
000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

Under review as a conference paper at ICLR 2026

THE CHALLENGE OF HIDDEN GIFTS IN MULTI-AGENT

REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Sometimes we benefit from actions that others have taken even when we are
unaware that they took those actions. For example, if your neighbor chooses not
to take a parking spot in front of your house when you are not there, you can
benefit, even without being aware that they took this action. These “hidden gifts”
represent an interesting challenge for multi-agent reinforcement learning (MARL),
since assigning credit when the beneficial actions of others are hidden is non-trivial.
Here, we study the impact of hidden gifts with a very simple MARL task. In this
task, agents in a grid-world environment have individual doors to unlock in order
to obtain individual rewards. As well, if all the agents unlock their door the group
receives a larger collective reward. However, there is only one key for all of the
doors, such that the collective reward can only be obtained when the agents drop the
key for others after they use it. Notably, there is nothing to indicate to an agent that
the other agents have dropped the key, thus the act of dropping the key for others is
a “hidden gift”. We show that several different state-of-the-art MARL algorithms,
including MARL specific architectures, fail to learn how to obtain the collective
reward in this simple task. Interestingly, we find that decentralized actor-critic
policy gradient agents can solve the task when we provide them with information
about their own action history, but MARL agents still cannot solve the task with
action history. Finally, we derive a correction term for these policy gradient agents,
inspired by learning aware approaches, which reduces the variance in learning and
helps them to converge to collective success more reliably. These results show
that credit assignment in multi-agent settings can be particularly challenging in
the presence of “hidden gifts”, and demonstrate that self learning-awareness in
decentralized agents can benefit these settings.

1 INTRODUCTION

In the world we often rely on other people to help us accomplish our goals. Sometimes, people help
us even when we are not aware of it or haven’t communicated a need for it. One simple example
would be if someone decides not to take the last cookie in the pantry, leaving it for others. Another
interesting example is the historical “Manitokan” practice of the plains Indigenous nations of North
America. In an expansive environment with limited opportunities for communication, people would
cache goods for others to use at effigies (Barkwell, 2015). Notably, in these cases there was no
explicit agreement of a trade or articulation of a “tit-for-tat”(Axelrod, 1980). Rather, people simply
engaged in altruistic acts that others could then benefit from, even without knowing who had taken
the altruistic act. We refer to these undeclared altruistic acts as “hidden gifts”.

Hidden gifts represent an interesting challenge for credit assignment in multi-agent reinforcement
learning (MARL). If one leaves a hidden gift, assigning credit to the actions of another is essentially
impossible, since the action was never made clear to the beneficiary. As such, standard Bellman-back-
ups (Bellman, 1954) would likely be unable to identify the critical steps that led to success in the
task. Moreover, unlike a scenario where cooperation and altruistic acts can emerge through explicit
agreement or a strategic equilibrium (Nash Jr, 1950), as in general sum games (Axelrod, 1980), with
hidden gifts the benefits of taking an altruistic action are harder to identify or reciprocate.

To explore the challenge of hidden gifts for MARL we built a grid-world task where hidden gifts
are required for optimal behavior (Chevalier-Boisvert et al., 2023). We call it the Manitokan task, in

1

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

Under review as a conference paper at ICLR 2026

reference to the "take what you need, leave what you don’t need" inspiration from Manitokan of plains
Indigenous communities. In the Manitokan task, two-or-more agents are placed in an environment
where each agent has a “door” that they must open in order to obtain an individual, immediate, small
reward. As well, if all of the agents successfully open their door then a larger, collective reward
is given to all of them. To open the doors, the agents must use a key, which the agents can both
pick up and drop. However, there is only a single key in the environment. As such, if agents are
to obtain the larger collective reward then they must drop the key for others to use after they have
used it themselves. The agents receive an egocentric, top-down partial image of the environment as
their observation in the task, and they can select actions of moving in the environment, picking up a
key, dropping a key, or opening a door. Since the agents do not have access to other agent’s decision
making process, key drops represent a form of hidden gift – which make the credit assignment
problem challenging. In particular: 1. The task is fully cooperative so there is no disincentive for
leaving the key, and 2. dropping the key only leads to the collective reward if the other agents exploits
the gift.

We tested several state-of-the-art MARL algorithms on the Manitokan task. Specifically we tested
Value Decomposition Networks (VDN, QMIX and QTRAN) (Sunehag et al., 2017; Son et al., 2019;
Rashid et al., 2020), Multi-Agent and Independent Proximal Policy Optimization (MAPPO and
IPPO) (Schulman et al., 2017; Yu et al., 2022), counterfactual multi-agent policy gradients (COMA)
(Foerster et al., 2018; She et al., 2022), Multi-Agent Variational Exploration Networks (MAVEN)
(Mahajan et al., 2019), an information bottleneck based Stateful Active Facilitator (SAF) (Liu et al.,
2023b) and standard actor-critic policy gradients (PG) with Actor-Critic (Williams, 1992; Sutton
et al., 1999a; 1998; She et al., 2022). Notably, we found that none were capable of learning to drop
the key and obtain the collective reward reliably. In fact, many of the MARL algorithms exhibited a
total removal of key-dropping behavior, leading to less than random performance on the collective
reward. These failures held even when we provided the agents with objective relevant information,
providing inputs indicating which doors were open and whether the agents were holding the key.

Interestingly, when we also provided the agents with a history of their own actions as one-hot vectors,
we observed that policy gradient agents without proximal policy optimization could now solve the
collective task, whereas others still failed. However, these successful agents’ showed high variability
in cooperation. Based on this, we analyzed the value estimation problem for this task formally, and
observed that the value function necessitates an approximation of a non-constant reward. That is,
the collective reward is conditioned on the other agent’s policy which is non-stationary between
policy updates. Inspired by learning awareness (Willi et al., 2022; Foerster et al., 2017), we derived a
new term in the policy gradient theorem which corresponds to the Hessian of the collective reward
objective partitioned by the other agent’s policy with respect to the collective reward. Using this
correction term, we show that we can reduce the variance in the performance of the PG agents and
achieve consistent learning to drop the key for others.

Altogether, our key contributions in this paper are:

• A structural credit assignment problem of hidden gifts induced in the Manitokan task.

• Evidence that several state-of-the art MARL credit assingment algorithms cannot solve the
Manitokan task, even with recurrent policies, despite its small environment space.

• A demonstration that when action history is provided to recurrent PG agents, they can solve
the task, while other algorithms still cannot.

• A theoretical analysis of the Manitokan credit assignment problem and a derived correction
term inspired by learning-aware gradient updates (Foerster et al., 2017).

• A fully decentralized self learning-awareness term that does not require access to the other
agent’s policy, reduces variance and improves convergence towards leaving hidden gifts.

2 RELATED WORK

2.1 COORDINATION AND GIFTING IN MARL

Fully cooperative coordination games feature a single team objective requiring agents to act jointly,
often reducible to a single-agent problem with a large action space. Previous tasks include navigation

2

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

Under review as a conference paper at ICLR 2026

(Mordatch & Abbeel, 2017; Lowe et al., 2017), cooking coordination (Carroll et al., 2019; Gessler
et al., 2025), battles (Samvelyan et al., 2019; Ellis et al., 2023), and social-dilemmas (Leibo et al.,
2017; Lerer & Peysakhovich, 2017; Christianos et al., 2020). These are often studied under the
centralized training with decentralized execution, with methods such as COMA (Foerster et al., 2018)
and QMIX (Rashid et al., 2020) leveraging global states during training to stabilize coordination.
Additionally sharing collective rewards across agents is common and promotes cooperation but can
also create “lazy-agent” credit assignment behavior (Liu et al., 2023a). Individualized rewards can
mitigate this but risk pulling policies away from team objectives (Wang et al., 2022).

Within this cooperative context, “gifting” has been proposed as a mechanism for reward transfer,
where one agent deliberately allocates part of its payoff to another to foster cooperation or reciprocity
(Hughes et al., 2018; Peysakhovich & Lerer, 2018; Lupu & Precup, 2020). This can be seen as a
bounded, targeted form of social influence. In single-agent RL this gifting can be interpreted as
an intrinsic “self-gift,” i.e., intrinsically generated rewards that support exploration or long-horizon
credit assignment (Schmidhuber, 1991; Arjona-Medina et al., 2019; Sun et al., 2023). In multi-
agent settings, intrinsic rewards have also been used to shape others’ behavior through causal social
influence (Jaques et al., 2019). However, this gifting is treated only as scalar reward signals, not as
the transfer of tangible, task-critical resources.

2.2 MULTI-OBJECTIVE RL

Many decision-making problems involve objectives whose relative importance shifts over time,
creating a non-stationary optimization landscape where fixed-weight multi-objective RL (MORL)
methods falter (Van Moffaert & Nowé, 2014; Roijers et al., 2013). Dynamic-weights MORL addresses
this by conditioning policies or value functions on the current weight vector w(t), enabling a single
policy to adapt across changing trade-offs without retraining. Approaches include weight-conditioned
DQNs (Mossalam et al., 2016), policy gradients with weight inputs (Abels et al., 2019), and replay
strategies for stability under shifting scalarizations (Yang et al., 2019).

In multi-agent settings, MORL has been used to balance individual and collective goals (Hayes et al.,
2022), but prior work assumes known or designed w(t), rather than treating another agent’s policy
itself as a dynamic weight. Seldom in the world do we have ever complete control of our incentives.

3 THE MANITOKAN TASK FOR STUDYING HIDDEN GIFTS

The Manitokan task is a cooperative MARL task in a grid world (see Fig.1). The task has been
designed to be more complex than matrix games, such as Iterative Prisoner’s Dilemma (Axelrod,
1980; Chammah, 1965), but capable for mathematical analysis of strategic behaviour and different
from past cooperative environments (See 2). At the beginning of an episode each agent is assigned
a locked door (Fig.1A) that they can only open if they hold a key. Agents can pick up the key if
they move to the grid location where it is located (Fig.1B). Once an agent has opened their door it
disappears and that agent receives a small individual reward immediately (Fig.1C). However, there
is only one key for all agents to share and the agents can drop the key at any time if they hold it
(Fig.1D). Once the key has been dropped the other agents can pick it up (Fig.1E) and use it to open
their door as well (Fig.1F). If all doors are opened a larger collective reward is given to all agents,
and at that point, the task terminates.

We now define the notation that we will use for describing the Manitokan task and analyzing formally.
The environment is a decentralized partially observable Markov decision process (Dec-POMDP)
(Goldman & Zilberstein, 2004; Bernstein et al., 2002).

Let M = (N , T, T ,O,A,Π,R, γ), where:

• N := {1, 2, . . . , N} is the set of N agents.

• T ∈ N is the maximum timesteps in an episode.

• O := ×i∈NOi is the joint observation space for the N agents and oit ∈ Oi → N
9 is a partial

observation for an agent i at timestep t. This is the only input agents take so the state S = O

• A := ×i∈NAi is the joint action space and ait ∈ Ai is the action of agent i at time t.

• Π := ×i∈Nπi is the joint space of individual agent policies.

3

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

Under review as a conference paper at ICLR 2026

• R → R is the reward function composed of both individual rewards, rit, which agents
receive for opening their own door (i.e. an individual objective), and the collective reward,
rc, which is given to all agents when all doors are opened (i.e. a collective objective). (See
equation 1 below.)

• T : O × A → ∆(O) is the transition function specifying the probability

T (oi
′

,Ri(oi, ai)|oi, ai) that agent i transitions to oi
′

from oi by taking action ai for a
reward Ri.

