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ABSTRACT

Natural physical, chemical, and biological dynamical systems are often complex,
with heterogeneous components interacting in diverse ways. We show how simple
graph neural networks can be designed to jointly learn the interaction rules and the
latent heterogeneity from observable dynamics. The learned latent heterogeneity
and dynamics can be used to virtually decompose the complex system which is
necessary to infer and parameterize the underlying governing equations. We tested
the approach with simulation experiments of interacting moving particles, vector
fields, and signaling networks. While our current aim is to better understand and
validate the approach with simulated data, we anticipate it to become a generally
applicable tool to uncover the governing rules underlying complex dynamics
observed in nature.

1 INTRODUCTION

Many natural phenomena can be modeled (or reasonably approximated) as dynamical systems of
discrete particles or finite elements that change their state based on some internal program, external
forces, and interactions with other particles or elements. Well known historic examples that use
such models for forward simulation are cinematographic applications (Reeves, 1983), Reynolds’s
boid flocking behavior model (1987), atmospheric flow (Takle & Russell, 1988), and fluid dynamics
(Miller & Pearce, 1989).

Particle systems and finite element methods can also be used to uncover the underlying dynamics from
observations. If the governing equations of the dynamics are known, it is generally possible to recover
the underlying properties of objects from noisy and/or incomplete data by iterative optimization (e.g.
Kalman filter; Shakhtarin, 2006). Conversely, if the properties of objects are known, it is possible to
determine the governing equations with compressed sensing (Brunton et al., 2016), equations-based
approaches (Stepaniants et al., 2023) or machine learning techniques, including graph neural networks
(GNN; Battaglia et al., 2016; Cranmer et al., 2020; Sanchez-Gonzalez et al., 2020; Prakash & Tucker,
2022). Recent methods jointly optimize the governing equations and their parameterization (Long
et al., 2018; Huang et al., 2020; Lu et al., 2022; Course & Nair, 2023), yet heterogeneity of objects
and interactions is either not considered or provided as input.

Zhao et al. (2023) add a learnable convection term to partial differential equation (PDE)-GNNs to
account for behavior between heterogeneous particles, leading to improved performance on several
classification benchmarks. Interestingly, this term has no access to the particle features but only their
relative differences, which limits its ability to learn particle-type specific interaction rules.

In their work on rediscovering orbital mechanics in the solar system, Lemos et al. (2023) explicitly
model the mass of orbital bodies as a learnable parameter. They use GNNs to learn how to predict
the observed behavior and the latent property, and combine this purely bottom-up approach with
symbolic regression to infer and parameterize a governing equation. With this approach, they are
able to uncover Newton’s law of gravity and the unobserved masses of orbital bodies from location
over time data alone.
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Figure 1: Outline of the GNN method for modeling heterogeneous dynamical system from data.
The training dataset (a, boids example) is converted into (b) a graph time-series (node features vi,
connectivity Vi) to be processed by a message passing GNN. In all our simulations, except for the
signal passing network, the length of the time series used for training is 1, aggregating time variant
properties such as velocity in vi. Each particle is represented as a node i that receives messages
from connected nodes j ∈ Vi processed by a pairwise message passing function f . These messages
are aggregated by a function

⊙
and then used by an update function Φ to modify the node states.

Either of the functions f ,
⊙

, or Φ can be hard-coded or a learnable neural network. In addition
to observable particle properties (here the positions xi and velocity ẋi), the functions have access
to a learnable latent vector ai. During training, the latent vectors for each node and the learnable
functions are jointly optimized (c, d) to predict how particle states evolve over time (e). The trained
latent embedding reveals the structure of the underlying heterogeneity and can be used to decompose
and further analyze the dynamical system.

1.1 CONTRIBUTION

We expand the work by Lemos et al. (2023) to predict and decompose heterogeneous dynamical
systems that are governed by arbitrary latent properties. We train GNNs to reproduce the observable
dynamics of complex systems. We train only one shared function approximator for all interactions
and updates, respectively, that is parameterized by the observable particle properties and a low-
dimensional learnable embedding of the latent properties for each node (see Figure 1). In systems
with discrete classes of particles, the learned embedding of all nodes reveals the classes as clusters
and allows to virtually decompose the system. This is a necessary step to infer and parameterize
the underlying governing equations. In systems with continuous properties, the learned embedding
reveals the underlying manifold and allows to estimate the corresponding parameters.

For a diverse set of simulations, we can learn to reproduce the complex dynamics, uncover and visual-
ize the structure of the underlying heterogeneity, and parameterize symbolic top-down hypotheses of
the rules governing the dynamics. In the simplest cases, the interaction functions were automatically
retrieved with symbolic regression.
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Figure 2: Simulations of dynamical systems. (a) Attraction-repulsion, 4,800 particles, 3 particle
types. (b) Gravity-like, 960 particles, 16 different masses. (c) Coulomb-like, 960 particles, 3 different
charges. (d) Boids, 1792 particles, 16 types. (e) Wave-propagation over a mesh of 104 nodes with
variable propagation-coefficients. (f) Reaction-diffusion propagation over a mesh of 104 nodes with
variable diffusion-coefficients. (g) Signaling network, 986 nodes, 17,865 edges, 2 types of nodes.
The underlying equations are detailed in Supplementary Table 1.

2 METHODS

2.1 SIMULATION OF DYNAMICAL SYSTEMS

We created a diverse set of quasi-physical dynamical particle systems with heterogeneous latent
properties of individual particles (see Figure 2 and Videos). In all simulations, particles interact
with a limited neighborhood of other particles. They receive messages from connected particles that
encode some of their properties, integrate these messages, and use the result to update their own
properties. This update is either the first or second derivative over time of their position or other
dynamical properties.

First, we created simulations of moving particles whose motion is the result of complex interactions
with other particles (Lagrangian systems, see Figure 2a–d). Then, we simulated vector-fields with
diffusion-like signal propagation between stationary particles (Eulerian systems, see Figure 2e, f).
Some particles follow an exclusively internal program defined by a sequence of hidden states. Finally,
we created complex spatio-temporal signaling networks (Hens et al., 2019; see Figure 2g).

All simulations generate indexed time series by updating parts of all particle states xi using explicit
or semi-implicit Euler integration

ẋi ← ẋi +∆t ẍi, xi ← xi +∆t ẋi. (1)

The vector xi stands for the position of particles in moving dynamical systems, or for other dynamical
properties in the vector-field and network simulations. The details of these simulations are listed in
Supplementary Table 1.

