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Figure 1: SLiMe. Using just one user-annotated image with various granularity (as shown in the
leftmost column), SLiMe learns to segment different unseen images in accordance with the same
granularity (as depicted in the other columns).

ABSTRACT

Significant advancements have been recently made using Stable Diffusion (SD),
for a variety of downstream tasks, e.g., image generation and editing. This moti-
vates us to investigate SD’s capability for image segmentation at any desired gran-
ularity by using as few as only one annotated sample, which has remained largely
an open challenge. In this paper, we propose SLiMe, a segmentation method,
which frames this problem as a one-shot optimization task. Given a single image
and its segmentation mask, we propose to first extract our novel weighted accu-
mulated self-attention map along with cross-attention map from text-conditioned
SD. Then, we optimize text embeddings to highlight areas in these attention maps
corresponding to segmentation mask foregrounds. Once optimized, the text em-
beddings can be used to segment unseen images. Moreover, leveraging additional
annotated data when available, i.e., few-shot, improves SLiMe’s performance.
Through broad experiments, we examined various design factors and showed that
SLiMe outperforms existing one- and few-shot segmentation methods. The source
code of the project is publicly available.

1 INTRODUCTION

Image segmentation is a multifaceted problem, with solutions existing at various levels of granular-
ity. For instance, in applications like expression recognition or facial alignment, segmenting images
of faces into basic regions like nose and eyes might suffice. However, in visual effects applications,
more detailed segments such as eye bags, forehead, and chin are necessary for tasks like wrinkle
removal. Moreover, from the perspective of an end-user, a straightforward and effective approach to
guide a segmentation method is determining what to segment and the desired level of detail across
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Figure 2: Our proposed weighted accumulated self-attention maps’ sample results. Employing
cross-attention naı̈vely without the self-attention for segmentation leads to inaccurate and noisy
output (a and c). Using self-attention map along with cross-attention map to create WAS-attention
map enhances the segmentation (b and d).

a broad set of images by providing only one or a few segmented examples for the method to use for
training. Meanwhile, the user should not need to curate a large dataset with segmentation masks,
train a large segmentation model, or encode elaborate and specific properties of target objects into
the model. As a result, a customizable segmentation method that can adapt to different levels of
granularity, using a few annotated samples, and provide users with the ability to intuitively define
and refine the target segmentation according to their specific requirements, is of high importance.

Recent research has tackled the lack of segmentation data by delving into zero-shot, textual descrip-
tion based segmentation, and few-shot learning. DiffSeg (Tian et al., 2023) is a zero-shot segmen-
tation method based on SD, which segments everything in the image. However, DiffSeg cannot
be used to segment a specific object or part in the test images given a train sample, because its
segmentation is not controllable in terms of which object to segment and segmentation granularity.
Peekaboo (Burgert et al., 2022) is another work, which uses textual description for segmentation.
To this end, given an image and a textual description of the target object to be segmented, they use
Stable Diffusion and its loss function to optimize a randomly initialized segmentation mask to reach
the desired mask. Nevertheless, it cannot be used to segmentation of test images given train images,
because the textual description of the target object in each image is unique and is not transferrable.
Another promising method is ReGAN (Tritrong et al., 2021). ReGAN first trains a GAN (Goodfel-
low et al., 2014) on the data of a specific class they aim to segment. Following this, they generate
data by this GAN and the user manually annotates the generated data. Then both the generated data’s
features from the GAN and the annotations are utilized to train a segmentation model. In contrast,
SegDDPM (Baranchuk et al., 2021) extracts features from a pre-trained diffusion model (DM) and
trains an ensemble of MLPs for segmentation using few labeled data. Both excel in segmentation
with 10-50 examples but struggle with extremely limited samples. Furthermore, these models re-
quire training on data specific to each category. For instance, to segment horses, it is necessary to
collect a large dataset of horse images, a task that can be inherently cumbersome.

Whereas, SegGPT (Wang et al., 2023) employs one-shot learning, training on color-randomized
segmentation data which includes both instance and part-level masks. During inference, it segments
only one region in a target image using a reference image and its binary segmentation mask. While
SegGPT is effective, it demands a significant amount of annotated segmentation data for initial
training, keeping the challenge of training effectively with a single annotation still unaddressed.

In this paper, we propose Segment Like Me (SLiMe), which segments any object/part from the
same category based on a given image and its segmentation mask with an arbitrary granularity level
in a one-shot manner, avoiding the need for extensive annotated segmentation data or training a
generative model like GAN for a specific class (see Figure 1 and Figure 8 for some examples).
For this purpose, we leverage the rich knowledge of existing large-scale pre-trained vision/language
model, Stable Diffusion (SD) (Rombach et al., 2022a). Recent studies like (Hertz et al., 2022)
have shown that the cross-attention maps of models like SD highlight different regions of the image
when the corresponding text changes. This property has been utilized to modify generated images
(Hertz et al., 2022) and to achieve image correspondence (Hedlin et al., 2023). Expanding on this
idea, we present two key insights. First, the multifaceted segmentation problem can be framed as
a one-shot optimization task where we fine-tune the text embeddings of SD to capture semantic
details such as segmented regions guided by a reference image and its segmentation mask, where
each text embedding corresponds to a distinct segmented region. Second, we observed that using
standalone cross-attention maps lead to imprecise segmentations, as depicted in Figure 2. To rectify
this, we propose a novel weighted accumulated self (WAS)-attention map (see Section 4). This
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attention map incorporates crucial semantic boundary information and employs higher-resolution
self-attention maps, ensuring enhanced segmentation accuracy.