• γ ∈ [0, 1) is the discount factor.

The observations, oit, that each agent receives are egocentric images of the 9 grid locations surrounding
the current position of the agent (see the lighter portions in Fig. 1). The key, the doors, and the other
agents are all visible if they are in the field of view, but not otherwise (hence the task is partially
observable). The actions the agents can select, ait, consist of ‘move forward’, ‘turn left’, ‘turn
right’, ‘pick up the key’, ‘drop the key’, and ‘open the door’. Episodes last for T = 150 timesteps at
maximum, and are terminated early if all doors are opened.

The monotonic reward function Ri is defined as:

Ri(oit, a
i
t) :=

{

rit = ri door opened

rc =
∑N

j rj all doors opened
(1)

But in correspondence with multi-objective problems, Ri is scalarized as R̂i = ri + ω(t)rc where

the preference weighting ω(t) is the other agent’s policy so R̂i = ri +
eπj(ajt |o

j
t)r

c for agent i and
episode e (Mossalam et al., 2016). The Manitokan task is unique from other credit assignment work
in MARL due to the number of keys being strictly less than the number of agents (see. Section 2.1).
This scarcity requires the coordination of gifting the key between agents as a necessary critical step
for success and maximizing the cumulative return. But, notably, unlike most other MARL settings
the act of dropping the key is not actually observable by other agents when learning a policy. When
an agent picks up the key they do not know if they were the first agent to do so or if other agents had
held the key and dropped it for them. Thus, key drop acts are “hidden gifts” between agents and
the task represents a deceptively simple, but actually complex structural credit assignment problem
across learning dynamics (Tumer et al., 2002; Agogino & Tumer, 2004; Gupta et al., 2021).

Importantly, the collective reward is delayed relative to any key drop actions. Moreover, key drop
actions only lead to reward if the other agents have learned to accomplish their individual tasks. It
then follows that the delay between a key drop action and the collective reward being received will
be proportional in expectation to the number of agents, rendering a more difficult credit assignment
problem for higher values of N . In the presented data, we focus on the canonical two-player setting
from game theory, where (N = 2), for analytical tractability and interpretability of a Dec-POMDP.

4 RESULTS

We begin by testing the ability of various state-of-the-art model-free RL algorithms to solve this
task, both multi-agent, and decentralized. For the multi-agent algorithms, we selected ones that are
prominently used as baselines for credit assignment in fully cooperative MARL tasks. These included
the counterfactual model COMA, the centralized critic multi-agent PPO (MAPPO), and global value
mixer algorithms VDN, QMIX and QTRAN (Foerster et al., 2018; Yu et al., 2022; Sunehag et al.,
2017; Rashid et al., 2020; Son et al., 2019). We used actor-critic policy gradient methods, and
gradient decoupled IPPO without a value function. (Williams, 1992; Sutton et al., 1999a; Schulman
et al., 2017). In order to alleviate problems with exploration and changing policies we also tested
MAVEN (which provides more robust exploration) and SAF (which is a meta-learning approach
with a communication protocol network for learning with multiple policies) (Mahajan et al., 2019;
Liu et al., 2023b). All algorithms were built with recurrent components in their policy (specifically,
Gated Recurrent Units, GRUs (Cho et al., 2014)) in order to provide agents with some information
about task history. (See methods in Appendix A for more details on design and training.) In our
initial tests we provided only the egocentric (i.e agent’s "self" is included) observations as input for
the agents. Hyperparameters were optimized by tuning from the sets provided in the original papers

4

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

Under review as a conference paper at ICLR 2026

Agent 1
 a

f

b

e

c

d

Door 1

Door 2

The key

Agent 2

Agent 1 finds

the key

Agent 1 finds

their door

Agent 1 opens

their door for

reward +0.5

Agent 1 drops

the key

Agent 2 found

the key and finds

their door

Agent 2 opens

their door for reward

 +1.5, Agent 1 receives

reward +1.0

Figure 1: The deceivingly simple steps to success in the Manitokan task. a) Agent 1 finds the key; b)
Agent 1 then finds their door; c) Agent 1 opens their door; d) Agent 1 drops the key as a “hidden
gift”; e) Agent 3 finds their door; f) Agent 2 opens their door.

with a search to avoid overfitting on the immediate reward. As well, we trained 10 simulations with
different seeds that initialized 32 parallel environments also with different random seeds. These
parallel environments make the reward signals in each batch less sparse. For each simulation we ran
10,000 episodes for each 32 parallel environments, except in Figure 5 where we did 26,000 episodes.
Training was done with 2 CPUs for each run and SAF required an additional A100 GPU per run. An
emulator was also used to improve environment step speed (Suarez, 2024).

4.1 ALL ALGORITHMS FAIL IN THE BASIC MANITOKAN TASK

To our surprise, everything we tested converged to a level of success in obtaining the collective
reward that was below the level achieved by a fully random policy (Fig. 2a) even though reward
was being maximized and the single agent key-to-door task is solvable (see E.8). In fact, with the
sole exception of MAPPO, all of the MARL algorithms we tested (COMA, VDN, QMIX, QTRAN)
exhibited full collapse in hidden gift behavior: these algorithms all converged to policies that involved
less than random key dropping frequency. Randomizing the policy can slightly improve success rate
but reduced cumulative reward (4). Notably, the agents that didn’t show full collapse in collective
success (MAPPO, IPPO and SAF) were still successfully opening their individual doors, since their
cumulative reward was higher than that of a random policy (Fig. 2b). But, the MARL agents that
showed total collapse of collective behavior also showed collapse in the individual rewards. We
believe that this was due to the impact of asymmetric state information and shared value updates.
With shared value updates the reward signal could be swamped by noise from the unrewarded agents
in the absence of key drops, and became confused by a lack of reward obtained when agents’ dropped
the key before opening their doors (See more below in section 5). The key drop rate is optimal at 1,
eg. one drop after using the key, all agents had a near zero drop rate or did not seem to learn (E.2).

4.2 OBSERVABILITY OF DOOR AND KEY STATUS DOES NOT RESCUE PERFORMANCE IN THE

MANITOKAN TASK

To receive the collective reward, agents needed to learn to pick up the key, use it, then drop it. If they
did these actions out of sequence (e.g. dropping the key before using it), then they can not succeed.
As such, one potential cause for collapse in performance could have been the fact that agents did not
have an explicit signal for their door being opened or that they are holding the key (i.e. the task was
partially observable with respect to these variables). To make the task easier, we provided the agents

5

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

Under review as a conference paper at ICLR 2026

0 2500 5000 7500
Episodes

0.00

0.03

0.06
Co

lle
ct

iv
e

Su
cc

es
s R

at
e

COMA
MAPPO
IPPO
PG
VDN
QMIX
QTRAN
MAVEN
SAF
Random

0 2500 5000 7500
Episodes

0.00

0.08

0.16

Cu
m

ul
at

iv
e

Re
wa

rd

CO
MA

MAP
PO

IPP
O

VD
N

PG QMIX
QTR

AN
MAV

EN
SA

F
Ra

nd
om

Agent 1
Agent 2

Figure 2: a) Success rate for the collective reward, i.e. percentage of trials where both agents opened
their doors. b) Cumulative reward of both agents across 10000 episodes with 32 parallel environments
limited to 150 timesteps each.

a b

with more decentralized information, one which indicated whether their door was open, the other
which indicated whether they held the key. The agents now always have a cue when their individual
task is completed.

Surprisingly, the agents we tested all failed to achieve collective success rates above random. In
fact, the same behavior occurred, with the MARL agents (MAPPO, QMIX, COMA) showing total
collapse, and the decentralized PG agents showing some collective success, but still below random
(Fig. 3a). As before, We found that only MAPPO and decentralized PG showed any learning in
the task, with QMIX and COMA showing collapse in the individual success rate as well (Fig. 3b).
Thus, the lack of information about the status of the door and key was not the cause of failure of the
Manitokan task.

0 2500 5000 7500
Episodes

0.000

0.025

0.050

Co
lle

ct
iv

e
Su

cc
es

s R
at

e

COMA
MAPPO
QMIX
PG
Random

0 2500 5000 7500
Episodes

0.00

0.06

0.12

Cu
m

ul
at

iv
e

Re
wa

rd

CO
MA

MAP
PO PG

QMIX
Ra

nd
om

Agent 1
Agent 2

Figure 3: a) Success rate when each agent receives information about whether they have opened their
door or not and if they have the key or not. b) Cumulative reward of both agents with information
about whether they have opened their door or not and if they have the key or not.

a b

4.3 ADDING ACTION HISTORY HELPS DECENTRALIZED AGENTS BUT NOT MARL AGENTS

Next, we reasoned that a cause of failure was that agents could not see themselves drop the key. To
alleviate the credit assignment, we provided the agents with the last action they took as a one-hot

6

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

Under review as a conference paper at ICLR 2026

vector. Coupled with the recurrence, this would permit the agents to know that they had dropped the
key in the past if/when the collective reward was obtained.

When we added the past action to the observation, we found that the PG agents now showed signs of
obtaining the collective reward, much better than random (Fig. 4). This also led to better cumulative
reward (Fig. 4). However, interestingly, the other agents showed no ability to learn this task, exhibiting
the same collapse in collective success rate and same low levels of cumulative reward as before (Fig.
4a & 4b). These results indicated that there is something about the credit assignment problem in
the Manitokan task that can be addressed by the standard policy gradient objective, but not fancier
trust region mechanisms. Further modifying the reward function can help or inhibit these agents but
removing one of the rewards harms success (E. 6). Changing or randomizing agent turn order also
reduces success rate (E. 3). Overall, the PG agents still exhibited very high variance in their collective
success rate (Fig. 4), suggesting more to the credit assignment problem. We then formally analyzed
the value function of the task to better understand the credit assignment problem therein.

0 2500 5000 7500
Episodes

0.00

0.25

0.50

Co
lle

ct
iv

e
Su

cc
es

s R
at

e

COMA
MAPPO
QMIX
PG
Random

0 2500 5000 7500
Episodes

0.00

0.25

0.50

Cu
m

ul
at

iv
e

Re
wa

rd CO
MA

MAP
PO

PG QMIX
Ra

nd
om

Agent 1
Agent 2

Figure 4: a) Success rate when each agent receives their last action in the observation. b) Cumulative
reward of both agents with last action information.

a b

5 FORMAL ANALYSIS AND CORRECTION TERM

For ease of Dec-POMDP analysis we again focus on the situation where N = 2, i.e. there are only
two agents, and borrow the language of sub-policies from options learning (Sutton et al., 1999b). We
begin by considering the objective function for agent i with parameters Θi, for an entire episode of
the Manitokan task, where we ignore the discount factors (which do not affect the analysis):

J(Θi) = E[

T∑

t=0

Ri(oit, a
i
t)] = E[

T∑

t=0

rit + rct] = E[

T∑

t=0

rit] + E[

T∑

t=0

rct] (2)

If we consider the sub-objective related solely to the collective reward Jc(Θ
i) = J(Θi) −

E[
∑T

t=0 r
i
t] = E[

∑T

t=0 r
c
t], we can then also consider the sub-policy of the agent related to the

collective reward (πi
c), and the sub-policy unrelated to the collective reward (πi

d). If we condition

the collective reward objective on the door for agent i being open, then Jc(Θ
i) is independent of πi

d.
Therefore, when we consider the gradient for agent i of the collective objective, conditioned on their
door being open, we get:

∇ΘiJc(Θ
i) = E[∇Θi log πi

c(a
i|oi)Qc(o

i, ai)] = E[∇Θi log πi
c(a

i|oi)]E[Qc(o
i, ai)] (3)

where Qc(o
i, ai) is the value solely related to the collective reward. The gradient of this collective

objective is inversely related to the entropy of the other agent’s policy.