2.2 GRAPH NEURAL NETWORKS

Figure 1 depicts the components of the GNNs to model dynamical particle systems, and how we train
them to predict their dynamical behavior and to reveal the structure of the underlying heterogeneity.
A graph G = {V,E} consists of a set of nodes V = {1, . . . , n} and edges E ⊆ V × V with node
and edge features denoted by vi and eij for i, j ∈ V , respectively. A message passing GNN updates
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node features by a local aggregation rule (Battaglia et al., 2016; Gilmer et al., 2017)

vi ← Φ
(
vi,

⊙
j∈Vi

f(eij , vi, vj)
)
, (2)

where Vi := {j : (i, j) ∈ E} is the set of all neighbors of node i, Φ is the update function,
⊙

is the
aggregation function, and f is the message passing function. To model a dynamical particle system,
Φ,

⊙
, and f can be used to represent the time evolution of node states according to pairwise and

node-local interactions. The node features vi include the dynamical node states xi (xi ∈ Rd). In
models with moving particles, xi is the position of the particles. In models with stationary particles
it stands for their dynamical properties. With this framework, we can model arbitrary dynamical
particle systems by using particles as nodes and designing an appropriate neighborhood, node and
edge features, as well as update, aggregation, and message passing functions. Either Φ,

⊙
, or f can

be arbitrary differentiable functions, which includes fully learnable deep neural networks. In our
experiments, we use multi-layer perceptrons (MLPs) for such learnable functions, and typically, only
f or parts of Φ are fully learnable at a time. The aggregation function

⊙
i is either the sum or the

average of the outputs of all fij . The inputs to these functions are application specific subsets of
the node features, such as the relative position between the particles, xj − xi, the distance between
particles dij or the velocity of the particles ẋi. The latent heterogeneity of the particles is encoded
by a two-dimensional learnable embedding ai that is part of the node features. These learnable
embeddings parameterize either Φ,

⊙
, or f as appropriate. For all our experiments with one to

four-dimensional latent parameterers, two- or more dimensional embeddings generated similar results.
We therefore chose two dimensions, because they are easy to visualize and interpret. Experiments
with one-dimensional embeddings get often stuck in local minima. We expect that higher-dimensional
latent parameter spaces that are less sparse would require higher-dimensional embeddings.

The design choices for neighborhood, learnable functions, and their parameters are important to
define what the GNN can learn about the dynamical system. If either of the learnable functions has
access to the absolute position xi of particle node i and the time index t, then this function can learn
the behavior of the particle as a fully independent internal program. This is sometimes desired, e.g.
if we want to learn the behavior of an unobserved force-field that impacts the behavior of observable
dynamical particles (see Figure 4). If the learnable interaction function f has only access to local
relative offsets, velocities, and distances, then it has to learn to reproduce the dynamics based on these
local cues (see Figure 3). We found that the networks learn to ignore redundant input parameters that
are irrelevant for the task, e.g. networks that learn to infer gravitational forces from relative positions
learn to ignore velocities or accelerations, even if they have access to those derivatives. Please see
Supplementary Table 2 for a full description of the GNN models used for the various simulation
experiments.

During training, the learnable parameters of Φ,
⊙

, and f , including the embedding ai of all nodes
i ∈ V are optimized to predict a single time-step or a short time-series. Since we use explicit or
semi-implicit Euler integration to update the dynamical properties of all particles (see Equation 1),
we predict either the first or second order derivative of those properties and specify the optimization
loss over those derivatives

Lẋ =

n∑
i=1

∥̂̇xi − ẋi∥2 and Lẍ =

n∑
i=1

∥̂̈xi − ẍi∥2. (3)

We implemented the GNNs using the PyTorch Geometric library (Fey & Lenssen, 2019). For GNN
optimization we used AdamUniform gradient descent, with a learning rate of 10−3, and batch size of
8. For models with rotation invariant behaviors, we augmented the training data with 200 random
rotations. Each GNN was trained over 20 epochs, with each epoch covering all time-points of the
respective training series (between 250 and 8000). All experiments were performed on a Colfax
ProEdge SX4800 workstation with an Intel Xeon Platinum 8362 CPU, 512 GB RAM, and two
NVIDIA RTX A6000 GPUs with 48 GB memory each, using Ubuntu 22.04.

2.3 RESULTS

2.3.1 ATTRACTION-REPULSION

We simulated a dynamical system of moving particles whose velocity is the result of aggregated
pairwise attraction-repulsion towards other particles within a local neighborhood (see Figure 2a
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Figure 3: Experiments with the attraction-repulsion model. Row 1 shows the projection of the true
interaction functions f speed over distance. Row 2 shows the projection of the learned interaction
functions f . Row 3 shows the learned latent vectors ai of all particles. Particle classification is
obtained with hierarchical clustering (see Appendix A.2). Row 4 shows the last frame of rollout
inference of the trained GNN on a validation series of 250 time-steps. Deviation from ground truth
shown by red segments. RMSE measured between true positions and GNNs inferences are given
(xi ∈ [0, 1)2, 4,800 particles, 250 time-steps). (a, b) Three particle types. (c) Continuous particle
parameters. (d, e, f) 16, 32, 64 particle types. In (b), the interaction functions asymmetrically depend
on the types of both particles, in all other experiments, they depend only on the type of the receiving
particle. Colors indicate the true particle types.

and Appendix A.1.1, 4,800 particles, 250 time-steps). The velocity incurred by pairwise attraction-
repulsion depends on the relative position of the other particle and the type of the receiving particle
(see Supplementary Table 1).

For a simulation with three particle types, we visualized the training progress of the learned embedding
vectors ai for all particles i, and the learned interactions fij (see Supplementary Figure 1 and Video 1).
For all experiments, we show an informative projection of the learned pairwise interactions (here,
speed as a function of distance).

Initialized at 1, the vectors ai separate and eventually converge to a clustered embedding that indicates
the three distinct node types (and one outlier). The corresponding interaction functions capture the
simulated attraction-repulsion rule increasingly well, and also recover that there are three distinct
groups (and one outlier).

With limited data, it is not always possible to learn a perfect clustering. We therefore applied a
heuristic that can be used when the structure of the learned embedding suggests that there is a small
number of distinct groups. Every 5 out of 20 epochs, we performed hierarchical clustering on a UMAP
projection (McInnes et al., 2018) of the learned interaction function profiles (see Appendix A.2).
We then replace, for each particle, the learned latent vectors ai by the median of the closest cluster,
independently estimated for each embedding dimension. With this re-initialization, we continue
training the GNN (see Video 1). This bootstrapping helped us to identify the correct number of types
in datasets with limited training data.
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Figure 3a shows the training results for this model with three particle types whose interactions
consider only the receiving type. Hierarchical clustering of the learned latent vectors ai recovered the
particle types with a classification accuracy of 1.00 (4,800 particles, 3 types, 1 outlier). The root mean
squared error (RMSE) between the learned and true interaction function profiles is 5.3± 4.3 · 10−4.
We also measured the accuracy of rollout inference on a validation dataset (see Video 2). The RMSE
between true and inferred particle positions was 1.4 ± 1.0 · 10−3 (xi ∈ [0, 1)2, 4,800 particles,
250 time-steps). We show quantitatively that the trained GNN generalizes well if we change the
number of particles and the initial conditions (see Supplementary Figure 2). Most importantly, the
optimized GNN can be used to virtually de- or re-compose the dynamic particle system from the
identified sub-domains (see Supplementary Figure 3). This ability will be particularly important to
understand the behavior of heterogeneous dynamical systems in biology that can only be observed in
their mixed natural configuration.

Figure 3b shows the results for a system with three particle types that interact asymmetrically
depending on the types of both particles. The GNN learns all nine modes of interaction (RMSE =
1.0 ± 1.0 · 10−4) and permits classification of the underlying particle types based on the learned
latent vectors ai with an accuracy of 1.00.

Figure 3c shows how well the model was able to recover continuous heterogeneity. We added
Gaussian noise to the parameters of the attraction-repulsion rules used in the first experiment, leading
to slightly different behavior of each particle in the simulation. The GNN was not able to recover the
behavior of this dynamical system well when we used 250 time-steps as in the previous experiments.
However, with 1,000 time-steps, it excellently reproduced the behavior of the system with a validation
rollout RMSE of 1.3± 1.2 · 10−3, and an interaction function RMSE of 1.9± 1.7 · 10−4.

