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ABSTRACT

Sometimes we benefit from actions that others have taken even when we are
unaware that they took those actions. For example, if your neighbor chooses not
to take a parking spot in front of your house when you are not there, you can
benefit, even without being aware that they took this action. These “hidden gifts”
represent an interesting challenge for multi-agent reinforcement learning (MARL),
since assigning credit when the beneficial actions of others are hidden is non-trivial.
Here, we study the impact of hidden gifts with a very simple MARL task. In this
task, agents in a grid-world environment have individual doors to unlock in order
to obtain individual rewards. As well, if all the agents unlock their door the group
receives a larger collective reward. However, there is only one key for all of the
doors, such that the collective reward can only be obtained when the agents drop the
key for others after they use it. Notably, there is nothing to indicate to an agent that
the other agents have dropped the key, thus the act of dropping the key for others is
a “hidden gift”. We show that several different state-of-the-art MARL algorithms,
including MARL specific architectures, fail to learn how to obtain the collective
reward in this simple task. Interestingly, we find that decentralized actor-critic
policy gradient agents can solve the task when we provide them with information
about their own action history, but MARL agents still cannot solve the task with
action history. Finally, we derive a correction term for these policy gradient agents,
inspired by learning aware approaches, which reduces the variance in learning and
helps them to converge to collective success more reliably. These results show
that credit assignment in multi-agent settings can be particularly challenging in
the presence of “hidden gifts”, and demonstrate that self learning-awareness in
decentralized agents can benefit these settings.

1 INTRODUCTION

In the world we often rely on other people to help us accomplish our goals. Sometimes, people help
us even when we are not aware of it or haven’t communicated a need for it. One simple example
would be if someone decides not to take the last cookie in the pantry, leaving it for others. Another
interesting example is the historical “Manitokan” practice of the plains Indigenous nations of North
America. In an expansive environment with limited opportunities for communication, people would
cache goods for others to use at effigies (Barkwell, 2015). Notably, in these cases there was no
explicit agreement of a trade or articulation of a “tit-for-tat”(Axelrod, 1980). Rather, people simply
engaged in altruistic acts that others could then benefit from, even without knowing who had taken
the altruistic act. We refer to these undeclared altruistic acts as “hidden gifts”.

Hidden gifts represent an interesting challenge for credit assignment in multi-agent reinforcement
learning (MARL). If one leaves a hidden gift, assigning credit to the actions of another is essentially
impossible, since the action was never made clear to the beneficiary. As such, standard Bellman-back-
ups (Bellman, 1954) would likely be unable to identify the critical steps that led to success in the
task. Moreover, unlike a scenario where cooperation and altruistic acts can emerge through explicit
agreement or a strategic equilibrium (Nash Jr, 1950), as in general sum games (Axelrod, 1980), with
hidden gifts the benefits of taking an altruistic action are harder to identify or reciprocate.

To explore the challenge of hidden gifts for MARL we built a grid-world task where hidden gifts
are required for optimal behavior (Chevalier-Boisvert et al., 2023). We call it the Manitokan task, in
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reference to the "take what you need, leave what you don’t need" inspiration from Manitokan of plains
Indigenous communities. In the Manitokan task, two-or-more agents are placed in an environment
where each agent has a “door” that they must open in order to obtain an individual, immediate, small
reward. As well, if all of the agents successfully open their door then a larger, collective reward
is given to all of them. To open the doors, the agents must use a key, which the agents can both
pick up and drop. However, there is only a single key in the environment. As such, if agents are
to obtain the larger collective reward then they must drop the key for others to use after they have
used it themselves. The agents receive an egocentric, top-down partial image of the environment as
their observation in the task, and they can select actions of moving in the environment, picking up a
key, dropping a key, or opening a door. Since the agents do not have access to other agent’s decision
making process, key drops represent a form of hidden gift – which make the credit assignment
problem challenging. In particular: 1. The task is fully cooperative so there is no disincentive for
leaving the key, and 2. dropping the key only leads to the collective reward if the other agents exploits
the gift.

We tested several state-of-the-art MARL algorithms on the Manitokan task. Specifically we tested
Value Decomposition Networks (VDN, QMIX and QTRAN) (Sunehag et al., 2017; Son et al., 2019;
Rashid et al., 2020), Multi-Agent and Independent Proximal Policy Optimization (MAPPO and
IPPO) (Schulman et al., 2017; Yu et al., 2022), counterfactual multi-agent policy gradients (COMA)
(Foerster et al., 2018; She et al., 2022), Multi-Agent Variational Exploration Networks (MAVEN)
(Mahajan et al., 2019), an information bottleneck based Stateful Active Facilitator (SAF) (Liu et al.,
2023b) and standard actor-critic policy gradients (PG) with Actor-Critic (Williams, 1992; Sutton
et al., 1999a; 1998; She et al., 2022). Notably, we found that none were capable of learning to drop
the key and obtain the collective reward reliably. In fact, many of the MARL algorithms exhibited a
total removal of key-dropping behavior, leading to less than random performance on the collective
reward. These failures held even when we provided the agents with objective relevant information,
providing inputs indicating which doors were open and whether the agents were holding the key.

Interestingly, when we also provided the agents with a history of their own actions as one-hot vectors,
we observed that policy gradient agents without proximal policy optimization could now solve the
collective task, whereas others still failed. However, these successful agents’ showed high variability
in cooperation. Based on this, we analyzed the value estimation problem for this task formally, and
observed that the value function necessitates an approximation of a non-constant reward. That is,
the collective reward is conditioned on the other agent’s policy which is non-stationary between
policy updates. Inspired by learning awareness (Willi et al., 2022; Foerster et al., 2017), we derived a
new term in the policy gradient theorem which corresponds to the Hessian of the collective reward
objective partitioned by the other agent’s policy with respect to the collective reward. Using this
correction term, we show that we can reduce the variance in the performance of the PG agents and
achieve consistent learning to drop the key for others.

Altogether, our key contributions in this paper are:

• A structural credit assignment problem of hidden gifts induced in the Manitokan task.

• Evidence that several state-of-the art MARL credit assingment algorithms cannot solve the
Manitokan task, even with recurrent policies, despite its small environment space.

• A demonstration that when action history is provided to recurrent PG agents, they can solve
the task, while other algorithms still cannot.

• A theoretical analysis of the Manitokan credit assignment problem and a derived correction
term inspired by learning-aware gradient updates (Foerster et al., 2017).

• A fully decentralized self learning-awareness term that does not require access to the other
agent’s policy, reduces variance and improves convergence towards leaving hidden gifts.

2 RELATED WORK

2.1 COORDINATION AND GIFTING IN MARL

Fully cooperative coordination games feature a single team objective requiring agents to act jointly,
often reducible to a single-agent problem with a large action space. Previous tasks include navigation
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(Mordatch & Abbeel, 2017; Lowe et al., 2017), cooking coordination (Carroll et al., 2019; Gessler
et al., 2025), battles (Samvelyan et al., 2019; Ellis et al., 2023), and social-dilemmas (Leibo et al.,
2017; Lerer & Peysakhovich, 2017; Christianos et al., 2020). These are often studied under the
centralized training with decentralized execution, with methods such as COMA (Foerster et al., 2018)
and QMIX (Rashid et al., 2020) leveraging global states during training to stabilize coordination.
Additionally sharing collective rewards across agents is common and promotes cooperation but can
also create “lazy-agent” credit assignment behavior (Liu et al., 2023a). Individualized rewards can
mitigate this but risk pulling policies away from team objectives (Wang et al., 2022).

Within this cooperative context, “gifting” has been proposed as a mechanism for reward transfer,
where one agent deliberately allocates part of its payoff to another to foster cooperation or reciprocity
(Hughes et al., 2018; Peysakhovich & Lerer, 2018; Lupu & Precup, 2020). This can be seen as a
bounded, targeted form of social influence. In single-agent RL this gifting can be interpreted as
an intrinsic “self-gift,” i.e., intrinsically generated rewards that support exploration or long-horizon
credit assignment (Schmidhuber, 1991; Arjona-Medina et al., 2019; Sun et al., 2023). In multi-
agent settings, intrinsic rewards have also been used to shape others’ behavior through causal social
influence (Jaques et al., 2019). However, this gifting is treated only as scalar reward signals, not as
the transfer of tangible, task-critical resources.

2.2 MULTI-OBJECTIVE RL

Many decision-making problems involve objectives whose relative importance shifts over time,
creating a non-stationary optimization landscape where fixed-weight multi-objective RL (MORL)
methods falter (Van Moffaert & Nowé, 2014; Roijers et al., 2013). Dynamic-weights MORL addresses
this by conditioning policies or value functions on the current weight vector w(t), enabling a single
policy to adapt across changing trade-offs without retraining. Approaches include weight-conditioned
DQNs (Mossalam et al., 2016), policy gradients with weight inputs (Abels et al., 2019), and replay
strategies for stability under shifting scalarizations (Yang et al., 2019).

In multi-agent settings, MORL has been used to balance individual and collective goals (Hayes et al.,
2022), but prior work assumes known or designed w(t), rather than treating another agent’s policy
itself as a dynamic weight. Seldom in the world do we have ever complete control of our incentives.