Theorem 1. Let Jc(Θ
i) = E[

∑T

t=0 r
c
t] be the collective objective function for agent i, and assume

that agent i is the first to open their door. Then the gradient of this objective function is given by:

7

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

Under review as a conference paper at ICLR 2026

∇ΘiJc(Θ
i) = E[∇Θi∇ΘjJc(Θ

j)Ψ(πj
c , a

j , oj)] (4)

where Ψ(πj
c , a

j , oj) = E[1

∇
Θj log π

j
c(aj |oj)

] and i ̸= j.

See P.1 for the full proof. As a sketch, we rely on two key assumptions. The first key assumption
is that agent i is the first to open their door. As a result, agent j’s entire policy is related directly to

the collective reward, and hence the sub-policy π
j
d does not exist. The second key assumption is that

the other agent’s collective reward policy is differentiable. With those assumptions we can then use
the objective of agent j as a surrogate for the collective reward in the look-ahead step of the policy
gradient derivation (Sutton et al., 1998), similar to mutual learning aware update rules (Willi et al.,
2022; Foerster et al., 2017). The correction term does not conflict with individual objectives (see P.3)
and is computed with a finite difference method. The complete gradient objective from P.1 is:

∇ΘiJ(Θi) = E[∇Θi log πi(ai|oi)Q(oi, ai) +∇Θi∇ΘjJc(Θ
j)Ψ(πj

c , a
j , oj)] (5)

5.1 USE OF A CORRECTION TERM IN THE VALUE FUNCTION

The correction Eq. (5) should reduce the variance in the agents’ abilities to obtain the collective
reward by stabilizing their value estimate with respect to each other’s policies updating. Since the
reward is shared, agents only need to correct with their own parameters in expectation (see proof in
P. 2). This leads to a decentralized correction term of ∇Θi∇ΘiJc(Θ

i)Ψ(πi
c, a

i, oi), which we term
“Self Correction”. Hence, we evaluated these policy gradient correction terms Fig.5.

With action history inputs, we trained PG agents with and without the correction and self-correction
terms over seven days to ensure convergence. Additionally, we examined PG agents with a maximum
entropy term, which should also reduce the variance in the learned policies (Ahmed et al., 2019;
Haarnoja et al., 2018; Eysenbach & Levine, 2022). We found that all of the agents converged to a
fairly high success rate over time (Fig. 5a), high cumulative reward (Fig. 5b) and reduced the distance
between themselves (Fig.11b). Notably, the collective success variance was markedly different.
The variance of the standard PG agents was quite high with steep spikes, and the variance of the
max-entropy agents were not any different throughout the majority of the episodes, with the exception
of the very early episodes (Fig. 5c). In contrast, the variance of the agents with the correction term
was a bit lower but more stable. Interestingly, the agents with the self-correction term showed the
lowest variance. We believe that this may be due to added noise from considering multiple policies in
the update. Altogether, these results show that the correction term reduces variance in performance
in the hidden gift problem, but is more prominent when decentralized with self-correction. This is
interesting because it shows that it may be possible to resolve the complexities of hidden gift credit
assignment using self learning-awareness rather than collective learning-awareness.

6 DISCUSSION

In this work we developed a MARL task to explore the complexities of learning in the presence of
“hidden gifts”, i.e. cooperative acts that are not revealed to the recipient. The Manitokan task we
developed, inspired by the concept in Indigenous plains communities across North America, requires
agents to open doors using a single shared key in the environment. Agents must drop the key for
other agents after they have used it if they are to obtain a larger collective reward. But, these key drop
acts are not apparent to the other agents, making it difficult to assign credit between policy updates.

We observed that in the basic version of the Manitokan task none of the algorithms tested were
able to solve it. This included both policy gradient agents (PG, PPO), meta-learning agents (SAF),
enhanced exploration agents (MAVEN), counterfactual agents (COMA), and agents with collective
value functions (VDN, QMIX, QTRAN, and MAPPO). When we added additional information
to the observations the more sophisticated algorithms tested were still not able to solve this task.
However, with previous action information, the actor-critic PG agents could solve the task, though
with high variance. Formal analysis of the value function for the Manitokan task showed that it
contains a second-order term related to the collective reward that can reduce instability in learning.
We used this to derive a correction for the PG agents that successfully reduced the variance in their

8

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

Under review as a conference paper at ICLR 2026

Improved variance with the derived correction term

0 8000 16000 24000
Episodes

0.0

0.3

0.6

Co
lle

ct
iv

e
Su

cc
es

s R
at

e
Self Correction
Max Entropy
Correction
Vanilla

0 8000 16000 24000
Episodes

0.0

0.3

0.6

Cu
m

ul
at

iv
e

Re
wa

rd

Co
rre

cti
on

Max
 En

tro
py

Se
lf C

orr
ec

tio
n

Va
nil

la

Agent 1Agent 2
0 8000 16000 24000

Episodes
0.00

0.03

0.06

Va
ria

nc
e

Self Correction
Max Entropy
Correction
Vanilla

Figure 5: a) Success rate of PG agents comparing the vanilla PG model against PG with a maximum
entropy term, PG with the correction term, and PG with the self-correction term. b) Cumulative
reward of PG agents c) Variance in collective success rate across episodes.

a b c

performance. Altogether, our results demonstrate that hidden gifts introduce challenging credit
assignment problems that many state-of-the-art MARL architectures were not designed to overcome.

6.1 LIMITATIONS

We used a grid world task to induce the hidden gift credit assignment problem while enabling a
tractable formal analysis. But, the real world is salient with sensory information and biological agents
have large action spaces at their disposal. Less sparse signals and states, like the real world, may
make the credit assignment problem easier with more information to leverage or infer.

Additionally, biological agents have a capacity for explicit, structured inter-agent communication
which may aid in planning objectives or roles (Wu et al., 2024). This communication is different than
the latent communication protocol of SAF (Liu et al., 2023b) in that agents could communicate to
commit to gifting before hand which could become implicit and unspoken over time (Vélez et al.,
2022). This may have been how similar practices developed in the plains of North America.

Lastly, the limited memory provided by the GRU architecture may inhibit credit assignment. It is
possible that by integrating a more explicit form of memory with action history (e.g. a long context-
window transformer), agents could more easily assign credit to their gifting behavior (Ni et al.,
2023; Chen et al., 2021; Cross et al., 2025). A retrieval augmented temporal memory mechanism
(Hung et al., 2019) might even help model-free agents avoid learning policies deviating away from or
discounting the collective reward objective which may be non-markovian (Pitis, 2023). This temporal
retrieval mechanism is different than SAF’s spatial mechanism (Liu et al., 2023b).

6.2 RETHINKING RECIPROCITY

A broader implication from our work is that the emergence of reciprocity in a multi-agent setting can
be complicated when acts of reciprocity themselves are partially or fully unobservable and therefore
temporally indirect (Nowak & Sigmund, 2005; Santos et al., 2021). One potential interesting way
of dealing with these situations would be to develop agents that are good at either predicting the
actions of other agents or influencing other agents with implicit information (Jaques et al., 2019; Xie
et al., 2021), which would ease the inference that other agents would exploit altruistic gifts. The
reciprocity in MARL settings with any form of “hidden gift” may generally be aided by the ability of
RL agents to successfully predict the actions of others when information is asymmetric. Given that
the correction term that we derived from our formal analysis was motivated by the gradient steering
effect in various learning aware approaches (Willi et al., 2022; Foerster et al., 2017; Meulemans
et al., 2025; Aghajohari et al., 2024), it seems reasonable to speculate that abstracting properties from
learning awareness, which may not always be optimal (see E. 9), have an untapped potential exterior
to the domains in which they were designed. Such as inhibiting cooperation or collusion (see E.14).

9

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Under review as a conference paper at ICLR 2026

Reproducibility Statement The source code for all experiments and Manitokan task can be found
in the supplementary file along with a ReadMe file for setup. Hyperparameters used for the plots
can be found in the methods Section. 1 of the appendix and modified in the config files of the source
code. Hardware used and the time for experiments are mentioned in Section. 4 and described in the
Methods section. 2 of the appendix. A sketch of the proof is found in the Section. 5 and the full
derivations are found in the Proofs section of the appendix: P. 1, P. 2 and P. 3.

Ethics Statement This work uses only synthetic simulation and did not use human participants nor
any datasets; no personal data or sensitive attributes were collected. We recognize that increases in
artificial intelligence performance or agentic capabilities may also increase negative societal risks
(e.g., covert collusion or manipulation in multi-agent settings). However, the Manitokan task and
the proposed correction term are explicitly designed to evaluate and improve RL agents’ altruistic
actions. We therefore do not foresee a specific safety concern from this work, especially relative
to the alternative of RL agents that are not capable of taking altruistic actions. To reduce dual-
use risk, we restrict claims to simulated environments and discourage harmful applications. No
demographic or group attributes are used, and we aim for inclusive citation practices and accessibility.
We acknowledge the cultural inspiration referenced by “Manitokan” and intend respectful use. A born
and raised community member, in the culture of which “Manitokan” existed, was deeply involved
from beginning through the end of the work presented here.

REFERENCES

Axel Abels, Diederik Roijers, Tom Lenaerts, Ann Nowé, and Denis Steckelmacher. Dynamic weights
in multi-objective deep reinforcement learning. In International conference on machine learning,
pp. 11–20. PMLR, 2019.

Milad Aghajohari, Juan Agustin Duque, Tim Cooijmans, and Aaron Courville. LOQA: Learning
with opponent q-learning awareness. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=FDQF6A1s6M.

Adrian K Agogino and Kagan Tumer. Unifying temporal and structural credit assignment problems.
In Autonomous agents and multi-agent systems conference, 2004.

Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi, and Dale Schuurmans. Understanding the
impact of entropy on policy optimization. In International conference on machine learning, pp.
151–160. PMLR, 2019.

Jose A Arjona-Medina, Michael Gillhofer, Michael Widrich, Thomas Unterthiner, Johannes Brand-
stetter, and Sepp Hochreiter. Rudder: Return decomposition for delayed rewards. Advances in
Neural Information Processing Systems, 32, 2019.

Robert Axelrod. Effective choice in the prisoner’s dilemma. Journal of conflict resolution, 24(1):
3–25, 1980.

Lawrence J Barkwell. Manitokanac. Gabriel Dumont Institute of Native Studies and Applied Research,
2015. URL https://www.metismuseum.ca/resource.php/148154.

Richard Bellman. The theory of dynamic programming. Bulletin of the American Mathematical
Society, 60(6):503–515, 1954.

Daniel S Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The complexity of
decentralized control of markov decision processes. Mathematics of operations research, 27(4):
819–840, 2002.

Micah Carroll, Rohin Shah, Mark K Ho, Tom Griffiths, Sanjit Seshia, Pieter Abbeel, and Anca
Dragan. On the utility of learning about humans for human-ai coordination. Advances in neural
information processing systems, 32, 2019.

Albert M Chammah. Prisoner’s dilemma; a study in conflict and cooperation. Ann Arbor, U. of
Michigan P, 1965.