Figure 3d–f shows the results of experiments with more particle types (16, 32, 64). 16 types are
identified perfectly from a training series with 500 time-steps (accuracy= 0.99, interaction function
RMSE= 8.4 ± 9.7 · 10−5), but the performance begins to degrade with 32 types (accuracy= 0.9)
and even more so with 64 particle types (accuracy= 0.78), even though we increased the length of
the training series to 1,000 time-steps. We believe that there were simply not enough representative
samples for all possible interactions in the training data, because we did not increase the number of
particles nor the field of view of the simulation.

We then tested how robust the approach is when the data is corrupted. We used a modified loss
Lẋ =

∑n
i ∥̂̇xi − ẋi(1 + ε)∥2 where ε is a random vector drawn from a Gaussian distribution

ε ∼ N (0, σ2). Corrupting the training with noise has limited effect up to σ = 0.5 (see Supplementary
Figure 4). The learned latent embedding spread out more, but the interaction functions were correctly
learned and could be used for clustering after UMAP projection of the profiles. Hiding parts of the
data had a more severe effect. Removing 10% of the particles degraded accuracy to 0.67 and ten-fold
increased the interaction function RMSE (see Supplementary Figure 5b). This effect can be partially
addressed by adding random ‘ghost-particles’ to the system. While the trained GNN was not able to
recover the correct position of the missing particles, the presence of ‘ghost-particles’ during training
recovered performance for 30% missing particles (interaction function RMSE = 3.2± 2.1 · 10−4,
accuracy = 0.98), but started degenerating at 30% (see Supplementary Figure 5c, d).

Finally, we added a hidden field that modulates the behavior of the observable dynamics (see
Appendix A.1.2, 4,800 particles, 3 types). The field consists of 104 stationary particles with a given
latent coefficient bi. These stationary particles interact with the moving particles through the same
attraction-repulsion but weighted by bi. During training of the GNN, the values of bi are modeled
by a coordinate-based MLP. Supplementary Figure 6 shows that it is possible to learn the hidden
field together with the particle interaction rules from observations of the dynamic particles alone
(see Video 3). We then made the hidden field bi time-dependent and added the time index t as a
parameter to the coordinate-based MLP. Similarly to the stationary hidden field bi, Figure 4 and
Video 4 show that the GNN was able to recover both the time-dependent hidden field bi(t) and the
particle interaction rules from observations of the dynamic particles alone.

2.3.2 GRAVITY-LIKE

In the gravity-like simulation (see Figure 2b and Appendix A.1.1), particles within a reasonable
distance (this is not physical, but reduces complexity) attract each other based on Newton’s law of
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Figure 4: Experiment with the attraction-repulsion model whose particles interact with a hidden
dynamical field. (a) Snapshots of the training series with 256 time-steps, 4,800 particles, 3 particle
types (colors). (b) A hidden dynamical field is simulated by 104 stationary particles with time-
dependent states bi(t). (c) Small colored arrows depict the velocities of all moving particles as
induced by the hidden field (grey dots). (d) Hidden field bi(t) learned by the trained GNN. Structural
similarity index (SSIM) measured between ground truth and learned hidden field is 0.46± 0.03 (256
frames). (e) Comparison between learned and true hidden field bi(t) (2.6 · 106 points). Pearson
correlation coefficient indicates a positive correlation (r = 0.96, p < 10−5). (f) Learned latent
vectors ai for all moving particles. Colors indicate the true particle type. Hierarchical clustering of
the learned latent vectors ai allows to classify the moving particles with an accuracy of 1.00. (g)
Projection of the learned interaction functions fij as speed over distance. (h) Hierarchical clustering
of the UMAP projection of the profiles shown in (g) allows to classify the moving particles with an
accuracy of 1.00. (i) Rollout inference of the trained GNN on 256 time-steps. Deviation from ground
truth is shown by red segments. RMSE= 4.5± 3.4 · 10−3 (xi ∈ [0, 1)2).
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universal gravitation which depends on their observable relative position and their latent masses (see
Supplementary Table 1).

Supplementary Figure 8a, b shows the results of the GNN trained on two series of 2,000 time-steps
with 960 particles of 16 different masses and a continuous distribution of masses, respectively (see
Video 5). The GNNs trained with these datasets do not yield precise rollout inference owing to
error accumulation (RMSE ∼ 1.0, Supplementary Figure 7 and Video 6). However the resulting
dynamics are qualitatively indistinguishable from the ground truth. This is consistent with a Sinkhorn
divergence of 1.1 ·10−2 between true and inferred distributions (calculated with the GeomLoss library,
Feydy et al., 2018). As described by Lemos et al. (2023), we were able to automatically infer and
parameterize the symbolic interaction function using the PySR package (Cranmer, 2023). Symbolic
regression recovered the mi/d

2
ij power laws (see Supplementary Figure 8a,b) and the 16 distinct

masses (slope= 1.01, R2 = 1.00) as well as the continuous distribution of masses (slope= 1.00,
R2 = 1.00, 1 outlier).

Corrupting the training with noise has limited effect up to σ = 0.4 (see Supplementary Figure 9a, b).
Removing particles from the training data degraded the results severely (Supplementary Figure 10a,
b). Naïvely adding ‘ghost-particles’ as in the attraction-repulsion experiment did not improve results
notably. Interestingly, the power law exponent was still very well recovered.

2.3.3 COULOMB-LIKE

Supplementary Figure 8c shows the results of the GNN trained with simulations of particles following
Coulomb’s law of charge-based attraction-repulsion (see Figure 2c, Supplementary Table 1 and
Appendix A.1.1), using the same short-range approximation as previously.

We trained on a series of 2,000 time-steps with 960 particles of three different charges (-1, 1, 2 in
arbitrary units). The learnable pairwise interaction function symmetrically depends on the observable
relative positions of two particles and both of their latent charges, leading to five distinct interaction
profiles. The GNNs trained with this dataset do not yield precise rollout inference owing to error
accumulation (see Video 7). However symbolic regression is able to recover the 1/d2ij power laws
and scaling scalars. Assuming that the extracted scalars correspond to products qiqj , it is possible to
find the set of qi values corresponding to these products. Using gradient descent, we recovered the
correct qi values with a precision of 2 · 10−2. To obtain these results, it was necessary to increase the
hidden dimension of the learnable MLP from 128 to 256.

Adding noise during training had limited effect up to σ = 0.3 (see Supplementary Figure 9c, d), but
removing particles from the training data was detrimental and naïvely adding ‘ghost-particles’ did
not improve the results notably (Supplementary Figure 10c, d).

