-10 examples. CMU- 396

Arctic consistently achieves the lowest WERs 397

across all shot conditions, reflecting the high- 398

resource nature of standard American English in 399

ASR training data. Baseline (0-shot) WERs vary 400

widely across corpora, ranging from 2.5% (CMU- 401

Arctic) to 12.7% (HEC). The HEC average is heav- 402

ily influenced by a single outlier speaker (Speaker 403

7, Table 3 in Appendix 7) with an exceptionally 404

high 0-shot WER of 63.9%; excluding this speaker, 405

the 0-shot average for the remaining HEC speakers 406

is approximately 4.2%. This outlier also signifi- 407

cantly impacts the 12-shot HEC average (41.0% 408

WER for Speaker 7–see section 7). Non-native 409

speakers in SAA reached 11.4% compared to just 410

1.2% for native speakers. 411

Aggregated across shot ranges, performance fol- 412

lows a clear hierarchy: 9-12 shots outperform 4-8 413
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Table 1: Phi-4-MM performance by shot count and corpus. Our ICL method improves performance across all
corpora and nearly all language varieties, with an average WER decrease of 19.7% rel. (1.2 pp.). Zero-shot
performance on SAA (section 3.4) highlights high-low resource discrepancies found between the other corpora.

Corpus / Variety
N-shot WER

0 → 12-shot
0 1 2 3 4 5 6 7 8 9 10 11 12

CMU-Arctic 2.5 2.7 1.9 1.9 1.7 1.7 1.7 1.8 1.8 1.7 1.7 1.6 1.6 -0.9 (-36.1%)
German 3.5 3.6 2.9 2.6 2.7 2.5 2.5 2.8 2.6 2.5 2.6 2.3 2.3 -1.2 (-35.2%)
Indian 3.2 4.6 2.1 2.2 2.0 2.0 2.0 1.9 2.1 2.0 2.1 1.8 1.9 -1.2 (-39.2%)
U.S. 2.0 1.8 1.7 1.8 1.5 1.6 1.6 1.7 1.6 1.6 1.7 1.4 1.5 -0.4 (-21.9%)
Other 2.1 1.6 1.6 1.4 1.2 1.3 1.2 1.3 1.3 1.3 1.2 1.3 1.2 -0.9 (-44.5%)

L2-Arctic 6.5 10.5 8.6 6.5 7.9 8.3 6.4 6.4 6.4 6.4 6.0 6.3 6.2 -0.3 (-5.4%)
Hindi 4.0 7.1 3.9 4.0 3.7 3.8 3.8 3.7 3.6 3.6 3.7 3.4 3.5 -0.5 (-13.7%)
Korean 4.2 8.5 14.9 4.5 14.9 15.2 4.3 3.9 3.9 3.7 3.4 3.8 3.9 -0.3 (-7.9%)
Mandarin 7.4 11.4 8.3 7.7 7.6 8.1 7.7 7.7 7.7 7.7 7.6 7.8 7.7 +0.3 (+3.9%)
Spanish 6.5 10.1 7.0 6.3 6.1 6.0 6.2 6.2 6.3 6.2 5.7 5.9 5.9 -0.6 (-9.0%)
Vietnamese 11.3 17.2 13.1 11.3 10.8 12.6 11.1 11.1 11.2 11.4 10.6 11.4 10.7 -0.5 (-4.9%)

HEC 12.7 9.5 7.9 8.3 8.4 9.6 9.0 8.7 8.7 9.2 9.1 9.3 9.3 -3.5 (-27.2%)