10

https://openreview.net/forum?id=FDQF6A1s6M
https://www.metismuseum.ca/resource.php/148154

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

Under review as a conference paper at ICLR 2026

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo Perez-Vicente, Lucas Willems, Salem
Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld: Modular &
customizable reinforcement learning environments for goal-oriented tasks. Advances in Neural
Information Processing Systems, 36:73383–73394, 2023.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder–decoder
for statistical machine translation. In Alessandro Moschitti, Bo Pang, and Walter Daelemans
(eds.), Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 1724–1734, Doha, Qatar, October 2014. Association for Computational Linguistics.
doi: 10.3115/v1/D14-1179. URL https://aclanthology.org/D14-1179/.

Filippos Christianos, Lukas Schäfer, and Stefano Albrecht. Shared experience actor-critic for multi-
agent reinforcement learning. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 10707–10717. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/

file/7967cc8e3ab559e68cc944c44b1cf3e8-Paper.pdf.

Logan Cross, Violet Xiang, Agam Bhatia, Daniel LK Yamins, and Nick Haber. Hypothetical minds:
Scaffolding theory of mind for multi-agent tasks with large language models. In The Thirteenth
International Conference on Learning Representations, 2025. URL https://openreview.

net/forum?id=otW0TJOUYF.

Benjamin Ellis, Jonathan Cook, Skander Moalla, Mikayel Samvelyan, Mingfei Sun, Anuj Mahajan,
Jakob Foerster, and Shimon Whiteson. Smacv2: An improved benchmark for cooperative multi-
agent reinforcement learning. Advances in Neural Information Processing Systems, 36:37567–
37593, 2023.

Benjamin Eysenbach and Sergey Levine. Maximum entropy RL (provably) solves some robust
RL problems. In International Conference on Learning Representations, 2022. URL https:

//openreview.net/forum?id=PtSAD3caaA2.

J Foerster, G Farquhar, T Afouras, N Nardelli, and S Whiteson. Counterfactual multi- agent policy
gradients. In 32nd AAAI Conference on Artificial Intelligence (AAAI’18). AAAI Press, 2018.

Jakob N Foerster, Richard Y Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter Abbeel, and Igor
Mordatch. Learning with opponent-learning awareness. arXiv preprint arXiv:1709.04326, 2017.

Tobias Gessler, Tin Dizdarevic, Ani Calinescu, Benjamin Ellis, Andrei Lupu, and Jakob Nicolaus
Foerster. Overcookedv2: Rethinking overcooked for zero-shot coordination. arXiv preprint
arXiv:2503.17821, 2025.

Claudia V Goldman and Shlomo Zilberstein. Decentralized control of cooperative systems: Cat-
egorization and complexity analysis. Journal of artificial intelligence research, 22:143–174,
2004.

Dhawal Gupta, Gabor Mihucz, Matthew Schlegel, James Kostas, Philip S Thomas, and Martha White.
Structural credit assignment in neural networks using reinforcement learning. Advances in Neural
Information Processing Systems, 34:30257–30270, 2021.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. Pmlr, 2018.

Conor F Hayes, Roxana Rădulescu, Eugenio Bargiacchi, Johan Källström, Matthew Macfarlane,
Mathieu Reymond, Timothy Verstraeten, Luisa M Zintgraf, Richard Dazeley, Fredrik Heintz, et al.
A practical guide to multi-objective reinforcement learning and planning. Autonomous Agents and
Multi-Agent Systems, 36(1):26, 2022.

11

https://aclanthology.org/D14-1179/
https://proceedings.neurips.cc/paper/2020/file/7967cc8e3ab559e68cc944c44b1cf3e8-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/7967cc8e3ab559e68cc944c44b1cf3e8-Paper.pdf
https://openreview.net/forum?id=otW0TJOUYF
https://openreview.net/forum?id=otW0TJOUYF
https://openreview.net/forum?id=PtSAD3caaA2
https://openreview.net/forum?id=PtSAD3caaA2

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

Under review as a conference paper at ICLR 2026

Edward Hughes, Joel Z Leibo, Matthew Phillips, Karl Tuyls, Edgar Dueñez-Guzman, Antonio
García Castañeda, Iain Dunning, Tina Zhu, Kevin McKee, Raphael Koster, et al. Inequity aversion
improves cooperation in intertemporal social dilemmas. Advances in neural information processing
systems, 31, 2018.

Chia-Chun Hung, Timothy Lillicrap, Josh Abramson, Yan Wu, Mehdi Mirza, Federico Carnevale,
Arun Ahuja, and Greg Wayne. Optimizing agent behavior over long time scales by transporting
value. Nature communications, 10(1):5223, 2019.

Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pedro Ortega, DJ Strouse,
Joel Z Leibo, and Nando De Freitas. Social influence as intrinsic motivation for multi-agent deep
reinforcement learning. In International conference on machine learning, pp. 3040–3049. PMLR,
2019.

Joel Z Leibo, Vinicius Zambaldi, Marc Lanctot, Janusz Marecki, and Thore Graepel. Multi-agent
reinforcement learning in sequential social dilemmas. arXiv preprint arXiv:1702.03037, 2017.

Adam Lerer and Alexander Peysakhovich. Maintaining cooperation in complex social dilemmas
using deep reinforcement learning. arXiv preprint arXiv:1707.01068, 2017.

Boyin Liu, Zhiqiang Pu, Yi Pan, Jianqiang Yi, Yanyan Liang, and Du Zhang. Lazy agents: A
new perspective on solving sparse reward problem in multi-agent reinforcement learning. In
International Conference on Machine Learning, pp. 21937–21950. PMLR, 2023a.

Dianbo Liu, Vedant Shah, Oussama Boussif, Cristian Meo, Anirudh Goyal, Tianmin Shu, Michael Cur-
tis Mozer, Nicolas Heess, and Yoshua Bengio. Stateful active facilitator: Coordination and
environmental heterogeneity in cooperative multi-agent reinforcement learning. In ICLR, 2023b.

Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent actor-
critic for mixed cooperative-competitive environments. Neural Information Processing Systems
(NIPS), 2017.

Andrei Lupu and Doina Precup. Gifting in multi-agent reinforcement learning. In Proceedings of the
19th International Conference on autonomous agents and multiagent systems, pp. 789–797, 2020.

Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, and Shimon Whiteson. Maven: Multi-agent
variational exploration. Advances in neural information processing systems, 32, 2019.

Alexander Meulemans, Seijin Kobayashi, Johannes von Oswald, Nino Scherrer, Eric Elmoznino,
Blake Richards, Guillaume Lajoie, Blaise Agüera y Arcas, and João Sacramento. Multi-agent
cooperation through learning-aware policy gradients, 2025. URL https://arxiv.org/abs/

2410.18636.

Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional language in multi-agent
populations. arXiv preprint arXiv:1703.04908, 2017.

Hossam Mossalam, Yannis M Assael, Diederik M Roijers, and Shimon Whiteson. Multi-objective
deep reinforcement learning. arXiv preprint arXiv:1610.02707, 2016.

John F Nash Jr. Equilibrium points in n-person games. Proceedings of the national academy of
sciences, 36(1):48–49, 1950.

Tianwei Ni, Michel Ma, Benjamin Eysenbach, and Pierre-Luc Bacon. When do transformers shine
in rl? decoupling memory from credit assignment. Advances in Neural Information Processing
Systems, 36:50429–50452, 2023.

Martin A Nowak and Karl Sigmund. Evolution of indirect reciprocity. Nature, 437(7063):1291–1298,
2005.

Alexander Peysakhovich and Adam Lerer. Prosocial learning agents solve generalized stag hunts
better than selfish ones. In Proceedings of the 17th International Conference on Autonomous
Agents and MultiAgent Systems, pp. 2043–2044, 2018.

12

https://arxiv.org/abs/2410.18636
https://arxiv.org/abs/2410.18636

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

Under review as a conference paper at ICLR 2026

Silviu Pitis. Consistent aggregation of objectives with diverse time preferences re-
quires non-markovian rewards. In A. Oh, T. Naumann, A. Globerson, K. Saenko,
M. Hardt, and S. Levine (eds.), Advances in Neural Information Processing
Systems, volume 36, pp. 2877–2893. Curran Associates, Inc., 2023. URL
https://proceedings.neurips.cc/paper_files/paper/2023/file/

08342dc6ab69f23167b4123086ad4d38-Paper-Conference.pdf.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,
and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement
learning. Journal of Machine Learning Research, 21(178):1–51, 2020.

Diederik M Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley. A survey of multi-
objective sequential decision-making. Journal of Artificial Intelligence Research, 48:67–113,
2013.

Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Farquhar, Nantas Nardelli,
Tim GJ Rudner, Chia-Man Hung, Philip HS Torr, Jakob Foerster, and Shimon Whiteson. The
starcraft multi-agent challenge. arXiv preprint arXiv:1902.04043, 2019.

Fernando P Santos, Jorge M Pacheco, and Francisco C Santos. The complexity of human cooperation
under indirect reciprocity. Philosophical Transactions of the Royal Society B, 376(1838):20200291,
2021.

Jürgen Schmidhuber. A possibility for implementing curiosity and boredom in model-building neural
controllers. In Proceedings of the first international conference on simulation of adaptive behavior
on From animals to animats, pp. 222–227, 1991.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Jennifer She, Jayesh K Gupta, and Mykel J Kochenderfer. Agent-time attention for sparse rewards
multi-agent reinforcement learning. arXiv preprint arXiv:2210.17540, 2022.

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran: Learning to
factorize with transformation for cooperative multi-agent reinforcement learning. In International
conference on machine learning, pp. 5887–5896. PMLR, 2019.

Joseph Suarez. Pufferlib: Making reinforcement learning libraries and environments play nice. arXiv
preprint arXiv:2406.12905, 2024.

Chen Sun, Wannan Yang, Thomas Jiralerspong, Dane Malenfant, Benjamin Alsbury-Nealy, Yoshua
Bengio, and Blake Richards. Contrastive retrospection: honing in on critical steps for rapid learning
and generalization in rl. Advances in Neural Information Processing Systems, 36:31117–31139,
2023.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
networks for cooperative multi-agent learning. The International Foundation for Autonomous
Agents and Multiagent Systems, 2017.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods
for reinforcement learning with function approximation. Advances in neural information processing
systems, 12, 1999a.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211,
1999b.

Kagan Tumer, Adrian K Agogino, and David H Wolpert. Learning sequences of actions in collectives
of autonomous agents. In Proceedings of the first international joint conference on autonomous
agents and multiagent systems: Part 1, pp. 378–385, 2002.

13

https://proceedings.neurips.cc/paper_files/paper/2023/file/08342dc6ab69f23167b4123086ad4d38-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/08342dc6ab69f23167b4123086ad4d38-Paper-Conference.pdf

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

Under review as a conference paper at ICLR 2026

Kristof Van Moffaert and Ann Nowé. Multi-objective reinforcement learning using sets of pareto
dominating policies. The Journal of Machine Learning Research, 15(1):3483–3512, 2014.

Natalia Vélez, Charley M Wu, and Fiery A Cushman. Representational exchange in social learning:
Blurring the lines between the ritual and instrumental. Behavioral & Brain Sciences, 2022.

Li Wang, Yupeng Zhang, Yujing Hu, Weixun Wang, Chongjie Zhang, Yang Gao, Jianye Hao,
Tangjie Lv, and Changjie Fan. Individual reward assisted multi-agent reinforcement learning. In
International conference on machine learning, pp. 23417–23432. PMLR, 2022.

Timon Willi, Alistair Hp Letcher, Johannes Treutlein, and Jakob Foerster. Cola: consistent learning
with opponent-learning awareness. In International Conference on Machine Learning, pp. 23804–
23831. PMLR, 2022.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3):229–256, 1992.