3 THE MANITOKAN TASK FOR STUDYING HIDDEN GIFTS

The Manitokan task is a cooperative MARL task in a grid world (see Fig.1). The task has been
designed to be more complex than matrix games, such as Iterative Prisoner’s Dilemma (Axelrod,
1980; Chammah, 1965), but capable for mathematical analysis of strategic behaviour and different
from past cooperative environments (See 2). At the beginning of an episode each agent is assigned
a locked door (Fig.1A) that they can only open if they hold a key. Agents can pick up the key if
they move to the grid location where it is located (Fig.1B). Once an agent has opened their door it
disappears and that agent receives a small individual reward immediately (Fig.1C). However, there
is only one key for all agents to share and the agents can drop the key at any time if they hold it
(Fig.1D). Once the key has been dropped the other agents can pick it up (Fig.1E) and use it to open
their door as well (Fig.1F). If all doors are opened a larger collective reward is given to all agents, and
at that point, the task terminates. The conditions for the rewards Eq. (1) are not mutually exclusive.

We now define the notation that we will use for describing the Manitokan task and analyzing formally.
The environment is a decentralized partially observable Markov decision process (Dec-POMDP)
with the caveat that the collective reward requires individual rewards (Goldman & Zilberstein, 2004;
Bernstein et al., 2002). Dec-POMDPs are also a type of partially observable stochastic games (Hansen
et al., 2004).

Let M = (N , T, T ,O,A,Π,R, γ), where: N := {1, 2, . . . , N} is the set of N agents, T ∈ N is the
maximum timesteps in an episode, O := ×i∈NOi is the joint observation space for the N agents and
oit ∈ Oi → N

3×3 is a partial observation for an agent i at timestep t. This is the only input agents
take so the state S = O, A := ×i∈NAi is the joint action space and ait ∈ Ai is the action of agent i
at time t, Π := ×i∈Nπi is the joint space of individual agent policies, R → R is the reward function
composed of both individual rewards, rit, which agents receive for opening their own door (i.e. an
individual objective), and the collective reward, rc, which is given to all agents when all doors are
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opened (i.e. a collective objective) (See equation 1 below.), T : O ×A → ∆(O) is the transition

function specifying the probability T (oi
′

,Ri(oi, ai)|oi, ai) that agent i transitions to oi
′

from oi by
taking action ai for a reward Ri, and γ ∈ [0, 1) is the discount factor.

The observations, oit, that each agent receives are egocentric images of the 9 grid locations surrounding
the current position of the agent (see the lighter portions in Fig. 1). The key, the doors, and the other
agents are all visible if they are in the field of view, but not otherwise (hence the task is partially
observable). The actions the agents can select, ait, consist of ‘move forward’, ‘turn left’, ‘turn
right’, ‘pick up the key’, ‘drop the key’, and ‘open the door’. Episodes last for T = 150 timesteps at
maximum, and are terminated early if all doors are opened.

The monotonic reward function Ri is defined as:

Ri(oit, a
i
t) :=

{

rit = ri door opened

rc =
∑N

j rj all doors opened
(1)

But in correspondence with multi-objective problems, Ri is scalarized as R̂i = ri + ω(t)rc where

the preference weighting ω(t) is the other agent’s policy so R̂i = ri +
eπj(ajt |o

j
t )r

c for agent i and
episode e (Mossalam et al., 2016). The Manitokan task is unique from other credit assignment work
in MARL due to the number of keys being strictly less than the number of agents (see. Section 2.1).
This scarcity requires the coordination of gifting the key between agents as a necessary critical step
for success and maximizing the cumulative return. But, notably, unlike most other MARL settings
the act of dropping the key is not actually observable by other agents when learning a policy. When
an agent picks up the key they do not know if they were the first agent to do so or if other agents had
held the key and dropped it for them. Thus, key drop acts are “hidden gifts” between agents and
the task represents a deceptively simple, but actually complex structural credit assignment problem
across learning dynamics (Tumer et al., 2002; Agogino & Tumer, 2004; Gupta et al., 2021).

Importantly, the collective reward is delayed relative to any key drop actions. Moreover, key drop
actions only lead to reward if the other agents have learned to accomplish their individual tasks. It
then follows that the delay between a key drop action and the collective reward being received will
be proportional in expectation to the number of agents, rendering a more difficult credit assignment
problem for higher values of N . In the presented data, we focus on the canonical two-player setting
from game theory, where (N = 2), for analytical tractability and interpretability of a Dec-POMDP.

Agent 1
 a


f


b


e


c


d

Door 1


Door 2


The key


Agent 2


Agent 1 finds 

the key


Agent 1 finds 

their door


Agent 1 opens 

their door for 

reward +0.5


Agent 1 drops

the key


Agent 2 found 

the key and finds


their door


Agent 2 opens 

their door  for reward


 +1.5, Agent 1 receives 

reward +1.0


Figure 1: The deceivingly simple steps to success in the Manitokan task. a) Agent 1 finds the key; b)
Agent 1 then finds their door; c) Agent 1 opens their door; d) Agent 1 drops the key as a “hidden
gift”; e) Agent 3 finds their door; f) Agent 2 opens their door.
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4 RESULTS

We begin by testing the ability of various state-of-the-art model-free RL algorithms to solve this
task, both multi-agent, and decentralized. For the multi-agent algorithms, we selected ones that are
prominently used as baselines for credit assignment in fully cooperative MARL tasks. These included
the counterfactual model COMA, the centralized critic multi-agent PPO (MAPPO), and global value
mixer algorithms VDN, QMIX and QTRAN (Foerster et al., 2018; Yu et al., 2022; Sunehag et al.,
2017; Rashid et al., 2020; Son et al., 2019). We used actor-critic policy gradient methods, and
gradient decoupled IPPO without a value function. (Williams, 1992; Sutton et al., 1999a; Schulman
et al., 2017). In order to alleviate problems with exploration and changing policies we also tested
MAVEN (which provides more robust exploration) and SAF (which is a meta-learning approach
with a communication protocol network for learning with multiple policies) (Mahajan et al., 2019;
Liu et al., 2023b). All algorithms were built with recurrent components in their policy (specifically,
Gated Recurrent Units, GRUs (Cho et al., 2014)) in order to provide agents with some information
about task history. (See methods in Appendix A for more details on design and training.) In our
initial tests we provided only the egocentric (i.e agent’s "self" is included) observations as input for
the agents. Hyperparameters were optimized by tuning from the sets provided in the original papers
with a search to avoid overfitting on the immediate reward. As well, we trained 10 simulations with
different seeds that initialized 32 parallel environments also with different random seeds. These
parallel environments make the reward signals in each batch less sparse. For each simulation we ran
10,000 episodes for each 32 parallel environments, except in Figure 5 where we did 26,000 episodes.
Training was done with 2 CPUs for each run and SAF required an additional A100 GPU per run. An
emulator was also used to improve environment step speed (Suarez, 2024).

4.1 ALL ALGORITHMS FAIL IN THE BASIC MANITOKAN TASK

To our surprise, everything we tested converged to a level of success in obtaining the collective
reward that was below the level achieved by a fully random policy (Fig. 2a) even though reward
was being maximized and the single agent key-to-door task is solvable (see E.8). In fact, with the
sole exception of MAPPO, all of the MARL algorithms we tested (COMA, VDN, QMIX, QTRAN)
exhibited full collapse in hidden gift behavior: these algorithms all converged to policies that involved
less than random key dropping frequency. Randomizing the policy can slightly improve success rate
but reduced cumulative reward ( 4). Notably, the agents that didn’t show full collapse in collective
success (MAPPO, IPPO and SAF) were still successfully opening their individual doors, since their
cumulative reward was higher than that of a random policy (Fig. 2b). But, the MARL agents that
showed total collapse of collective behavior also showed collapse in the individual rewards. We
believe that this was due to the impact of asymmetric state information and shared value updates.
With shared value updates the reward signal could be swamped by noise from the unrewarded agents
in the absence of key drops, and became confused by a lack of reward obtained when agents’ dropped
the key before opening their doors (See more below in section 5). The key drop rate is optimal at 1,
eg. one drop after using the key, all agents had a near zero drop rate or did not seem to learn (E.2).

4.2 OBSERVABILITY OF DOOR AND KEY STATUS DOES NOT RESCUE PERFORMANCE IN THE

MANITOKAN TASK

To receive the collective reward, agents needed to learn to pick up the key, use it, then drop it. If they
did these actions out of sequence (e.g. dropping the key before using it), then they can not succeed.
As such, one potential cause for collapse in performance could have been the fact that agents did not
have an explicit signal for their door being opened or that they are holding the key (i.e. the task was
partially observable with respect to these variables). To make the task easier, we provided the agents
with more decentralized information, one which indicated whether their door was open, the other
which indicated whether they held the key. The agents now always have a cue when their individual
task is completed.