SAA2 4.7 Avg3: - 1.2 (-19.7%)
Native 1.2
Non-Native 11.4

shots, which in turn outperform 0-3 shots across414

all corpora. The asymptotic shape indicates that415

approximately 25-30 seconds of transcribed audio416

captures most adaptation benefits available through417

ICL (see fig. 2).418

6.2 Corpus-Level Performance Patterns419

Table 1 reveals several consistent patterns across420

corpora and varieties. Nearly all speaker groups421

achieve their highest WERs in the 0-1 shot con-422

ditions, with the notable exception of L2-Arctic423

Korean speakers who show elevated error rates be-424

fore improving substantially. Most varieties reach425

their highest accuracies with 10-12 examples.426

Low-resource varieties generally experience427

large absolute and relative improvements. For428

HEC, the substantial average absolute WER re-429

duction reported in Table 1 (-3.5 points from 0430

to 12 shots) is largely driven by the aforemen-431

tioned outlier speaker’s improvement (-22.9 points).432

Within CMU-Arctic, speakers with German and433

Indian backgrounds show relative gains of 35.2%434

and 39.2% respectively (0 to 12 shots), compared435

to 21.9% for US English speakers. The "Other"436

category (see Section 3.2 for details) achieves the437

largest relative improvement of 44.5%. Similarly,438

2Native and Non-native are distinctions which overlook the
complexity of many language-learning trajectories, however
they manifest the wide gaps in ASR performance.

in L2-Arctic, most non-native varieties achieve 439

gains, with Hindi (-13.7%) and Spanish (-9.0%) 440

showing notable improvements, while Korean 441

shows a more modest -7.9% gain. 442

A critical finding is that baseline disparities per- 443

sist despite adaptation. SAA illustrates this most 444

starkly: in zero-shot conditions, native speakers 445

achieve 1.2% WERs while non-native speakers 446

reach 11.4% WERs—a nearly 10-fold difference 447

despite all speakers reading identical text. L2- 448

Arctic Mandarin is the only variety that performs 449

slightly worse (+3.9%) at 12 shots compared to 450

zero-shot. This small negative change falls within 451

expected noise levels and does not contradict the 452

overall adaptation trend. We hypothesize that bilin- 453

gual interference or mismatches between orthogra- 454

phy and pronunciation may underlie the weaker or 455

inconsistent adaptation patterns observed in these 456

speaker groups. 457

6.3 Speaker Context Specificity 458

Table 2 examines whether adaptation benefits vary 459

when using examples from the same speaker ver- 460

sus different speakers of the same variety. The 461

results reveal a nuanced pattern: no difference ap- 462

pears in the 1-3 shot range, but same-speaker ex- 463

amples provide a substantial 1.1 percentage point 464

advantage (19.6% relative improvement) specifi- 465

3Average over speakers. (See Appendix 7)
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cally when 4-6 examples are provided. This advan-466

tage disappears entirely at higher shot counts, with467

different-speaker examples slightly outperforming468

same-speaker context at 10-12 shots.469

This pattern suggests two distinct adaptation470

mechanisms operating at different scales: initial471

speaker-specific acoustic calibration that benefits472

from idiosyncratic features, followed by variety-473

level adaptation that emphasizes shared phonetic474

patterns across speakers within accent groups.475

Table 2: Comparison of same-speaker versus different-
speaker context performance across shot groups. Same-
speaker context shows a notable benefit in the 4-6 shot
range.

Speaker Condition

Shot Group Same Different Same Advantage4

1–3 5.6 5.7 0.1 (+1.8%)
4–6 4.5 5.6 1.1 (+19.6%)
7–9 4.6 4.5 -0.1 (-2.2%)
10–12 4.5 4.3 -0.2 (-4.7%)

