
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DECOMPOSING HETEROGENEOUS DYNAMICAL SYS-
TEMS WITH GRAPH NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Natural physical, chemical, and biological dynamical systems are often complex,
with heterogeneous components interacting in diverse ways. We show how simple
graph neural networks can be designed to jointly learn the interaction rules and the
latent heterogeneity from observable dynamics. The learned latent heterogeneity
and dynamics can be used to virtually decompose the complex system which is
necessary to infer and parameterize the underlying governing equations. We tested
the approach with simulation experiments of interacting moving particles, vector
fields, and signaling networks. While our current aim is to better understand and
validate the approach with simulated data, we anticipate it to become a generally
applicable tool to uncover the governing rules underlying complex dynamics
observed in nature.

1 INTRODUCTION

Many natural phenomena can be modeled (or reasonably approximated) as dynamical systems of
discrete particles or finite elements that change their state based on some internal program, external
forces, and interactions with other particles or elements. Well known historic examples that use
such models for forward simulation are cinematographic applications (Reeves, 1983), Reynolds’s
boid flocking behavior model (1987), atmospheric flow (Takle & Russell, 1988), and fluid dynamics
(Miller & Pearce, 1989).

Particle systems and finite element methods can also be used to uncover the underlying dynamics from
observations. If the governing equations of the dynamics are known, it is generally possible to recover
the underlying properties of objects from noisy and/or incomplete data by iterative optimization (e.g.
Kalman filter; Shakhtarin, 2006). Conversely, if the properties of objects are known, it is possible to
determine the governing equations with compressed sensing (Brunton et al., 2016), equations-based
approaches (Stepaniants et al., 2023) or machine learning techniques, including graph neural networks
(GNN; Battaglia et al., 2016; Cranmer et al., 2020; Sanchez-Gonzalez et al., 2020; Prakash & Tucker,
2022). Recent methods jointly optimize the governing equations and their parameterization (Long
et al., 2018; Huang et al., 2020; Lu et al., 2022; Course & Nair, 2023), yet heterogeneity of objects
and interactions is either not considered or provided as input.

Zhao et al. (2023) add a learnable convection term to partial differential equation (PDE)-GNNs to
account for behavior between heterogeneous particles, leading to improved performance on several
classification benchmarks. Interestingly, this term has no access to the particle features but only their
relative differences, which limits its ability to learn particle-type specific interaction rules.

In their work on rediscovering orbital mechanics in the solar system, Lemos et al. (2023) explicitly
model the mass of orbital bodies as a learnable parameter. They use GNNs to learn how to predict
the observed behavior and the latent property, and combine this purely bottom-up approach with
symbolic regression to infer and parameterize a governing equation. With this approach, they are
able to uncover Newton’s law of gravity and the unobserved masses of orbital bodies from location
over time data alone.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Outline of the GNN method for modeling heterogeneous dynamical system from data.
The training dataset (a, boids example) is converted into (b) a graph time-series (node features vi,
connectivity Vi) to be processed by a message passing GNN. In all our simulations, except for the
signal passing network, the length of the time series used for training is 1, aggregating time variant
properties such as velocity in vi. Each particle is represented as a node i that receives messages
from connected nodes j ∈ Vi processed by a pairwise message passing function f . These messages
are aggregated by a function

⊙
and then used by an update function Φ to modify the node states.

Either of the functions f ,
⊙

, or Φ can be hard-coded or a learnable neural network. In addition
to observable particle properties (here the positions xi and velocity ẋi), the functions have access
to a learnable latent vector ai. During training, the latent vectors for each node and the learnable
functions are jointly optimized (c, d) to predict how particle states evolve over time (e). The trained
latent embedding reveals the structure of the underlying heterogeneity and can be used to decompose
and further analyze the dynamical system.

1.1 CONTRIBUTION

We expand the work by Lemos et al. (2023) to predict and decompose heterogeneous dynamical
systems that are governed by arbitrary latent properties. We train GNNs to reproduce the observable
dynamics of complex systems. We train only one shared function approximator for all interactions
and updates, respectively, that is parameterized by the observable particle properties and a low-
dimensional learnable embedding of the latent properties for each node (see Figure 1). In systems
with discrete classes of particles, the learned embedding of all nodes reveals the classes as clusters
and allows to virtually decompose the system. This is a necessary step to infer and parameterize
the underlying governing equations. In systems with continuous properties, the learned embedding
reveals the underlying manifold and allows to estimate the corresponding parameters.

For a diverse set of simulations, we can learn to reproduce the complex dynamics, uncover and visual-
ize the structure of the underlying heterogeneity, and parameterize symbolic top-down hypotheses of
the rules governing the dynamics. In the simplest cases, the interaction functions were automatically
retrieved with symbolic regression.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 2: Simulations of dynamical systems. (a) Attraction-repulsion, 4,800 particles, 3 particle
types. (b) Gravity-like, 960 particles, 16 different masses. (c) Coulomb-like, 960 particles, 3 different
charges. (d) Boids, 1792 particles, 16 types. (e) Wave-propagation over a mesh of 104 nodes with
variable propagation-coefficients. (f) Reaction-diffusion propagation over a mesh of 104 nodes with
variable diffusion-coefficients. (g) Signaling network, 986 nodes, 17,865 edges, 2 types of nodes.
The underlying equations are detailed in Supplementary Table 1.

2 METHODS

2.1 SIMULATION OF DYNAMICAL SYSTEMS

We created a diverse set of quasi-physical dynamical particle systems with heterogeneous latent
properties of individual particles (see Figure 2 and Videos). In all simulations, particles interact
with a limited neighborhood of other particles. They receive messages from connected particles that
encode some of their properties, integrate these messages, and use the result to update their own
properties. This update is either the first or second derivative over time of their position or other
dynamical properties.

First, we created simulations of moving particles whose motion is the result of complex interactions
with other particles (Lagrangian systems, see Figure 2a–d). Then, we simulated vector-fields with
diffusion-like signal propagation between stationary particles (Eulerian systems, see Figure 2e, f).
Some particles follow an exclusively internal program defined by a sequence of hidden states. Finally,
we created complex spatio-temporal signaling networks (Hens et al., 2019; see Figure 2g).

All simulations generate indexed time series by updating parts of all particle states xi using explicit
or semi-implicit Euler integration

ẋi ← ẋi +∆t ẍi, xi ← xi +∆t ẋi. (1)

The vector xi stands for the position of particles in moving dynamical systems, or for other dynamical
properties in the vector-field and network simulations. The details of these simulations are listed in
Supplementary Table 1.

2.2 GRAPH NEURAL NETWORKS

Figure 1 depicts the components of the GNNs to model dynamical particle systems, and how we train
them to predict their dynamical behavior and to reveal the structure of the underlying heterogeneity.
A graph G = {V,E} consists of a set of nodes V = {1, . . . , n} and edges E ⊆ V × V with node
and edge features denoted by vi and eij for i, j ∈ V , respectively. A message passing GNN updates

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

node features by a local aggregation rule (Battaglia et al., 2016; Gilmer et al., 2017)

vi ← Φ
(
vi,

⊙
j∈Vi

f(eij , vi, vj)
)
, (2)

where Vi := {j : (i, j) ∈ E} is the set of all neighbors of node i, Φ is the update function,
⊙

is the
aggregation function, and f is the message passing function. To model a dynamical particle system,
Φ,

⊙
, and f can be used to represent the time evolution of node states according to pairwise and

node-local interactions. The node features vi include the dynamical node states xi (xi ∈ Rd). In
models with moving particles, xi is the position of the particles. In models with stationary particles
it stands for their dynamical properties. With this framework, we can model arbitrary dynamical
particle systems by using particles as nodes and designing an appropriate neighborhood, node and
edge features, as well as update, aggregation, and message passing functions. Either Φ,

⊙
, or f can

be arbitrary differentiable functions, which includes fully learnable deep neural networks. In our
experiments, we use multi-layer perceptrons (MLPs) for such learnable functions, and typically, only
f or parts of Φ are fully learnable at a time. The aggregation function

⊙
i is either the sum or the

average of the outputs of all fij . The inputs to these functions are application specific subsets of
the node features, such as the relative position between the particles, xj − xi, the distance between
particles dij or the velocity of the particles ẋi. The latent heterogeneity of the particles is encoded
by a two-dimensional learnable embedding ai that is part of the node features. These learnable
embeddings parameterize either Φ,

⊙
, or f as appropriate. For all our experiments with one to

four-dimensional latent parameterers, two- or more dimensional embeddings generated similar results.
We therefore chose two dimensions, because they are easy to visualize and interpret. Experiments
with one-dimensional embeddings get often stuck in local minima. We expect that higher-dimensional
latent parameter spaces that are less sparse would require higher-dimensional embeddings.