Based on these insights, SLiMe uses a single image and its segmentation mask to fine-tune SD’s
text embeddings through cross- and WAS-attention maps. These refined embeddings emphasize
segmented regions within these attention maps, and are used to segment real-world images during
inference, mirroring the granularity of the segmented region from the image used for optimization.
Through various quantitative and qualitative experiments, we highlight the efficacy of our approach.
SLiMe, even when reliant on just one or a handful of examples, proves to be better or comparable to
supervised counterparts demanding extensive training. Furthermore, despite not being trained on a
specific category, SLiMe outperforms other few-shot techniques on average and on most parts, across
almost all the datasets. For instance, we outperform ReGAN (Tritrong et al., 2021) by nearly 10%
and SegDDPM (Baranchuk et al., 2021) by approximately 2% in a 10-sample setting. Additionally,
in a 1-sample context, we exceed SegGPT by around 12% and SegDDPM by nearly 11%.

2 RELATED WORK

Semantic Part Segmentation. In computer vision, semantic segmentation, wherein a class label is
assigned to each pixel in an image, is an important task with several applications such as scene pars-
ing, autonomous systems, medical imaging, image editing, environmental monitoring, and video
analysis (Sohail et al., 2022; He et al., 2016; Chen et al., 2017a; Zhao et al., 2017; He et al., 2017;
Chen et al., 2017b; Sandler et al., 2018; Chen et al., 2018). A more fine-grained derivative of seman-
tic segmentation is semantic part segmentation, which endeavors to delineate individual components
of objects rather than segmenting the entirety of the objects. Algorithms tailored for semantic part
segmentation find applications in subsequent tasks such as pose estimation (Zhuang et al., 2021),
activity analysis (Wang & Yuille, 2015), object re-identification (Cheng et al., 2016), autonomous
driving and robot navigation (Li et al., 2023). Despite notable advancements in this domain (Li
et al., 2023; 2022), a predominant challenge faced by these studies remains the substantial need for
annotated data, a resource that is often difficult to procure. Hence, to address these challenges, re-
search has pivoted towards exploring alternative inductive biases and supervision forms. However,
a limitation of such methodologies is their reliance on manually curated information specific to the
object whose parts they aim to segment. For example, authors of (Wang & Yuille, 2015) integrate
inductive biases by harnessing edge, appearance, and semantic part cues for enhanced part segmen-
tation. Compared to these approaches, our method only necessitates a single segmentation mask and
doesn’t rely on ad-hoc inductive biases, instead leveraging the knowledge embedded in SD.

Few-shot Semantic Part Segmentation. One approach to reduce the need for annotated data is to
frame the problem within the few-shot part segmentation framework. There is a large body of work
on few-shot semantic segmentation (Catalano & Matteucci, 2023; Xiong et al., 2022; Johnander
et al., 2022; Zhang et al., 2022; Li et al., 2022), however, they mostly focus on the object- (not part-)
level. A recent paper, ReGAN (Tritrong et al., 2021), proposed a few-shot method for part seg-
mentation. To achieve this, the researchers leveraged a large pre-trained GAN, extracting features
from it and subsequently training a segmentation model using these features and their associated
annotations. While this approach enables the creation of a semantic part segmentation model with
limited annotated data, it suffers from a drawback. Specifically, to train a model to segment parts
of a particular object category, first a GAN is required to be trained from scratch on data from the
same category. For instance, segmenting parts of a human face would necessitate a GAN trained on
generating human face images. Thus, even though the method requires minimal annotated data, it
demands a substantial amount of images from the relevant category. Following that, a few images,
which are generated by the GAN, need to be manually annotated to be used for training the segmen-
tation model. Afterward, a multitude of images should be generated by the GAN and segmented
by the trained segmentation model. Finally, all the annotated data and pseudo-segmented data are
used for training a segmentation model from scratch. Instead, we leverage pre-trained DMs that are
trained on large general datasets, eliminating the need to curate category-specific datasets.

Diffusion models for semantic part segmentation. DMs (Sohl-Dickstein et al., 2015) are a class of
generative models that have recently gained significant attention because of their ability to generate
high-quality samples. DMs have been used for discriminative tasks such as segmentation, as shown
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in SegDDPM (Baranchuk et al., 2021). Given a few annotated images, they use internal features of
DM, to train several MLP modules, for semantic part segmentation. Compared to SegDDPM, we
utilize the semantic knowledge of text-conditioned SD, and just optimize the text embeddings. This
way, we have to optimize fewer parameters for the segmentation task, which makes it possible to
optimize using just one segmentation sample.

SD (Rombach et al., 2022a) has been used for several downstream tasks such as generating faithful
images (Chefer et al., 2023), inpainting, outpainting (Rombach et al., 2022a), generating 3D shapes
using text (Tang, 2022), and editing images guided by a text prompt (Brooks et al., 2023). In addition
to these, a large body of work fine-tune SD or use its cross-attention modules to perform interesting
tasks. For instance, (Gal et al., 2022) fine-tunes SD’s text embeddings to add a new object or
style to its image generation space. Another example, (Hertz et al., 2022) uses SD’s cross-attention
modules to impose more control over the generation process. Moreover, in a third instance, authors
of (Mokady et al., 2023) edit a real image using SD’s cross-attention modules. SD’s cross-attention
maps have been used for image correspondence by (Hedlin et al., 2023). Lastly, a recent paper
(Patashnik et al., 2023), uses SD’s self-attention and cross-attention modules for object level shape
variations. Although these papers explore the applicability of SD in different tasks, its utilization in
semantic part segmentation is not fully explored. Therefor, in this work, we take advantage of SD’s
self-attention and cross-attention modules and fine-tune its text embeddings through these attention
mechanisms to perform semantic part segmentation even with just one annotated image.