2.3.4 BOIDS

Supplementary Figure 11 and Video 8 show the process of training a GNN with the boids simulation
(see Figure 2d, Supplementary Table 1 and Appendix A.1.1). We trained on a series of 8,000 time-
steps and 1,792 particles with 16, 32, and 64 types, respectively (see Supplementary Figure 12 and
Video 9). After training the GNN, we applied hierarchical clustering to the learned latent vectors
ai which separated the particle types with an accuracy of ∼ 1.00. In Supplementary Figure 13,
we show rollout examples for the dynamic behavior of each individual recovered type in isolation.
We believe that this ‘virtual decomposition‘ of dynamical systems that can only be observed in
mixed configurations will become a powerful tool to understand complex physical, chemical and
biological processes. We were not able to recover the multi-variate interaction functions using
symbolic regression. However, for the correct symbolic interaction function, we could estimate
the latent parameters for each particle type using robust regression (see Supplementary Figure 12).
Adding noise during training has a limited effect up to σ = 0.4 and, anecdotally, even improved
parameter estimates. Removing trajectories was detrimental to the ability to learn and reproduce the
behavior and parameters (see Supplementary Figure 14).

2.3.5 WAVE-PROPAGATION AND DIFFUSION

We simulated wave-propagation and reaction-diffusion processes over a mesh of 104 nodes (see
Figure 2e, f, Supplementary Table 1 and Appendix A.1.3). Other than in the simulations with moving
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particles, we hard-coded the interaction and aggregation functions to be the discrete Laplacian∇2

and learned first (diffusion) and second order updates (wave) with an MLP that has access to the
Laplacian, the node’s state, and a learnable latent vector ai.

Supplementary Figures 15 and 16 show our results with the wave-propagation model trained on a
series of 8,000 time-steps and 104 nodes. We varied the wave-propagation coefficients in discrete
patches (see Supplementary Figure 15) and arbitrarily (see Supplementary Figure 16). The GNN
correctly recovers the update functions for every nodes, and the linear dependence of these function
over the Laplacian of the node states allows to extract correctly all 104 latent propagation-coefficients
(slope= 0.96, R2 = 0.95, see Video 11). Rollout inference captures the dynamics of the system
qualitatively, but diverges after 3,000 time-steps owing to error accumulation (see Video 12).

Supplementary Figure 17 shows the results of a similar experiment with the "Rock-Paper-Scissors"
(RPS) reaction-diffusion simulation (see Video 13). In this model, the nodes are associated with three
states {ui, vi, wi}. The first-time derivatives of these states evolve according to three cyclic equations
involving the Laplacian operator and a polynomial function of degree 2 (see Supplementary Table 1).
We varied the diffusion coefficient in discrete patches. The GNN correctly identifies four distinct
clusters in the latent vectors domain (see Supplementary Figure 17c) that can be mapped over the
node positions (see Supplementary Figure 17d). The four recovered types can be analysed separately.
For each type, we estimated the diffusion coefficients and the polynomial function coefficients using
robust regression. In total, 31 coefficients describing the reaction-diffusion process were accurately
retrieved (see Supplementary Figure 17e, f, slope= 1.00, R2 = 1.00).

2.3.6 SIGNALING NETWORKS

Supplementary Figure 18 shows our results to recover the rules of a synaptic signaling model with
998 nodes and 17,865 edges with two types of nodes with distinct interaction function (data from
Hens et al., 2019; see Figure 2g, Supplementary Table 1, and Video 14). In order for the GNN to
successfully infer the signaling rules, we found that we needed a relatively large training dataset. We
ran 100 simulations with different initial states over 1,000 time-steps. In addition, it was necessary to
predict more than a single time-step to efficiently train the GNN (see Appendix A.1.4). With this
training scheme, we recovered the connectivity matrix (slope = 1.0, R2 = 1.0) and were able to
automatically infer and parameterize the symbolic interaction functions for both node types using the
PySR package (Cranmer, 2023; Lemos et al., 2023).

2.4 DISCUSSION

We showed with a diverse set of simulations that message passing GNNs that jointly learn interaction-
and update functions and latent node properties are a flexible tool to predict, decompose, and
eventually understand complex dynamical systems. With the currently available software libraries
(PyTorch Geometric, Fey & Lenssen, 2019), it is straightforward to implement an architecture and loss
that encode useful assumptions about the structure of the complex system such as local connectivity
rules or the location of learnable and known functions and their inputs. We showed that a well
designed GNN can learn a low-dimensional embedding of complex latent properties required to
parameterize heterogeneous particle-particle interactions. The learned low-dimensional embeddings
can be used to reveal the structure of latent properties underlying the complex dynamics and to
infer the corresponding parameters. As demonstrated by Lemos et al. (2023) and in the signaling
network experiment, it is possible to use automatic methods to extract symbolic hypotheses that are
consistent with the learned dynamics. However, even without an explicit analysis of the underlying
functions, it is possible to dissect the dynamical system and to conduct virtual experiments with
arbitrary compositions (or decompositions) of particles and interactions. We believe this ability
to become particularly useful to infer the local rules governing complex biological systems like
the organization of bacterial communities, embryonic development, neural networks, or the social
interactions governing animal communities that cannot be observed in isolation.

In preparation for applications on experimental data, we designed simulations that provide some of
the required components to model a complex biological process. We demonstrated the ability to re-
construct discrete, continuous, and time-changing heterogeneities. We modeled dynamic interactions
between moving agents that interact with each other and with an independent dynamic environment.
We were also able to infer the connectivity of a signaling network from functional observations alone.
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However, for an application in biology, some key features are still missing and we are planning to
develop them in future work:

1. In our simulations, the latent properties are either static or follow an internal program.
In biological systems, the interaction between cells and the environment changes their
properties over time in well-defined ways.

2. A community of cells interacts with the environment by receiving and releasing signals from
and into the environment. Our models currently cover only one direction of communication
but will be easy to extend.

3. With the exception of the learned movie experiment (see Figure 4), our models have no
memory and do not integrate information over time. There are many ways to implement
memory, and it is important to understand that almost all dynamics can be learned by simply
memorizing them. We will have to design architectures and training paradigms that avoid
this shortcut.

4. In a developing multi-cellular organism, individual cells both divide and die.
5. In our current experiments, we have simulated and learned deterministic functions (with

noise). In complex biophysical systems in the real world, it is more likely that interactions are
probabilistic and have complex posterior distributions that cannot be learned by regressing
to the mean.

3 CONCLUSION

We demonstrated that message passing GNNs can learn to replicate the behavior of complex hetero-
geneous dynamical systems and to uncover the underlying latent properties in an interpretable way
that facilitates further analysis. The flexibility in designing GNNs to model and train meaningful
interactions in complex systems is impressive and we are looking forward to developing them as an
integral toolbox to uncover the rules governing complex dynamics observed in nature.
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A APPENDIX

A.1 GNN IMPLEMENTATION WITH PRIORS

The general form of the GNN update rule described in Section 2.2 and Equation 2 does not con-
sider application specific parameterization of the individual functions. As described in Section 2.2
and Supplementary Table 2, we define the loss over first and second order updates, respectively. For
clarity, we unroll here the combination of interaction function, aggregation, and update rules and
their respective parameterization, resulting in one equation to calculate the updates.

A.1.1 PARTICLE SYSTEMS

The gravity-like and the Coloumb-like model use sum as an aggregator
⊙

, the attraction-repulsion
and boids model use the average. In addition to the latent learnable vector ai, we parameterized the
interaction function with the relative distance dij and relative positions xj − xi of the two particles
making them blind to absolute position and other non-local information. Hence, the update rules to
be learned by the GNNs become

ẋi =
⊙

f(ai, dij ,xj − xi) or

ẍi =
⊙

f(ai, dij ,xj − xi),

respectively. The learnables are the function f and the particle embedding ai. For f , we used
a five-layer MLP with ReLU activation layers for a total of 50,562 trainable parameters (hidden
dimension = 128, input dimension = 5, output dimension = 2). The latent vectors ai have two
dimensions. All particles within a maximum radius are connected. Our particles have no size and we
did not model interactions between physical bodies. Interactions governed by inverse power laws
have a singularity at r = 0 which breaks optimization by gradient descent. We therefore had to limit
connectivity to dij > 0.02 for the gravity-like and Coulomb-like models.