Surprisingly, the agents we tested all failed to achieve collective success rates above random. In
fact, the same behavior occurred, with the MARL agents (MAPPO, QMIX, COMA) showing total
collapse, and the decentralized PG agents showing some collective success, but still below random
(Fig. 3a). As before, We found that only MAPPO and decentralized PG showed any learning in
the task, with QMIX and COMA showing collapse in the individual success rate as well (Fig. 3b).
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Figure 2: a) Success rate for the collective reward, i.e. percentage of trials where both agents opened
their doors. b) Cumulative reward of both agents across 10000 episodes with 32 parallel environments
limited to 150 timesteps each.

a b

Thus, the lack of information about the status of the door and key was not the cause of failure of the
Manitokan task.
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Figure 3: a) Success rate when each agent receives information about whether they have opened their
door or not and if they have the key or not. b) Cumulative reward of both agents with information
about whether they have opened their door or not and if they have the key or not.

a b

4.3 ADDING ACTION HISTORY HELPS DECENTRALIZED AGENTS BUT NOT MARL AGENTS

Next, we reasoned that a cause of failure was that agents could not see themselves drop the key. To
alleviate the credit assignment, we provided the agents with the last action they took as a one-hot
vector. Coupled with the recurrence, this would permit the agents to know that they had dropped the
key in the past if/when the collective reward was obtained.

When we added the past action to the observation, we found that the PG agents now showed signs of
obtaining the collective reward, much better than random (Fig. 4). This also led to better cumulative
reward (Fig. 4). However, interestingly, the other agents showed no ability to learn this task, exhibiting
the same collapse in collective success rate and same low levels of cumulative reward as before (Fig.
4a & 4b). These results indicated that there is something about the credit assignment problem in
the Manitokan task that can be addressed by the standard policy gradient objective, but not fancier
trust region mechanisms. Further modifying the reward function can help or inhibit these agents but
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removing one of the rewards harms success (E. 6). Changing or randomizing agent turn order also
reduces success rate (E. 3). Overall, the PG agents still exhibited very high variance in their collective
success rate (Fig. 4), suggesting more to the credit assignment problem. We then formally analyzed
the value function of the task to better understand the credit assignment problem therein.
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Figure 4: a) Success rate when each agent receives their last action in the observation. b) Cumulative
reward of both agents with last action information.

a b

5 FORMAL ANALYSIS AND CORRECTION TERM

For ease of Dec-POMDP analysis we again focus on the situation where N = 2, i.e. there are only
two agents, and borrow the language of sub-policies from options learning (Sutton et al., 1999b). We
begin by considering the objective function for agent i with parameters Θi, for an entire episode of
the Manitokan task, where we ignore the discount factors (which do not affect the analysis) and take
expectations over trajectories τ sampled from the policy π of an agent given a randomly initialized
observation:

J(Θi) = Eτ∼πi [
T
∑

t=0

R̂i(oit, a
i
t)] = Eτ∼πi [

T
∑

t=0

rit + rct ] = Eτ∼πi [
T
∑

t=0

rit] + Eτ∼πi [
T
∑

t=0

rct ] (2)

If we consider the sub-objective related solely to the collective reward Jc(Θ
i) = J(Θi) −

Eτ∼πi [
∑T

t=0 r
i
t] = Eτ∼πi [

∑T
t=0 r

c
t ], we can then also consider the sub-policy of the agent related to

the collective reward (πi
c), and the sub-policy unrelated to the collective reward πi

d. If we condition

the collective reward objective on the door for agent i being open, then Jc(Θ
i) is independent of πi

d.
Therefore, when we consider the gradient for agent i of the collective objective, conditioned on their
door being open, we get:

∇ΘiJc(Θ
i) = Eτ∼πi

[

∇Θi log πi
c(a

i|oi)Qc(o
i, ai)

]

= Eτ∼πi

[

∇Θi log πi
c(a

i|oi)
]

Eτ∼πi

[

Qc(o
i, ai)

] (3)

where Qc(o
i, ai) is the value solely related to the collective reward. The gradient of this collective

objective is inversely related to the entropy of the other agent’s policy.

Theorem 1. Let Jc(Θ
i) = Eτ∼πi [

∑T
t=0 r

c
t ] be the collective objective function for agent i, and

assume that agent i is the first to open their door. Then the gradient of this objective function is given
by:

∇ΘiJc(Θ
i) = Eτ∼πj [∇Θi∇ΘjJc(Θ

j)Ψ(πj
c , a

j , oj)] (4)

where the element-wise reciprocal Ψ(πj
c , a

j , oj) = Eτ∼πj [ 1

∇
Θj log π

j
c(aj |oj)

] and i ̸= j.
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See P.1 for the full proof. As a sketch, we rely on two key assumptions. The first key assumption
is that agent i is the first to open their door. As a result, agent j’s entire policy is related directly to

the collective reward, and hence the sub-policy π
j
d does not exist. The second key assumption is that

the other agent’s collective reward policy is differentiable. With those assumptions we can then use
the objective of agent j as a surrogate for the collective reward in the look-ahead step of the policy
gradient derivation (Sutton et al., 1998), similar to mutual learning aware update rules (Willi et al.,
2022; Foerster et al., 2017). The correction term does not conflict with individual objectives (see P.3)
and is computed with a finite difference method. The complete gradient objective from P.1 is:

∇ΘiJ(Θi) = Eτ i∼πi,τj∼πj [∇Θi log πi(ai|oi)Q(oi, ai) +∇Θi∇ΘjJc(Θ
j)Ψ(πj

c , a
j , oj)] (5)

5.1 USE OF A CORRECTION TERM IN THE VALUE FUNCTION

The correction Eq. (5) should reduce the variance in the agents’ abilities to obtain the collective
reward by stabilizing their value estimate with respect to each other’s policies updating. Since the
reward is shared, agents only need to correct with their own parameters in expectation (see proof in
P. 2). This leads to a decentralized correction term of ∇Θi∇ΘiJc(Θ

i)Ψ(πi
c, a

i, oi), which we term
“Self Correction”. Hence, we evaluated these policy gradient correction terms Fig.5.

With action history inputs, we trained PG agents with and without the correction and self-correction
terms over seven days to ensure convergence. Additionally, we examined PG agents with a maximum
entropy term, which should also reduce the variance in the learned policies (Ahmed et al., 2019;
Haarnoja et al., 2018; Eysenbach & Levine, 2022). We found that all of the agents converged to a
fairly high success rate over time (Fig. 5a), high cumulative reward (Fig. 5b) and reduced the distance
between themselves (Fig.11b). Notably, the collective success variance was markedly different.
The variance of the standard PG agents was quite high with steep spikes, and the variance of the
max-entropy agents were not any different throughout the majority of the episodes, with the exception
of the very early episodes (Fig. 5c). In contrast, the variance of the agents with the correction term
was a bit lower but more stable. Interestingly, the agents with the self-correction term showed the
lowest variance. We believe that this may be due to added noise from considering multiple policies in
the update. Altogether, these results show that the correction term reduces variance in performance
in the hidden gift problem, but is more prominent when decentralized with self-correction. This is
interesting because it shows that it may be possible to resolve the complexities of hidden gift credit
assignment using self learning-awareness rather than collective learning-awareness.

Improved variance with the derived correction term
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Figure 5: a) Success rate of PG agents comparing the vanilla PG model against PG with a maximum
entropy term, PG with the correction term, and PG with the self-correction term. b) Cumulative
reward of PG agents c) Variance in collective success rate across episodes.
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6 DISCUSSION

In this work we developed a MARL task to explore the complexities of learning in the presence of
“hidden gifts”, i.e. cooperative acts that are not revealed to the recipient. The Manitokan task we
developed, inspired by the concept in Indigenous plains communities across North America, requires
agents to open doors using a single shared key in the environment. Agents must drop the key for
other agents after they have used it if they are to obtain a larger collective reward. But, these key drop
acts are not apparent to the other agents, making it difficult to assign credit between policy updates.

We observed that in the basic version of the Manitokan task none of the algorithms tested were
able to solve it. This included both policy gradient agents (PG, PPO), meta-learning agents (SAF),
enhanced exploration agents (MAVEN), counterfactual agents (COMA), and agents with collective
value functions (VDN, QMIX, QTRAN, and MAPPO). When we added additional information
to the observations the more sophisticated algorithms tested were still not able to solve this task.
However, with previous action information, the actor-critic PG agents could solve the task, though
with high variance. Formal analysis of the value function for the Manitokan task showed that it
contains a second-order term related to the collective reward that can reduce instability in learning.
We used this to derive a correction for the PG agents that successfully reduced the variance in their
performance. Altogether, our results demonstrate that hidden gifts introduce challenging credit
assignment problems that many state-of-the-art MARL architectures were not designed to overcome.

6.1 LIMITATIONS

We used a grid world task to induce the hidden gift credit assignment problem while enabling a
tractable formal analysis. But, the real world is salient with sensory information and biological agents
have large action spaces at their disposal. Less sparse signals and states, like the real world, may
make the credit assignment problem easier with more information to leverage or infer.

Additionally, biological agents have a capacity for explicit, structured inter-agent communication
which may aid in planning objectives or roles (Wu et al., 2024). This communication is different than
the latent communication protocol of SAF (Liu et al., 2023b) in that agents could communicate to
commit to gifting before hand which could become implicit and unspoken over time (Vélez et al.,
2022). This may have been how similar practices developed in the plains of North America.