The design choices for neighborhood, learnable functions, and their parameters are important to
define what the GNN can learn about the dynamical system. If either of the learnable functions has
access to the absolute position xi of particle node i and the time index t, then this function can learn
the behavior of the particle as a fully independent internal program. This is sometimes desired, e.g.
if we want to learn the behavior of an unobserved force-field that impacts the behavior of observable
dynamical particles (see Figure 4). If the learnable interaction function f has only access to local
relative offsets, velocities, and distances, then it has to learn to reproduce the dynamics based on these
local cues (see Figure 3). We found that the networks learn to ignore redundant input parameters that
are irrelevant for the task, e.g. networks that learn to infer gravitational forces from relative positions
learn to ignore velocities or accelerations, even if they have access to those derivatives. Please see
Supplementary Table 2 for a full description of the GNN models used for the various simulation
experiments.

During training, the learnable parameters of Φ,
⊙

, and f , including the embedding ai of all nodes
i ∈ V are optimized to predict a single time-step or a short time-series. Since we use explicit or
semi-implicit Euler integration to update the dynamical properties of all particles (see Equation 1),
we predict either the first or second order derivative of those properties and specify the optimization
loss over those derivatives

Lẋ =

n∑
i=1

∥̂̇xi − ẋi∥2 and Lẍ =

n∑
i=1

∥̂̈xi − ẍi∥2. (3)

We implemented the GNNs using the PyTorch Geometric library (Fey & Lenssen, 2019). For GNN
optimization we used AdamUniform gradient descent, with a learning rate of 10−3, and batch size of
8. For models with rotation invariant behaviors, we augmented the training data with 200 random
rotations. Each GNN was trained over 20 epochs, with each epoch covering all time-points of the
respective training series (between 250 and 8000). All experiments were performed on a Colfax
ProEdge SX4800 workstation with an Intel Xeon Platinum 8362 CPU, 512 GB RAM, and two
NVIDIA RTX A6000 GPUs with 48 GB memory each, using Ubuntu 22.04.

2.3 RESULTS

2.3.1 ATTRACTION-REPULSION

We simulated a dynamical system of moving particles whose velocity is the result of aggregated
pairwise attraction-repulsion towards other particles within a local neighborhood (see Figure 2a

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 3: Experiments with the attraction-repulsion model. Row 1 shows the projection of the true
interaction functions f speed over distance. Row 2 shows the projection of the learned interaction
functions f . Row 3 shows the learned latent vectors ai of all particles. Particle classification is
obtained with hierarchical clustering (see Appendix A.2). Row 4 shows the last frame of rollout
inference of the trained GNN on a validation series of 250 time-steps. Deviation from ground truth
shown by red segments. RMSE measured between true positions and GNNs inferences are given
(xi ∈ [0, 1)2, 4,800 particles, 250 time-steps). (a, b) Three particle types. (c) Continuous particle
parameters. (d, e, f) 16, 32, 64 particle types. In (b), the interaction functions asymmetrically depend
on the types of both particles, in all other experiments, they depend only on the type of the receiving
particle. Colors indicate the true particle types.

and Appendix A.1.1, 4,800 particles, 250 time-steps). The velocity incurred by pairwise attraction-
repulsion depends on the relative position of the other particle and the type of the receiving particle
(see Supplementary Table 1).

For a simulation with three particle types, we visualized the training progress of the learned embedding
vectors ai for all particles i, and the learned interactions fij (see Supplementary Figure 1 and Video 1).
For all experiments, we show an informative projection of the learned pairwise interactions (here,
speed as a function of distance).

Initialized at 1, the vectors ai separate and eventually converge to a clustered embedding that indicates
the three distinct node types (and one outlier). The corresponding interaction functions capture the
simulated attraction-repulsion rule increasingly well, and also recover that there are three distinct
groups (and one outlier).

With limited data, it is not always possible to learn a perfect clustering. We therefore applied a
heuristic that can be used when the structure of the learned embedding suggests that there is a small
number of distinct groups. Every 5 out of 20 epochs, we performed hierarchical clustering on a UMAP
projection (McInnes et al., 2018) of the learned interaction function profiles (see Appendix A.2).
We then replace, for each particle, the learned latent vectors ai by the median of the closest cluster,
independently estimated for each embedding dimension. With this re-initialization, we continue
training the GNN (see Video 1). This bootstrapping helped us to identify the correct number of types
in datasets with limited training data.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 3a shows the training results for this model with three particle types whose interactions
consider only the receiving type. Hierarchical clustering of the learned latent vectors ai recovered the
particle types with a classification accuracy of 1.00 (4,800 particles, 3 types, 1 outlier). The root mean
squared error (RMSE) between the learned and true interaction function profiles is 5.3± 4.3 · 10−4.
We also measured the accuracy of rollout inference on a validation dataset (see Video 2). The RMSE
between true and inferred particle positions was 1.4 ± 1.0 · 10−3 (xi ∈ [0, 1)2, 4,800 particles,
250 time-steps). We show quantitatively that the trained GNN generalizes well if we change the
number of particles and the initial conditions (see Supplementary Figure 2). Most importantly, the
optimized GNN can be used to virtually de- or re-compose the dynamic particle system from the
identified sub-domains (see Supplementary Figure 3). This ability will be particularly important to
understand the behavior of heterogeneous dynamical systems in biology that can only be observed in
their mixed natural configuration.

Figure 3b shows the results for a system with three particle types that interact asymmetrically
depending on the types of both particles. The GNN learns all nine modes of interaction (RMSE =
1.0 ± 1.0 · 10−4) and permits classification of the underlying particle types based on the learned
latent vectors ai with an accuracy of 1.00.

Figure 3c shows how well the model was able to recover continuous heterogeneity. We added
Gaussian noise to the parameters of the attraction-repulsion rules used in the first experiment, leading
to slightly different behavior of each particle in the simulation. The GNN was not able to recover the
behavior of this dynamical system well when we used 250 time-steps as in the previous experiments.
However, with 1,000 time-steps, it excellently reproduced the behavior of the system with a validation
rollout RMSE of 1.3± 1.2 · 10−3, and an interaction function RMSE of 1.9± 1.7 · 10−4.

Figure 3d–f shows the results of experiments with more particle types (16, 32, 64). 16 types are
identified perfectly from a training series with 500 time-steps (accuracy= 0.99, interaction function
RMSE= 8.4 ± 9.7 · 10−5), but the performance begins to degrade with 32 types (accuracy= 0.9)
and even more so with 64 particle types (accuracy= 0.78), even though we increased the length of
the training series to 1,000 time-steps. We believe that there were simply not enough representative
samples for all possible interactions in the training data, because we did not increase the number of
particles nor the field of view of the simulation.

We then tested how robust the approach is when the data is corrupted. We used a modified loss
Lẋ =

∑n
i ∥̂̇xi − ẋi(1 + ε)∥2 where ε is a random vector drawn from a Gaussian distribution

ε ∼ N (0, σ2). Corrupting the training with noise has limited effect up to σ = 0.5 (see Supplementary
Figure 4). The learned latent embedding spread out more, but the interaction functions were correctly
learned and could be used for clustering after UMAP projection of the profiles. Hiding parts of the
data had a more severe effect. Removing 10% of the particles degraded accuracy to 0.67 and ten-fold
increased the interaction function RMSE (see Supplementary Figure 5b). This effect can be partially
addressed by adding random ‘ghost-particles’ to the system. While the trained GNN was not able to
recover the correct position of the missing particles, the presence of ‘ghost-particles’ during training
recovered performance for 30% missing particles (interaction function RMSE = 3.2± 2.1 · 10−4,
accuracy = 0.98), but started degenerating at 30% (see Supplementary Figure 5c, d).

Finally, we added a hidden field that modulates the behavior of the observable dynamics (see
Appendix A.1.2, 4,800 particles, 3 types). The field consists of 104 stationary particles with a given
latent coefficient bi. These stationary particles interact with the moving particles through the same
attraction-repulsion but weighted by bi. During training of the GNN, the values of bi are modeled
by a coordinate-based MLP. Supplementary Figure 6 shows that it is possible to learn the hidden
field together with the particle interaction rules from observations of the dynamic particles alone
(see Video 3). We then made the hidden field bi time-dependent and added the time index t as a
parameter to the coordinate-based MLP. Similarly to the stationary hidden field bi, Figure 4 and
Video 4 show that the GNN was able to recover both the time-dependent hidden field bi(t) and the
particle interaction rules from observations of the dynamic particles alone.