3 BACKGROUND

Latent Diffusion Model (LDM). One category of generative models are LDMs, which model the
data distribution by efficiently compressing it into the latent space of an autoencoder and utilizing a
DM to model this latent space. An appealing feature of LDMs is that their DM, denoted as ϵ(.; θ),
can be extended to represent conditional distributions, conditioned on text or category. To train a
text-conditioned LDM, a natural language prompt is tokenized to obtain P . Then P is passed to
a text encoder G(.; θ) to get P = G(P ; θ). Alternatively, it is possible to obtain P by randomly
initializing a tensor of the same size. Afterward, the input image I is encoded to obtain I, and a
standard Gaussian noise ϵ is added to it with respect to time step t to get It. Finally, the following
objective is used to optimize the parameters of both G(.; θ) and ϵ(.; θ), with the aim of enabling the
model to acquire the capability to predict the added noise ϵ:

LLDM = EI,ϵ∼N (0,1),t[∥ϵ− ϵ(It, t,P; θ)∥22]. (1)

In this work, we use text-conditioned SD (Rombach et al., 2022b), as our LDM, for two reasons.
First, SD is conditioned on the text using the cross-attention modules, which have shown to exhibit
rich semantic connections between the text and the image embeddings (Hertz et al., 2022). Second,
the internal features of SD are semantically meaningful and preserve the visual structure of the input
image, enhancing the interrelation between text and image.

Attention Modules. SD’s DM employs a UNet structure, which has two types of attention mod-
ules (Vaswani et al., 2017): self-attention and cross-attention. The self-attention module calculates
attention across the image embedding, capturing relationships between a specific element and other
elements within the same image embedding. On the other hand, the cross-attention module com-
putes relationships between the latent representations of two different modalities, like text and image
in the case of text-conditioned SD.

An attention module comprises three components: query, key, and value. It aims to transform the
query into an output using the key-value pair. Therefore, given query Q, key K, and value V vectors
with the dimension of d, the output O of an attention module is defined as follows:

O = Softmax
(
QK⊺

√
d

)
· V. (2)

In the self-attention module, the query, key, and value vectors are derived from the image embedding,
while in the cross-attention module, the query vector is derived from the image embedding, and
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Figure 3: Optimization step. After extracting image embeddings and adding noise, we pass them,
along with a text embedding obtained either by using a text encoder or initialized randomly, through
the UNet to obtain cross- and WAS-attention maps. Two losses are then calculated using these maps
and the ground truth mask. Additionally, SD’s loss is incorporated from comparing the added noise
with the UNet’s predicted noise.

the key and value vectors are derived from the text embedding. In our scenario, we extract the
normalized attention map denoted as S = Softmax

(
QK⊺
√
d

)
, which is applicable to both the self-

attention and cross-attention modules, and we note them as Ssa ∈ RH′×W ′×H′×W ′
and Sca ∈

RH′×W ′×T , respectively. In this context, H ′ and W ′ represent the height and width of the image
embedding and T denotes the total number of text tokens. Ssa shows the pairwise similarity of
the elements in its input image embedding. Hence, each element p in its input, is associated with
an activation map, highlighting the similar elements to p (Patashnik et al., 2023). Moreover, the
intensity of the similar elements decrease as we move farther away from p. On the other hand, for
each text token, Sca has an activation map, which effectively spotlights elements within the image
embedding that align with that token within the model’s semantic space. For example, if the model is
instructed to generate an image of a bear with the text prompt “a bear”, the activation map associated
with “bear” token within Sca, will emphasize on those elements that correspond to the bear object
within the generated image.

4 METHOD

We introduce SLiMe, a method that enables us to perform segmentation at various levels of granular-
ity, needing only one image and its segmentation mask. Prior research has demonstrated that SD’s
cross-attention maps can be used in detecting coarse semantic objects during the generation process
for more control in generation (Hertz et al., 2022) or finding correspondence between images (Hedlin
et al., 2023). However, there remains uncertainty regarding the applicability of cross-attention maps
for finer-grained segmentation of objects or parts, especially within real-world images. To resolve
this, we frame the segmentation problem as a one-shot optimization task where we extract the cross-
attention map and our novel WAS-attention map to fine-tune the text embeddings, enabling each text
embedding to grasp semantic information from individual segmented regions (Figure 3). During the
inference phase, we use these optimized embeddings to obtain the segmentation mask for unseen
images. In what follows, we will first delve into the details of the text embedding optimization and
then the inference process.

4.1 OPTIMIZING TEXT EMBEDDING

Given a pair of an image (I ∈ RH×W×3) and a segmentation mask (M ∈ {0, 1, 2, ...,K− 1}H×W )
with K classes, we optimize the text embeddings using three loss terms. The first loss term is a cross
entropy loss between the cross-attention map and the ground truth mask. The second one, is the
Mean Squared Error (MSE) loss between the WAS-attention map and the ground truth mask. These
loss terms refine the text embeddings and enable them to learn to emphasize segmented regions
within both cross- and WAS-attention maps. Additionally, there is a subsequent SD regularization
term to ensure that the optimized text embeddings remain within the trained distribution of SD.

To optimize the text embeddings, it is necessary to extract the cross-attention and self-attention
maps. These maps are derived from SD’s UNet by initially encoding the training image I into the
image embedding, I. Subsequently, a standard Gaussian noise is added to this embedding with
respect to the time step topt, resulting in It. Next, a text prompt is converted to a sequence of
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Figure 4: Attention-Extraction module. To extract WAS-attention map of kth text embedding
with respect to an image, we follow these three steps: (1) We feed the kth text embedding (Pk)
together with the noised embedding of the image (It) to the UNet. Then calculate Ak

ca by extracting
the cross-attention maps of Pk from several layers, resizing and averaging them. (2) We extract
the self-attention maps from several layers and average them (Asa). (3) Finally, we flatten Ak

ca to
get F k

ca and calculate a weighted sum of channels of Asa, by weights coming from F k
ca, and call

it “Weighted Accumulated Self-attention map” (Sk
WAS). The UNet also produces an output that

represents the predicted noise, which is used for calculating the loss of the SD.

text embeddings denoted as P . We then take the first K text embeddings and optimize them. The
corresponding text embedding of each class is denoted by Pk. It is essential to note that SD is con-
figured to handle 77 text tokens. Consequently, our method can accommodate up to 77 segmentation
classes, which is sufficient for most applications. Finally, P and It are fed into the UNet to obtain
the denoised image embedding I ′ and extract the cross- and self-attention maps.