Lastly, the limited memory provided by the GRU architecture may inhibit credit assignment. It is
possible that by integrating a more explicit form of memory with action history (e.g. a long context-
window transformer), agents could more easily assign credit to their gifting behavior (Ni et al.,
2023; Chen et al., 2021; Cross et al., 2025). A retrieval augmented temporal memory mechanism
(Hung et al., 2019) might even help model-free agents avoid learning policies deviating away from or
discounting the collective reward objective which may be non-markovian (Pitis, 2023). This temporal
retrieval mechanism is different than SAF’s spatial mechanism (Liu et al., 2023b).

6.2 RETHINKING RECIPROCITY

A broader implication from our work is that the emergence of reciprocity in a multi-agent setting can
be complicated when acts of reciprocity themselves are partially or fully unobservable and therefore
temporally indirect (Nowak & Sigmund, 2005; Santos et al., 2021). One potential interesting way
of dealing with these situations would be to develop agents that are good at either predicting the
actions of other agents or influencing other agents with implicit information (Jaques et al., 2019; Xie
et al., 2021), which would ease the inference that other agents would exploit altruistic gifts. The
reciprocity in MARL settings with any form of “hidden gift” may generally be aided by the ability of
RL agents to successfully predict the actions of others when information is asymmetric. Given that
the correction term that we derived from our formal analysis was motivated by the gradient steering
effect in various learning aware approaches (Willi et al., 2022; Foerster et al., 2017; Meulemans
et al., 2025; Aghajohari et al., 2024), it seems reasonable to speculate that abstracting properties from
learning awareness, which may not always be optimal (see E. 9), have an untapped potential exterior
to the domains in which they were designed. Such as inhibiting cooperation or collusion (see E.14).
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Reproducibility Statement The source code for all experiments and Manitokan task can be be
found in the supplementary file along with a ReadMe file for setup. Hyperparameters used for the
plots can be found in the methods Section. 1 of the appendix and modified in the config files of the
source code. Hardware used and the time for experiments are mentioned in Section. 4 and described
in the Methods section. 2 of the appendix. A sketch of the proof is found in the Section. 5 and the
full derivations are found in the Proofs section of the appendix: P. 1, P. 2 and P. 3.

Ethics Statement This work uses only synthetic simulation and did not use human participants nor
any datasets; no personal data or sensitive attributes were collected. We recognize that increases in
artificial intelligence performance or agentic capabilities may also increase negative societal risks
(e.g., covert collusion or manipulation in multi-agent settings). However, the Manitokan task and
the proposed correction term are explicitly designed to evaluate and improve RL agents’ altruistic
actions. We therefore do not foresee a specific safety concern from this work, especially relative
to the alternative of RL agents that are not capable of taking altruistic actions. To reduce dual-
use risk, we restrict claims to simulated environments and discourage harmful applications. No
demographic or group attributes are used, and we aim for inclusive citation practices and accessibility.
We acknowledge the cultural inspiration referenced by “Manitokan” and intend respectful use. A
born and raised Indigenous community member, in the culture of which “Manitokan” existed, was
deeply involve from beginning through the end of the work presented here.
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M METHODS

Methods This section contains the hyperparameters for the results, hardware details for training and
minor details on the task setup.

M.1 HYPERPARAMETERS

Table 1: Model architecture and hyperparameters used for MAPPO.

Component Specification

Policy Network Architecture (Joint) 1-layer CNN (outchannels = 32, kernel = 3, ReLU), 1-
layer MLP (input = 32, output=64, ReLU), 1 layer MLP
(input = 32, output=64, ReLU), 1 layer MLP (input =
64, output=64, ReLU), 1 layer GRU (input = 64, output
= 64, with LayerNorm), 1 layer Categorical (input=64,
output=6)

Value Network Architecture (Joint) 1-layer CNN (outchannels = 32, kernel = 3, ReLU), 1-
layer MLP (input = 32, output=64, ReLU), 1 layer MLP
(input = 32, output=64, ReLU), 1 layer MLP (input = 64,
output=64, ReLU), 1 layer GRU (input = 64, output = 64,
with LayerNorm), 1 layer MLP(input = 64, output = 1,
ReLU)

Optimizer Adam, learning rate: 1× 10−5

Discount Factor γ 0.99
GAE Parameter λ 0.95
PPO Clip Ratio ϵ 0.2
Entropy Coefficient 0.0001
Data chunk length 10
Parallel Environments 32
Batch Size Parallel Environments × Data chunk length × number of

agents
Mini-batch Size 1
Epochs per Update 15
Gradient Clipping 10
Value Function Coef. 1
Gain 0.01
Loss Huber Loss with delta 10.00
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Table 2: Model architecture and hyperparameters used for IPPO.

Component Specification

Policy Network Architecture (Disjoint) 1-layer CNN (outchannels = 32, kernel = 3, ReLU), 1-
layer MLP (input = 32, output=64, ReLU), 1 layer MLP
(input = 32, output=64, ReLU), 1 layer MLP (input =
64, output=64, ReLU), 1 layer GRU (input = 64, output
= 64, with LayerNorm), 1 layer Categorical (input=64,
output=6)

Value Network Architecture (Disjoint) 1-layer CNN (outchannels = 32, kernel = 3, ReLU), 1-
layer MLP (input = 32, output=64, ReLU), 1 layer MLP
(input = 32, output=64, ReLU), 1 layer MLP (input =
64, output=64, ReLU), 1 layer GRU (input = 64, output
= 64, with LayerNorm), 1 layer MLP(input = 64, output
= 1, ReLU)

Optimizer Adam

Learning rate 1× 10−5

Discount Factor γ 0.99
GAE Parameter λ Not used
PPO Clip Ratio ϵ 0.2
Entropy Coefficient 0.0001
Data chunk length 10
Parallel Environments 32
Batch Size Parallel Environments × Data chunk length × number

of agents
Mini-batch Size 1
Epochs per Update 15
Gradient Clipping 10
Value Function Coef. 1
Gain 0.01
Loss Huber Loss with delta 10.00
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Table 3: Model architecture and hyperparameters used for PG.

Component Specification

Policy Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1
layer GRU (input = 64, output = 64), 1 layer
MLP (input=64, output=6)

Critic Network Architecture (Disjoint) 1-layer MLP (input = 27, output=64, ReLU), 1-
layer MLP (input = 64, output=64, ReLU), 1-
layer MLP (input=64, output=1)

Target Critic Network Architecture (Disjoint) 1-layer MLP (input = 27, output=64, ReLU), 1-
layer MLP (input = 64, output=64, ReLU), 1-
layer MLP (input=64, output=1)

Actor optimizer RMSprop, alpha 0.99, epsilon 1× 10−5

Critic optimizer RMSprop, alpha 0.99, epsilon 1× 10−5

Discount factor γ 0.99
Target network update interval 1 episode

Learning rate 5× 10−5

TD Lambda 1.0
Replay buffer size 32
Parallel environment 32
Parallel episodes per buffer episode 1
Training batch size 32

Table 4: Model architecture and hyperparameters used for COMA.

Component Specification

Policy Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1 layer
GRU (input = 64, output = 64), 1 layer MLP (in-
put=64, output=6)

Critic Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1-layer
MLP (input = 64, output=64, ReLU), 1-layer MLP
(input=64, output=6)

Target Critic Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1-layer
MLP (input = 64, output=64, ReLU), 1-layer MLP
(input=64, output=6)

Actor optimizer RMSprop, alpha 0.99, epsilon 1× 10−5

Critic optimizer RMSprop, alpha 0.99, epsilon 1× 10−5

Discount factor γ 0.99
Target network update interval 1 episode

Learning rate 5× 10−5

TD Lambda 1.0
Replay buffer size 320
Parallel environment 32
Parallel episodes per buffer episode 1
Training batch size 32
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Table 5: Model architecture and hyperparameters used for SAF.

Component Specification

Policy Network Architecture (Disjoint) 2-layer MLP (input = 64, output=128, Tanh),
Value Network Architecture (Joint) 2-layer MLP (input = 80, output=128, Tanh),
Shared Convolutional Encoder (Joint) 1-Layer CNN (outchannels = 64, kernel = 2)
Knowledge Source Architecture (Joint)

Query Projector 1-layer MLP (input = 128, output=64, Tanh)
State Projector 1-layer MLP (input = 128, output=64, Tanh)
Perceiver Encoder (latents = 4, latent input = 64, cross attention channels

= 64, cross attention heads = 1, self attention heads = 1,
self attention blocks = 2 with 2 layers each)

Cross Attention (heads = 1, query input = 64, key-value input = 64,
query-key input = 64, value channels = 64, dropout =
0.0)

Combined State Projector 1-layer MLP (input = 128, output=64, Tanh)
Latent Encoder 1-layer MLP (input = 128, output=64, Tanh), 1-layer

MLP (input = 64, output=64, Tanh ),1-layer MLP (input
= 64, output=16, Tanh )

Latent Encoder Prior 1-layer MLP (input = 64, output=64, Tanh), 1-layer
MLP (input = 64, output=64, Tanh ),1-layer MLP (input
= 64, output=16, Tanh )

Policy Projector 1-layer MLP (input = 128, output=164, Tanh)

Optimizer Adam, epsilon 1× 10−5

learning rate 3× 10−4

Discount Factor γ 0.99
GAE Parameter λ GAE not used
PPO Clip Ratio ϵ 0.2
Entropy Coefficient 0.01
Data chunk length 10
Parallel Environments 32
Batch Size Parallel Environments × Data chunk length × number

of agents
Mini-batch Size 5
Epochs per Update 15
Gradient Clipping 9
Value Function Coef. 1
Gain 0.01
Loss Huber Loss with delta 10.00
Number of policies 4
Number of slot keys 4
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Table 6: Model architecture and hyperparameters used for VDN.