2.3.2 GRAVITY-LIKE

In the gravity-like simulation (see Figure 2b and Appendix A.1.1), particles within a reasonable
distance (this is not physical, but reduces complexity) attract each other based on Newton’s law of

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 4: Experiment with the attraction-repulsion model whose particles interact with a hidden
dynamical field. (a) Snapshots of the training series with 256 time-steps, 4,800 particles, 3 particle
types (colors). (b) A hidden dynamical field is simulated by 104 stationary particles with time-
dependent states bi(t). (c) Small colored arrows depict the velocities of all moving particles as
induced by the hidden field (grey dots). (d) Hidden field bi(t) learned by the trained GNN. Structural
similarity index (SSIM) measured between ground truth and learned hidden field is 0.46± 0.03 (256
frames). (e) Comparison between learned and true hidden field bi(t) (2.6 · 106 points). Pearson
correlation coefficient indicates a positive correlation (r = 0.96, p < 10−5). (f) Learned latent
vectors ai for all moving particles. Colors indicate the true particle type. Hierarchical clustering of
the learned latent vectors ai allows to classify the moving particles with an accuracy of 1.00. (g)
Projection of the learned interaction functions fij as speed over distance. (h) Hierarchical clustering
of the UMAP projection of the profiles shown in (g) allows to classify the moving particles with an
accuracy of 1.00. (i) Rollout inference of the trained GNN on 256 time-steps. Deviation from ground
truth is shown by red segments. RMSE= 4.5± 3.4 · 10−3 (xi ∈ [0, 1)2).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

universal gravitation which depends on their observable relative position and their latent masses (see
Supplementary Table 1).

Supplementary Figure 8a, b shows the results of the GNN trained on two series of 2,000 time-steps
with 960 particles of 16 different masses and a continuous distribution of masses, respectively (see
Video 5). The GNNs trained with these datasets do not yield precise rollout inference owing to
error accumulation (RMSE ∼ 1.0, Supplementary Figure 7 and Video 6). However the resulting
dynamics are qualitatively indistinguishable from the ground truth. This is consistent with a Sinkhorn
divergence of 1.1 ·10−2 between true and inferred distributions (calculated with the GeomLoss library,
Feydy et al., 2018). As described by Lemos et al. (2023), we were able to automatically infer and
parameterize the symbolic interaction function using the PySR package (Cranmer, 2023). Symbolic
regression recovered the mi/d

2
ij power laws (see Supplementary Figure 8a,b) and the 16 distinct

masses (slope= 1.01, R2 = 1.00) as well as the continuous distribution of masses (slope= 1.00,
R2 = 1.00, 1 outlier).

Corrupting the training with noise has limited effect up to σ = 0.4 (see Supplementary Figure 9a, b).
Removing particles from the training data degraded the results severely (Supplementary Figure 10a,
b). Naïvely adding ‘ghost-particles’ as in the attraction-repulsion experiment did not improve results
notably. Interestingly, the power law exponent was still very well recovered.

2.3.3 COULOMB-LIKE

Supplementary Figure 8c shows the results of the GNN trained with simulations of particles following
Coulomb’s law of charge-based attraction-repulsion (see Figure 2c, Supplementary Table 1 and
Appendix A.1.1), using the same short-range approximation as previously.

We trained on a series of 2,000 time-steps with 960 particles of three different charges (-1, 1, 2 in
arbitrary units). The learnable pairwise interaction function symmetrically depends on the observable
relative positions of two particles and both of their latent charges, leading to five distinct interaction
profiles. The GNNs trained with this dataset do not yield precise rollout inference owing to error
accumulation (see Video 7). However symbolic regression is able to recover the 1/d2ij power laws
and scaling scalars. Assuming that the extracted scalars correspond to products qiqj , it is possible to
find the set of qi values corresponding to these products. Using gradient descent, we recovered the
correct qi values with a precision of 2 · 10−2. To obtain these results, it was necessary to increase the
hidden dimension of the learnable MLP from 128 to 256.

Adding noise during training had limited effect up to σ = 0.3 (see Supplementary Figure 9c, d), but
removing particles from the training data was detrimental and naïvely adding ‘ghost-particles’ did
not improve the results notably (Supplementary Figure 10c, d).

2.3.4 BOIDS

Supplementary Figure 11 and Video 8 show the process of training a GNN with the boids simulation
(see Figure 2d, Supplementary Table 1 and Appendix A.1.1). We trained on a series of 8,000 time-
steps and 1,792 particles with 16, 32, and 64 types, respectively (see Supplementary Figure 12 and
Video 9). After training the GNN, we applied hierarchical clustering to the learned latent vectors
ai which separated the particle types with an accuracy of ∼ 1.00. In Supplementary Figure 13,
we show rollout examples for the dynamic behavior of each individual recovered type in isolation.
We believe that this ‘virtual decomposition‘ of dynamical systems that can only be observed in
mixed configurations will become a powerful tool to understand complex physical, chemical and
biological processes. We were not able to recover the multi-variate interaction functions using
symbolic regression. However, for the correct symbolic interaction function, we could estimate
the latent parameters for each particle type using robust regression (see Supplementary Figure 12).
Adding noise during training has a limited effect up to σ = 0.4 and, anecdotally, even improved
parameter estimates. Removing trajectories was detrimental to the ability to learn and reproduce the
behavior and parameters (see Supplementary Figure 14).

2.3.5 WAVE-PROPAGATION AND DIFFUSION

We simulated wave-propagation and reaction-diffusion processes over a mesh of 104 nodes (see
Figure 2e, f, Supplementary Table 1 and Appendix A.1.3). Other than in the simulations with moving

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

particles, we hard-coded the interaction and aggregation functions to be the discrete Laplacian∇2

and learned first (diffusion) and second order updates (wave) with an MLP that has access to the
Laplacian, the node’s state, and a learnable latent vector ai.

Supplementary Figures 15 and 16 show our results with the wave-propagation model trained on a
series of 8,000 time-steps and 104 nodes. We varied the wave-propagation coefficients in discrete
patches (see Supplementary Figure 15) and arbitrarily (see Supplementary Figure 16). The GNN
correctly recovers the update functions for every nodes, and the linear dependence of these function
over the Laplacian of the node states allows to extract correctly all 104 latent propagation-coefficients
(slope= 0.96, R2 = 0.95, see Video 11). Rollout inference captures the dynamics of the system
qualitatively, but diverges after 3,000 time-steps owing to error accumulation (see Video 12).

Supplementary Figure 17 shows the results of a similar experiment with the "Rock-Paper-Scissors"
(RPS) reaction-diffusion simulation (see Video 13). In this model, the nodes are associated with three
states {ui, vi, wi}. The first-time derivatives of these states evolve according to three cyclic equations
involving the Laplacian operator and a polynomial function of degree 2 (see Supplementary Table 1).
We varied the diffusion coefficient in discrete patches. The GNN correctly identifies four distinct
clusters in the latent vectors domain (see Supplementary Figure 17c) that can be mapped over the
node positions (see Supplementary Figure 17d). The four recovered types can be analysed separately.
For each type, we estimated the diffusion coefficients and the polynomial function coefficients using
robust regression. In total, 31 coefficients describing the reaction-diffusion process were accurately
retrieved (see Supplementary Figure 17e, f, slope= 1.00, R2 = 1.00).

2.3.6 SIGNALING NETWORKS

Supplementary Figure 18 shows our results to recover the rules of a synaptic signaling model with
998 nodes and 17,865 edges with two types of nodes with distinct interaction function (data from
Hens et al., 2019; see Figure 2g, Supplementary Table 1, and Video 14). In order for the GNN to
successfully infer the signaling rules, we found that we needed a relatively large training dataset. We
ran 100 simulations with different initial states over 1,000 time-steps. In addition, it was necessary to
predict more than a single time-step to efficiently train the GNN (see Appendix A.1.4). With this
training scheme, we recovered the connectivity matrix (slope = 1.0, R2 = 1.0) and were able to
automatically infer and parameterize the symbolic interaction functions for both node types using the
PySR package (Cranmer, 2023; Lemos et al., 2023).

2.4 DISCUSSION

We showed with a diverse set of simulations that message passing GNNs that jointly learn interaction-
and update functions and latent node properties are a flexible tool to predict, decompose, and
eventually understand complex dynamical systems. With the currently available software libraries
(PyTorch Geometric, Fey & Lenssen, 2019), it is straightforward to implement an architecture and loss
that encode useful assumptions about the structure of the complex system such as local connectivity
rules or the location of learnable and known functions and their inputs. We showed that a well
designed GNN can learn a low-dimensional embedding of complex latent properties required to
parameterize heterogeneous particle-particle interactions. The learned low-dimensional embeddings
can be used to reveal the structure of latent properties underlying the complex dynamics and to
infer the corresponding parameters. As demonstrated by Lemos et al. (2023) and in the signaling
network experiment, it is possible to use automatic methods to extract symbolic hypotheses that are
consistent with the learned dynamics. However, even without an explicit analysis of the underlying
functions, it is possible to dissect the dynamical system and to conduct virtual experiments with
arbitrary compositions (or decompositions) of particles and interactions. We believe this ability
to become particularly useful to infer the local rules governing complex biological systems like
the organization of bacterial communities, embryonic development, neural networks, or the social
interactions governing animal communities that cannot be observed in isolation.