6.4 Prompt Sensitivity and Format Effects476

Figure 3 plots the impact of prompt wording on477

WERs. We tested exactly four lightweight tem-478

plates (fully specified in Appendix 7): for zero-479

shot inference a standard instruction taken from480

the model card ("Transcribe the audio clip into481

text.") versus a variation that pre-labels the clip482

as coming from a "non-native English speaker";483

for few-shot (N-shot) inference a standard tem-484

plate that simply concatenates each audio–text485

pair and a variation that additionally pre-generates486

the token "Transcription:" before each exem-487

plar. These manipulations isolate two hypothesized488

helpers—task framing through explicit accent in-489

formation and I/O scaffolding through consistent490

answer delimiters.491

In the zero-shot setting, the non-native framing492

yielded a small but consistent improvement across493

all corpora (blue bars in Figure 3), lowering WERs494

by 0.1–0.3 pp even for native speech. The effect495

suggests that the phrase "non-native" activates a496

broader acoustic–phonetic prior learned during in-497

struction tuning, making the decoder slightly more498

tolerant of unexpected phone–letter mappings.499

For few-shot adaptation, injecting the500

"Transcription:" tag proved the larger lever.501

4The "Same Advantage" is calculated as (Different WER -
Same WER). The relative percentage in parentheses is calcu-
lated as (Absolute Advantage / Different WER) * 100%.

It reduced early-shot volatility (<4 examples) 502

and delivered up to 0.9pp average WER gains 503

in L2-Arctic and 0.6pp in HEC, while leaving 504

high-resource CMU-Arctic essentially unchanged. 505

Together, the two variation templates confirmed 506

our a priori expectation: explicit accent cues help 507

immediately, and explicit answer markers help 508

the model exploit sparse context more reliably, 509

especially for under-represented varieties. 510
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Figure 3: Prompt format sensitivity across corpora.
Including explicit “Transcription:” markers reduces
WERs in low-resource corpora (HEC, L2-Arctic). In
zero shot settings, marginal gains are induced simply
by informing the model that it’s transcribing non-native
speech.

7 Discussion and Conclusion 511

This study set out to answer two primary research 512

questions: 513

(1) Can ICL unlock human-like adaptation bene- 514

fits in a state-of-the-art SLM? 515

Yes. Across four corpora that span native, her- 516

itage, and second-language English, supplying 517

even a few transcribed examples produces the steep, 518

rapidly-saturating learning curve that psycholin- 519

guistic work reports for humans exposed to unfa- 520

miliar talkers. Performance gains arise fastest in the 521

first few trials (∼25–30 s of speech), taper off there- 522

after, and follow two recognizable phases: (i) a 523

speaker-specific phase in which 4–6 same-speaker 524

examples yield a ∼20% relative WER reduction, 525

and (ii) a variety-general phase in which larger shot 526

counts confer similar benefits even when examples 527

come from different speakers of the same group. 528

(2) If so, does this human-like adaptation translate 529

into state-of-the-art recognition across diverse 530

speakers and language varieties? 531

Largely, but not uniformly. After 9–12 shots, 532
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Phi-4-MM achieves or exceeds state-of-the-art533