SD has multiple cross-attention modules distributed across various layers. We denote the normalized
cross-attention map of the lth layer as {Sca}l ∈ RH′

l×W ′
l×T and average them over different layers,

as we have empirically observed that this averaging improves the results. However, since H ′
l and

W ′
l vary across different layers, we resize all {Sca}l to a consistent size for all the utilized layers.

Finally, the attention map employed in our loss function is calculated as follows:

Aca = Averagel(Resize({Sca}l)), (3)

where Aca ∈ RH′′×W ′′×T , Averagel computes the average across layers, and Resize refers to
bilinear interpolation for resizing to dimensions H ′′×W ′′. Figure 4 visually depicts this procedure.
Finally, we compute the cross-entropy loss between the resized ground truth mask M to H ′′ ×W ′′

(referred to as M ′) and first K channels in the resized cross-attention map Aca for k = {0, ...,K −
1}, as outlined below:

LCE = CE(A[0:K−1]
ca ,M ′), (4)

where CE refers to cross-entropy. Using this loss, we optimize kth text embedding such that Ak
ca

highlights the kth class’s region in the segmentation mask, for k = {1, ...,K − 1}. Note that we
do not optimize the first text embedding and assign A0

ca to the background class, as empirically we
have found that optimizing it yields suboptimal performance.

However, as the resolution of {Sca}l we use are lower than the input image, object edges are vague
in them. To enhance segmentation quality, we propose WAS-attention map, which integrates both
self-attention and cross-attention maps. Besides possessing pairwise similarity between the image
embedding’s elements, the self-attention map has two additional features that make it suitable to
be used for improving the segmentation results. First, the self-attention maps that we use, have
higher resolution of feature maps compared to utilized cross-attention maps. Second, it shows the
boundaries in more detail. Table 1, shows the importance of using the WAS-attention map which
yields an average improvement of 6.0% in terms of mIoU over simply using the cross-attention map
for generating the segmentation mask. Like the cross-attention maps, we extract self-attention maps
from multiple layers and compute their average as follows:

Asa = Averagel({Ssa}l), (5)

where Asa ∈ RH′
l×W ′

l×H′
l×W ′

l and Averagel calculates the average across layers. In equation 5
there is no need for a Resize function as the self-attention maps that we use, all have the same size.

6



Published as a conference paper at ICLR 2024

Table 1: Ablating the effect of WAS-attention. These numerical results, underscore the crucial
contribution of WAS-attention maps to the quality of SLiMe’s outcomes.

Use WAS-Attention Map Body Light Plate Wheel Window BG Average

✗ 77.8 ± 0.2 48.2 ± 2.5 44.1 ± 4.2 63.9 ± 0.1 66.9 ± 0.2 75.3 ± 0.2 62.7 ± 1.3
✓ 81.5 ± 1.0 56.8 ± 1.2 54.8 ± 2.7 68.3 ± 0.1 70.3 ± 0.9 78.4 ± 1.6 68.3 ± 1.0

To calculate WAS-attention map, we first resize Ak
ca to match the size of Asa using bilinear inter-

polation and call it Rk
ca. Consequently, for each element p in Rk

ca we have a channel in Asa that
highlights relevant elements to p. Finally, we calculate the weighted sum of channels of Asa to
obtain Sk

WAS (WAS-attention map). The weight assigned to each channel is the value of the corre-
sponding element of that channel in Rk

ca (Figure 4). This process can be outlined as follows:

Sk
WAS = sum(flatten(Rk

ca)⊙Asa). (6)

This refinement enhances the boundaries because Asa possesses rich understanding of the semantic
region boundaries (see the cross-attention and WAS-attention maps in Figure 3). At the end, we
resize Sk

WAS to H ′′ ×W ′′ and calculate the MSE loss this way:

LMSE =

K−1∑
k=0

∥Resize(Sk
WAS)−M ′

k∥22, (7)

where M ′
k is a binary mask coming from the resized ground truth mask M ′, in which only the pixels

of the kth class are 1.

The last loss we use is the SD’s loss function (LLDM), which is the MSE loss between the added noise
and the predicted noise. We use this loss to prevent the text embeddings from going too far from the
understandable space by SD. Finally, our objective to optimize the text embeddings is defined as:

L = LCE + αLMSE + βLLDM, (8)

where α and β are the coefficients of the loss functions.

4.2 INFERENCE

During inference, our objective is to segment unseen images at the same level of details as the image
used during optimization. To achieve this, we begin with the unseen image and encode it into the
latent space of SD. Following this, a standard Gaussian noise is introduced to the encoded image,
with the magnitude determined by the time parameter ttest. Subsequently, we use the optimized text
embeddings along with the encoded image to derive corresponding cross-attention and self-attention
maps from the UNet model. These attention maps, as shown in Figure 4, enable us to obtain WAS-
attention maps for each text embedding. Afterward, we select the first K WAS-attention maps that
correspond to K classes. These selected maps are then resized using bilinear interpolation to match
the dimensions of the input image and are stacked along the channel dimension. Subsequently, we
generate a segmentation mask by performing an argmax across the channels. It is important to note
that this process can be repeated for multiple unseen images during inference, without requiring a
new optimization. An analysis of the selection of various parameters used in our method is provided
in the Appendix A.2.