In preparation for applications on experimental data, we designed simulations that provide some of
the required components to model a complex biological process. We demonstrated the ability to re-
construct discrete, continuous, and time-changing heterogeneities. We modeled dynamic interactions
between moving agents that interact with each other and with an independent dynamic environment.
We were also able to infer the connectivity of a signaling network from functional observations alone.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

However, for an application in biology, some key features are still missing and we are planning to
develop them in future work:

1. In our simulations, the latent properties are either static or follow an internal program.
In biological systems, the interaction between cells and the environment changes their
properties over time in well-defined ways.

2. A community of cells interacts with the environment by receiving and releasing signals from
and into the environment. Our models currently cover only one direction of communication
but will be easy to extend.

3. With the exception of the learned movie experiment (see Figure 4), our models have no
memory and do not integrate information over time. There are many ways to implement
memory, and it is important to understand that almost all dynamics can be learned by simply
memorizing them. We will have to design architectures and training paradigms that avoid
this shortcut.

4. In a developing multi-cellular organism, individual cells both divide and die.
5. In our current experiments, we have simulated and learned deterministic functions (with

noise). In complex biophysical systems in the real world, it is more likely that interactions are
probabilistic and have complex posterior distributions that cannot be learned by regressing
to the mean.

3 CONCLUSION

We demonstrated that message passing GNNs can learn to replicate the behavior of complex hetero-
geneous dynamical systems and to uncover the underlying latent properties in an interpretable way
that facilitates further analysis. The flexibility in designing GNNs to model and train meaningful
interactions in complex systems is impressive and we are looking forward to developing them as an
integral toolbox to uncover the rules governing complex dynamics observed in nature.

4 ACKNOWLEDGEMENTS

Anonymous acknowledgements, paper under double-blind review.

REFERENCES

Luis A. Aguirre and Christophe Letellier. Modeling Nonlinear Dynamics and Chaos: A Re-
view. Mathematical Problems in Engineering, 2009:e238960, June 2009. ISSN 1024-123X.
doi: 10.1155/2009/238960. URL https://www.hindawi.com/journals/mpe/2009/
238960/. Publisher: Hindawi.

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, and Koray kavukcuoglu.
Interaction networks for learning about objects, relations and physics. In Proceedings of the 30th
International Conference on Neural Information Processing Systems, NIPS’16, pp. 4509–4517,
Red Hook, NY, USA, December 2016. Curran Associates Inc. ISBN 978-1-5108-3881-9.

Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Discovering governing equations from data
by sparse identification of nonlinear dynamical systems. Proceedings of the National Academy
of Sciences, 113(15):3932–3937, April 2016. doi: 10.1073/pnas.1517384113. URL https:
//www.pnas.org/doi/10.1073/pnas.1517384113. Publisher: Proceedings of the
National Academy of Sciences.

Kevin Course and Prasanth B. Nair. State estimation of a physical system with un-
known governing equations. Nature, 622(7982):261–267, October 2023. ISSN 1476-
4687. doi: 10.1038/s41586-023-06574-8. URL https://www.nature.com/articles/
s41586-023-06574-8. Number: 7982 Publisher: Nature Publishing Group.

Miles Cranmer. Interpretable Machine Learning for Science with PySR and SymbolicRegression.jl,
May 2023. URL http://arxiv.org/abs/2305.01582. arXiv:2305.01582 [astro-ph,
physics:physics].

10

https://www.hindawi.com/journals/mpe/2009/238960/
https://www.hindawi.com/journals/mpe/2009/238960/
https://www.pnas.org/doi/10.1073/pnas.1517384113
https://www.pnas.org/doi/10.1073/pnas.1517384113
https://www.nature.com/articles/s41586-023-06574-8
https://www.nature.com/articles/s41586-023-06574-8
http://arxiv.org/abs/2305.01582

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Miles Cranmer, Alvaro Sanchez-Gonzalez, Peter Battaglia, Rui Xu, Kyle Cranmer, David Spergel,
and Shirley Ho. Discovering Symbolic Models from Deep Learning with Inductive Biases,
November 2020. URL http://arxiv.org/abs/2006.11287. arXiv:2006.11287 [astro-
ph, physics:physics, stat].

Matthias Fey and Jan Eric Lenssen. Fast Graph Representation Learning with PyTorch Geometric,
April 2019. URL http://arxiv.org/abs/1903.02428. arXiv:1903.02428 [cs, stat].

Jean Feydy, Thibault Séjourné, François-Xavier Vialard, Shun-ichi Amari, Alain Trouvé, and Gabriel
Peyré. Interpolating between Optimal Transport and MMD using Sinkhorn Divergences, October
2018. URL http://arxiv.org/abs/1810.08278. arXiv:1810.08278 [math, stat].

Jianxi Gao, Baruch Barzel, and Albert-László Barabási. Universal resilience patterns in complex net-
works. Nature, 530(7590):307–312, February 2016. ISSN 1476-4687. doi: 10.1038/nature16948.
URL https://www.nature.com/articles/nature16948. Publisher: Nature Publish-
ing Group.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
Message Passing for Quantum Chemistry. In Proceedings of the 34th International Conference on
Machine Learning, pp. 1263–1272. PMLR, July 2017. URL https://proceedings.mlr.
press/v70/gilmer17a.html. ISSN: 2640-3498.

Chittaranjan Hens, Uzi Harush, Simi Haber, Reuven Cohen, and Baruch Barzel. Spatiotemporal
signal propagation in complex networks. Nature Physics, 15(4):403–412, April 2019. ISSN 1745-
2481. doi: 10.1038/s41567-018-0409-0. URL https://www.nature.com/articles/
s41567-018-0409-0. Publisher: Nature Publishing Group.

Zijie Huang, Yizhou Sun, and Wei Wang. Learning Continuous System Dynamics from Irregularly-
Sampled Partial Observations, November 2020. URL http://arxiv.org/abs/2011.
03880. arXiv:2011.03880.

Guy Karlebach and Ron Shamir. Modelling and analysis of gene regulatory networks. Nature Reviews
Molecular Cell Biology, 9(10):770–780, October 2008. ISSN 1471-0080. doi: 10.1038/nrm2503.
URL https://www.nature.com/articles/nrm2503. Publisher: Nature Publishing
Group.

Pablo Lemos, Niall Jeffrey, Miles Cranmer, Shirley Ho, and Peter Battaglia. Rediscovering orbital
mechanics with machine learning. Machine Learning: Science and Technology, 4(4):045002,
October 2023. ISSN 2632-2153. doi: 10.1088/2632-2153/acfa63. URL https://dx.doi.
org/10.1088/2632-2153/acfa63. Publisher: IOP Publishing.

Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. PDE-Net: Learning PDEs from Data.
In Proceedings of the 35th International Conference on Machine Learning, pp. 3208–3216.
PMLR, July 2018. URL https://proceedings.mlr.press/v80/long18a.html.
ISSN: 2640-3498.

Peter Y. Lu, Joan Ariño Bernad, and Marin Soljačić. Discovering sparse interpretable dynam-
ics from partial observations. Communications Physics, 5(1):1–7, August 2022. ISSN 2399-
3650. doi: 10.1038/s42005-022-00987-z. URL https://www.nature.com/articles/
s42005-022-00987-z. Number: 1 Publisher: Nature Publishing Group.

Leland McInnes, John Healy, Nathaniel Saul, and Lukas Großberger. UMAP: Uniform Manifold
Approximation and Projection. Journal of Open Source Software, 3(29):861, September 2018.
ISSN 2475-9066. doi: 10.21105/joss.00861. URL https://joss.theoj.org/papers/
10.21105/joss.00861.

Gavin Miller and Andrew Pearce. Globular dynamics: A connected particle system for animating
viscous fluids. Computers & Graphics, 13(3):305–309, January 1989. ISSN 0097-8493. doi:
10.1016/0097-8493(89)90078-2. URL https://www.sciencedirect.com/science/
article/pii/0097849389900782.

Sakthi Kumar Arul Prakash and Conrad Tucker. Graph network for learning bi-directional physics,
January 2022. URL http://arxiv.org/abs/2112.07054. arXiv:2112.07054 [cs].