In the Coulomb-like system, the interaction functions have both particle embeddings aj and aj as
input values, and the corresponding update rule is given by

ẍi =
⊙

f(ai,aj , dij ,xj − xi).

For f , we used a five-layer MLP with ReLU activation layers for a total of 190,752 trainable
parameters (hidden dimension = 256, input dimension = 7, output dimension = 2).

In the boids model, f has access to the particle velocities, yielding the update rule

ẍi =
⊙

f(ai, dij ,xj − xi, ẋi, ẋj).

For f , we used a five-layer MLP with ReLU activation layers for a total of 200,450 trainable
parameters (hidden dimension = 256, input dimension = 9, output dimension = 2).

A.1.2 PARTICLE SYSTEMS AFFECTED BY A HIDDEN FIELD

We added a latent external process as a hidden field of 104 randomly distributed stationary particles
that interact with the moving particles using the same interaction rules and distance based neigh-
borhood. The stationary particles show either a constant image or a time-variant movie that define
a latent coefficient bj that modulates the interaction. For simplicity, we can write the interaction
between all particles with this coefficient bj , knowing that for interactions between moving particles
bj = 1.

ẋi =
⊙

bjf(ai, dij ,xj − xi).

We learn bj using an MLP with the position xj and the time-index t (for time-variant processes) as
inputs:

ẋi =
⊙

b(xj , t)f(ai, dij ,xj − xi).

We used an MLP with periodic activation functions (Sitzmann et al., 2020) and 5 hidden layers of
dimension 128. The total number of trainable parameters for this MLP is 83,201 (hidden dimension =
128, input dimension = 3, output dimension = 1).
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A.1.3 SIMULATION OF WAVE-PROPAGATION AND REACTION-DIFFUSION

We used the Eulerian representation for the simulations of wave-propagation and reaction-diffusion.
The particle positions are fixed and a vector ui associated with each node evolves over time. All
particles are connected to their neighbors using Delaunay triangulation. We fixed the interaction
and aggregation functions to be the discrete mesh Laplacian over this neighborhood. For wave-
propagation, we learn the second time-derivative of ui

üi = Φ
(
ai,∇2ui

)
.

For Φ, we used a five-layer MLP with ReLU activation layers for a total of 897 trainable parameters
(hidden dimension = 16, input size = 3, output size = 1).

For the reaction-diffusion simulation, we learn the first time-derivative of ui

u̇i = Φ
(
ai,ui,∇2ui

)
.

∇2ui can not be calculated on the edges, so we discarded the borders during training (1164 nodes out
of 105). For Φ, we used a five-layer MLP with ReLU activation layers for a total of 4,422 trainable
parameters (hidden dimension = 32, input size = 5, output size = 3).

A.1.4 SIGNALING

The signaling network is described by a set of nodes without position information connected according
to a symmetric connectivity matrix A. We learn

u̇i = Φ(ai, ui) +
∑
j∈Vi

Aijf(uj)

as described by Hens et al. (2019); Aguirre & Letellier (2009); Gao et al. (2016); Karlebach & Shamir
(2008); Stern et al. (2014). The learnables are the functions Φ and f , the node embedding ai, and
the connectivity matrix A (960 × 960). For Φ, we used a three-layer MLP with ReLU activation
layers for a total of 4,481 trainable parameters (hidden dimension = 64, input size = 3, output
size = 1). For f , we used a three-layer MLP with ReLU activation layers for a total of 4,353 trainable
parameters (hidden dimension = 64, input size = 1, output size = 1). Symmetry of A was enforced
during training resulting in 17,865 learnable parameters. Since no data augmentation is possible, we
generated 100 randomly initialized training-series. Training was unstable for unconstrained next
time-step prediction, but stable when training to predict at least two consecutive time-steps. The loss
for two consecutive time-steps is

Lu̇,t =

n∑
i=1

(∥̂̇ui,t+1 − u̇i,t+1∥2 + ∥̂̇ui,t+2 − u̇i,t+2∥2),

with ̂̇ui,t+2 calculated after updating

ui,t+1 ← ui,t+1 +∆t ̂̇ui,t+1.

A.2 CLUSTERING OF GNN’S LATENT VECTORS AND LEARNED INTERACTION FUNCTIONS

The latent vectors or the learned interaction functions are clustered using the SciPy library (Virtanen
et al., 2020). We used the Euclidean distance metric to calculate distances between points and
performed hierarchical clustering using the single linkage algorithm, and formed flat clusters using
the distance method with a cut-off threshold of 0.01. To cluster the interaction functions, their profiles
are first projected to two dimensions using UMAP dimension reduction. The UMAP projections are
next clustered to obtain the different classes of interaction functions.
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Supplementary Table 1: Description of the simulations.

Description Observables Connectivity Vi Interaction Update

Attraction-repulsion xi ∈ [0, 1)2 dij ∈ (0.002, 0.075)
periodic

fij = aig(dij , bi)− cig(dij , di)

g(x, y) = exp(−x
2y

/2σ
2
)

ai, bi, ci, di ∈ [1, 2]

σ = 0.005

ẋi ←
1

|Vi|
∑

j∈Vi

fij

xi ← xi + ∆tẋi

Gravity-like xi ∈ R2 dij ∈ (0.001, 0.3)
non-periodic

fij = mj(xj − xi)/d
3
ij

mj ∈ (0, 5]

ẍi ←
∑

j∈Vi

fij

ẋi ← ẋi + ∆tẍi

xi ← xi + ∆tẋi

Coulomb-like xi ∈ [0, 1)2 dij ∈ (0.001, 0.3)
periodic

fij = −qiqj(xj − xi)/d
3
ij

qi, qj ∈ [−2, 2]

ẍi ←
∑

j∈Vi

fij

ẋi ← ẋi + ∆tẍi

xi ← xi + ∆tẋi

Boids xi ∈ [0, 1)2 dij ∈ (0.001, 0.04)
periodic

fij = aij + cij + sij

cij = ci(xj − xi)

aij = ai(ẋj − ẋi)

sij = −si(xj − xi)/d
2
ij

ai, ci, si ∈ R

ẍi ←
1

|Vi|
∑

j∈Vi

fij

ẋi ← ẋi + ∆tẍi

xi ← xi + ∆tẋi

Wave-propagation ui ∈ R Delaunay
non-periodic

∇2ui üi ← ai∇
2
ui, ai ∈ [0, 1]

u̇i ← u̇i + ∆tüi

ui ← ui + ∆tu̇i

Reaction-diffusion
Rock-Paper-Scissors
(RPS) model

ui, vi, wi

∈ (0, 1]3
Delaunay
non-periodic

∇2ui,∇2vi,∇2wi u̇i ← ai∇
2
ui + ui(1− pi − βvi)

v̇i ← ai∇
2
vi + vi(1− pi − βwi)