5 EXPERIMENTS

In this section, we demonstrate the superiority of SLiMe in semantic part segmentation. We use
mIoU to compare our approach against three existing methods: ReGAN (Tritrong et al., 2021),
SegDDPM (Baranchuk et al., 2021), and SegGPT (Wang et al., 2023) on two datasets: PASCAL-
Part (Chen et al., 2014) and CelebAMask-HQ (Lee et al., 2020). ReGAN and SegDDPM utilize pre-
trained GAN and DDPM models, respectively, training them on FFHQ and LSUN-Horse datasets
for face and horse part segmentation. Additionally, ReGAN employs a pre-trained GAN from the
LSUN-Car dataset for car part segmentation. We present the results for both 10-sample and 1-sample
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Table 2: Segmentation results for class car. SLiMe consistently outperforms ReGAN, even though
ReGAN utilized generated data alongside 10 annotated data for training. Furthermore, our method
exhibits superior performance to SegGPT on average, despite SegGPT being supervised. The first
two rows show the supervised methods, for which we use the reported numbers in ReGAN. The
second two rows show the 10-sample setting and the last two rows, refer to the 1-sample scenario.
⋆ indicates the supervised methods.

Body Light Plate Wheel Window Background Average

CNN⋆ 73.4 42.2 41.7 66.3 61.0 67.4 58.7
CNN+CRF⋆ 75.4 36.1 35.8 64.3 61.8 68.7 57

ReGAN 75.5 29.3 17.8 57.2 62.4 70.7 52.15
SLiMe 81.5 ± 1.0 56.8 ± 1.2 54.8 ± 2.7 68.3 ± 0.1 70.3 ± 0.9 78.4 ± 1.6 68.3 ± 1.0

SegGPT⋆ 62.7 18.5 25.8 65.8 69.5 77.7 53.3
SLiMe 79.6 ± 0.4 37.5 ± 5.4 46.5 ± 2.6 65.0 ± 1.4 65.6 ± 1.6 75.7 ± 3.1 61.6 ± 0.5

Table 3: Segmentation results for class horse. SLiMe outperforms ReGAN, SegDDPM, and
SegGPT on average and most of the parts. The first two rows show the supervised methods, for
which we use the reported numbers in ReGAN. The middle three rows show the 10-sample setting
and the last three rows, are the results of the 1-sample scenario. ⋆ indicates the supervised methods.

Head Leg Neck+Torso Tail Background Average

Shape+Appereance⋆ 47.2 38.2 66.7 - - -
CNN+CRF⋆ 55.0 46.8 - 37.2 76 -

ReGAN 50.1 49.6 70.5 19.9 81.6 54.3
SegDDPM 41.0 59.1 69.9 39.3 84.3 58.7

SLiMe 63.8 ± 0.7 59.5 ± 2.1 68.1 ± 4.4 45.4 ± 2.4 79.6 ± 2.5 63.3 ± 2.4
SegGPT⋆ 41.1 49.8 58.6 15.5 36.4 40.3

SegDDPM 12.1 42.4 54.5 32.0 74.1 43.0
SLiMe 61.5 ± 1.0 50.3 ± 0.7 55.7 ± 1.1 40.1 ± 2.9 74.4 ± 0.6 56.4 ± 0.8

settings, utilizing a single validation sample for 10-sample experiments of SLiMe. Also, all exper-
iments are conducted three times with different initializations, reporting their mean and standard
deviation. We conduct experiments for SegDDPM and SegGPT using the custom version of test
sets of the above-mentioned datasets, which are based on ReGAN settings, and report their results
accordingly. For the remaining methods, we reference the results reported by ReGAN. Note that Re-
GAN and SegDDPM are not universally applicable to arbitrary classes, unless a large dataset for the
given class is collected and a generative model is trained. However, SLiMe does not require collect-
ing large category specific data and training an additional generative model, because of the inherent
semantic knowledge embedded in SD (Figure 8). Whereas SegGPT requires a large segmentation
dataset to be trained initially.

PASCAL-Part. This dataset provides detailed annotations of object parts. For our experiments, we
focus on car and horse classes (for more details, please refer to Appendix B.1). Table 2 presents
results for the car class. As there is no available pre-trained model for the car class in SegDDPM,
we couldn’t make a comparison with this model for this category. As evident from Table 2, SLiMe
outperforms ReGAN in the 10-sample setting on average and all the part segments by a significant
margin. Moreover, in the 1-sample setting, SLiMe either outperforms SegGPT by a large margin or
performs comparably. Likewise, Table 3 displays our results for the horse class, where it is evident
that our method, SLiMe, outperforms ReGAN, SegDDPM, and SegGPT on average and for most of
the parts. It is worth noting that, even though SegGPT only requires a single segmentation sample for
inference, it is a fully supervised method and demands a large segmentation dataset for training. In
contrast, SLiMe is truly a one-shot technique, where only a single sample is needed for optimization.

CelebAMask-HQ. This is a dataset of the facial part segmentation, and we report results on the parts
used in ReGAN for comparison (for more details, please consult Appendix B.1). Figure 6 and Table
4 showcase our qualitative and quantitative results. In the 1-sample setting, SLiMe outperforms other
methods on average and for the majority of parts, demonstrating its superiority in 1-sample scenario.
On the other hand, in the 10-sample setting, except for three parts, our method either performs better
or comparably to other methods. As mentioned earlier, note that SegGPT benefits from training on
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Table 4: Segmentation results of CelebAMask-HQ10. Our method consistently outperforms
ReGAN, SegDDPM, and SegGPT in the majority of parts in 1-sample setting in the last four rows.
Additionally, SLiMe either outperforms or performs comparably to ReGAN and SegDDPM in
10-sample setting in the first three rows. ⋆ is used to denote supervised methods.