11

http://arxiv.org/abs/2006.11287
http://arxiv.org/abs/1903.02428
http://arxiv.org/abs/1810.08278
https://www.nature.com/articles/nature16948
https://proceedings.mlr.press/v70/gilmer17a.html
https://proceedings.mlr.press/v70/gilmer17a.html
https://www.nature.com/articles/s41567-018-0409-0
https://www.nature.com/articles/s41567-018-0409-0
http://arxiv.org/abs/2011.03880
http://arxiv.org/abs/2011.03880
https://www.nature.com/articles/nrm2503
https://dx.doi.org/10.1088/2632-2153/acfa63
https://dx.doi.org/10.1088/2632-2153/acfa63
https://proceedings.mlr.press/v80/long18a.html
https://www.nature.com/articles/s42005-022-00987-z
https://www.nature.com/articles/s42005-022-00987-z
https://joss.theoj.org/papers/10.21105/joss.00861
https://joss.theoj.org/papers/10.21105/joss.00861
https://www.sciencedirect.com/science/article/pii/0097849389900782
https://www.sciencedirect.com/science/article/pii/0097849389900782
http://arxiv.org/abs/2112.07054

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

W. T. Reeves. Particle Systems—a Technique for Modeling a Class of Fuzzy Objects. ACM
Transactions on Graphics, 2(2):91–108, April 1983. ISSN 0730-0301. doi: 10.1145/357318.
357320. URL https://dl.acm.org/doi/10.1145/357318.357320.

Craig W. Reynolds. Flocks, herds and schools: A distributed behavioral model. In Proceedings of the
14th annual conference on Computer graphics and interactive techniques, SIGGRAPH ’87, pp.
25–34, New York, NY, USA, August 1987. Association for Computing Machinery. ISBN 978-
0-89791-227-3. doi: 10.1145/37401.37406. URL https://dl.acm.org/doi/10.1145/
37401.37406.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter W.
Battaglia. Learning to simulate complex physics with graph networks. In Proceedings of the
37th International Conference on Machine Learning, volume 119 of ICML’20, pp. 8459–8468.
JMLR.org, July 2020.

B. I. Shakhtarin. Stratonovich nonlinear optimal and quasi-optimal filters. Journal of Communications
Technology and Electronics, 51(11):1248–1260, November 2006. ISSN 1555-6557. doi: 10.1134/
S1064226906110064. URL https://doi.org/10.1134/S1064226906110064.

Vincent Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B. Lindell, and Gordon
Wetzstein. Implicit Neural Representations with Periodic Activation Functions, June 2020. URL
http://arxiv.org/abs/2006.09661. arXiv:2006.09661 [cs, eess].

George Stepaniants, Alasdair D. Hastewell, Dominic J. Skinner, Jan F. Totz, and Jörn Dunkel. Dis-
covering dynamics and parameters of nonlinear oscillatory and chaotic systems from partial obser-
vations, September 2023. URL http://arxiv.org/abs/2304.04818. arXiv:2304.04818
[physics].

M. Stern, H. Sompolinsky, and L. F. Abbott. Dynamics of random neural networks with bistable units.
Physical Review E, 90(6):062710, December 2014. doi: 10.1103/PhysRevE.90.062710. URL
https://link.aps.org/doi/10.1103/PhysRevE.90.062710. Publisher: Ameri-
can Physical Society.

E. S. Takle and R. D. Russell. Applications of the finite element method to modeling the atmospheric
boundary layer. Computers & Mathematics with Applications, 16(1):57–68, January 1988. ISSN
0898-1221. doi: 10.1016/0898-1221(88)90024-7. URL https://www.sciencedirect.
com/science/article/pii/0898122188900247.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt,
Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson,
Eric Jones, Robert Kern, Eric Larson, C. J. Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake
VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, and Paul van
Mulbregt. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nature Methods,
17(3):261–272, March 2020. ISSN 1548-7105. doi: 10.1038/s41592-019-0686-2. URL https:
//www.nature.com/articles/s41592-019-0686-2. Publisher: Nature Publishing
Group.

Kai Zhao, Qiyu Kang, Yang Song, Rui She, Sijie Wang, and Wee Peng Tay. Graph neural convection-
diffusion with heterophily. In Proceedings of the Thirty-Second International Joint Conference
on Artificial Intelligence, IJCAI ’23, pp. 4656–4664, Macao, P.R.China, August 2023. ISBN
978-1-956792-03-4. doi: 10.24963/ijcai.2023/518. URL https://doi.org/10.24963/
ijcai.2023/518.

12

https://dl.acm.org/doi/10.1145/357318.357320
https://dl.acm.org/doi/10.1145/37401.37406
https://dl.acm.org/doi/10.1145/37401.37406
https://doi.org/10.1134/S1064226906110064
http://arxiv.org/abs/2006.09661
http://arxiv.org/abs/2304.04818
https://link.aps.org/doi/10.1103/PhysRevE.90.062710
https://www.sciencedirect.com/science/article/pii/0898122188900247
https://www.sciencedirect.com/science/article/pii/0898122188900247
https://www.nature.com/articles/s41592-019-0686-2
https://www.nature.com/articles/s41592-019-0686-2
https://doi.org/10.24963/ijcai.2023/518
https://doi.org/10.24963/ijcai.2023/518

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 GNN IMPLEMENTATION WITH PRIORS

The general form of the GNN update rule described in Section 2.2 and Equation 2 does not con-
sider application specific parameterization of the individual functions. As described in Section 2.2
and Supplementary Table 2, we define the loss over first and second order updates, respectively. For
clarity, we unroll here the combination of interaction function, aggregation, and update rules and
their respective parameterization, resulting in one equation to calculate the updates.

A.1.1 PARTICLE SYSTEMS

The gravity-like and the Coloumb-like model use sum as an aggregator
⊙

, the attraction-repulsion
and boids model use the average. In addition to the latent learnable vector ai, we parameterized the
interaction function with the relative distance dij and relative positions xj − xi of the two particles
making them blind to absolute position and other non-local information. Hence, the update rules to
be learned by the GNNs become

ẋi =
⊙

f(ai, dij ,xj − xi) or

ẍi =
⊙

f(ai, dij ,xj − xi),

respectively. The learnables are the function f and the particle embedding ai. For f , we used
a five-layer MLP with ReLU activation layers for a total of 50,562 trainable parameters (hidden
dimension = 128, input dimension = 5, output dimension = 2). The latent vectors ai have two
dimensions. All particles within a maximum radius are connected. Our particles have no size and we
did not model interactions between physical bodies. Interactions governed by inverse power laws
have a singularity at r = 0 which breaks optimization by gradient descent. We therefore had to limit
connectivity to dij > 0.02 for the gravity-like and Coulomb-like models.

In the Coulomb-like system, the interaction functions have both particle embeddings aj and aj as
input values, and the corresponding update rule is given by

ẍi =
⊙

f(ai,aj , dij ,xj − xi).

For f , we used a five-layer MLP with ReLU activation layers for a total of 190,752 trainable
parameters (hidden dimension = 256, input dimension = 7, output dimension = 2).

In the boids model, f has access to the particle velocities, yielding the update rule

ẍi =
⊙

f(ai, dij ,xj − xi, ẋi, ẋj).

For f , we used a five-layer MLP with ReLU activation layers for a total of 200,450 trainable
parameters (hidden dimension = 256, input dimension = 9, output dimension = 2).

A.1.2 PARTICLE SYSTEMS AFFECTED BY A HIDDEN FIELD

We added a latent external process as a hidden field of 104 randomly distributed stationary particles
that interact with the moving particles using the same interaction rules and distance based neigh-
borhood. The stationary particles show either a constant image or a time-variant movie that define
a latent coefficient bj that modulates the interaction. For simplicity, we can write the interaction
between all particles with this coefficient bj , knowing that for interactions between moving particles
bj = 1.

ẋi =
⊙

bjf(ai, dij ,xj − xi).

We learn bj using an MLP with the position xj and the time-index t (for time-variant processes) as
inputs:

ẋi =
⊙

b(xj , t)f(ai, dij ,xj − xi).

We used an MLP with periodic activation functions (Sitzmann et al., 2020) and 5 hidden layers of
dimension 128. The total number of trainable parameters for this MLP is 83,201 (hidden dimension =
128, input dimension = 3, output dimension = 1).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A.1.3 SIMULATION OF WAVE-PROPAGATION AND REACTION-DIFFUSION

We used the Eulerian representation for the simulations of wave-propagation and reaction-diffusion.
The particle positions are fixed and a vector ui associated with each node evolves over time. All
particles are connected to their neighbors using Delaunay triangulation. We fixed the interaction
and aggregation functions to be the discrete mesh Laplacian over this neighborhood. For wave-
propagation, we learn the second time-derivative of ui

üi = Φ
(
ai,∇2ui

)
.

For Φ, we used a five-layer MLP with ReLU activation layers for a total of 897 trainable parameters
(hidden dimension = 16, input size = 3, output size = 1).

For the reaction-diffusion simulation, we learn the first time-derivative of ui

u̇i = Φ
(
ai,ui,∇2ui

)
.

∇2ui can not be calculated on the edges, so we discarded the borders during training (1164 nodes out
of 105). For Φ, we used a five-layer MLP with ReLU activation layers for a total of 4,422 trainable
parameters (hidden dimension = 32, input size = 5, output size = 3).