WERs on high-resource American English (<2%),534

while delivering sizeable absolute drops (1–3.5 pp.;535

10–45% relative) for low-resource varieties such as536

Spanish-heritage, L1 Hindi, and L1 Korean.537

The asymptotic nature of performance gains,538

with the largest improvements occurring in the539

first few examples before plateauing around 6–10540

shots, closely parallels psychometric curves ob-541

served in human speech perception studies (Brad-542

low and Bent, 2008). This convergence suggests543

that ICL accesses fundamental mechanisms of544

acoustic-phonetic recalibration, potentially involv-545

ing rapid re-weighting of phonetic features based546

on observed speaker-specific patterns. The fact547

that approximately 25–30 seconds of transcribed548

audio captures most available adaptation benefits549

mirrors the “fast” adaptation documented in human550

perceptual learning paradigms.551

A notable effect in the results (Table 1) is the552

transient increase in WERs for several varieties553

when transitioning from zero-shot to a single in-554

context example. We hypothesize that this re-555

flects an initial phase of task adaptation: While556

Phi-4-MM is instruction-tuned, it was not explic-557

itly trained on ICL for the ASR task, let alone558

our novel protocol. The first audio-transcript pair559

may therefore present a dual challenge: the model560

must first recognize and assimilate the novel task561

structure itself (essentially learning the "rules" of562

this ICL interaction) before it can effectively lever-563

age the example’s content for acoustic-lexical re-564

calibration towards the target speaker or variety.565

Once this foundational task understanding is es-566

tablished, subsequent exemplars can more directly567

contribute to the targeted adaptation, leading to568

the WER reductions observed with additional ex-569

amples. Given the strength of this effect in HEC570

and L2-ARCTIC, there may be interaction effects571

between task-learning and the out-of-distribution572

nature of some English varieties, however, analy-573

ses across additional corpora would be required to574

fully disentangle these effects.575

The observation that ASR performance is no-576

tably sensitive to the prompt offers intriguing par-577

allels to human speech perception. Research by578

D’Onofrio (2015) demonstrates that human listen-579

ers’ categorization of ambiguous speech sounds580

is shaped by explicit social information provided581

about the speaker. The "non-native" prompt ap-582

pears to prime the ASR system, potentially by ac-583

tivating or re-weighting internal models suited for584

greater acoustic-phonetic variability or by adjusting 585

decision thresholds, even when such characteristics 586

are not objectively present in the target audio. 587

The magnitude of improvements for several 588

low-resource varieties is particularly striking. For 589

example, in CMU-Arctic, the ’Other’ subgroup 590

(speakers with Scottish, Canadian, and Israeli back- 591

grounds, as detailed in Section 3.2) achieved a 592

44.5% relative WER reduction (0 to 12 shots), and 593

the ’Indian’ subgroup saw a 39.2% reduction. Span- 594

ish heritage speakers (HEC) experienced an aver- 595

age relative reduction of 27.2%, though this figure 596

is significantly influenced by an outlier speaker im- 597

proving from a very high baseline (see Section 6). 598

Other L2-Arctic varieties such as Hindi English (- 599

13.7%) and Korean English (-7.9%) also benefited, 600

albeit with more modest relative reductions (Ta- 601

ble 1). These gains help narrow the performance 602

gap compared to high-resource US English. This 603

finding connects to evidence that frequency alone 604

provides limited benefits—our results show that 605

meaningful adaptation requires quality variation, 606

not mere repetition (de Marneffe et al., 2011). The 607

disproportionate gains for underrepresented speak- 608

ers suggest that ICL may help mitigate biases in- 609

herent in training distributions dominated by high- 610

resource varieties. 611

We found that same-speaker examples provide 612

a significant advantage at 4–6 shots (about 1.1 per- 613

centage points), but this benefit disappears entirely 614

with longer contexts. This pattern aligns with multi- 615

level adaptation processes in human perception 616

(Sidaras et al., 2009; Moon and Sumner, 2013). 617

Adaptation appears to begin with speaker-specific 618

cues and then shift toward variety-level generaliza- 619

tion, as the model learns to extract features that 620

transcend individual speaker characteristics. 621

More importantly, these disproportionate gains 622

for low-resource varieties offer a scalable pathway 623

toward more equitable speech technology, requir- 624

ing no additional training data or computational 625

resources beyond slightly longer inference con- 626

texts. Just as humans cope effortlessly with varia- 627

tion at every level, frontier SLMs show emergent 628

robustness that can be unlocked purely through 629

prompt engineering—offering a practical tool to 630

improve ASR equity for speakers and varieties his- 631

torically underserved by speech technology. Future 632

work should extend this framework to spontaneous 633

speech, cross-lingual settings, and streaming appli- 634

cations while probing the precise mechanisms of 635

variety-specific adaptation. 636
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Limitations637

While this study demonstrates the significant po-638

tential of ICL for ASR adaptation within a frontier639

model, its limitations define key avenues for fu-640

ture research. First, generalizability is constrained:641

our experiments used a single model (Phi-4-MM)642

and focused on read English speech. Second, the643

ICL methodology has scope for expansion. Our644

reliance on accurately transcribed context, while es-645

tablishing the potential of ICL with quality signals,646

may not always be practical. Future efforts should647

explore unsupervised or self-transcription for con-648

text generation and active context selection. Addi-649

tionally, we explored adaptation mainly within the650

same speaker or variety and tested limited prompt651

variations, which inhibited the engineering goal to652

make speech recognition more robust and restricted653

the scope of investigations into human-model per-654

ceptual convergence.655
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Appendix: Supplementary Experimental 831