Charley M Wu, Rick Dale, and Robert D Hawkins. Group coordination catalyzes individual and
cultural intelligence. Open Mind, 8:1037–1057, 2024.

Annie Xie, Dylan Losey, Ryan Tolsma, Chelsea Finn, and Dorsa Sadigh. Learning latent representa-
tions to influence multi-agent interaction. In Conference on robot learning, pp. 575–588. PMLR,
2021.

Runzhe Yang, Xingyuan Sun, and Karthik Narasimhan. A generalized algorithm for multi-objective
reinforcement learning and policy adaptation. Advances in neural information processing systems,
32, 2019.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of ppo in cooperative multi-agent games. Advances in neural information
processing systems, 35:24611–24624, 2022.

14

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

Under review as a conference paper at ICLR 2026

A APPENDIX

M Methods 16

M.1 Hyperparameters . 16

M.2 Compute . 24

M.3 Manitokan task setup . 24

E Additional Experiments 24

E.1 COMA’s loss becomes negative . 24

E.2 Optimal key drop rate is unattained by all agents 25

E.3 Changing which agent steps first in an episode harms performance 26

E.4 Randomizing the policy can slightly increase collective success slightly 27

E.5 Behavioural variations appear between algorithms with inter agent distance and
minimizing the steps to the first reward . 28

E.6 Modifying the reward function enhances perspective on the challenge of the Mani-
tokan task . 30

E.7 The self correction term is empirically sound in contraposition 32

E.8 The policy gradient objective is better than the q-learning in single agent key-to-door 34

E.9 Self-correction out performs LOLA on the Manitokan Task 35

P Proofs 36

P.1 Correction term . 36

P.2 Self correction term . 39

P.3 Correction terms do not conflict with individual objectives 40

15

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

Under review as a conference paper at ICLR 2026

M METHODS

Methods This section contains the hyperparameters for the results, hardware details for training and
minor details on the task setup.

M.1 HYPERPARAMETERS

Table 1: Model architecture and hyperparameters used for MAPPO.

Component Specification

Policy Network Architecture (Joint) 1-layer CNN (outchannels = 32, kernel = 3, ReLU), 1-
layer MLP (input = 32, output=64, ReLU), 1 layer MLP
(input = 32, output=64, ReLU), 1 layer MLP (input =
64, output=64, ReLU), 1 layer GRU (input = 64, output
= 64, with LayerNorm), 1 layer Categorical (input=64,
output=6)

Value Network Architecture (Joint) 1-layer CNN (outchannels = 32, kernel = 3, ReLU), 1-
layer MLP (input = 32, output=64, ReLU), 1 layer MLP
(input = 32, output=64, ReLU), 1 layer MLP (input = 64,
output=64, ReLU), 1 layer GRU (input = 64, output = 64,
with LayerNorm), 1 layer MLP(input = 64, output = 1,
ReLU)

Optimizer Adam, learning rate: 1× 10−5

Discount Factor µ 0.99
GAE Parameter ¼ 0.95
PPO Clip Ratio ϵ 0.2
Entropy Coefficient 0.0001
Data chunk length 10
Parallel Environments 32
Batch Size Parallel Environments × Data chunk length × number of

agents
Mini-batch Size 1
Epochs per Update 15
Gradient Clipping 10
Value Function Coef. 1
Gain 0.01
Loss Huber Loss with delta 10.00

16

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

Under review as a conference paper at ICLR 2026

Table 2: Model architecture and hyperparameters used for IPPO.

Component Specification

Policy Network Architecture (Disjoint) 1-layer CNN (outchannels = 32, kernel = 3, ReLU), 1-
layer MLP (input = 32, output=64, ReLU), 1 layer MLP
(input = 32, output=64, ReLU), 1 layer MLP (input =
64, output=64, ReLU), 1 layer GRU (input = 64, output
= 64, with LayerNorm), 1 layer Categorical (input=64,
output=6)

Value Network Architecture (Disjoint) 1-layer CNN (outchannels = 32, kernel = 3, ReLU), 1-
layer MLP (input = 32, output=64, ReLU), 1 layer MLP
(input = 32, output=64, ReLU), 1 layer MLP (input =
64, output=64, ReLU), 1 layer GRU (input = 64, output
= 64, with LayerNorm), 1 layer MLP(input = 64, output
= 1, ReLU)

Optimizer Adam

Learning rate 1× 10−5

Discount Factor µ 0.99
GAE Parameter ¼ Not used
PPO Clip Ratio ϵ 0.2
Entropy Coefficient 0.0001
Data chunk length 10
Parallel Environments 32
Batch Size Parallel Environments × Data chunk length × number

of agents
Mini-batch Size 1
Epochs per Update 15
Gradient Clipping 10
Value Function Coef. 1
Gain 0.01
Loss Huber Loss with delta 10.00

17

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

Under review as a conference paper at ICLR 2026

Table 3: Model architecture and hyperparameters used for PG.

Component Specification

Policy Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1
layer GRU (input = 64, output = 64), 1 layer
MLP (input=64, output=6)

Critic Network Architecture (Disjoint) 1-layer MLP (input = 27, output=64, ReLU), 1-
layer MLP (input = 64, output=64, ReLU), 1-
layer MLP (input=64, output=1)

Target Critic Network Architecture (Disjoint) 1-layer MLP (input = 27, output=64, ReLU), 1-
layer MLP (input = 64, output=64, ReLU), 1-
layer MLP (input=64, output=1)

Actor optimizer RMSprop, alpha 0.99, epsilon 1× 10−5

Critic optimizer RMSprop, alpha 0.99, epsilon 1× 10−5

Discount factor µ 0.99
Target network update interval 1 episode

Learning rate 5× 10−5

TD Lambda 1.0
Replay buffer size 32
Parallel environment 32
Parallel episodes per buffer episode 1
Training batch size 32

Table 4: Model architecture and hyperparameters used for COMA.

Component Specification

Policy Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1 layer
GRU (input = 64, output = 64), 1 layer MLP (in-
put=64, output=6)

Critic Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1-layer
MLP (input = 64, output=64, ReLU), 1-layer MLP
(input=64, output=6)

Target Critic Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1-layer
MLP (input = 64, output=64, ReLU), 1-layer MLP
(input=64, output=6)

Actor optimizer RMSprop, alpha 0.99, epsilon 1× 10−5

Critic optimizer RMSprop, alpha 0.99, epsilon 1× 10−5

Discount factor µ 0.99
Target network update interval 1 episode

Learning rate 5× 10−5

TD Lambda 1.0
Replay buffer size 320
Parallel environment 32
Parallel episodes per buffer episode 1
Training batch size 32

18

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

Under review as a conference paper at ICLR 2026

Table 5: Model architecture and hyperparameters used for SAF.

Component Specification

Policy Network Architecture (Disjoint) 2-layer MLP (input = 64, output=128, Tanh),
Value Network Architecture (Joint) 2-layer MLP (input = 80, output=128, Tanh),
Shared Convolutional Encoder (Joint) 1-Layer CNN (outchannels = 64, kernel = 2)
Knowledge Source Architecture (Joint)

Query Projector 1-layer MLP (input = 128, output=64, Tanh)
State Projector 1-layer MLP (input = 128, output=64, Tanh)
Perceiver Encoder (latents = 4, latent input = 64, cross attention channels

= 64, cross attention heads = 1, self attention heads = 1,
self attention blocks = 2 with 2 layers each)

Cross Attention (heads = 1, query input = 64, key-value input = 64,
query-key input = 64, value channels = 64, dropout =
0.0)

Combined State Projector 1-layer MLP (input = 128, output=64, Tanh)
Latent Encoder 1-layer MLP (input = 128, output=64, Tanh), 1-layer

MLP (input = 64, output=64, Tanh),1-layer MLP (input
= 64, output=16, Tanh)

Latent Encoder Prior 1-layer MLP (input = 64, output=64, Tanh), 1-layer
MLP (input = 64, output=64, Tanh),1-layer MLP (input
= 64, output=16, Tanh)

Policy Projector 1-layer MLP (input = 128, output=164, Tanh)

Optimizer Adam, epsilon 1× 10−5

learning rate 3× 10−4

Discount Factor µ 0.99
GAE Parameter ¼ GAE not used
PPO Clip Ratio ϵ 0.2
Entropy Coefficient 0.01
Data chunk length 10
Parallel Environments 32
Batch Size Parallel Environments × Data chunk length × number

of agents
Mini-batch Size 5
Epochs per Update 15
Gradient Clipping 9
Value Function Coef. 1
Gain 0.01
Loss Huber Loss with delta 10.00
Number of policies 4
Number of slot keys 4

19

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

Under review as a conference paper at ICLR 2026

Table 6: Model architecture and hyperparameters used for VDN.

Component Specification

Policy Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1 layer
GRU (input = 128, output = 64), 1 layer MLP (in-
put=128, output=6)

Target Policy Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1 layer
GRU (input = 128, output = 64), 1 layer MLP (in-
put=128, output=6)

Mixer Network Architecture Tensor sum of states

Policy optimizer Adam, alpha 0.99, epsilon 1× 10−5

Target policy optimizer Adam, alpha 0.99, epsilon 1× 10−5

Start epsilon greedy 1.0
Minimum epsilon greedy 0.05
Discount factor µ 0.99
Target network update interval 1 episode

Start learning rate 1× 10−2

Minimum learning rate 1× 10−6

TD Lambda 1.0
Replay buffer size 1000
Parallel environment 32
Parallel episodes per buffer episode 32
Training batch size 32
Warm up buffer episodes 32

20

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

Under review as a conference paper at ICLR 2026

Table 7: Model architecture and hyperparameters used for QMIX.

Component Specification

Actor Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1 layer
GRU (input = 64, output = 64), 1 layer MLP (in-
put=64, output=6)

Target Actor Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1 layer
GRU (input = 64, output = 64), 1 layer MLP (in-
put=64, output=6)

Mixing Network Architecture (Joint)
Hypernet Weights 1 1-layer MLP (input =54, output=64, ReLU), 1-layer

MLP (input = 64, output=52)
Hypernet Biases 1 1-layer MLP (input =54, output=64)
Hypernet Weights 2 1-layer MLP (input =54, output=32, ReLU), 1-layer

MLP (input = 64, output=32)
Hypernet Bias 2 1-layer MLP (input =54, output=64, ReLU), 1-layer

MLP (input = 64, output=1)
Target Mixing Network Architecture (Joint)

Hypernet Weights 1 1-layer MLP (input =54, output=64, ReLU), 1-layer
MLP (input = 64, output=52)

Hypernet Biases 1 1-layer MLP (input =54, output=64)
Hypernet Weights 2 1-layer MLP (input =54, output=32, ReLU), 1-layer

MLP (input = 64, output=32)
Hypernet Bias 2 1-layer MLP (input =54, output=64, ReLU), 1-layer

MLP (input = 64, output=1)

Policy optimizer Adam, alpha 0.99, epsilon 1× 10−5

Target policy optimizer Adam, alpha 0.99, epsilon 1× 10−5

Start epsilon greedy 1.0
Minimum epsilon greedy 0.05
Discount factor µ 0.99
Target network update interval 1 episode

Start learning rate 1× 10−2

Minimum learning rate 1× 10−6

TD Lambda 1.0
Replay buffer size 1000
Parallel environment 32
Parallel episodes per buffer episode 32
Training batch size 32
Warm up buffer episodes 32

21

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

Under review as a conference paper at ICLR 2026

Table 8: Model architecture and hyperparameters used for QTRAN.