ẇi ← ai∇
2
wi + wi(1− pi − βui)

ui ← ui + ∆tu̇i

vi ← vi + ∆tv̇i

wi ← wi + ∆tẇi

pi = ui + vi + wi

β ∈ [0, 1], ai ∈ [0, 1]

Signaling ui ∈ R Connectivity matrix
A ∈ Rn×n

fij = Aij tanh(uj) u̇i ← −biui + ci · tanh(ui) +
∑

j∈Vi

fij

xi denotes the two-dimensional coordinate vector associated with particle i. The distance between
particles i and j is given by dij = ∥xj − xi∥. In the arbitrary attraction-repulsion model, the
interaction is parameterized by the coefficients ai, bi, ci, di, that are different for each particle or
particle type. In the gravity-like model, each particle has a mass mi. In the Coulomb-like model,
each particle type has a charge qi. The boids interaction function consists of three terms, cohesion
cij , alignment aij , and separation sij , parameterized by ci, ai, and si, respectively. In the wave-
propagation, Rock-Paper-Scissors (RPS), and signaling models, particles are stationary and their
neighborhood remains constant. In the wave-propagation model, a scalar property ui of each particle
evolves over time. Information from connected particles is integrated via discrete Laplacian ∇2.
Each particle has a unique latent coefficient αi that modulates the wave-propagation. The RPS model
is a reaction-diffusion model over three-dimensional dynamic particle properties. Similar to the speed
of wave-propagation model, diffusion is realized via discrete Laplacian∇2, and the complex reaction
function for each particle is modulated by a latent diffusion factor αi. The signaling model is an
activation model for dynamics between brain regions as discussed in (Stern et al., 2014). The signal
per particle is an activation variable ui that propagates through the network defined by a symmetric
connectivity matrix A. The update function at each particle is modulated by two latent coefficients bi
and ci.
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Supplementary Table 2: Architecture and parameterization of the GNNs used to predict and decom-
pose the simulations detailed in Supplementary Table 1.

Description Interaction Aggregation Update

Attraction-repulsion fij = MLP(ai, dij ,xj − xi)
⊙

i = 1
|Vi|

∑
j∈Vi

fij ̂̇xi =
⊙

i

Gravity-like fij = MLP(ai, dij ,xj − xi, ẋi, ẋj)
⊙

i =
∑

j∈Vi

fij ̂̈xi =
⊙

i

Coulomb-like fij = MLP(ai,aj , dij ,xj − xi)
⊙

i =
∑

j∈Vi

fij ̂̈xi =
⊙

i

Boids fij = MLP(ai, dij ,xj − xi, ẋi, ẋj)
⊙

i = 1
|Vi|

∑
j∈Vi

fij ̂̇xi =
⊙

i

Wave-propagation
⊙

i = ∇2ui
̂̈ui = MLP(ai, ui,

⊙
i)

Reaction-diffusion
⊙

i = ∇2ui
̂̇ui = MLP(ai,ui,

⊙
i)

Signaling fij = Aij · MLP(uj)
⊙

i =
∑

j∈Vi

fij ̂̇ui = MLP(ai, ui)+
⊙

i

Each GNN is characterized by its input parameters and its learnable (red) and fixed parameters and
functions (black). For update functions, we show the predicted first or second order property that is
used to calculate the training loss and to update particle states using explicit or semi-implicit Euler
integration (see Equation 1). The models for moving particles have a learnable pairwise interaction
function with access to a subset of the particle properties and a learnable embedding for either
both or one of the particles. The aggregation function is a trivial sum or average over the pairwise
interaction functions. For the two propagation models, the pairwise interaction and aggregation
functions combined are the discrete Laplacian ∇2. Here, the update function and an embedding
for the latent node properties are learnable. The model for the signaling network simulation has a
learnable pairwise interaction function and a learnable update function with access to the learnable
connectivity matrix and a learnable embedding for the coefficients modulating the update.
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Supplementary Figure 1: GNN trained on an attraction-repulsion simulation (4,800 particles, 3 particle
types, 250 time-steps). Colors indicate the true particle type. (a) The training dataset is shown in
black and white to emphasize that particle types are not known during training. (b) Learned latent
vectors ai of all particles as a function of epoch and iteration number. Colors indicate the true particle
type. (c) Projection of the learned interaction functions f as speed over distance. (d) Validation
dataset with initial conditions different from training dataset. (e) Rollout inference of the fully trained
GNN. Colors indicate the learned classes found in (b).
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Supplementary Figure 2: Generalization tests successfully run on GNNs trained on attraction-
repulsion simulations (4,800 and 19,200 particles, 3 particle types, 250 time-steps). Colors indicate
the true particle type. (a) Particles are sorted by type into three stripes. Interestingly this test allows
to visualize the differences in interactions. (b) Particles are sorted by particle type into a triangle
pattern. (c) Same as (b) and the number of particles is increased from 4,800 to 19,200. The additional
particles embedding values are sampled from the learned embedding domain. RMSE measured
between true positions and GNNs inferences are given, (xi ∈ [0, 1)2, 250 time-steps).
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Supplementary Figure 3: Decomposition of the GNN trained on an attraction-repulsion simulation
(4,800 particles, 3 particle types, 250 time-steps). Colors indicate the true particle type. The GNN
learns to correctly model the three different particle types. The heterogeneous dynamics can be
decomposed into ‘purified’ samples governed by one unique interaction law. (a), (b), (c) show the
results for one of three particle types each. True simulated positions are shown in the top row and
the rollout inference generated by the GNN are shown in the bottom row. RMSE between true and
inferred rollout are shown in the right column (xi ∈ [0, 1)2, 19,200 particles, 250 time-steps).
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Supplementary Figure 4: Robustness to noise. The GNN was trained with the data of an attraction-
repulsion simulation (4,800 particles, 16 particle types, 500 time-steps). Colors indicate the true
particle type. To corrupt the training with noise, we used a modified loss Lẋ =