Details 832

A.1 Model and Generation Parameters 833

Model Configuration: 834

• Model: microsoft/Phi-4-multimodal-instruct 835

• Processor: AutoProcessor.from_- 836

pretrained(’microsoft/Phi-4-multimodal-instruct’,837

trust_remote_code=True) 838

• Loading: AutoModelForCausalLM.from_- 839

pretrained(’microsoft/Phi-4-multimodal-instruct’,840

trust_remote_code=True, 841

torch_dtype=’auto’, attn_- 842

implementation=’flash_attention_2’) 843

Generation Configuration: 844
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• max_new_tokens: 1200845

• do_sample: False (greedy decoding)846

• num_beams: 1847

• num_logits_to_keep: 1 (explicitly set at848

multiple levels)849

A.2 Datasets and Comprehensive Preprocessing850

A.2.1 Dataset Sources851

• L2-Arctic: NathanRoll/l2-arctic-dataset-250852

• HEC (HISP-ENG): NathanRoll/hisp-eng853

• CMU-Arctic: NathanRoll/cmu-arctic854

A.2.2 Audio Preprocessing Pipeline855

Target Specifications:856

• Sample Rate: 16,000 Hz (resampled using857

librosa.resample)858

• Format: 32-bit float (np.float32)859

• Duration: Minimum 2.5 seconds (shorter clips860

filtered out)861

Normalization Algorithm Steps:862

• Integer handling: Convert integer types by863

dividing by max value for that dtype864

• Float handling: Convert directly to865

np.float32866

• FLAC bug detection: Check for max > 0.99867

and min > -0.5, indicating missing negative868

values869

• Bug correction: Flip values above 0.9 thresh-870

old if bug detected871

• Range clipping: Clip extreme values exceed-872

ing ±1.1 to [-1.0, 1.0]873

Resampling Configuration:874

• Primary method: librosa.resample with875

default parameters876

• Fallback method: librosa.resample with877

res_type=’kaiser_fast’ if primary fails878

• All resampling errors are logged and re-raised879

for debugging880

A.2.3 Text Normalization 881

Normalization Steps: 882

1. Convert to lowercase 883

2. Remove punctuation: . , ? ! ; : " ’ ( ) 884

[ ] (each replaced with space) 885

3. Normalize whitespace: Multiple spaces col- 886

lapsed to single spaces, leading/trailing 887

whitespace removed 888

Implementation Logic: Convert text to low- 889

ercase, iterate through punctuation list replacing 890

each with space, then split and rejoin to normalize 891

whitespace. 892

A.2.4 Dataset Filtering Criteria 893

Variety-Level Filtering: 894

• Varieties must have ≥2 speakers 895

• For HEC dataset: exclude samples with 896

variety == ’unknown’ 897

Speaker-Level Filtering: 898

• Speakers must have ≥(max_shots + 1) valid 899

utterances 900

• Maximum 50 samples per speaker used (se- 901

lected via shuffling with speaker-specific 902

seed) 903

Sample-Level Filtering: 904

• Duration ≥2.5 seconds 905

• Valid audio array present 906

• Valid transcript field present and non-empty 907

Variety Mapping Details: 908

• CMU-Arctic: Based on speaker ID mapping 909

to variety (see CMU_ARCTIC_VARIETIES) 910

• HEC: Based on speaker origin mapping (see 911

HISP_ENG_ORIGINS) 912

• L2-Arctic: Uses l1 field directly 913
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A.3 Experimental Design and Context Selection914