Component Specification

Policy Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1 layer
GRU (input = 64, output = 64), 1 layer MLP (in-
put=64, output=6)

Target Policy Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1 layer
GRU (input = 64, output = 64), 1 layer MLP (in-
put=64, output=6)

Mixing Network Architecture (Joint)
Query Network 1-layer MLP (input =188, output=32, ReLU), 1-

layer MLP (input = 32, output=32, ReLU), 1-layer
MLP (input = 32, output=1)

Value Network 1-layer MLP (input =54, output=32, ReLU), 1-layer
MLP (input = 32, output=32, ReLU), 1-layer MLP
(input = 32, output=1)

Action Encoding 1-layer MLP (input =134, output=134, ReLU), 1-
layer MLP (input = 134, output=134)

Target Mixing Network Architecture (Joint)
Query Network 1-layer MLP (input =188, output=32, ReLU), 1-

layer MLP (input = 32, output=32, ReLU), 1-layer
MLP (input = 32, output=1)

Value Network 1-layer MLP (input =54, output=32, ReLU), 1-layer
MLP (input = 32, output=32, ReLU), 1-layer MLP
(input = 32, output=1)

Action Encoding 1-layer MLP (input =134, output=134, ReLU), 1-
layer MLP (input = 134, output=134)

Policy optimizer Adam, alpha 0.99, epsilon 1× 10−5

Target policy optimizer Adam, alpha 0.99, epsilon 1× 10−5

Start epsilon greedy 1.0
Minimum epsilon greedy 0.05
Discount factor µ 0.99
Target network update interval 1 episode

Start learning rate 1× 10−2

Minimum learning rate 1× 10−6

TD Lambda 1.0
Replay buffer size 1000
Parallel environment 32
Parallel episodes per buffer episode 32
Training batch size 32
Warm up buffer episodes 32

22

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

Under review as a conference paper at ICLR 2026

Table 9: Model architecture and hyperparameters used for MAVEN.

Component Specification

Policy Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1 layer
GRU (input = 64, output = 64), 1 layer MLP (in-
put=64, output=6)

Target Policy Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1 layer
GRU (input = 64, output = 64), 1 layer MLP (in-
put=64, output=6)

Noise Mixing Network Architecture (Joint)
Hypernet Weights 1 1-layer MLP (input=116, output=64)
Hypernet Bias 1 1-layer MLP (input=116, output=32)
Hypernet Weights 2 1-layer MLP (input=116, output=32)
Skip Connection 1-layer MLP (input=116, output=2)
Value network 1-layer MLP (input=116, output=32, ReLU), 1-

layer MLP(input=32,output=1)
Target Noise Mixing Network Architecture (Joint)

Hypernet Weights 1 1-layer MLP (input=116, output=64)
Hypernet Bias 1 1-layer MLP (input=116, output=32)
Hypernet Weights 2 1-layer MLP (input=116, output=32)
Skip Connection 1-layer MLP (input=116, output=2)
Value network 1-layer MLP (input=116, output=32, ReLU), 1-

layer MLP(input=32,output=1)
RNN Aggregator 1-layer GRU (input=116, output=2)
Discriminator 1-layer MLP (input=116, output=32, ReLU), 1-

layer MLP (input=32, output=2),

Actor optimizer RMSprop, alpha 0.99, epsilon 1× 10−5

Target actor optimizer Adam, alpha 0.99, epsilon 1× 10−5

Use skip connection in mixer False
Use RNN aggregation False
Discount factor µ 0.99
Target network update interval 1 episode

Learning rate 5× 10−5

TD Lambda 1.0
Replay buffer size 1000
Parallel environment 32
Parallel episodes per buffer episode 1
Training batch size 32

23

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

Under review as a conference paper at ICLR 2026

M.2 COMPUTE

For each simulation 2 CPUs were allocated and the 32 parallel environments were multithreaded. All
algorithms expect for SAF were able to run without GPUs while SAF used a single A100 for each
simulation. All algorithms, except for VDN, QMIX and QTRAN can finish at 10000 episodes for all
10 simulations within 4 days while the aforementioned algorithms take 7 days. It is possible to use
a GPU for these value mixer mechanisms for faster data collection but this was not done to collect
the data. The correction term experiments take 7 days to collect 26000 episodes and do not benefit
from GPUs since their networks are too small. The Hessian term can be approximated with finite
difference technique or with Pearlmutter’s trick.

M.3 MANITOKAN TASK SETUP

The Manitokan Task is a grid world for tractable analysis. The key, agents and doors are randomly
initialized at the beginning of each episode and the actions drop and toggle were additionally pruned
when an agent is not holding a key for reasonable environment logic but are not necessary to be
removed for the task to work. The doors look the same to both agents. Everything else was described
in 3.

E ADDITIONAL EXPERIMENTS

The experiments provided below offer insights into the challenge of the Manitokan Task, and further
empirical validation of the correction and self correction terms.

E.1 COMA’S LOSS BECOMES NEGATIVE

0 2500 5000 7500
Episodes

0.004

0.002

0.000

Ac
to

r L
os

s

0 2500 5000 7500
Episodes

0.16

0.08

0.00

Co
un

te
rfa

ct
ua

l B
as

el
in

e

Figure 6: a) Policy loss of the COMA model b) Counterfactual baseline in the COMA policy update

a b

COMA persistently collapsed even though it exhibited similar learning behaviour to PG (a closely
related model). The policy loss and baseline curves show increasing instability with large variance
spikes before converging to a value around 0.0. Perhaps this collapse is from the difficulty of leaving
a hidden gift between individual and collective incentives. The original COMA paper (Foerster et al.,
2018) even mentions a struggle for an agent overcoming an individual reward, although exterior to
hidden gifts, may be cause for the instability.

24

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

Under review as a conference paper at ICLR 2026

E.2 OPTIMAL KEY DROP RATE IS UNATTAINED BY ALL AGENTS

0 2500 5000 7500
Episodes

0

5

10

Ke
y

Dr
op

 R
at

e

CO
MA

MAP
PO

IPP
O

PG SA
F

QTR
AN

VD
N

MAV
EN

QMIX

Agent 1
Agent 2

0 2500 5000 7500
Episodes

0

8

16

No
n-

Ze
ro

 K
ey

 D
ro

p
Ra

te

VD
N

QMIX
QTR

AN
S

MAV
EN

Figure 7: a) Key drop rate (i.e. cumulative key drops) averaged across parallel episodes and runs. b)
Non-zero key drop rate (i.e. cumulative key drops) averaged across parallel episodes that had key
drops and runs.

a b

For most of the MARL agents (VDN, QMIX, QTRAN, MAVEN) the key drop rate always converged
to exactly zero (Fig. 7), hence the total collapse in collective success in the task. In the case of
MAPPO, and SAF, we observed that the agents learned to pick up the key and open their individual
doors, but minimized the number of key drops to close to zero (Fig. 7a). As a result, the collective
success rate was also close to zero. In contrast, IPPO did not exhibit a collapse in key drops but had
an oscillatory effect where one would agent increase their keydrops while the other reduces theirs.
This explains IPPO’s slightly better success in obtaining the collective reward (Fig. 2a). Interestingly,
COMA and decentralized PG showed very low, but non-zero rates of key drop (Fig. 7a), however
only PG exhibited a non-zero collective success rate (Fig. 2a). This was because even though COMA
agents learned to occasionally drop the key, the counter-factual baseline caused the loss to become
excessively negative (see E.1).

One complication with measuring the key drop rate is that if the agents never even pick up the key
then the key drop rate is necessarily zero. To better understand what was happening in here, we
examined the “non-zero key drop rate”, meaning the rate at which keys were dropped if they were
picked up. The non-zero key drop rate showed that the value mixer MARL agents begin by dropping
the key after picking it up some of the time, but eventually converge to a policy of simply holding or
avoiding the key (Fig. 7b). The variance in drop rates is increased except at the end for VDN, QMIX
and QTRAN. This further emphasizes the challenge of hidden gifts.

25

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

Under review as a conference paper at ICLR 2026

E.3 CHANGING WHICH AGENT STEPS FIRST IN AN EPISODE HARMS PERFORMANCE

0 2500 5000 7500
Episodes

0.000

0.025

0.050
Co

lle
ct

iv
e

Su
cc

es
s R

es
id

ua
l

Alt
ern

ati
ng

Ra
nd

om
Sa

me

Agent 1
Agent 2

0 2500 5000 7500
Episodes

0.00

0.15

0.30

Co
lle

ct
iv

e
Su

cc
es

s R
at

e

Alternating
Random
Same

Figure 8: a) The contribution of an agent’s reward accumulation to success weighted by their total
reward comparing policy gradient agents with action history of the same agent stepping first (i.e.
agent 1 then agent 2), alternating agents stepping first (i.e. agent 1 steps first on odd numbered
episodes and agent 2 steps first in even numbers episodes), and a random agent is selecting to step
first. b) Success rate between different step ordering each episode.

a b

The collective success residual is calculated as (rc − ri)× ri where (rc − ri) describes how much
an agent i is contributing to the collective success while weighting it by ri shows if the agents are
increasing that success rate. Interestingly, alternating which agent goes first between episodes creates
oscillations in the collective success rate residual where one agent receiving more reward means the
other agent receives less. Greatly reducing the success. Moreover, randomly selecting an agent to go
first biases the first agent to increase their reward and almost removes all success. These effect may
be caused by uncertainty associated with which agent can reach the key when the other agent is in
sight. For example in the random case, if agent i’s current policy has learned for the past five updates
that it will pick up the key, when both agents are equal distance from the key, there will be a action
prediction error. This uncertainty increases the difficulty of the credit assignment problem.

26

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

Under review as a conference paper at ICLR 2026

E.4 RANDOMIZING THE POLICY CAN SLIGHTLY INCREASE COLLECTIVE SUCCESS SLIGHTLY

0 2500 5000 7500
Episodes

0.01

0.02

0.03
Co

lle
ct

iv
e

Su
cc

es
s R

at
e

Random
VDN
QMIX
MAPPO
IPPO

0 2500 5000 7500
Episodes

0.03

0.06

0.09

Cu
m

ul
at

iv
e

Re
wa

rd

IPP
O

Ra
nd

om
VD

N
QMIX
MAP

PO

Agent 1Agent 2

Figure 9: a) Comparing agents of MAPPO, IPPO, VDN and QMIX algorithms with a randomization
applied to their policies b) The cumulative reward for randomized policy agents

a b

PPO agents had their value function learning rates set to 0.001 while the policy learning rates where
kept as 0.000001. This meant the policy would always prefer initial episodes and converge quickly to
those while the value function weighting them more evenly to converge further in the training process.
VDN and QMIX use epsilon greedy in their strategy and simply increasing the time of decay for this
mechanism led these agents to be more random throughout the experiment.

This policy randomization process very slightly improved these agents the success rates’ compared to
those in the main results Fig 2a but decreased the cumulative reward for the PPO agents than those in
Fig 2b. The random policy aligned VDN and QMIX to the random action baseline more or less, and
avoided collapse.