Component Specification

Policy Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1 layer
GRU (input = 128, output = 64), 1 layer MLP (in-
put=128, output=6)

Target Policy Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1 layer
GRU (input = 128, output = 64), 1 layer MLP (in-
put=128, output=6)

Mixer Network Architecture Tensor sum of states

Policy optimizer Adam, alpha 0.99, epsilon 1× 10−5

Target policy optimizer Adam, alpha 0.99, epsilon 1× 10−5

Start epsilon greedy 1.0
Minimum epsilon greedy 0.05
Discount factor γ 0.99
Target network update interval 1 episode

Start learning rate 1× 10−2

Minimum learning rate 1× 10−6

TD Lambda 1.0
Replay buffer size 1000
Parallel environment 32
Parallel episodes per buffer episode 32
Training batch size 32
Warm up buffer episodes 32
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Table 7: Model architecture and hyperparameters used for QMIX.

Component Specification

Actor Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1 layer
GRU (input = 64, output = 64), 1 layer MLP (in-
put=64, output=6)

Target Actor Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1 layer
GRU (input = 64, output = 64), 1 layer MLP (in-
put=64, output=6)

Mixing Network Architecture (Joint)
Hypernet Weights 1 1-layer MLP (input =54, output=64, ReLU), 1-layer

MLP (input = 64, output=52)
Hypernet Biases 1 1-layer MLP (input =54, output=64)
Hypernet Weights 2 1-layer MLP (input =54, output=32, ReLU), 1-layer

MLP (input = 64, output=32)
Hypernet Bias 2 1-layer MLP (input =54, output=64, ReLU), 1-layer

MLP (input = 64, output=1)
Target Mixing Network Architecture (Joint)

Hypernet Weights 1 1-layer MLP (input =54, output=64, ReLU), 1-layer
MLP (input = 64, output=52)

Hypernet Biases 1 1-layer MLP (input =54, output=64)
Hypernet Weights 2 1-layer MLP (input =54, output=32, ReLU), 1-layer

MLP (input = 64, output=32)
Hypernet Bias 2 1-layer MLP (input =54, output=64, ReLU), 1-layer

MLP (input = 64, output=1)

Policy optimizer Adam, alpha 0.99, epsilon 1× 10−5

Target policy optimizer Adam, alpha 0.99, epsilon 1× 10−5

Start epsilon greedy 1.0
Minimum epsilon greedy 0.05
Discount factor γ 0.99
Target network update interval 1 episode

Start learning rate 1× 10−2

Minimum learning rate 1× 10−6

TD Lambda 1.0
Replay buffer size 1000
Parallel environment 32
Parallel episodes per buffer episode 32
Training batch size 32
Warm up buffer episodes 32
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Table 8: Model architecture and hyperparameters used for QTRAN.

Component Specification

Policy Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1 layer
GRU (input = 64, output = 64), 1 layer MLP (in-
put=64, output=6)

Target Policy Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1 layer
GRU (input = 64, output = 64), 1 layer MLP (in-
put=64, output=6)

Mixing Network Architecture (Joint)
Query Network 1-layer MLP (input =188, output=32, ReLU), 1-

layer MLP (input = 32, output=32, ReLU), 1-layer
MLP (input = 32, output=1)

Value Network 1-layer MLP (input =54, output=32, ReLU), 1-layer
MLP (input = 32, output=32, ReLU), 1-layer MLP
(input = 32, output=1)

Action Encoding 1-layer MLP (input =134, output=134, ReLU), 1-
layer MLP (input = 134, output=134)

Target Mixing Network Architecture (Joint)
Query Network 1-layer MLP (input =188, output=32, ReLU), 1-

layer MLP (input = 32, output=32, ReLU), 1-layer
MLP (input = 32, output=1)

Value Network 1-layer MLP (input =54, output=32, ReLU), 1-layer
MLP (input = 32, output=32, ReLU), 1-layer MLP
(input = 32, output=1)

Action Encoding 1-layer MLP (input =134, output=134, ReLU), 1-
layer MLP (input = 134, output=134)

Policy optimizer Adam, alpha 0.99, epsilon 1× 10−5

Target policy optimizer Adam, alpha 0.99, epsilon 1× 10−5

Start epsilon greedy 1.0
Minimum epsilon greedy 0.05
Discount factor γ 0.99
Target network update interval 1 episode

Start learning rate 1× 10−2

Minimum learning rate 1× 10−6

TD Lambda 1.0
Replay buffer size 1000
Parallel environment 32
Parallel episodes per buffer episode 32
Training batch size 32
Warm up buffer episodes 32
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Table 9: Model architecture and hyperparameters used for MAVEN.

Component Specification

Policy Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1 layer
GRU (input = 64, output = 64), 1 layer MLP (in-
put=64, output=6)

Target Policy Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1 layer
GRU (input = 64, output = 64), 1 layer MLP (in-
put=64, output=6)

Noise Mixing Network Architecture (Joint)
Hypernet Weights 1 1-layer MLP (input=116, output=64)
Hypernet Bias 1 1-layer MLP (input=116, output=32)
Hypernet Weights 2 1-layer MLP (input=116, output=32)
Skip Connection 1-layer MLP (input=116, output=2)
Value network 1-layer MLP (input=116, output=32, ReLU), 1-

layer MLP(input=32,output=1)
Target Noise Mixing Network Architecture (Joint)

Hypernet Weights 1 1-layer MLP (input=116, output=64)
Hypernet Bias 1 1-layer MLP (input=116, output=32)
Hypernet Weights 2 1-layer MLP (input=116, output=32)
Skip Connection 1-layer MLP (input=116, output=2)
Value network 1-layer MLP (input=116, output=32, ReLU), 1-

layer MLP(input=32,output=1)
RNN Aggregator 1-layer GRU (input=116, output=2)
Discriminator 1-layer MLP (input=116, output=32, ReLU), 1-

layer MLP (input=32, output=2),

Actor optimizer RMSprop, alpha 0.99, epsilon 1× 10−5

Target actor optimizer Adam, alpha 0.99, epsilon 1× 10−5

Use skip connection in mixer False
Use RNN aggregation False
Discount factor γ 0.99
Target network update interval 1 episode

Learning rate 5× 10−5

TD Lambda 1.0
Replay buffer size 1000
Parallel environment 32
Parallel episodes per buffer episode 1
Training batch size 32
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M.2 COMPUTE

For each simulation 2 CPUs were allocated and the 32 parallel environments were multithreaded. All
algorithms expect for SAF were able to run without GPUs while SAF used a single A100 for each
simulation. All algorithms, except for VDN, QMIX and QTRAN can finish at 10000 episodes for all
10 simulations within 4 days while the aforementioned algorithms take 7 days. It is possible to use
a GPU for these value mixer mechanisms for faster data collection but this was not done to collect
the data. The correction term experiments take 7 days to collect 26000 episodes and do not benefit
from GPUs since their networks are too small. The Hessian term can be approximated with finite
difference technique or with Pearlmutter’s trick.

M.3 MANITOKAN TASK SETUP

The Manitokan Task is a grid world for tractable analysis. The key, agents and doors are randomly
initialized at the beginning of each episode and the actions drop and toggle were additionally pruned
when an agent is not holding a key for reasonable environment logic but are not necessary to be
removed for the task to work. The doors look the same to both agents. Everything else was described
in 3.

E ADDITIONAL EXPERIMENTS

The experiments provided below offer insights into the challenge of the Manitokan Task, and further
empirical validation of the correction and self correction terms.

E.1 COMA’S LOSS BECOMES NEGATIVE
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Figure 6: a) Policy loss of the COMA model b) Counterfactual baseline in the COMA policy update

a b

COMA persistently collapsed even though it exhibited similar learning behaviour to PG (a closely
related model). The policy loss and baseline curves show increasing instability with large variance
spikes before converging to a value around 0.0. Perhaps this collapse is from the difficulty of leaving
a hidden gift between individual and collective incentives. The original COMA paper (Foerster et al.,
2018) even mentions a struggle for an agent overcoming an individual reward, although exterior to
hidden gifts, may be cause for the instability.
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E.2 OPTIMAL KEY DROP RATE IS UNATTAINED BY ALL AGENTS
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Figure 7: a) Key drop rate (i.e. cumulative key drops) averaged across parallel episodes and runs. b)
Non-zero key drop rate (i.e. cumulative key drops) averaged across parallel episodes that had key
drops and runs.

a b

For most of the MARL agents (VDN, QMIX, QTRAN, MAVEN) the key drop rate always converged
to exactly zero (Fig. 7), hence the total collapse in collective success in the task. In the case of
MAPPO, and SAF, we observed that the agents learned to pick up the key and open their individual
doors, but minimized the number of key drops to close to zero (Fig. 7a). As a result, the collective
success rate was also close to zero. In contrast, IPPO did not exhibit a collapse in key drops but had
an oscillatory effect where one would agent increase their keydrops while the other reduces theirs.
This explains IPPO’s slightly better success in obtaining the collective reward (Fig. 2a). Interestingly,
COMA and decentralized PG showed very low, but non-zero rates of key drop (Fig. 7a), however
only PG exhibited a non-zero collective success rate (Fig. 2a). This was because even though COMA
agents learned to occasionally drop the key, the counter-factual baseline caused the loss to become
excessively negative (see E.1).