A.1.4 SIGNALING

The signaling network is described by a set of nodes without position information connected according
to a symmetric connectivity matrix A. We learn

u̇i = Φ(ai, ui) +
∑
j∈Vi

Aijf(uj)

as described by Hens et al. (2019); Aguirre & Letellier (2009); Gao et al. (2016); Karlebach & Shamir
(2008); Stern et al. (2014). The learnables are the functions Φ and f , the node embedding ai, and
the connectivity matrix A (960 × 960). For Φ, we used a three-layer MLP with ReLU activation
layers for a total of 4,481 trainable parameters (hidden dimension = 64, input size = 3, output
size = 1). For f , we used a three-layer MLP with ReLU activation layers for a total of 4,353 trainable
parameters (hidden dimension = 64, input size = 1, output size = 1). Symmetry of A was enforced
during training resulting in 17,865 learnable parameters. Since no data augmentation is possible, we
generated 100 randomly initialized training-series. Training was unstable for unconstrained next
time-step prediction, but stable when training to predict at least two consecutive time-steps. The loss
for two consecutive time-steps is

Lu̇,t =

n∑
i=1

(∥̂̇ui,t+1 − u̇i,t+1∥2 + ∥̂̇ui,t+2 − u̇i,t+2∥2),

with ̂̇ui,t+2 calculated after updating

ui,t+1 ← ui,t+1 +∆t ̂̇ui,t+1.

A.2 CLUSTERING OF GNN’S LATENT VECTORS AND LEARNED INTERACTION FUNCTIONS

The latent vectors or the learned interaction functions are clustered using the SciPy library (Virtanen
et al., 2020). We used the Euclidean distance metric to calculate distances between points and
performed hierarchical clustering using the single linkage algorithm, and formed flat clusters using
the distance method with a cut-off threshold of 0.01. To cluster the interaction functions, their profiles
are first projected to two dimensions using UMAP dimension reduction. The UMAP projections are
next clustered to obtain the different classes of interaction functions.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Supplementary Table 1: Description of the simulations.

Description Observables Connectivity Vi Interaction Update

Attraction-repulsion xi ∈ [0, 1)2 dij ∈ (0.002, 0.075)
periodic

fij = aig(dij , bi)− cig(dij , di)

g(x, y) = exp(−x
2y

/2σ
2
)

ai, bi, ci, di ∈ [1, 2]

σ = 0.005

ẋi ←
1

|Vi|
∑

j∈Vi

fij

xi ← xi + ∆tẋi

Gravity-like xi ∈ R2 dij ∈ (0.001, 0.3)
non-periodic

fij = mj(xj − xi)/d
3
ij

mj ∈ (0, 5]

ẍi ←
∑

j∈Vi

fij

ẋi ← ẋi + ∆tẍi

xi ← xi + ∆tẋi

Coulomb-like xi ∈ [0, 1)2 dij ∈ (0.001, 0.3)
periodic

fij = −qiqj(xj − xi)/d
3
ij

qi, qj ∈ [−2, 2]

ẍi ←
∑

j∈Vi

fij

ẋi ← ẋi + ∆tẍi

xi ← xi + ∆tẋi

Boids xi ∈ [0, 1)2 dij ∈ (0.001, 0.04)
periodic

fij = aij + cij + sij

cij = ci(xj − xi)

aij = ai(ẋj − ẋi)

sij = −si(xj − xi)/d
2
ij

ai, ci, si ∈ R

ẍi ←
1

|Vi|
∑

j∈Vi

fij

ẋi ← ẋi + ∆tẍi

xi ← xi + ∆tẋi

Wave-propagation ui ∈ R Delaunay
non-periodic

∇2ui üi ← ai∇
2
ui, ai ∈ [0, 1]

u̇i ← u̇i + ∆tüi

ui ← ui + ∆tu̇i

Reaction-diffusion
Rock-Paper-Scissors
(RPS) model

ui, vi, wi

∈ (0, 1]3
Delaunay
non-periodic

∇2ui,∇2vi,∇2wi u̇i ← ai∇
2
ui + ui(1− pi − βvi)

v̇i ← ai∇
2
vi + vi(1− pi − βwi)

ẇi ← ai∇
2
wi + wi(1− pi − βui)

ui ← ui + ∆tu̇i

vi ← vi + ∆tv̇i

wi ← wi + ∆tẇi

pi = ui + vi + wi

β ∈ [0, 1], ai ∈ [0, 1]

Signaling ui ∈ R Connectivity matrix
A ∈ Rn×n

fij = Aij tanh(uj) u̇i ← −biui + ci · tanh(ui) +
∑

j∈Vi

fij

xi denotes the two-dimensional coordinate vector associated with particle i. The distance between
particles i and j is given by dij = ∥xj − xi∥. In the arbitrary attraction-repulsion model, the
interaction is parameterized by the coefficients ai, bi, ci, di, that are different for each particle or
particle type. In the gravity-like model, each particle has a mass mi. In the Coulomb-like model,
each particle type has a charge qi. The boids interaction function consists of three terms, cohesion
cij , alignment aij , and separation sij , parameterized by ci, ai, and si, respectively. In the wave-
propagation, Rock-Paper-Scissors (RPS), and signaling models, particles are stationary and their
neighborhood remains constant. In the wave-propagation model, a scalar property ui of each particle
evolves over time. Information from connected particles is integrated via discrete Laplacian ∇2.
Each particle has a unique latent coefficient αi that modulates the wave-propagation. The RPS model
is a reaction-diffusion model over three-dimensional dynamic particle properties. Similar to the speed
of wave-propagation model, diffusion is realized via discrete Laplacian∇2, and the complex reaction
function for each particle is modulated by a latent diffusion factor αi. The signaling model is an
activation model for dynamics between brain regions as discussed in (Stern et al., 2014). The signal
per particle is an activation variable ui that propagates through the network defined by a symmetric
connectivity matrix A. The update function at each particle is modulated by two latent coefficients bi
and ci.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Supplementary Table 2: Architecture and parameterization of the GNNs used to predict and decom-
pose the simulations detailed in Supplementary Table 1.

Description Interaction Aggregation Update

Attraction-repulsion fij = MLP(ai, dij ,xj − xi)
⊙

i = 1
|Vi|

∑
j∈Vi

fij ̂̇xi =
⊙

i

Gravity-like fij = MLP(ai, dij ,xj − xi, ẋi, ẋj)
⊙

i =
∑

j∈Vi

fij ̂̈xi =
⊙

i

Coulomb-like fij = MLP(ai,aj , dij ,xj − xi)
⊙

i =
∑

j∈Vi

fij ̂̈xi =
⊙

i

Boids fij = MLP(ai, dij ,xj − xi, ẋi, ẋj)
⊙

i = 1
|Vi|

∑
j∈Vi

fij ̂̇xi =
⊙

i

Wave-propagation
⊙

i = ∇2ui
̂̈ui = MLP(ai, ui,

⊙
i)

Reaction-diffusion
⊙

i = ∇2ui
̂̇ui = MLP(ai,ui,

⊙
i)

Signaling fij = Aij · MLP(uj)
⊙

i =
∑

j∈Vi

fij ̂̇ui = MLP(ai, ui)+
⊙

i

Each GNN is characterized by its input parameters and its learnable (red) and fixed parameters and
functions (black). For update functions, we show the predicted first or second order property that is
used to calculate the training loss and to update particle states using explicit or semi-implicit Euler
integration (see Equation 1). The models for moving particles have a learnable pairwise interaction
function with access to a subset of the particle properties and a learnable embedding for either
both or one of the particles. The aggregation function is a trivial sum or average over the pairwise
interaction functions. For the two propagation models, the pairwise interaction and aggregation
functions combined are the discrete Laplacian ∇2. Here, the update function and an embedding
for the latent node properties are learnable. The model for the signaling network simulation has a
learnable pairwise interaction function and a learnable update function with access to the learnable
connectivity matrix and a learnable embedding for the coefficients modulating the update.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Supplementary Figure 1: GNN trained on an attraction-repulsion simulation (4,800 particles, 3 particle
types, 250 time-steps). Colors indicate the true particle type. (a) The training dataset is shown in
black and white to emphasize that particle types are not known during training. (b) Learned latent
vectors ai of all particles as a function of epoch and iteration number. Colors indicate the true particle
type. (c) Projection of the learned interaction functions f as speed over distance. (d) Validation
dataset with initial conditions different from training dataset. (e) Rollout inference of the fully trained
GNN. Colors indicate the learned classes found in (b).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Supplementary Figure 2: Generalization tests successfully run on GNNs trained on attraction-
repulsion simulations (4,800 and 19,200 particles, 3 particle types, 250 time-steps). Colors indicate
the true particle type. (a) Particles are sorted by type into three stripes. Interestingly this test allows
to visualize the differences in interactions. (b) Particles are sorted by particle type into a triangle
pattern. (c) Same as (b) and the number of particles is increased from 4,800 to 19,200. The additional
particles embedding values are sampled from the learned embedding domain. RMSE measured
between true positions and GNNs inferences are given, (xi ∈ [0, 1)2, 250 time-steps).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Supplementary Figure 3: Decomposition of the GNN trained on an attraction-repulsion simulation
(4,800 particles, 3 particle types, 250 time-steps). Colors indicate the true particle type. The GNN
learns to correctly model the three different particle types. The heterogeneous dynamics can be
decomposed into ‘purified’ samples governed by one unique interaction law. (a), (b), (c) show the
results for one of three particle types each. True simulated positions are shown in the top row and
the rollout inference generated by the GNN are shown in the bottom row. RMSE between true and
inferred rollout are shown in the right column (xi ∈ [0, 1)2, 19,200 particles, 250 time-steps).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Supplementary Figure 4: Robustness to noise. The GNN was trained with the data of an attraction-
repulsion simulation (4,800 particles, 16 particle types, 500 time-steps). Colors indicate the true
particle type. To corrupt the training with noise, we used a modified loss Lẋ =