27

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

Under review as a conference paper at ICLR 2026

E.5 BEHAVIOURAL VARIATIONS APPEAR BETWEEN ALGORITHMS WITH INTER AGENT

DISTANCE AND MINIMIZING THE STEPS TO THE FIRST REWARD

0 2500 5000 7500
Episodes

1.8

2.0

2.2

Di
st
an
ce

CO
MA

MA
PP
O

IPP
O

VD
N

PG QM
IX

QT
RA
NS

MA
VE
N

SA
F

Ra
nd
om

0 8000 16000 24000
Episodes

1.95

2.10

2.25

Di
st

an
ce

Self Correction
Max Entropy
Correction
Vanilla

Figure 10: a) Euclidean distance between agents averaged over parallel environments and simulations
across our tested models b) Euclidean distance comparing policy gradient agents with action history
and variance reduction terms.

a b

Although the 2-agent Manitokan Task is a four by four grid world, we measured the euclidean
distance between agents to see if they become more coordinated or adversarial when learning hidden
gifting. In Fig 10a, PG agents exhibited the highest exploration phase but eventually converged to a
lower distance. MAPPO agents also has a similar but substantially smaller exploration effect in the
very beginning while SAF did not have any exploration phases. IPPO and MAVEN agents similarly
hovered below the random baseline but MAVEN agents were closer to each other. COMA agents
begin around random but converge to be closer to each other as well. Value mixer agents VDN,
QMIX and QTRAN all are on average closer to each other but QTRAN agent agents converge further
apart.

In Fig 10b, vanilla and max entropy PG agents with action history become asymptotically closer to
each other while the correction term agents converge further apart from them. The variance reduction
in self correcting agents is also noticeable.

28

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

Under review as a conference paper at ICLR 2026

0 2500 5000 7500
Episodes

0

60

120

Re
wa

rd
 T

im
es

te
p

CO
MA

MAP
PO

IPP
O

VD
N

PG QMIX
QTR

AN
S

MAV
EN

SA
F

Ra
nd

om

Agent 1
Agent 2

0 8000 16000 24000
Episodes

75

100

125

Re
wa

rd
 T

im
es

te
p

Co
rre

cti
on

Max
 En

tro
py

Se
lf C

orr
ec

tio
n

Va
nil

la

Agent 1
Agent 2

Figure 11: a) Timestep the first reward an agent received. b) Timestep the first reward a policy
gradient agent with action history received.

a b

The reducing the timestep of the first reward is a way to measure if agents are improving their policies
if cumulative reward also increases. In (Fig 11a), PG, IPPO, MAPPO and SAF all converge quickly
while PG and MAPPO learn policies of reducing the step slightly below random. COMA converges
at a low timestep but this is most likely due to the collapse. MAVEN oscillates at a timestep better
than random but never converges and doesn’t seem to learn a good policy and VDN, QMIX, and
QTRAN collapse consistently with other results in Section 3.

While in Fig 11b, all decentralized PG algorithms with action history reduce their initial reward
timesteps but models with the correction term converge slower.

29

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

Under review as a conference paper at ICLR 2026

E.6 MODIFYING THE REWARD FUNCTION ENHANCES PERSPECTIVE ON THE CHALLENGE OF

THE MANITOKAN TASK

0 2500 5000 7500
Episodes

0.0

0.2

0.4

Co
lle

ct
iv

e
Su

cc
es

s R
at

e

Vanilla
Oracle Reward
Hold Punishment
Injection

0 2500 5000 7500
Episodes

0.00

0.25

0.50

Cu
m

ul
at

iv
e

Re
wa

rd

Va
nil

la
Orac

le
Re

ward

Hold
 Pu

nis
hm

en
t

Inj
ec

tio
n

Agent 1
Agent 2

Figure 12: a) Success rate of policy gradient agents with action history comparing the normal reward
function with an oracle reward term (i.e. an agent receives a reward of 1 once for dropping the key
after opening their door), a punishment term (i.e.. a negative reward of 1 is applied each step an
agent holds their key after opening their door) and a reward injection term (i.e. randomly distributing
normally smaller rewards around the standard rewards decaying over episodes) b) Cumulative reward
to compare the modified reward functions

a b

The reward function R in equation 1 to study hidden gifting behavior is both sparse with a hard
to predict collective reward conditioned on the other agent’s policy. We tested additional re-
ward conditions on PG agents with action history to see if sample efficiency improvement can
be found. Particularly, the oracle reward: rit the first key dropped after agent i’s door is opened ,
is the critical step to take for hidden gifting and when implemented the collective suc-
cess rate increased quicker than the normal reward function. The punishment reward:
−0.5 for each step agent i is holding the key after their door was opened, is also meant to induce
gifting behavior but agents seemed to avoid the key altogether. Lastly, the injection reward where a
set of rewards rd < ri are normally distributed around rewards ri and rc which also served as the
mean. rd was additionally reduced each episode for agents to prefer the standard rewards. Injection
reduced the success rate severely but also reduced variance in accumulating the expected reward.

These minor modifications reemphasize the difficulty in hidden gifting, where our most performative
agents still struggle even when rewarded for the optimal action.

30

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

Under review as a conference paper at ICLR 2026

0 2500 5000 7500
Episodes

0.00

0.15

0.30

Co
lle

ct
iv

e
Su

cc
es

s R
at

e

Individual Reward
Collective Reward
Vanilla

0 2500 5000 7500
Episodes

0.2

0.4

Cu
m

ul
at

iv
e

Re
wa

rd

Ind
ivi

du
al

Re
ward

Co
lle

cti
ve

 Re
ward

Va
nil

la

Agent 1
Agent 2

Figure 13: a) Success rate between policy gradient agents comparing a disassociation of the reward
function (i.e.. just the individual reward and the collective rewards) b) Cumulative reward of the same
dissociated reward function agents

a b

For a further investigation of the reward function, we tested a dissociation of the individual reward
ri and the collective reward rc with action history PG agents. Using only the individual reward,
removed collective success altogether but agents converged at a higher percentage of the cumulative
reward (i.e.. whoever gets to the key first). This is essentially an equilibrium with 50% probability
of getting a reward. Isolating collective reward and removing the individual reward did not cause
a failure in collective behavior but severely inhibited it. The success rate average did increasingly
ossiclate. With both these reward dissociation, agents fail to learn hidden gifting.

31

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

Under review as a conference paper at ICLR 2026

E.7 THE SELF CORRECTION TERM IS EMPIRICALLY SOUND IN CONTRAPOSITION

0 3000 6000 9000
Episodes

0.00

0.08

0.16

Collective Success
Agent 1 Reward
Agent 2 Reward

0 3000 6000 9000
Episodes

0.00

0.15

0.30

Collective Success
Agent 1 Reward
Agent 2 Reward

Figure 14: a) The percentage of cumulative reward and collective success for anti-collective policy
gradient agents with action history (i.e. optimizing the negated self correction term) across 11000
episodes b) 9 individual simulations for anti-collective behaviour averaged each across a different set
of 32 parallel environments

a b

For all previous experiments, the correction term was maximized to induce agents towards dropping
the key for the other agent (i.e. hidden gifting). Contrapositively however, this term for an agent i
could also be minimized through negation −E[∇Θi∇ΘjJc(Θ

j)Ψ(Ãj
c , a

j , oj)] in the policy update
and doing so led agents to actively "compete" for the key and avoid dropping it all together. In Fig
14a, the rewards for both agents increases with variance spikes while the collective success rate
goes down. These results demonstrate a stronger implication of the self-correction in the collective
behaviour of agents than just as a variance reducer.

Fig 14b displays the individual simulations with standard deviation of the 32 parallel environments.
Specifically, the reward curves sharply drop and return after agents have learned to open their doors.
This tradeoff in the individual reward accumulation is a detriment to the collective success rate but
perhaps in other situations, the negative correction term can help avoid undesired rewarded behaviour.

Alternatively, if we set Ψ to be 1

E[∇
Θjπ

j
c(aj |oj)]

instead of 1

E[∇
Θj log π

j
c(aj |oj)]

, the self-correction term

is now weighted by the actual collective policy rather than it’s entropy. This is refereed to as Ψ̂.
This is a plug in adjustment and did not have a theoretical motivation or derivation. The policy
independence from 1 should still hold but there is no proof for this adjustment. However in looking
at Fig. 15, there is a different change in behaviour of the agents.

In Fig. 15a, the agents follow a very similar reward accumulation path but sharply drop around
3000 episodes where a slight switch in agent 1 achieving a higher reward. This happens again at a
slower rate at around 7000 episodes where agent 2 accumulates more reward than the other agent and
eventually surpassing agent 1 with some increase in variance until the end of the experiment. Agent
1’s reward accumulation deteriorates after 8000 episodes implying that agent 2 is better at finding
the key and always holding onto it. Then this happens for a final time in this experiment at 16000
episodes where the variance blows up. The negated self-correction here is inhibiting agents more
sharply, perhaps due to the smaller range of values that Ãc(a|o) has than log Ãc(a|o). The success
rate is severely reduced and does not pickup in variance or on average through the remainder of the
experiment.

In Fig. 15b, all simulations are plotted with their within simulation variance. The behaviour between
both agents in performance and variance is similar until 6000 episodes where agent 2 over takes agent
1 in all but three simulations. This then reverses around 16000 episodes with the majority of agent 1

32

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

Under review as a conference paper at ICLR 2026

simulations overtaking agent 2. The success rate simulations are near identical to eachother, showing

how more impactful Ψ̂ is to inhibiting cooperation.

0 8000 16000 24000
Episodes

0.0

0.1

0.2

Collective Success
Agent 1 Reward
Agent 2 Reward

0 8000 16000 24000
Episodes

0.00

0.15

0.30

Collective Success
Agent 1 Reward
Agent 2 Reward

Figure 15: a) The percentage of cumulative reward and collective success for anti-collective policy
gradient agents with action history (i.e. optimizing the negated self correction term) across 11000
episodes b) 9 individual simulations for anti-collective behaviour averaged each across a different set
of 32 parallel environments

a b

The original self-correction contraposition is theoretically motivated and showed a more smoother
slower inhibition on average where agents continued to compete with similar performance until almost
the end of the experiment. The adjusted self-correction inhibition has a more sharper effect which
makes sense since the policy is a categorical distribution. The agents do not compete comparatively
though. Agent 2 overtakes agent 1 earlier than in the first inhibition experiment. Overall, these
experiments further implicate self-correction in learning the collective sub policy for leaving hidden
gifts for the other agent.

33

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

Under review as a conference paper at ICLR 2026

E.8 THE POLICY GRADIENT OBJECTIVE IS BETTER THAN THE Q-LEARNING IN SINGLE AGENT

KEY-TO-DOOR

0 2500 5000 7500
Episodes

0.0

0.4

0.8

Su
cc

es
s R

at
e

DQN
PPO
PG

Figure 16: a) Comparison of single agent PPO, PG and DQN agents where one agent needs to open a
one door after finding one key

As a baseline, PPO, PG and DQN agents are compared on the individual objective of the main task
(eg. opening a door). This is a normal key-to-door task and success is defined by opening a door for a
reward of 1. PPO and PG agents retain the same hyperparameter except the learning rate for both
actor and critic in PPO was reduced after a grid search to tune against overfitting. The DQN agent
required 1 simulation at a time rather than 32 in parallel but was not able to converge above 50%
success after an extensive hyperparameter search. This demonstrates the performance of on-policy
policy gradient objective over the off-policy q-learning objective in temporal credit assignment tasks.

34

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

Under review as a conference paper at ICLR 2026

E.9 SELF-CORRECTION OUT PERFORMS LOLA ON THE MANITOKAN TASK

0 8000 16000 24000
Episodes

0.00

0.25

0.50
Co

lle
ct

iv
e

Su
cc

es
s R

at
e

Self Correction
LOLA
LOLA lr=0.0005
Naive LOLA lr=0.0005
Naive Self Correction

Figure 17: a) A comparison of LOLA with a learning rate of 1 and 0.0005, Naive LOLA with a
learning rate of 0.0005, Self-correction, and Naive Self-correction. The naive learner framework only
permits one agent to optimize the additional hessian objective rather than two.