One complication with measuring the key drop rate is that if the agents never even pick up the key
then the key drop rate is necessarily zero. To better understand what was happening in here, we
examined the “non-zero key drop rate”, meaning the rate at which keys were dropped if they were
picked up. The non-zero key drop rate showed that the value mixer MARL agents begin by dropping
the key after picking it up some of the time, but eventually converge to a policy of simply holding or
avoiding the key (Fig. 7b). The variance in drop rates is increased except at the end for VDN, QMIX
and QTRAN. This further emphasizes the challenge of hidden gifts.
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E.3 CHANGING WHICH AGENT STEPS FIRST IN AN EPISODE HARMS PERFORMANCE
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Figure 8: a) The contribution of an agent’s reward accumulation to success weighted by their total
reward comparing policy gradient agents with action history of the same agent stepping first (i.e.
agent 1 then agent 2), alternating agents stepping first (i.e. agent 1 steps first on odd numbered
episodes and agent 2 steps first in even numbers episodes), and a random agent is selecting to step
first. b) Success rate between different step ordering each episode.

a b

The collective success residual is calculated as (rc − ri)× ri where (rc − ri) describes how much
an agent i is contributing to the collective success while weighting it by ri shows if the agents are
increasing that success rate. Interestingly, alternating which agent goes first between episodes creates
oscillations in the collective success rate residual where one agent receiving more reward means the
other agent receives less. Greatly reducing the success. Moreover, randomly selecting an agent to go
first biases the first agent to increase their reward and almost removes all success. These effect may
be caused by uncertainty associated with which agent can reach the key when the other agent is in
sight. For example in the random case, if agent i’s current policy has learned for the past five updates
that it will pick up the key, when both agents are equal distance from the key, there will be a action
prediction error. This uncertainty increases the difficulty of the credit assignment problem.
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E.4 RANDOMIZING THE POLICY CAN SLIGHTLY INCREASE COLLECTIVE SUCCESS SLIGHTLY
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Figure 9: a) Comparing agents of MAPPO, IPPO, VDN and QMIX algorithms with a randomization
applied to their policies b) The cumulative reward for randomized policy agents

a b

PPO agents had their value function learning rates set to 0.001 while the policy learning rates where
kept as 0.000001. This meant the policy would always prefer initial episodes and converge quickly to
those while the value function weighting them more evenly to converge further in the training process.
VDN and QMIX use epsilon greedy in their strategy and simply increasing the time of decay for this
mechanism led these agents to be more random throughout the experiment.

This policy randomization process very slightly improved these agents the success rates’ compared to
those in the main results Fig 2a but decreased the cumulative reward for the PPO agents than those in
Fig 2b. The random policy aligned VDN and QMIX to the random action baseline more or less, and
avoided collapse.
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E.5 BEHAVIOURAL VARIATIONS APPEAR BETWEEN ALGORITHMS WITH INTER AGENT

DISTANCE AND MINIMIZING THE STEPS TO THE FIRST REWARD
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Figure 10: a) Euclidean distance between agents averaged over parallel environments and simulations
across our tested models b) Euclidean distance comparing policy gradient agents with action history
and variance reduction terms.

a b

Although the 2-agent Manitokan Task is a four by four grid world, we measured the euclidean
distance between agents to see if they become more coordinated or adversarial when learning hidden
gifting. In Fig 10a, PG agents exhibited the highest exploration phase but eventually converged to a
lower distance. MAPPO agents also has a similar but substantially smaller exploration effect in the
very beginning while SAF did not have any exploration phases. IPPO and MAVEN agents similarly
hovered below the random baseline but MAVEN agents were closer to each other. COMA agents
begin around random but converge to be closer to each other as well. Value mixer agents VDN,
QMIX and QTRAN all are on average closer to each other but QTRAN agent agents converge further
apart.

In Fig 10b, vanilla and max entropy PG agents with action history become asymptotically closer to
each other while the correction term agents converge further apart from them. The variance reduction
in self correcting agents is also noticeable.
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Figure 11: a) Timestep the first reward an agent received. b) Timestep the first reward a policy
gradient agent with action history received.

a b

The reducing the timestep of the first reward is a way to measure if agents are improving their policies
if cumulative reward also increases. In (Fig 11a), PG, IPPO, MAPPO and SAF all converge quickly
while PG and MAPPO learn policies of reducing the step slightly below random. COMA converges
at a low timestep but this is most likely due to the collapse. MAVEN oscillates at a timestep better
than random but never converges and doesn’t seem to learn a good policy and VDN, QMIX, and
QTRAN collapse consistently with other results in Section 3.

While in Fig 11b, all decentralized PG algorithms with action history reduce their initial reward
timesteps but models with the correction term converge slower.
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E.6 MODIFYING THE REWARD FUNCTION ENHANCES PERSPECTIVE ON THE CHALLENGE OF

THE MANITOKAN TASK
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Figure 12: a) Success rate of policy gradient agents with action history comparing the normal reward
function with an oracle reward term (i.e. an agent receives a reward of 1 once for dropping the key
after opening their door), a punishment term (i.e.. a negative reward of 1 is applied each step an
agent holds their key after opening their door) and a reward injection term (i.e. randomly distributing
normally smaller rewards around the standard rewards decaying over episodes) b) Cumulative reward
to compare the modified reward functions

a b

The reward function R in equation 1 to study hidden gifting behavior is both sparse with a hard
to predict collective reward conditioned on the other agent’s policy. We tested additional re-
ward conditions on PG agents with action history to see if sample efficiency improvement can
be found. Particularly, the oracle reward: rit the first key dropped after agent i’s door is opened ,
is the critical step to take for hidden gifting and when implemented the collective suc-
cess rate increased quicker than the normal reward function. The punishment reward:
−0.5 for each step agent i is holding the key after their door was opened, is also meant to induce
gifting behavior but agents seemed to avoid the key altogether. Lastly, the injection reward where a
set of rewards rd < ri are normally distributed around rewards ri and rc which also served as the
mean. rd was additionally reduced each episode for agents to prefer the standard rewards. Injection
reduced the success rate severely but also reduced variance in accumulating the expected reward.

These minor modifications reemphasize the difficulty in hidden gifting, where our most performative
agents still struggle even when rewarded for the optimal action.
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Figure 13: a) Success rate between policy gradient agents comparing a disassociation of the reward
function (i.e.. just the individual reward and the collective rewards) b) Cumulative reward of the same
dissociated reward function agents

a b

For a further investigation of the reward function, we tested a dissociation of the individual reward
ri and the collective reward rc with action history PG agents. Using only the individual reward,
removed collective success altogether but agents converged at a higher percentage of the cumulative
reward (i.e.. whoever gets to the key first). This is essentially an equilibrium with 50% probability
of getting a reward. Isolating collective reward and removing the individual reward did not cause
a failure in collective behavior but severely inhibited it. The success rate average did increasingly
ossiclate. With both these reward dissociation, agents fail to learn hidden gifting.
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E.7 THE SELF CORRECTION TERM IS EMPIRICALLY SOUND IN CONTRAPOSITION

0 3000 6000 9000
Episodes

0.00

0.08

0.16

Collective Success
Agent 1 Reward
Agent 2 Reward

0 3000 6000 9000
Episodes

0.00

0.15

0.30

Collective Success
Agent 1 Reward
Agent 2 Reward

Figure 14: a) The percentage of cumulative reward and collective success for anti-collective policy
gradient agents with action history (i.e. optimizing the negated self correction term) across 11000
episodes b) 9 individual simulations for anti-collective behaviour averaged each across a different set
of 32 parallel environments

a b

For all previous experiments, the correction term was maximized to induce agents towards dropping
the key for the other agent (i.e. hidden gifting). Contrapositively however, this term for an agent i
could also be minimized through negation −E[∇Θi∇ΘjJc(Θ

j)Ψ(πj
c , a

j , oj)] in the policy update
and doing so led agents to actively "compete" for the key and avoid dropping it all together. In Fig
14a, the rewards for both agents increases with variance spikes while the collective success rate
goes down. These results demonstrate a stronger implication of the self-correction in the collective
behaviour of agents than just as a variance reducer.

Fig 14b displays the individual simulations with standard deviation of the 32 parallel environments.
Specifically, the reward curves sharply drop and return after agents have learned to open their doors.
This tradeoff in the individual reward accumulation is a detriment to the collective success rate but
perhaps in other situations, the negative correction term can help avoid undesired rewarded behaviour.