Cloth Eyebrow Ear Eye Hair Mouth Neck Nose Face Background Average

ReGAN 15.5 68.2 37.3 75.4 84.0 86.5 80.3 84.6 90.0 84.7 69.9
SegDDPM 61.6 67.5 71.3 73.5 86.1 83.5 79.2 81.9 89.2 86.5 78.0

SLiMe 63.1 ± 1.6 62.0 ± 1.6 64.2 ± 1.9 65.5 ± 3.0 85.3 ± 0.4 82.1 ± 1.6 79.4 ± 2.2 79.1 ± 1.4 88.8 ± 0.2 87.1 ± 0.0 75.7 ± 0.4

ReGAN - - - 57.8 - 71.1 - 76.0 - - -
SegGPT⋆ 24 48.8 32.3 51.7 82.7 66.7 77.3 73.6 85.7 28.0 57.1

SegDDPM 28.9 46.6 57.3 61.5 72.3 44.0 66.6 69.4 77.5 76.6 60.1
SLiMe 52.6 ± 1.4 44.2 ± 2.1 57.1 ± 3.6 61.3 ± 4.6 80.9 ± 0.5 74.8 ± 2.9 78.9 ± 1.3 77.5 ± 1.8 86.8 ± 0.3 81.6 ± 0.8 69.6 ± 0.3

SLiM
e

SegGPT

SLiM
e

SegGPT

Figure 5: Segmentation results of camouflaged objects. The larger images are used for optimizing
SLiMe, and as the source image for SegGPT. Notably, SLiMe outperforms SegGPT.

a large segmentation dataset. Also, the other two methods employ class-specific pre-trained models.
In contrast, SLiMe utilizes a model pre-trained on general data, equipping it with the ability to work
across a wide range of categories rather than being limited to a specific class.

Additional Results. We also showcase the versatility of our method, which can be optimized on
an occluded object and infer images without the occlusion, or conversely, be optimized on a fully
visible object and make predictions on occluded objects. This shows our method’s capability to
comprehend part and object semantics. Figure 11 illustrates that despite occlusion of the target
region caused by the person in the image used for optimization, our method performs well. It is also
possible to segment occluded objects using a visible reference object (see Figure 12). Moreover,
in Figure 5, we compare our method against SegGPT (Wang et al., 2023) using two camouflaged
animals, namely a crab and a lizard. Remarkably, SLiMe achieves precise segmentation of these
animals, even in situations where they were challenging to be detected with naked eye. This shows
that SLiMe learns rich semantic features about the target object that do not fail easily due to the lack
of full perception.

6 CONCLUSION

We proposed SLiMe, a one-shot segmentation method capable of segmenting various objects/parts
in various granularity. Through an extensive set of experiments and by comparing it to state-of-the-
art few-shot and supervised image segmentation methods, we showed its superiority. We showed
that, although SLiMe does not require training on a specific class of objects or a large segmentation
dataset, it outperforms other methods. On the other hand, SLiMe has some limitations. For example,
it may result in noisy segmentations when the target region is tiny. This can be attributed to the
fact that the attention maps, which we extract from SD for segmentation mask generation, have a
smaller size than the input image. To counter this, we employed bilinear interpolation for upscal-
ing. Nonetheless, due to scaling, some pixels might be overlooked, leading to the undesired noisy
outcomes. For visual examples of this case, please refer to Appendix A.1. Resolving the mentioned
limitation, and making it applicable to 3D and videos, would be an interesting future direction.
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A APPENDIX

A.1 ADDITIONAL RESULTS

Figure 6 showcase our qualitative and quantitative results

Figure 6: Qualitative face segmentation results. Results of SLiMe optimized with 10 samples.

In Figure 7, we provide comparisons with ReGAN (Tritrong et al., 2021). It is evident that SLiMe
exhibits more intricate hair segmentation in the second and third rows, showcasing its ability to
capture finer details compared to ReGAN. Additionally, in the second row, the ear segmentation
produced by ReGAN appears to be noisy by comparison.

Input SLiMe ReGAN VAE Jigsaw HED Color Bilat

Figure 7: Qualitative comparison with other methods on CelebAHQ-Mask. Qualitative results
of several methods on the 10-sample setting of CelebAHQ-Mask. As you can see, SLiMe captures
the details better than ReGAN and other methods (e.g., hairlines in the second row). All the images
are taken from (Tritrong et al., 2021).

In addition to the segmentation results presented for several object categories in the paper, Figure 8
showcases additional 1-sample visual results. These results encompass a wide range of objects and
provide evidence of SLiMe’s capability to perform effectively across various categories.

Another noteworthy feature of SLiMe is its generalization capacity, as illustrated in Figure 9. This
figure demonstrates, despite being optimized on a single dog image with segmented parts, SLiMe
can grasp the concepts of head, body, legs, and tail and effectively apply them to unseen images from
various categories. However, Figure 10 illustrates that when optimized on an image containing both
a dog and a cow, SLiMe is adept at learning to exclusively segment the dog class in unseen images.
These two figures, highlight SLiMe’s ability to acquire either high-level concepts or exclusive object
classes.

One more appealing feature of SLiMe is that not only is it able to learn to segment from an occluded
image and segment fully visible objects (Figure 11), but it can also be optimized on a fully visible
object and make predictions on occluded samples. As an example, in Figure 12, SLiMe is optimized
on a fully visible bear and predicts an accurate segmentation mask for the occluded bears.

A.1.1 FAILURE CASE OF SLiMe

As mentioned in the paper, SLiMe may fail in the cases where the target region is tiny. Figure 13
shows two examples of this, where the target to be segmented is a necklace, which is pretty small.
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Figure 8: Part segmentation results on different objects. SLiMe exhibits strong performance
across a wide variety of objects. The images, along with their corresponding annotations used for
optimization, are displayed on the left.

A.2 ABLATION STUDIES

In this section, we present the results of our ablation studies, which aim to illustrate the impact of
each component in our model. These experiments were conducted using 10 samples from the car
class in the PASCAL-Part dataset.

In Table 5, we present the results of text prompt ablation experiments to demonstrate the robustness
of SLiMe to the choice of the initial text prompt. The “part names” row displays results obtained by
using specific part names in the prompts. In the next row, labeled “ ”, the text prompt is left empty.