Learning with Opponent Learning Awareness (LOLA) (Foerster et al., 2017) is the original learning
aware gradient update. In the original work, only one policy gradient agent was a LOLA agent
with the other being a naive policy gradient agent. To test how self-correction compares, 32 parallel
simulations were ran for LOLA with a learning rate of 1 and 0.0005, Naive LOLA with a learning
rate of 0.0005, Self-correction, and Naive Self-correction. LOLA with a learning rate of 1 did not
learn cooperative behaviour but decreasing the learning rate to 0.0005 improved learning but with
high ossicilations in median performance as well as variance. When both agents were LOLA agents,
similar to (Willi et al., 2022), there was greater stability in collective success but less than self-
correction. For thoroughness, a naive learner experiment for self-correction was ran. Interestingly,
the variance reduction effect was maintained but performance was delayed and reduced compared
to self-correction. However, this implies that one self-correction agent can help stabilize collective
success.

35

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

Under review as a conference paper at ICLR 2026

P PROOFS

P.1 CORRECTION TERM

We begin by deriving the standard policy gradient theorem (Sutton et al., 1998; 1999a) under the
assumptions in Section 4 that an agent i is first to open their door and that the collective reward rc is
differentiable through another agent js objective. The objective J(Θi) for agent i is to maximize the

expected cumulative sum of rewards within an episode E[
∑T

t Ri(oit, a
i
t)] with the reward function

R in equation 1 where a value function V (Θi, oi) = E[Ri(oi, ai)].

∇ΘiJ(Θi) = ∇Θi(
∑

ai∈A

Ãi(ai|oi)Q(oi, ai)) (6)

is the differentiated objective with respect to agent i.

∑

ai∈A

(∇ΘiÃi(ai|oi)Q(oi, ai) + Ãi(ai|oi)∇ΘiQ(oi, ai)) (7)

by product rule expansion.

∇ΘiÃi(ai|oi)Q(oi, ai)+Ãi(ai|oi)∇Θi(
∑

oi
′
,Ri

T (oi
′

, Ri(oi, ai)|oi, ai)(Ri(oi, ai)+V (Θi, oi
′

) (8)

Here, Eq. (8) is summed over all actions
∑

ai∈A. Notably the value function can be used to predict a

look-ahead of the next reward with a next observation oi
′

and T is the transition probability.

Now we construct the other agent’s value estimate as a surrogate for the future collective reward.
The individual reward is a constant and disappears by passing the gradient but we can isolate the
collective reward as sub-objective for a sub-policy with a linearity assumption.

E[

T∑

t=0

Rj(ojt , a
j
t)] = E[

T∑

t=0

r
j
t + rct] = E[

T∑

t=0

r
j
t] + E[

T∑

t=0

rct] (9)

Eq. (1), only rj degenerates to 0 while rc is differentiable w.r.t to another agent j.

To isolate the sub-objective for the collective policy, start with the reward maximization objection.

J(Θj) = E[

T∑

t

Rj(ojt , a
j
t)] (10)

J(Θj) = E[

T∑

t=0

r
j
t] + E[

T∑

t=0

rct] (11)

by linearity in Eq. (2) of Rj .

36

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

Under review as a conference paper at ICLR 2026

J(Θj)− E[

T∑

t=0

r
j
t] = E[

T∑

t=0

rct] = Jc(Θ
j) (12)

∇ΘjJc(Θ
j) = E[∇Θj log Ãj

c(a
j |oj)Qc(o

j , aj)] (13)

∇ΘjJc(Θ
j) = E[∇Θj log Ãj

c(a
j |oj)]E[Qc(o

j , aj)] (14)

Since the individual policy on finding the key and opening the door is assumed to be learned from
Eq. (3) then the agent’s policies are probabilistically independent from each other.

Let Ψ(Ãj
c , o

j , aj) = 1

E[∇
Θj log π

j
c(aj |oj)]

where Ψ is the reciprocal of the expected collective policy

for agent j. So we can clarify the term

∇ΘjJc(Θ
j)

E[∇Θj log Ãj
c(aj |oj)]

= ∇ΘjJc(Θ
j)Ψ(Ãj

c , o
j , aj) = E[Qc(o

j , aj)] (15)

Ãi(ai|oi)(
∑

oi
′
,Ri

T (oi
′

+1, R
i(oi, ai)|oi, ai)(∇Θi∇ΘjJc(Θ

j)Ψ(Ãj
c , a

j , oj) +∇ΘiV (Θi, oi
′

)) (16)

Now in Eq. (16) the correction term as a surrogate for the collective reward in the look ahead step
from Eq. (8).

Let Φ(oi) =
∑

ai∈A(∇ΘiÃi(ai|oi)Q(oi, ai) for readability and Let Äi(oi → oi
′

) =

Ãi(ai|oi)(
∑

oi
′
,Ri T (oi

′

, Ri(oi, ai)|oi, ai) for further readability.

Φ(oi) +
∑

oi

Äi(oi → oi+1)(∇ΘiV (Θi, oi+1) +∇Θi∇ΘjJc(Θ
j)Ψ(ÃΘj , aj , oj)) (17)

The previous, Eq. (17), can then be recursively expanded out further Φ(oi) +
∑

oi Ä
i(oi →

oi+1)(Φ(o
i
+1) + ∇Θi∇ΘjJc(Θ

j)Ψ(Ãj
c , a

j , oj) +
∑

oi
+1

Äi(oj+1 → o
j
+2)(∇ΘiV (Θi, o+2) +

∇Θi∇ΘjJ(Θj
c, o

j)Ψ(Ãj
c , a

j , oj))

∑

xi,xj∈O

∞∑

k=0

Äi(o → xi, k)(Φ(xi) +∇Θi∇ΘjJc(Θ
j
c)Ψ(Ãj

c , a
j , xj)) (18)

Let ¸(o) =
∑∞

k=0 Ä
i(oi → oi

′

, k) to clarify the transitions.

∑

o

¸(o)(Φ(o)+∇Θi∇ΘjJc(Θ
j)) ∝

∑

o

¸(o)∑
o ¸(o)

(Φ(o)+∇Θi∇ΘjJc(Θ
j , oj)Ψ(Ãj

c , a
j , oj) (19)

37

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

Under review as a conference paper at ICLR 2026

since the normalized distribution is a factor of the sum.

Then let
∑

s
η(o)∑
o
η(o) =

∑
o∈O d(o)

∑

o∈O

d(o)(
∑

ai∈A

(∇ΘiÃi(ai|oi)Q(oi, ai) +∇Θi∇ΘjJc(Θ
j , oj)Ψ(Ãj

c , a
j , oj)) (20)

∑

o∈O

d(o)(
∑

ai∈A

(Ãi(ai|oi)Q(oi, ai)
∇ΘiÃi(ai|oi)

Ãi(ai|oi)
+∇Θi∇ΘjJc(Θ

j , oj)Ψ(Ãj
c , a

j , oj)) (21)

, the log-derivative trick can pull out the gradient.

∑

s∈S

d(s)(
∑

ai∈A

((ai|oi)Q(oi, ai)∇Θi log Ãi(ai|oi) +∇Θi∇ΘjJc(Θ
j , oj)Ψ(Ãj

c , a
j , oj)) (22)

Finally, the full gradient objective from Eq. (5) is constructed

∇ΘiJ(Θi) = E[Q(oi, ai)∇Θi log Ãi(ai|oi) +∇Θi∇ΘjJ(Θj , oj)Ψ(ÃΘj , aj , oj))] □

38

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

Under review as a conference paper at ICLR 2026

P.2 SELF CORRECTION TERM

Considering Eq. (3) and Eq. (4) the correction term for agent i is equivalent to the expected collective
reward value estimate of

E[∇ΘjJc(Θ
j)Ψ(Ãj

c , a
j , oj)] = E[Qc(o

j , aj)] (23)

In turn, the collective value estimate is an approximated prediction of the collective reward at any
time

E[Qc(o
j , aj)] ≈ E[rc] (24)

.

However the collective reward is also an approximate of the agent i’s collective reward values
estimate, if they opened their door first, which is again equivalent to the correction term of agent j.

E[rc] ≈ E[Qc(o
i, ai)] = E[∇ΘiJc(Θ

i)Ψ(Ãi
c, a

i, oi)] (25)

Therefore, in expectation, the correction terms of both agents are equivalent and symmetric. Objective
sharing or policy is not necessary,

E[∇ΘjJc(Θ
j)Ψ(Ãj

c , a
j , oj)] = E[∇ΘiJc(Θ

i)Ψ(Ãi
c, a

i, oi)] □ (26)

Very critically, this equivalence is in expectation and therefore is not an instance of a linear calculation
or transform but the average value of one agent’s correction term is the same as another when in
similar context like opening their door first.

39

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

Under review as a conference paper at ICLR 2026

P.3 CORRECTION TERMS DO NOT CONFLICT WITH INDIVIDUAL OBJECTIVES

A corollary to the construction of the correction term sis that if there is no collective reward signal
(ex. the agent is performing a single agent task), then the correction degenerates to zero.

For the sake of contradiction, assume that the correction term does not become zero when there is a
lack of a collective reward signal such that there exists a value b ̸= 0. Then,

b =
∇ΘjJc(Θ

j)

E[∇Θj log Ãj
c(aj |oj)]

(27)

E[∇Θj log Ãj
c(a

j |oj)]b = ∇ΘjJc(Θ
j) (28)

E[∇Θj log Ãj
c(a

j |oj)]b = ∇Θj (

T∑

t=0

rjc) = ∇Θj (0) = 0 (29)

E[∇Θj log Ãj
c(a

j |oj)]b = 0 (30)

Since E[∇Θj log Ãj
c(a

j |oj)] was a denominator, it can not be equal to zero.

Therefore, b = 0 which contradicts the claim. □

Intuitively, b is actually equal to Qc which is obviously zero when there is no collective reward. This
result, although quick, shows that an agent can theoretically learn to solve an individual task without
conflicting with learned policies for nonstationary coordination behaviours.

40

	Introduction
	Related Work
	Coordination and Gifting in MARL
	Multi-Objective RL

	The Manitokan task for studying hidden gifts
	Results
	All algorithms fail in the basic Manitokan task
	Observability of door and key status does not rescue performance in the Manitokan task
	Adding action history helps decentralized agents but not MARL agents

	Formal analysis and correction term
	Use of a correction term in the value function

	Discussion
	Limitations
	Rethinking reciprocity

	Appendix
	M Methods
	M.1 Hyperparameters
	M.2 Compute
	M.3 Manitokan task setup

	E Additional Experiments
	E.1 COMA's loss becomes negative
	E.2 Optimal key drop rate is unattained by all agents
	E.3 Changing which agent steps first in an episode harms performance
	E.4 Randomizing the policy can slightly increase collective success slightly
	E.5 Behavioural variations appear between algorithms with inter agent distance and minimizing the steps to the first reward
	E.6 Modifying the reward function enhances perspective on the challenge of the Manitokan task
	E.7 The self correction term is empirically sound in contraposition
	E.8 The policy gradient objective is better than the q-learning in single agent key-to-door
	E.9 Self-correction out performs LOLA on the Manitokan Task

	P Proofs
	P.1 Correction term
	P.2 Self correction term
	P.3 Correction terms do not conflict with individual objectives