∑n
i ∥̂̇xi− ẋi(1+ε)∥2

where ε is a random vector drawn from a Gaussian distribution ε ∼ N (0, σ2). (a) to(d) show the
results for increasing noise σ ∈ [0, 0.5]. Row 1 shows the learned particle embedding. Row 2 shows
the projection of the learned interaction functions f as speed over distance for each particle. Row 3
shows the UMAP projections of these profiles. Hierarchical clustering of the UMAP projections
allows to classify the moving particles with an accuracy of ∼ 1.00. Row 4 shows the learned particle
positions after rollout over 500 time-steps. Colors indicate the learned classes. Deviation from ground
truth is shown by red segments.
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Supplementary Figure 5: Robustness to data removal. Tests are performed with GNNs trained with
data of attraction-repulsion simulations (4,800 particles, 3 particle types, 500 time-steps). Four
experiments are shown with varying amounts of data removed, with and without the addition of ghost
particles during training. Row 1 shows the learned latent vectors ai of all particles. Row 2 shows
the projection of the learned interaction functions f as speed over distance for each particle. Row 3
shows the UMAP projections of these profiles. Hierarchical clustering of the UMAP projections is
used to classify particles. Colors indicate the true particle type.
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Supplementary Figure 6: Experiment with the attraction-repulsion model whose particles interact
with a hidden field. (a) Snapshots of the training series with 4,800 particles, 3 particle types (colors)
and 256 time-steps. (b) Small colored arrows depict the velocities of the moving particles induced by
the hidden field (grey dots). (c) The external field is simulated by 104 stationary particles with states
bi. (d) Learned hidden field bi. (e) Comparison between learned and true field bi (104 points). (f)
Projection of the learned interaction function f as speed over distance. (g) Rollout inference of the
trained GNN after 256 time-steps. Colors indicate the learned particle type. Deviation from ground
truth is shown by red segments.
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Supplementary Figure 7: GNNs trained on gravity-like simulations (960 particles, 16 masses,
2,000 time-steps). (a) The training dataset is shown in black and white to emphasize that particle
masses are not known during training. (b) The learned latent vectors ai of all particles. Colors indicate
the true masses using an arbitrary color scale. (c) the projection of the learned interaction functions f
as acceleration over distance for each particle. (d) Validation dataset with initial conditions different
from training dataset. (e) Rollout inference of the trained GNN. Colors indicate the learned classes
found in (b). The Sinkhorn divergence measures the difference in spatial distributions between
ground truth and GNN inference (Feydy et al., 2018).
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Supplementary Figure 8: GNNs trained on particle systems governed by second-order time derivative
equations. (a) Gravity-like system with 16 different masses (colors) distributed over 960 particles.
(b) Gravity-like system with 960 different masses (colors) uniformly distributed over equal number
of particles. (c) Coulomb-like system with 3 different charges (colors) distributed over 960 particles.
Row 1 shows the learned latent vectors ai of all particles. Row 2 shows the projection of the true
interaction functions f as acceleration over distance. Row 3 shows the projection of the learned
interaction functions f as acceleration over distance. Row 4 shows the result of symbolic regression
(PySR package) applied to the learned interaction functions. As an example, the symbolic regression
results are given for the retrieval of the interaction function 0.5/dij2. Best result is highlighted
in green. The power laws are well recovered with symbolic regression and the extracted scalars
are similar to the true mass mi or products qiqj . Linear fit and relative errors are calculated after
removing outliers. For the Coulomb-like system, we assume that the extracted scalars correspond to
products qiqj . It is then possible to find the set of qi values corresponding to the extracted products.
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Supplementary Figure 9: Robustness to noise. Tests are performed with the GNN trained on gravity-
like and Coulomb-like simulations. To corrupt the training with noise, we used a modified loss
Lẍ =

∑n
i ∥̂̈xi − ẍi(1 + ε)∥2 where ε is a random vector drawn from a Gaussian distribution

ε ∼ N (0, σ2). Results are shown for σ of 0.3 and 0.4. Row 1 shows the learned latent vectors ai

of all particles. Row 2 shows the projection of the learned interaction functions f as acceleration
over distance for each particle. Row 3 shows the UMAP dimension reduction of these profiles.
Hierarchical clustering of the UMAP projections is used to classify particles. Row 4 shows the result
of symbolic regression (PySR package) applied to the learned interaction functions. The power laws
are well recovered and the extracted scalars are similar to the true mass mi or products qiqj . Linear
fit and relative errors are calculated after removing outliers. For the Coulomb-like system, we assume
that the extracted scalars correspond to products qiqj . It is then possible to find the set of qi values
corresponding to the extracted products.
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Supplementary Figure 10: Robustness to data removal. Tests are performed with the GNN trained on
gravity-like and Coulomb-like simulations. Results are shown for varying amounts of data removed,
with and without the addition of ghost particles during training. Row 1 shows the learned latent
vectors ai of all particles. Row 2 shows the projection of the learned interaction functions f as
acceleration over distance for each particle. Row 3 shows the UMAP dimension reduction of these
profiles. Hierarchical clustering of the UMAP projections is used to classify particles. Row 4 shows
the result of symbolic regression (PySR package) applied to the learned interaction functions. When
power laws are retrieved, the extracted scalars are similar to the true mass mi or products qiqj . Linear
fit and relative errors are calculated after removing outliers. For the Coulomb-like system, we assume
that the extracted scalars correspond to products qiqj . It is then possible to find the set of qi values
which can be mapped to the set of extracted scalars.
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Supplementary Figure 11: GNN trained on a boid simulation (1,792 particles, 16 particle types,
8,000 time-steps). (a) The training dataset is shown in black and white to emphasize that particle
types are not known during training. (b) The learned latent vectors ai of all particles for different
epochs and iterations. Colors indicate the true particle type. (c) A projection of the learned interaction
functions f as acceleration over distance for each particle. The projections are calculated with the
velocity inputs set to 0. d Validation dataset with initial conditions different from training dataset. (e)
Rollout inference of the trained GNN. Colors indicate the learned classes found in (b). The Sinkhorn
divergence measures the difference in position distributions between ground truth and GNN inference
(Feydy et al., 2018).
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Supplementary Figure 12: GNNs trained on boids simulations (1,792 particles, 16, 32 and 64 particle
types, 8,000 time-steps). Row 1 shows the learned latent vectors ai of all particles. Row 2 shows a
projection of the true interaction functions f as acceleration over distance. Row 3 shows the same
projection of the learned interaction functions f . Rows 4 to 6 show the results of supervised curve
fitting of the interaction functions f . The correct function f(xi, xj, ẋi, ẋj) = a(xj −xi)+ b(ẋj −
ẋi) + c(xj − xi)/d

2
ij is used to fit the scalars a, b, c, defining cohesion, alignment, and separation

(see Supplementary Table 1). Except for a few outliers (rel. error> 25%), all parameters of the
simulated boids motions are well recovered.
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Supplementary Figure 13: (a), Generalization and decomposition tests of the GNN trained with the
boids simulation (4,800 particles, 16 particle types, 8,000 time-steps). As a generalization test, the
number of particle was multiplied by a factor of 4 (from 1,792 to 7,168) and the initial positions were
split into 16 stripes to separate particle types. (a) shows the ground truth and (b) shows the GNN
rollout inference. The latter matched ground truth up to 2,000 iterations and remains qualitatively
similar later. (c) The GNN correctly learned to model the 16 different particle types and their
interactions. The heterogeneous dynamics can be decomposed into ‘purified’ samples governed by
one unique interaction law. RMSE measured between ground truth and GNN inferences is about
3 · 10−2 (14.3 · 106 positions, xi ∈ [0, 1)2). The Sinkhorn divergence is about 7 · 10−4.
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Supplementary Figure 14: Robustness to noise and data removal. Tests are performed with the GNN
trained on a boids simulation (1,792 particles, 16 particle types, 8,000 time-steps). To corrupt the
training with noise, we used a modified loss Lẍ =