A.3.1 Random Seed Management915

Global Seed: 42 (default, configurable via com-916

mand line)917

Seed Hierarchies:918

• Speaker-level shuffling: global_seed +919

hash(f"{variety}_{speaker}") % 10000920

• Trial-level context selection: global_seed921

+ hash(f"{speaker}_{trial_idx}") %922

10000923

• Different-speaker selection: Same as trial-924

level but includes variety information925

This hierarchical seeding ensures:926

1. Reproducible speaker orderings927

2. Consistent context selection across runs928

3. Deterministic different-speaker selection929

A.3.2 Context Example Selection Algorithm930

Same-Speaker Condition Logic:931

• Build candidate list excluding current test sam-932

ple933

• Filter out samples with identical normalized934

transcripts935

• Use trial-specific random seed for selection936

• Sample n_shots examples without replace-937

ment938

Different-Speaker Condition Logic:939

• Select random other speaker from same vari-940

ety941

• Collect samples from selected speaker942

• Filter out samples with identical transcripts to943

test audio944

• Sample n_shots examples using same random945

seed strategy946

A.3.3 Trial Generation Process 947

Trial Count Calculation: 948

• Maximum trials per speaker: min(pool_size - 949

n_shots, max_trials) 950

• Pool size limit: 50 samples per speaker 951

• Test samples drawn sequentially from shuffled 952

pool 953

Quality Control: 954

• Skip trials where insufficient context exam- 955

ples available 956

• Skip samples without valid transcript fields 957

• Handle all exceptions gracefully with detailed 958

logging 959

A.4 In-Context Learning Prompts 960

The following prompt structures are used for the 961

Phi-4 model, where <|user|>, <|assistant|>, 962

<|audio_N|>, and <|end|> are special model to- 963

kens. 964

A.4.1 Zero-Shot Prompts 965

Standard Prompt: <|user|><|audio_- 966

1|>Transcribe the audio clip into 967

text.<|end|><|assistant|> 968

Variation Prompt (Non-Native Focus): 969

<|user|><|audio_1|>Transcribe the audio 970

clip from a non-native English speaker 971

into text.<|end|><|assistant|> 972

A.4.2 Few-Shot Prompt Structure 973

Initial Instruction Block: 974

• User message: Explains providing N exam- 975

ples from non-native speaker, followed by new 976

audio from same/different speaker 977

• Assistant acknowledgment: Confirms under- 978

standing and intent to use examples for tran- 979

scription 980

Dynamic Elements: 981

• {num_shots_text}: “an example” (1-shot) 982

or “N examples” (N-shot) 983

• {speaker_reference}: “the same speaker” 984

or “a different speaker” 985

• {pronoun_text}: “it” (1-shot) or “them” (N- 986

shot) 987
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Example Block Structure:988