Alternatively, if we set Ψ to be 1

E[∇
Θjπ

j
c(aj |oj)]

instead of 1

E[∇
Θj log π

j
c(aj |oj)]

, the self-correction term

is now weighted by the actual collective policy rather than it’s entropy. This is refereed to as Ψ̂.
This is a plug in adjustment and did not have a theoretical motivation or derivation. The policy
independence from 1 should still hold but there is no proof for this adjustment. However in looking
at Fig. 15, there is a different change in behaviour of the agents.

In Fig. 15a, the agents follow a very similar reward accumulation path but sharply drop around
3000 episodes where a slight switch in agent 1 achieving a higher reward. This happens again at a
slower rate at around 7000 episodes where agent 2 accumulates more reward than the other agent and
eventually surpassing agent 1 with some increase in variance until the end of the experiment. Agent
1’s reward accumulation deteriorates after 8000 episodes implying that agent 2 is better at finding
the key and always holding onto it. Then this happens for a final time in this experiment at 16000
episodes where the variance blows up. The negated self-correction here is inhibiting agents more
sharply, perhaps due to the smaller range of values that πc(a|o) has than log πc(a|o). The success
rate is severely reduced and does not pickup in variance or on average through the remainder of the
experiment.

In Fig. 15b, all simulations are plotted with their within simulation variance. The behaviour between
both agents in performance and variance is similar until 6000 episodes where agent 2 over takes agent
1 in all but three simulations. This then reverses around 16000 episodes with the majority of agent 1
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simulations overtaking agent 2. The success rate simulations are near identical to eachother, showing

how more impactful Ψ̂ is to inhibiting cooperation.
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Figure 15: a) The percentage of cumulative reward and collective success for anti-collective policy
gradient agents with action history (i.e. optimizing the negated self correction term) across 11000
episodes b) 9 individual simulations for anti-collective behaviour averaged each across a different set
of 32 parallel environments

a b

The original self-correction contraposition is theoretically motivated and showed a more smoother
slower inhibition on average where agents continued to compete with similar performance until almost
the end of the experiment. The adjusted self-correction inhibition has a more sharper effect which
makes sense since the policy is a categorical distribution. The agents do not compete comparatively
though. Agent 2 overtakes agent 1 earlier than in the first inhibition experiment. Overall, these
experiments further implicate self-correction in learning the collective sub policy for leaving hidden
gifts for the other agent.

33



1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

Under review as a conference paper at ICLR 2026

E.8 THE POLICY GRADIENT OBJECTIVE IS BETTER THAN THE Q-LEARNING IN SINGLE AGENT

KEY-TO-DOOR
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Figure 16: a) Comparison of single agent PPO, PG and DQN agents where one agent needs to open a
one door after finding one key

As a baseline, PPO, PG and DQN agents are compared on the individual objective of the main task
(eg. opening a door). This is a normal key-to-door task and success is defined by opening a door for a
reward of 1. PPO and PG agents retain the same hyperparameter except the learning rate for both
actor and critic in PPO was reduced after a grid search to tune against overfitting. The DQN agent
required 1 simulation at a time rather than 32 in parallel but was not able to converge above 50%
success after an extensive hyperparameter search. This demonstrates the performance of on-policy
policy gradient objective over the off-policy q-learning objective in temporal credit assignment tasks.
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E.9 SELF-CORRECTION OUT PERFORMS LOLA ON THE MANITOKAN TASK
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Figure 17: a) A comparison of LOLA with a learning rate of 1 and 0.0005, Naive LOLA with a
learning rate of 0.0005, Self-correction, and Naive Self-correction. The naive learner framework only
permits one agent to optimize the additional hessian objective rather than two. b)

Learning with Opponent Learning Awareness (LOLA) (Foerster et al., 2017) is the original learning
aware gradient update. In the original work, only one policy gradient agent was a LOLA agent
with the other being a naive policy gradient agent. To test how self-correction compares, 32 parallel
simulations were ran for LOLA with a learning rate of 1 and 0.0005, Naive LOLA with a learning
rate of 0.0005, Self-correction, and Naive Self-correction. LOLA with a learning rate of 1 did not
learn cooperative behaviour but decreasing the learning rate to 0.0005 improved learning but with
high ossicilations in median performance as well as variance. When both agents were LOLA agents,
similar to (Willi et al., 2022), there was greater stability in collective success but less than self-
correction. For thoroughness, a naive learner experiment for self-correction was ran. Interestingly,
the variance reduction effect was maintained but performance was delayed and reduced compared
to self-correction. However, this implies that one self-correction agent can help stabilize collective
success.
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E.10 EMPIRICAL ANALYSIS ON THE EFFECT ON THE INFORMATION OF LAST ACTIONS
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Figure 18: a) A comparison of collective success rate between PG agents with last action inputs
with one last action, two last actions, four last actions, eight last actions and sixteen last actins b)
A comparison of variance over time between PG agents with last action inputs c) A comparison of
global collective success rate between PG agents with last action inputs d) A comparison between
PG agents with eight last actions as input and PG agents with randomly permutated eight last actions
as input.

a b

c d

Due to the performance of one last action, we were curious if more last actions could further increase
the collective success rate. Two and Four last actions inhibit performance, while eight and sixteen
last actions recover performance comparable to one last action. These results indicate that a single
previous action provides a great deal of the necessary information to solve the task, though more
history could also help. There did not seem to be a large effect on variance over time; however,
sixteen last actions did exhibit a reduction. The importance of temporal structure rather than quantity
of information is demonstrated in Fig. 18d where randomly permutating or disordering 8 last actions
nearly brings collective success rate to zero.

36



1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

Under review as a conference paper at ICLR 2026

E.11 THE SELF CORRECTION VALUE IS MORE CORRELATED TO COLLECTIVE SUCCESS

THAN POLICY ENTROPY IN MAXIMUM ENTROPY POLICY GRADIENTS
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Figure 19: a) A correlation analysis between the collective success rate rate of PG agents with
one last action input and a self correction term, and the value of the self-correction term. b) A
correlation analysis between the collective success rate rate of PG agents with one last action input
and a maximum entropy term, and the value the value of policy entropy.

a b

In Fig. 19a, we tested the relationship between the value of the self correction term and our perfor-
mance metric of collective success rate. The self correction term is highly correlated with success,
since Pearson’s r = 0.99626. The variance in the self-correction term is noticeably larger than the
success rate. While in In Fig. 19b we did the same test between the policy entropy values and the
collective success rate of the maximum entropy PG agents. The entropy is inversely correlated with
the collective success rate but not as strongly than as the self correction values with a Pearson’s r =
-0.89291. The variance in policy entropy is markedly low.
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E.12 POLICY GRADIENT AGENTS WITH SELF CORRECTION’S COLLECTIVE SUCCESS RATE IS

GLOBALLY LARGER THAN OTHER POLICY GRADIENT AGENTS
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Figure 20: The comparison of global success rate across PG agents with self correction, correction
and maximum entropy, as well as PG agents without any extra terms

Markedly, the median of the self correction term’s global collective success rate is larger than other
PG models. This speaks to how the stability provided by the correction term, not only reduces
variance but also stabilizes collective success. The median of the normal correction term the second
largest, slightly above the vanilla PG agents’ collective success rate. The maximum entropy term had
the lowest collective success rate out of the four PG models.

38



2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

Under review as a conference paper at ICLR 2026

P PROOFS

P.1 CORRECTION TERM

We begin by deriving the standard policy gradient theorem (Sutton et al., 1998; 1999a) under the
assumptions in Section 4 that an agent i is first to open their door and that the collective reward rc is
differentiable through another agent js objective. The objective J(Θi) for agent i is to maximize the

expected cumulative sum of rewards within an episode E[
∑T

t Ri(oit, a
i
t)] with the reward function

R in equation 1 where a value function V (Θi, oi) = E[Ri(oi, ai)].

∇ΘiJ(Θi) = ∇Θi(
∑

ai∈A

πi(ai|oi)Q(oi, ai)) (6)

is the differentiated objective with respect to agent i.

∑

ai∈A

(∇Θiπi(ai|oi)Q(oi, ai) + πi(ai|oi)∇ΘiQ(oi, ai)) (7)

by product rule expansion.

∑

ai∈A

∇Θiπi(ai|oi)Q(oi, ai)+πi(ai|oi)∇Θi(
∑

oi
′
,Ri

T (oi
′

, Ri(oi, ai)|oi, ai)(Ri(oi, ai)+V (Θi, oi
′

)

(8)
Here, Eq. (8) is summed over all actions

∑

ai∈A. In particular, the value function can be used to

predict a look-ahead of the next reward with a next observation oi
′

and T is the transition probability.

Now we construct the other agent’s value estimate as a surrogate for the future collective reward.
The individual reward is a constant and disappears by passing the gradient but we can isolate the
collective reward as sub-objective for a sub-policy with a linearity assumption.