14



Published as a conference paper at ICLR 2024

Figure 9: Generalizability of SLiMe. SLiMe optimized on dog’s parts, can accurately segment
corresponding parts of other animals.

Figure 10: SLiMe exclusive segmentation. SLiMe optimized on an image containing both dog and
cow (as seen in the left image pair), can segment only dogs, even in presence of other animals.

Figure 11: Segmentation results of occluded objects. Although SLiMe is optimized using an
occluded car’s image (the leftmost image), it demonstrates proficiency in car segmentation on unseen
images (the remaining images on the right). Particularly noteworthy is its ability to accurately
segment all three cars in the top-right image.

In the final row, we use the term “part” instead of specific part names. By comparing these rows, we
observe minimal influence of the initial text prompt on the results.

Moving on, we conducted experiments to determine the optimal coefficients for our loss functions.
As illustrated in the first four rows of Table 6, where α = 1, the most suitable coefficient for LSD
is found to be 0.005. Furthermore, when comparing the 3rd and 5th rows, the significance of LMSE
becomes apparent.

Next, we turn our attention to ablation of the parameters ttrian and ttest. Initially, we vary the range
used to sample topt. Table 7 shows that the best range is [5, 100], which introduces a reasonable
amount of noise. A larger end value in the range results in very noisy images in some steps, making
it difficult to optimize the text embeddings. Conversely, a very small end value means that SLiMe
does not encounter a sufficient range of noisy data for effective optimization.
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Figure 12: Occluded object in inference. SLiMe undergoes its initial optimization with a bear
image, as depicted in the left image. Subsequently, it is put to the test with images featuring occluded
portions of the bear. Notably, SLiMe precisely segments these occluded objects.

(a) (b) (c) (d)

Figure 13: Failure case. The segmentation masks generated by SLiMe, depicted in images (b) and
(d), reveal an inherent challenge. Our method encounters difficulty when it comes to accurately
segmenting minuscule objects, such as the necklace in this image. These tiny objects often diminish
in size, and at times, even vanish within the cross-attention maps we employ, primarily due to their
limited resolution.

After examining topt, we ablate the parameter ttest. Selecting an appropriate value for ttest is crucial,
as demonstrated in Table 8. SLiMe performs optimally when we set ttest to 100.

Another parameter subjected to ablation is the learning rate. Choosing the correct learning rate is
essential, as a high value can result in significant deviations from text embeddings that SD can com-
prehend. Conversely, a low learning rate may not introduce sufficient changes to the embeddings.
Our experiments in Table 9 reveal that the optimal learning rate for our method is 0.1.

Finally, we performed an ablation study on the choice of layers to utilize their cross-attention mod-
ules. Based on our experiments in Table 10, we determined that the best set of layers to use are the
8th to 12th layers.

B IMPLEMENTATION DETAILS

We opted for SD version 2.1 and extracted the cross-attention and self-attention maps from the 8th

to 12th and last three layers of the UNet, respectively. For the text prompt, we use a sentence where
the word “prompt” is repeated by the number of parts to be segmented.

During optimization, we assigned a random value to the time step of SD’s noise scheduler, denoted
as topt, for each iteration. This value was selected randomly between 5 and 100, where topt can be in
a range spanning from 0 to 1000. During inference, we consistently set ttest to 100.

For optimization, we employed the Adam optimizer with a learning rate of 0.1, optimizing our
method for 200 epochs with a batch size of 1. Additionally, we used weighted cross-entropy loss,
with each class’s weight determined as the ratio of the number of whole pixels in the image to the
number of pixels belonging to that class within the image. Furthermore, the values for α and β were
set to 1 and 0.005, respectively.

We set H ′′ and W ′′ to be 64. Regarding the CelebAMask-HQ, we divided the 512 × 512 images
into 4 patches of size 400. After acquiring their WAS-attention maps from SLiMe, we aggregated
them to generate the final WAS-attention map and subsequently derive the segmentation mask.
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Table 5: Ablating the text prompt. Minimal effect of the initial text prompt for
SLiMe. “part names”: using all part names separated with space for text prompt.
(“background body light plate wheel window”); “ ”: leaving the text prompt empty;
“part”: using “part” instead of part names (“part part part part part part”); SLiMe is with the
second settings.

Text Prompt Body Light Plate Wheel Window BG Average

“part names” 82.0 ± 0.3 55.3 ± 2.0 56.1 ± 1.1 69.4 ± 0.6 69.6 ± 0.9 79.5 ± 1.1 68.7 ± 0.4
“ ” 81.6 ± 1.0 56.7 ± 0.4 54.4 ± 3.5 69.6 ± 1.3 68.1 ± 0.6 80.2 ± 0.9 68.4 ± 1.2

“part” 81.5 ± 1.0 56.8 ± 1.2 54.8 ± 2.7 68.3 ± 0.1 70.3 ± 0.9 78.4 ± 1.6 68.3 ± 1.0

Table 6: Ablating the loss terms. Comparing the first four rows shows the importance of LSD.
Furthermore, when comparing the last two rows, it underscores the effectiveness of LMSE.

α β Body Light Plate Wheel Window BG Average

1
0.5 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 31.8 ± 0.0 5.3 ± 0.0

0.05 80.1 ± 0.4 57.6 ± 0.1 46.3 ± 0.2 67.4 ± 1.0 63.0 ± 4.1 78.0 ± 0.2 65.4 ± 0.9
0.005 81.5 ± 1.0 56.8 ± 1.2 54.8 ± 2.7 68.3 ± 0.1 70.3 ± 0.9 78.4 ± 1.6 68.3 ± 1.0

0.0 73.7 ± 2.3 39.7 ± 1.2 38.0 ± 3.1 55.0 ± 3.4 61.3 ± 4.0 67.2 ± 2.2 55.8 ± 1.6

0 0.005 80.6 ± 0.5 56.1 ± 1.1 57.4 ± 0.4 69.1 ± 0.4 66.7 ± 1.6 78.0 ± 1.4 68.0 ± 0.3

When constructing the WAS-attention map from the cross-attention and self-attention maps, we
only considered the corresponding cross-attention map of a token if the maximum value in that map
exceeded 0.2. Otherwise, we disregarded that token and assigned zeros to its corresponding channel
in the WAS-attention map.