• Standard: User provides audio, assistant re-989

sponds with transcript990

• Variation: Same as standard but assistant re-991

sponse prefixed with “Transcription: ”992

Final Query Block: User provides final au-993

dio with speaker reference, assistant begins re-994

sponse (with “Transcription: ” prefix for variation995

prompt).996

A.5 Computational Requirements and997

Implementation998

Hardware Specifications:999

• GPU: NVIDIA A100 (required for flash atten-1000

tion)1001

• Memory: Minimum 40GB GPU memory rec-1002

ommended1003

• Runtime: 8-12 hours per corpus for complete1004

evaluation (0-12 shots)1005

Software Dependencies:1006

• torch, peft, torchvision, backoff, flash-attn1007

• tqdm, jiwer, librosa, transformers, datasets1008

Model Memory Management:1009

• Model loaded with torch_dtype=’auto’ for1010

optimal precision/memory trade-off1011

• Flash attention implementation used to reduce1012

memory footprint1013

• Single inference batch processing (no batch-1014

ing across utterances)1015

A.6 Statistical Analysis and Data Collection1016

A.6.1 Trial Collection1017

Number of Trials:1018

• Default maximum: 50 trials per speaker per1019

condition1020

• Actual trials: min(available_samples - n_-1021

shots, max_trials)1022

• Zero-shot: All valid samples used (up to 50)1023

Data Validation:1024

• WER calculated using jiwer library with nor-1025

malized texts1026

• All results stored with full precision (no round- 1027

ing during intermediate calculations) 1028

• Individual trial results preserved in addition 1029

to averages 1030

A.6.2 Result Aggregation 1031

Speaker-Level Results Format: 1032

• Variety identification 1033

• Run counts per shot condition 1034

• Average WER per shot condition 1035

• Complete list of individual WER values 1036

Corpus-Level Results: 1037

• Weighted averages across all speakers 1038

• Total sample counts per condition 1039

• Preservation of speaker-level breakdowns 1040

A.7 Reproducibility Checklist 1041

1. Environment Setup: 1042

• Use identical package versions (see dependen- 1043

cies list) 1044

• Set all random seeds (Python, NumPy, Py- 1045

Torch) 1046

2. Data Processing: 1047

• Apply exact audio normalization pipeline (in- 1048

cluding FLAC bug correction) 1049

• Use identical text normalization (case, punc- 1050

tuation, whitespace) 1051

• Apply same filtering criteria (duration, variety, 1052

speaker counts) 1053

3. Experimental Configuration: 1054

• Use hierarchical random seeding as specified 1055

• Maintain exact prompt structure (including 1056

special tokens) 1057

• Follow context selection algorithm precisely 1058

4. Model Configuration: 1059

• Use greedy decoding (do_sample=False) 1060

• Set num_logits_to_keep=1 at all levels 1061

• Use flash attention implementation 1062
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5. Evaluation:1063

• Calculate WER using jiwer with normalized1064

texts1065

• Aggregate results maintaining full precision1066

• Store individual trial values, not just averages1067

A.8 Extended Speaker-Level Results1068

The following table provides complete speaker-1069

level results for 0-shot and 12-shot conditions1070

across all corpora, enabling verification of reported1071

aggregate statistics.1072
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Table 3: Complete speaker-level Word Error Rates (WER) for 0-shot and 12-shot conditions. All WERs are
percentages.

Dataset (Corpus) Speaker 0-shot WER (%) 12-shot WER (%)

CMU-Arctic aew 1.5 0.7
CMU-Arctic ahw 2.8 2.0
CMU-Arctic aup 3.1 2.1
CMU-Arctic axb 3.8 2.4
CMU-Arctic bdl 1.4 0.9
CMU-Arctic clb 1.9 0.7
CMU-Arctic eey 1.9 2.6
CMU-Arctic fem 4.1 2.5
CMU-Arctic gka 1.9 1.3
CMU-Arctic ksp 3.4 2.4
CMU-Arctic ljm 2.2 1.8
CMU-Arctic lnh 2.2 1.0
CMU-Arctic rms 2.0 0.7
CMU-Arctic slp 3.9 1.8
CMU-Arctic slt 1.7 1.1
HEC 0 4.6 7.6
HEC 1 3.9 3.3
HEC 18 6.7 4.9
HEC 3 2.3 1.9
HEC 4 4.7 3.8
HEC 6 3.0 2.3
HEC 7 63.9 41.0
L2-Arctic ASI 3.5 3.3
L2-Arctic BWC 9.4 10.3
L2-Arctic EBVS 8.8 7.5
L2-Arctic ERMS 6.5 6.1
L2-Arctic HJK 4.1 4.0
L2-Arctic HQTV 17.9 15.8
L2-Arctic LXC 6.4 6.1
L2-Arctic MBMPS 5.5 5.1
L2-Arctic NCC 6.4 6.7
L2-Arctic NJS 5.1 4.9
L2-Arctic PNV 4.6 5.6
L2-Arctic RRBI 4.9 3.5
L2-Arctic TNI 3.7 3.5
L2-Arctic YKWK 4.2 3.7

Grand Average (across speakers) 6.1 4.9
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