Eτ∼πj [
T
∑

t=0

R̂j(ojt , a
j
t )] = Eτ∼πj [

T
∑

t=0

r
j
t + rct ] = Eτ∼πj [

T
∑

t=0

r
j
t ] + Eτ∼πj [

T
∑

t=0

rct ] (9)

Eq. (1), only rj degenerates to 0 while rc is differentiable w.r.t to another agent j.

To isolate the sub-objective for the collective policy, start with the reward maximization objection.

J(Θj) = Eτ∼πj [
T
∑

t

R̂j(ojt , a
j
t )] (10)

J(Θj) = Eτ∼πj [

T
∑

t=0

r
j
t ] + Eτ∼πj [

T
∑

t=0

rct ] (11)

by linearity in Eq. (2) of Rj .
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J(Θj)− Eτ∼πj [

T
∑

t=0

r
j
t ] = Eτ∼πj [

T
∑

t=0

rct ] = Jc(Θ
j) (12)

∇ΘjJc(Θ
j) = Eτ∼πj [∇Θj log πj

c(a
j |oj)Qc(o

j , aj)] (13)

∇ΘjJc(Θ
j) = Eτ∼πj [∇Θj log πj

c(a
j |oj)]Eτ∼πj [Qc(o

j , aj)] (14)

Since the individual policy on finding the key and opening the door is assumed to be learned from
Eq. (3) . Now the collective policy of agent j is probabilistically independent from that agent’s
collective Q-value Qc since the collective reward can only be acquired by agent i who has it’s own
policy. There is no action agent j can take to acquire the collective reward or improve it’s Qc estimate
after dropping the key.

Now to truly use Qc as a surrogate for the collective reward, we have to perform an element-wise
division with Eτ∼πj [∇Θj log πj

c(a
j |oj)] but, the score function of a stochastic policy generally tends

towards zero in expectation Eτ∼π[∇Θ log π(a|o)] = 0 because there is at least one optimal action ∗aj

to take at every observation oj . So, minimizing the policy gradient objective increases the probability
of the optimal actions in expectation.

However, there is no action aj the agent can take to acquire the collective reward rc. So, every action
aj under the softmax policy πj

c(a
j |oj) is equally as likely as any other action. Therefore, actions

are uniformly distributed in the collective policy πj
c which is by consequence the collective policy

outputs a uniform distribution itself πj
c(; |o

j) = aj ∼ U(0, |A|).

The gradient of the logarithm of a uniform distribution and it’s expected are common statistical
knowledge, and they are not rederived here. The maximum likelihood estimate of the collective
policy is

∇Θj log πj
c(; |o

j) = −
1

|A|
̸= 0 (15)

and therefore, the gradient of the score function in expectation is also not zero

Eτ∼πj [∇Θj log πj
c(; |o

j)] = Eτ∼πj [−
1

|A|
] ̸= 0 (16)

Let Ψ(πj
c , o

j , aj) = 1

E
τ∼πj [∇Θj log π

j
c(aj |oj)]

where Ψ is the element wise reciprocal of the expected

collective policy for agent j. So we can clarify the term

∇ΘjJc(Θ
j)

Eτ∼πj [∇Θj log πj
c(aj |oj)]

= ∇ΘjJc(Θ
j)Ψ(πj

c , o
j , aj) = Eτ∼πj [Qc(o

j , aj)] (17)

∑

ai∈A

πi(ai|oi)(
∑

oi
′
,R̂i

T (oi
′

+1, R̂
i(oi, ai)|oi, ai)(∇Θi∇ΘjJc(Θ

j)Ψ(πj
c , a

j , oj) +∇ΘiV (Θi, oi
′

))

(18)

Now in Eq. (18) the correction term as a surrogate for the collective reward in the look ahead step
from Eq. (8).
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Let Φ(oi) =
∑

ai∈A(∇Θiπi(ai|oi)Q(oi, ai) for readability and Let ρi(oi → oi
′

) =

πi(ai|oi)(
∑

oi
′
,R̂i T (oi

′

, R̂i(oi, ai)|oi, ai) for further readability.

Φ(oi) +
∑

oi

ρi(oi → oi+1)(∇ΘiV (Θi, oi+1) +∇Θi∇ΘjJc(Θ
j)Ψ(πΘj , aj , oj)) (19)

The previous, Eq. (19), can then be recursively expanded out further Φ(oi) +
∑

oi ρ
i(oi →

oi+1)(Φ(o
i
+1) + ∇Θi∇ΘjJc(Θ

j)Ψ(πj
c , a

j , oj) +
∑

oi
+1

ρi(oj+1 → o
j
+2)(∇ΘiV (Θi, o+2) +

∇Θi∇ΘjJ(Θj
c, o

j)Ψ(πj
c , a

j , oj))

∑

xi,xj∈O

∞
∑

k=0

ρi(o → xi, k)(Φ(xi) +∇Θi∇ΘjJc(Θ
j
c)Ψ(πj

c , a
j , xj)) (20)

Let η(o) =
∑∞

k=0 ρ
i(oi → oi

′

, k) to clarify the transitions.

∑

o

η(o)(Φ(o)+∇Θi∇ΘjJc(Θ
j)) ∝

∑

o

η(o)
∑

o η(o)
(Φ(o)+∇Θi∇ΘjJc(Θ

j , oj)Ψ(πj
c , a

j , oj) (21)

since the normalized distribution is a factor of the sum.

Then let
∑

s
η(o)∑
o
η(o) =

∑

o∈O d(o)

∑

o∈O

d(o)(
∑

ai∈A

(∇Θiπi(ai|oi)Q(oi, ai) +∇Θi∇ΘjJc(Θ
j , oj)Ψ(πj

c , a
j , oj)) (22)

∑

o∈O

d(o)(
∑

ai∈A

(πi(ai|oi)Q(oi, ai)
∇Θiπi(ai|oi)

πi(ai|oi)
+∇Θi∇ΘjJc(Θ

j , oj)Ψ(πj
c , a

j , oj)) (23)

, the log-derivative trick can pull out the gradient.

∑

o∈O

d(o)(
∑

ai∈A

((ai|oi)Q(oi, ai)∇Θi log πi(ai|oi) +∇Θi∇ΘjJc(Θ
j , oj)Ψ(πj

c , a
j , oj)) (24)

Finally, the full gradient objective from Eq. (5) is constructed

∇ΘiJ(Θi) = Eτ∼πi,τ∼πj [Q(oi, ai)∇Θi log πi(ai|oi) +∇Θi∇ΘjJ(Θj , oj)Ψ(πΘj , aj , oj))] □
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P.2 SELF CORRECTION TERM

Considering Eq. (3) and Eq. (4) the correction term for agent i is equivalent to the expected collective
reward value estimate of

Eτ∼πj [∇ΘjJc(Θ
j)Ψ(πj

c , a
j , oj)] = Eτ∼πj [Qc(o

j , aj)] (25)

In turn, the collective value estimate is an approximated prediction of the collective reward at any
time

Eτ∼πj [Qc(o
j , aj)] ≈ Eτ∼πj ,τ∼πi [rc] (26)

.

However the collective reward is also an approximate of the agent i’s collective reward values
estimate, if they opened their door first, which is again equivalent to the correction term of agent j.

Eτ∼πj ,τ∼πi [rc] ≈ Eτ∼πi [Qc(o
i, ai)] = Eτ∼πi [∇ΘiJc(Θ

i)Ψ(πi
c, a

i, oi)] (27)

Therefore, in expectation, the correction terms of both agents are equivalent and symmetric. Objective
sharing or policy is not necessary,

Eτ∼πj [∇ΘjJc(Θ
j)Ψ(πj

c , a
j , oj)] = Eτ∼πi [∇ΘiJc(Θ

i)Ψ(πi
c, a

i, oi)] □ (28)

Very critically, this equivalence is in expectation and therefore is not an instance of a linear calculation
or transform but the average value of one agent’s correction term is the same as another when in
similar context like opening their door first.
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P.3 CORRECTION TERMS DO NOT CONFLICT WITH INDIVIDUAL OBJECTIVES

A corollary to the construction of the correction term is that if there is no collective reward signal (ex.
the agent is performing a single agent task), then the correction degenerates to zero.

For the sake of contradiction, assume that the correction term does not become zero when there is a
lack of a collective reward signal such that there exists a value b ̸= 0. Then,

b =
∇ΘjJc(Θ

j)

Eτ∼πj [∇Θj log πj
c(aj |oj)]

(29)

Eτ∼πi [∇Θj log πj
c(a

j |oj)]b = ∇ΘjJc(Θ
j) (30)

Eτ∼πi [∇Θj log πj
c(a

j |oj)]b = ∇Θj (

T
∑

t=0

rjc) = ∇Θj (0) = 0 (31)

Eτ∼πi [∇Θj log πj
c(a

j |oj)]b = 0 (32)

Since Eτ∼πi [∇Θj log πj
c(a

j |oj)] was a denominator, which cannot be zero due to the actions of the
collective policy being uniformly distributed (see Eq. (15) there is only one possibility: b = 0.

Therefore, b = 0 contradicts the claim. □

Intuitively, b is actually equal to Qc which is obviously zero when there is no collective reward. This
result, although quick, shows that an agent can theoretically learn to solve an individual task without
conflicting with learned policies for nonstationary coordination behaviours.
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