For optimizing on PASCAL-Part classes, we applied the following augmentations: Random Hor-
izontal Flip, Gaussian Blur, Random Crop, and Random Rotation. For the car class, we set the
random crop ratio range to [0.5, 1], while for the horse class, it was adjusted to [0.8, 1]. Addition-
ally, we applied random rotation within the range of [−30, 30] degrees.

Moreover, when optimizing on CelebAMask-HQ, we incorporated a set of augmentations, which
encompassed Random Horizontal Flip, Gaussian Blur, Random Crop, and Random Rotation. The
random crop ratio was modified to fall within the range of [0.6, 1], and random rotation was applied
within the range of [−10, 10] degrees.

B.1 DETAILS OF THE DATASETS

In this section, we initially present further elaboration on the datasets on which we optimized our
method. This includes information about the categories as well as the segmentation labels. Subse-
quently, we offer details about the dataset preparation process.

B.1.1 PASCAL-PART

• Car: Background, Body, Light, Plate, Wheel, and Window.

• Horse: Background, Head, Leg, Neck+Torso, and Tail.

B.1.2 CELEBAMASK-HQ

• Face: Background, Cloth, Ear, Eye, Eyebrow, Face, Hair, Mouth, Neck, and Nose.

B.1.3 DATASET PREPARATION

• PASCAL-Part. For this dataset, we follow the procedures of ReGAN (Tritrong et al.,
2021): We start by cropping the images with the bounding boxes provided in the dataset.
Afterward, we remove those images where their bounding boxes have an overlap of more
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Table 7: Ablating ttrian. Our results across different ranges for choosing topt indicate that optimal
performance is achieved when topt is selected from the range [5, 100].

Range of topt Body Light Plate Wheel Window BG Average

[5, 20] 78.8 ± 1.6 52.6 ± 2.8 53.6 ± 1.0 66.6 ± 0.2 70.3 ± 0.1 78.7 ± 1.2 66.8 ± 0.2
[5, 100] 81.5 ± 1.0 56.8 ± 1.2 54.8 ± 2.7 68.3 ± 0.1 70.3 ± 0.9 78.4 ± 1.6 68.3 ± 1.0
[5, 900] 80.4 ± 1.1 54.4 ± 1.6 54.3 ± 2.4 67.3 ± 1.3 70.2 ± 0.4 79.9 ± 1.7 67.8 ± 1.0

Table 8: Ablating ttest. Evident from the table, we get the best results when ttest = 100

ttest Body Light Plate Wheel Window BG Average

5 80.3 ± 0.4 50.8 ± 1.8 49.7 ± 4.2 66.5 ± 0.8 65.5 ± 0.7 78.4 ± 1.2 65.2 ± 1.4
20 80.1 ± 0.8 53.1 ± 2.7 53.6 ± 1.9 65.6 ± 2.7 67.3 ± 2.1 76.0 ± 2.5 65.9 ± 0.7

100 81.5 ± 1.0 56.8 ± 1.2 54.8 ± 2.7 68.3 ± 0.1 70.3 ± 0.9 78.4 ± 1.6 68.3 ± 1.0

than 5% with other bounding boxes. Finally, we remove the cropped images smaller than
50× 50 for the car class and 32× 32 for the horse class.

• CelebAMask-HQ. The size of images that we use for this dataset is 512× 512.
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Table 9: Ablating lr. The results of optimizing SLiMe with various learning rates reveal a crucial
relationship. When the learning rate is set too low, SLiMe struggles to learn effectively, resulting
in minimal progress. Conversely, when the learning rate is excessively high, the text embeddings
deviate significantly from the comprehensible embeddings of SD.

lr Body Light Plate Wheel Window BG Average

1 10.1 ± 9.2 3.6 ± 6.2 12.4 ± 10.8 11.2 ± 11.2 13.2 ± 14.5 39.7 ± 11.4 15 ± 7.4
0.1 81.5 ± 1.0 56.8 ± 1.2 54.8 ± 2.7 68.3 ± 0.1 70.3 ± 0.9 78.4 ± 1.6 68.3 ± 1.0

0.01 81.5 ± 0.0 54.9 ± 0.4 52.8 ± 1.7 68.5 ± 0.5 69.8 ± 0.2 79.2 ± 0.6 67.8 ± 0.3
0.001 70.0 ± 0.9 10.5 ± 5.1 40.6 ± 0.5 0.7 ± 0.5 18.2 ± 6.1 62.4 ± 1.6 33.7 ± 2.3

Table 10: Ablating layers to use their cross-attention module. The middle layers of SD’s UNet
exhibit a superior semantic understanding compared to the other set of layers.

set of cross attention layers Body Light Plate Wheel Window BG Average

1st to 7th layers 12.7 ± 9.5 13.8 ± 12.1 10.7 ± 3.7 29.5 ± 14.2 32.1 ± 2.9 34.2 ± 4.1 22.2 ± 3.4
8th to 12th layers 81.5 ± 1.0 56.8 ± 1.2 54.8 ± 2.7 68.3 ± 0.1 70.3 ± 0.9 78.4 ± 1.6 68.3 ± 1.0
13th to 16th layers 76.8 ± 0.8 51.9 ± 9.2 56.2 ± 3.0 62.6 ± 4.2 65.3 ± 2.7 68.6 ± 2.6 63.6 ± 1.4
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