∑n
i ∥̂̇xi− ẋi(1+ε)∥2

where ε is a random vector drawn from a Gaussian distribution ε ∼ N (0, σ2). (a) to(d) show the
results for increasing noise σ ∈ [0, 0.5]. Row 1 shows the learned particle embedding. Row 2 shows
the projection of the learned interaction functions f as speed over distance for each particle. Row 3
shows the UMAP projections of these profiles. Hierarchical clustering of the UMAP projections
allows to classify the moving particles with an accuracy of ∼ 1.00. Row 4 shows the learned particle
positions after rollout over 500 time-steps. Colors indicate the learned classes. Deviation from ground
truth is shown by red segments.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Supplementary Figure 5: Robustness to data removal. Tests are performed with GNNs trained with
data of attraction-repulsion simulations (4,800 particles, 3 particle types, 500 time-steps). Four
experiments are shown with varying amounts of data removed, with and without the addition of ghost
particles during training. Row 1 shows the learned latent vectors ai of all particles. Row 2 shows
the projection of the learned interaction functions f as speed over distance for each particle. Row 3
shows the UMAP projections of these profiles. Hierarchical clustering of the UMAP projections is
used to classify particles. Colors indicate the true particle type.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Supplementary Figure 6: Experiment with the attraction-repulsion model whose particles interact
with a hidden field. (a) Snapshots of the training series with 4,800 particles, 3 particle types (colors)
and 256 time-steps. (b) Small colored arrows depict the velocities of the moving particles induced by
the hidden field (grey dots). (c) The external field is simulated by 104 stationary particles with states
bi. (d) Learned hidden field bi. (e) Comparison between learned and true field bi (104 points). (f)
Projection of the learned interaction function f as speed over distance. (g) Rollout inference of the
trained GNN after 256 time-steps. Colors indicate the learned particle type. Deviation from ground
truth is shown by red segments.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Supplementary Figure 7: GNNs trained on gravity-like simulations (960 particles, 16 masses,
2,000 time-steps). (a) The training dataset is shown in black and white to emphasize that particle
masses are not known during training. (b) The learned latent vectors ai of all particles. Colors indicate
the true masses using an arbitrary color scale. (c) the projection of the learned interaction functions f
as acceleration over distance for each particle. (d) Validation dataset with initial conditions different
from training dataset. (e) Rollout inference of the trained GNN. Colors indicate the learned classes
found in (b). The Sinkhorn divergence measures the difference in spatial distributions between
ground truth and GNN inference (Feydy et al., 2018).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Supplementary Figure 8: GNNs trained on particle systems governed by second-order time derivative
equations. (a) Gravity-like system with 16 different masses (colors) distributed over 960 particles.
(b) Gravity-like system with 960 different masses (colors) uniformly distributed over equal number
of particles. (c) Coulomb-like system with 3 different charges (colors) distributed over 960 particles.
Row 1 shows the learned latent vectors ai of all particles. Row 2 shows the projection of the true
interaction functions f as acceleration over distance. Row 3 shows the projection of the learned
interaction functions f as acceleration over distance. Row 4 shows the result of symbolic regression
(PySR package) applied to the learned interaction functions. As an example, the symbolic regression
results are given for the retrieval of the interaction function 0.5/dij2. Best result is highlighted
in green. The power laws are well recovered with symbolic regression and the extracted scalars
are similar to the true mass mi or products qiqj . Linear fit and relative errors are calculated after
removing outliers. For the Coulomb-like system, we assume that the extracted scalars correspond to
products qiqj . It is then possible to find the set of qi values corresponding to the extracted products.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Supplementary Figure 9: Robustness to noise. Tests are performed with the GNN trained on gravity-
like and Coulomb-like simulations. To corrupt the training with noise, we used a modified loss
Lẍ =

∑n
i ∥̂̈xi − ẍi(1 + ε)∥2 where ε is a random vector drawn from a Gaussian distribution

ε ∼ N (0, σ2). Results are shown for σ of 0.3 and 0.4. Row 1 shows the learned latent vectors ai

of all particles. Row 2 shows the projection of the learned interaction functions f as acceleration
over distance for each particle. Row 3 shows the UMAP dimension reduction of these profiles.
Hierarchical clustering of the UMAP projections is used to classify particles. Row 4 shows the result
of symbolic regression (PySR package) applied to the learned interaction functions. The power laws
are well recovered and the extracted scalars are similar to the true mass mi or products qiqj . Linear
fit and relative errors are calculated after removing outliers. For the Coulomb-like system, we assume
that the extracted scalars correspond to products qiqj . It is then possible to find the set of qi values
corresponding to the extracted products.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Supplementary Figure 10: Robustness to data removal. Tests are performed with the GNN trained on
gravity-like and Coulomb-like simulations. Results are shown for varying amounts of data removed,
with and without the addition of ghost particles during training. Row 1 shows the learned latent
vectors ai of all particles. Row 2 shows the projection of the learned interaction functions f as
acceleration over distance for each particle. Row 3 shows the UMAP dimension reduction of these
profiles. Hierarchical clustering of the UMAP projections is used to classify particles. Row 4 shows
the result of symbolic regression (PySR package) applied to the learned interaction functions. When
power laws are retrieved, the extracted scalars are similar to the true mass mi or products qiqj . Linear
fit and relative errors are calculated after removing outliers. For the Coulomb-like system, we assume
that the extracted scalars correspond to products qiqj . It is then possible to find the set of qi values
which can be mapped to the set of extracted scalars.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Supplementary Figure 11: GNN trained on a boid simulation (1,792 particles, 16 particle types,
8,000 time-steps). (a) The training dataset is shown in black and white to emphasize that particle
types are not known during training. (b) The learned latent vectors ai of all particles for different
epochs and iterations. Colors indicate the true particle type. (c) A projection of the learned interaction
functions f as acceleration over distance for each particle. The projections are calculated with the
velocity inputs set to 0. d Validation dataset with initial conditions different from training dataset. (e)
Rollout inference of the trained GNN. Colors indicate the learned classes found in (b). The Sinkhorn
divergence measures the difference in position distributions between ground truth and GNN inference
(Feydy et al., 2018).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Supplementary Figure 12: GNNs trained on boids simulations (1,792 particles, 16, 32 and 64 particle
types, 8,000 time-steps). Row 1 shows the learned latent vectors ai of all particles. Row 2 shows a
projection of the true interaction functions f as acceleration over distance. Row 3 shows the same
projection of the learned interaction functions f . Rows 4 to 6 show the results of supervised curve
fitting of the interaction functions f . The correct function f(xi, xj, ẋi, ẋj) = a(xj −xi)+ b(ẋj −
ẋi) + c(xj − xi)/d

2
ij is used to fit the scalars a, b, c, defining cohesion, alignment, and separation

(see Supplementary Table 1). Except for a few outliers (rel. error> 25%), all parameters of the
simulated boids motions are well recovered.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Supplementary Figure 13: (a), Generalization and decomposition tests of the GNN trained with the
boids simulation (4,800 particles, 16 particle types, 8,000 time-steps). As a generalization test, the
number of particle was multiplied by a factor of 4 (from 1,792 to 7,168) and the initial positions were
split into 16 stripes to separate particle types. (a) shows the ground truth and (b) shows the GNN
rollout inference. The latter matched ground truth up to 2,000 iterations and remains qualitatively
similar later. (c) The GNN correctly learned to model the 16 different particle types and their
interactions. The heterogeneous dynamics can be decomposed into ‘purified’ samples governed by
one unique interaction law. RMSE measured between ground truth and GNN inferences is about
3 · 10−2 (14.3 · 106 positions, xi ∈ [0, 1)2). The Sinkhorn divergence is about 7 · 10−4.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Supplementary Figure 14: Robustness to noise and data removal. Tests are performed with the GNN
trained on a boids simulation (1,792 particles, 16 particle types, 8,000 time-steps). To corrupt the
training with noise, we used a modified loss Lẍ =