∑n
i ∥̂̈xi − ẍi(1 + ε)∥ where ε is a random vector

drawn from a Gaussian distribution ε ∼ N (0, σ2). Results are shown for σ = 0.3 (a) and σ = 0.3
(b) . Row 1 shows the learned latent vectors ai of all particles. Colors indicate the true particle type.
Particles were classified with hierarchical clustering over the learned latent vectors ai. Row 2 shows
a projection of the learned interaction functions f as acceleration over distance for each particle. The
last three rows show the results of supervised curve fitting of the interaction function f . Cohesion,
alignment and separation parameters were extracted and compared to ground truth. (c, d) Randomly
removing 10% of the training data yielded unsatisfying results that were not improved by adding
ghost particles.
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Supplementary Figure 15: GNN trained on a wave-propagation simulation. (a) The training dataset
is a simulation of a scalar field ui evolving over a mesh of 104 nodes with varying wave-propagation
coefficients over space (f). Obstacles are modeled by particles with a wave-propagation coefficient
of zero, there are two walls with four slits in the coefficient maps. (b) The learned latent vectors ai

are shown for a series of epochs and iterations. (c) The learned update functions Φi (Supplementary
Table 2) over the discrete Laplacian of ui for all nodes i. Linear curve fitting of these profiles allows
to extract the learned wave-propagation coefficients. (d) Comparison between true and learned
wave-propagation coefficients. (e) The learned coefficients map are shown for a series of epochs and
iterations. (g) Validation dataset with initial conditions different from training dataset. (h) Rollout
inference of the trained GNN.
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Supplementary Figure 16: GNN trained on a wave-propagation simulation. (a) The training dataset
is a simulation of a scalar field ui evolving over a mesh of 104 nodes with varying wave-propagation
coefficients over space, here an arbitrary image (f). (b) The learned latent vectors ai are shown for a
series of epochs and iterations. (c) The learned update functions Φi (Supplementary Table 2) over
the discrete Laplacian of ui for all nodes i. Linear curve fitting of these profiles allows to extract the
learned wave-propagation coefficients. (d) Comparison between true and learned wave-propagation
coefficients. (e) The learned coefficients map are shown for a series of epochs and iterations. (g)
Validation dataset with initial conditions different from training dataset. (h) Rollout inference of the
trained GNN.

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Supplementary Figure 17: GNN trained on a reaction-diffusion simulation based on the “Rock-Paper-
Scissor” automaton. (a) The training dataset is a vector field {ui, vi,wi} evolving over a mesh of 104
nodes (4,000 time-steps). The amplitudes of the field components are represented by red, blue, and
green components respectively. (d) The diffusion coefficients vary over space. (c) The GNN learned
that there were five distinct clusters in the latent vector embedding, including one for particles at the
boundaries that follow a separate set of rules (d). We used all non-boundary particles to estimate the
4 diffusion coefficients and 27 polynomial function coefficients. (e) Comparison between true (blue)
and learned (orange) polynomial coefficients. (f) Comparison between the true and learned diffusion
coefficients. (g) Validation dataset with initial conditions different from training dataset. (h) Rollout
inference of the trained GNN.
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Supplementary Figure 18: GNN trained on a signaling network simulation. (a) The simulated
network has 998 nodes connected by 17,865 edges. There are two types of nodes with distinct
interaction functions. The training dataset consist of 100 simulations with different initial states run
over 1,000 time-steps. (b) Threshold applied to the learned update functions Φ profiles shown in (c)
allows to distinguish and classify the two node types. (c) Projection of the update functions Φ over
node state u and node types. Symbolic regression (PySR package) applied to the learned Φ functions
allows to retrieve the exact expressions. (d) Projection of the learned interaction functions f over
node state u. This function is shared by all nodes and is well retrieved through the symbolic regression.
The latter also retrieve a scaling scalar that is used to correct the learned connectivity matrix Aij

values. (e) Comparison between learned and true connectivity matrix values. (f) Validation dataset
with initial conditions different from training dataset. (g) Rollout inference of the trained GNN over
1,000 time-steps.
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A.3 SUPPLEMENTARY VIDEOS

Hyperlinks removed, paper under double-blind review

Video 1: GNN trained on an attraction-repulsion simulation (4,800 particles, 3 particle types, 250
time-steps). Colors indicate the true particle type. (Left) Learned particle embedding training over
20 epochs. (Right) Projection of the learned interaction functions for each particle as speed over
distance.

Video 2: GNN trained on an attraction-repulsion simulation. (Left) Validation dataset with initial
conditions different from training dataset. Colors indicate the true particle type. (Right) Rollout
inference of the fully trained GNN. Colors indicate the learned particle type.

Video 3: GNN trained on an attraction-repulsion simulation that is modulated by a hidden field of
stationary particles playing a movie. (4,800 particles, 3 particle types, 104 stationary movie particles).
(Left) Particle embedding training over 20 epochs. Colors indicate the true particle type. (Middle)
Projection of the learned interaction functions for each particle as speed over distance. (Left) frame
45 out of 250 of the learned hidden movie field.

Video 4: GNN trained on an attraction-repulsion simulation that is modulated by a hidden field
of stationary particles playing a movie. (Left) True hidden movie field. (Right) learned hidden
movie field. The grey levels indicate the coupling factors that modulate the interaction between the
stationary particles and the moving particles.

Video 5: GNN trained on a gravity-like system (960 particles, 16 particle masses, 2,000 time-steps).
(Left) Particle embedding training over 20 epochs. The colors indicate the true particle mass. (Right)
Projection of the learned interaction functions for each particle as acceleration over distance.

Video 6: GNN trained on a gravity-like simulation. (Left) Validation dataset with different initial
conditions than the training dataset. Colors indicate the true particle mass. (Right) Rollout inference
of the trained GNN. Colors indicate the learned particle mass.

Video 7: GNN trained on a Coulomb-like simulation (960 particles, 3 particle charges, 2,000 time-
steps). (Left) Validation dataset with different initial conditions than the training dataset. Colors
indicate the true particle charge (ground truth). (Right) Rollout inference of the trained GNN. Colors
indicate the learned particle charge.

Video 8: GNN trained on a boids simulation (1,792 particles, 16 particle types, 8,000 time-steps).
(Left) Particle embedding training over 20 epochs. Colors indicate the true particle type. (Right)
Projection of the learned interaction functions for each particle as acceleration over distance.

Video 9: GNN trained on a boids simulation. (Left) Validation dataset with different initial conditions
than the training dataset. Colors indicate the true particle type. (Right) Rollout inference of the
trained GNN. Colors indicate the learned particle type.

Video 10: GNN trained on a boids simulation (7,168 particles, 16 particle types, 8,000 time-steps).
As a generalization test, the number of particles was multiplied by a factor of 4 (from 1,792 to 7,168)
and arranged in as 16 homogeneous stripes. Colors indicate the true particle type. (Right) Rollout
inference of the trained GNN. Colors indicate the learned particle type.

Video 11: GNN trained on a wave-propagation simulation over a field with varying wave-propagation
coefficients. (Left) Particle embedding training over 20 epochs. Colors indicate the true wave-
propagation coefficient. (Right) Learned wave-propagation coefficients.

Video 12: GNN trained on a wave-propagation simulation over a field with varying wave-propagation
coefficients. (Left) Particle embedding training over 20 epochs. Colors indicate the true wave-
propagation coefficient. (Right) Learned wave-propagation coefficients.

Video 13: GNN trained on a reaction-diffusion simulation based on the “Rock-Paper-Scissor”
automaton over a mesh of 104 3D vector nodes (4,000 time-steps). The amplitudes of the vector
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components are represented as RGB colors. Vector nodes have varying diffusion coefficients that
modulate the reaction. (Left) Validation dataset with different initial conditions than the training
dataset. (Right) Rollout inference of the trained GNN.

Video 14: GNN trained on a signaling propagation simulation. The training dataset has 998 nodes
connected by 1,786 edges. There are two types of nodes with distinct interaction functions. (Left)
Validation dataset with initial conditions different from the training dataset. Colors indicate signal
intensity. (Right) Rollout inference of the trained GNN.
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