∑n
i ∥̂̈xi − ẍi(1 + ε)∥ where ε is a random vector

drawn from a Gaussian distribution ε ∼ N (0, σ2). Results are shown for σ = 0.3 (a) and σ = 0.3
(b) . Row 1 shows the learned latent vectors ai of all particles. Colors indicate the true particle type.
Particles were classified with hierarchical clustering over the learned latent vectors ai. Row 2 shows
a projection of the learned interaction functions f as acceleration over distance for each particle. The
last three rows show the results of supervised curve fitting of the interaction function f . Cohesion,
alignment and separation parameters were extracted and compared to ground truth. (c, d) Randomly
removing 10% of the training data yielded unsatisfying results that were not improved by adding
ghost particles.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Supplementary Figure 15: GNN trained on a wave-propagation simulation. (a) The training dataset
is a simulation of a scalar field ui evolving over a mesh of 104 nodes with varying wave-propagation
coefficients over space (f). Obstacles are modeled by particles with a wave-propagation coefficient
of zero, there are two walls with four slits in the coefficient maps. (b) The learned latent vectors ai

are shown for a series of epochs and iterations. (c) The learned update functions Φi (Supplementary
Table 2) over the discrete Laplacian of ui for all nodes i. Linear curve fitting of these profiles allows
to extract the learned wave-propagation coefficients. (d) Comparison between true and learned
wave-propagation coefficients. (e) The learned coefficients map are shown for a series of epochs and
iterations. (g) Validation dataset with initial conditions different from training dataset. (h) Rollout
inference of the trained GNN.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Supplementary Figure 16: GNN trained on a wave-propagation simulation. (a) The training dataset
is a simulation of a scalar field ui evolving over a mesh of 104 nodes with varying wave-propagation
coefficients over space, here an arbitrary image (f). (b) The learned latent vectors ai are shown for a
series of epochs and iterations. (c) The learned update functions Φi (Supplementary Table 2) over
the discrete Laplacian of ui for all nodes i. Linear curve fitting of these profiles allows to extract the
learned wave-propagation coefficients. (d) Comparison between true and learned wave-propagation
coefficients. (e) The learned coefficients map are shown for a series of epochs and iterations. (g)
Validation dataset with initial conditions different from training dataset. (h) Rollout inference of the
trained GNN.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Supplementary Figure 17: GNN trained on a reaction-diffusion simulation based on the “Rock-Paper-
Scissor” automaton. (a) The training dataset is a vector field {ui, vi,wi} evolving over a mesh of 104
nodes (4,000 time-steps). The amplitudes of the field components are represented by red, blue, and
green components respectively. (d) The diffusion coefficients vary over space. (c) The GNN learned
that there were five distinct clusters in the latent vector embedding, including one for particles at the
boundaries that follow a separate set of rules (d). We used all non-boundary particles to estimate the
4 diffusion coefficients and 27 polynomial function coefficients. (e) Comparison between true (blue)
and learned (orange) polynomial coefficients. (f) Comparison between the true and learned diffusion
coefficients. (g) Validation dataset with initial conditions different from training dataset. (h) Rollout
inference of the trained GNN.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Supplementary Figure 18: GNN trained on a signaling network simulation. (a) The simulated
network has 998 nodes connected by 17,865 edges. There are two types of nodes with distinct
interaction functions. The training dataset consist of 100 simulations with different initial states run
over 1,000 time-steps. (b) Threshold applied to the learned update functions Φ profiles shown in (c)
allows to distinguish and classify the two node types. (c) Projection of the update functions Φ over
node state u and node types. Symbolic regression (PySR package) applied to the learned Φ functions
allows to retrieve the exact expressions. (d) Projection of the learned interaction functions f over
node state u. This function is shared by all nodes and is well retrieved through the symbolic regression.
The latter also retrieve a scaling scalar that is used to correct the learned connectivity matrix Aij

values. (e) Comparison between learned and true connectivity matrix values. (f) Validation dataset
with initial conditions different from training dataset. (g) Rollout inference of the trained GNN over
1,000 time-steps.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

A.3 SUPPLEMENTARY VIDEOS

Hyperlinks removed, paper under double-blind review

Video 1: GNN trained on an attraction-repulsion simulation (4,800 particles, 3 particle types, 250
time-steps). Colors indicate the true particle type. (Left) Learned particle embedding training over
20 epochs. (Right) Projection of the learned interaction functions for each particle as speed over
distance.

Video 2: GNN trained on an attraction-repulsion simulation. (Left) Validation dataset with initial
conditions different from training dataset. Colors indicate the true particle type. (Right) Rollout
inference of the fully trained GNN. Colors indicate the learned particle type.

Video 3: GNN trained on an attraction-repulsion simulation that is modulated by a hidden field of
stationary particles playing a movie. (4,800 particles, 3 particle types, 104 stationary movie particles).
(Left) Particle embedding training over 20 epochs. Colors indicate the true particle type. (Middle)
Projection of the learned interaction functions for each particle as speed over distance. (Left) frame
45 out of 250 of the learned hidden movie field.

Video 4: GNN trained on an attraction-repulsion simulation that is modulated by a hidden field
of stationary particles playing a movie. (Left) True hidden movie field. (Right) learned hidden
movie field. The grey levels indicate the coupling factors that modulate the interaction between the
stationary particles and the moving particles.

Video 5: GNN trained on a gravity-like system (960 particles, 16 particle masses, 2,000 time-steps).
(Left) Particle embedding training over 20 epochs. The colors indicate the true particle mass. (Right)
Projection of the learned interaction functions for each particle as acceleration over distance.

Video 6: GNN trained on a gravity-like simulation. (Left) Validation dataset with different initial
conditions than the training dataset. Colors indicate the true particle mass. (Right) Rollout inference
of the trained GNN. Colors indicate the learned particle mass.

Video 7: GNN trained on a Coulomb-like simulation (960 particles, 3 particle charges, 2,000 time-
steps). (Left) Validation dataset with different initial conditions than the training dataset. Colors
indicate the true particle charge (ground truth). (Right) Rollout inference of the trained GNN. Colors
indicate the learned particle charge.

Video 8: GNN trained on a boids simulation (1,792 particles, 16 particle types, 8,000 time-steps).
(Left) Particle embedding training over 20 epochs. Colors indicate the true particle type. (Right)
Projection of the learned interaction functions for each particle as acceleration over distance.

Video 9: GNN trained on a boids simulation. (Left) Validation dataset with different initial conditions
than the training dataset. Colors indicate the true particle type. (Right) Rollout inference of the
trained GNN. Colors indicate the learned particle type.

Video 10: GNN trained on a boids simulation (7,168 particles, 16 particle types, 8,000 time-steps).
As a generalization test, the number of particles was multiplied by a factor of 4 (from 1,792 to 7,168)
and arranged in as 16 homogeneous stripes. Colors indicate the true particle type. (Right) Rollout
inference of the trained GNN. Colors indicate the learned particle type.

Video 11: GNN trained on a wave-propagation simulation over a field with varying wave-propagation
coefficients. (Left) Particle embedding training over 20 epochs. Colors indicate the true wave-
propagation coefficient. (Right) Learned wave-propagation coefficients.

Video 12: GNN trained on a wave-propagation simulation over a field with varying wave-propagation
coefficients. (Left) Particle embedding training over 20 epochs. Colors indicate the true wave-
propagation coefficient. (Right) Learned wave-propagation coefficients.

Video 13: GNN trained on a reaction-diffusion simulation based on the “Rock-Paper-Scissor”
automaton over a mesh of 104 3D vector nodes (4,000 time-steps). The amplitudes of the vector

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

components are represented as RGB colors. Vector nodes have varying diffusion coefficients that
modulate the reaction. (Left) Validation dataset with different initial conditions than the training
dataset. (Right) Rollout inference of the trained GNN.

Video 14: GNN trained on a signaling propagation simulation. The training dataset has 998 nodes
connected by 1,786 edges. There are two types of nodes with distinct interaction functions. (Left)
Validation dataset with initial conditions different from the training dataset. Colors indicate signal
intensity. (Right) Rollout inference of the trained GNN.

36

	Introduction
	Contribution

	Methods
	Simulation of dynamical systems
	Graph neural networks
	Results
	Attraction-repulsion
	Gravity-like
	Coulomb-like
	Boids
	Wave-propagation and diffusion
	Signaling networks

	Discussion

	Conclusion
	Acknowledgements
	Appendix
	GNN implementation with priors
	Particle systems
	Particle systems affected by a hidden field
	Simulation of wave-propagation and reaction-diffusion
	Signaling

	Clustering of GNN's latent vectors and learned interaction functions
	Supplementary videos

