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ABSTRACT

Social bias in large language models (LLMs) outputs has emerged as a critical
challenge in artificial intelligence. While existing bias detection methods pursue
comprehensive identification and elimination of implicit biases, this one-size-fits-
all approach presents significant limitations. Excessive bias correction causes
responses to deviate from user query intent, comprehensive detection demands
extensive human annotation and computational resources, and critically, user hetero-
geneity dictates that different individuals with diverse backgrounds and personality
traits exhibit varying sensitivities toward different bias types. To address these chal-
lenges, we propose PersonBias, a lightweight, personalized debiasing framework
that balances bias mitigation with response quality optimization. Our approach
leverages LLMs to automatically extract user personality features from conver-
sational contexts, eliminating the need for explicit demographic data collection.
We develop a dual-tower encoder architecture with cross-attention mechanisms to
model user-specific bias sensitivities, employing parameter-efficient fine-tuning
that freezes encoder parameters while optimizing only projection layers and at-
tention mechanisms. Rather than requiring model-specific fine-tuning, PersonBias
operates through real-time intervention during generation, dynamically evaluating
and adjusting outputs at fixed token intervals to prevent bias accumulation while
maintaining relevance and utility. Experiments on multi-turn dialogue datasets
demonstrate that PersonBias achieves superior bias reduction and utility preserva-
tion compared to prompt-based and fine-tuning baselines, offering a practical and
adaptive solution for personalized fairness in LLMs.

1 INTRODUCTION

In recent years, Large Language Models (LLMs) (Achiam et al., 2023; Liu et al., 2024a; Bai et al.,
2023) have demonstrated remarkable reasoning and emergent capabilities, leading to their widespread
adoption across diverse domains. Despite their impressive performance, recent studies have revealed
that LLMs exhibit systematic social biases against certain demographic groups during response
generation. This phenomenon significantly impedes the deployment and adoption of LLMs across
different geographical regions and application domains. (Lin & Li, 2025; Gallegos et al., 2024a)
Consequently, effectively mitigating multiple biases in LLM generation processes has emerged as a
critical challenge in fairness research for large language models.

Current debiasing approaches for LLMs can be categorized into two primary paradigms: fine-
tuning-based methods and prompt-based methods. Fine-tuning-based approaches typically employ
reinforcement learning strategies such as Reinforcement Learning from Human Feedback (RLHF)
(Casper et al., 2023) to model biases, followed by Parameter-Efficient Fine-Tuning (PEFT) (Han
et al., 2024) strategies to fundamentally mitigate model biases (Tan et al., 2024b; Wagner et al.,
2025). While these methods demonstrate substantial effectiveness, they require extensive human-
annotated high-quality bias datasets and substantial computational resources. Consequently, prompt-
based methods (Zhang et al., 2025a; Furniturewala et al., 2024) are often adopted in resource-
constrained environments or when dealing with black-box models. These approaches typically
leverage carefully crafted prompts or model-generated prompt templates to guide LLMs, thereby
intervening in the generation process to produce unbiased responses. While existing methods have
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 Bias     Utility
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 Bias     Utility

Figure 1: Problems of one-size-fits-all Debiasing.

   Question

      PersonBias

     Answer for User3     Answer for User2     Answer for User1

 Bias     Utility  Bias     Utility  Bias     Utility

Figure 2: Core Idea of PersonBias.

achieved notable progress in eliminating language model biases, these one-size-fits-all debiasing
strategies exhibit significant limitations. First, as shown in Fig.1, from the perspective of user
requirement adaptation, models that pursue absolute fairness often impose complex constraints on
LLM outputs, potentially causing responses to deviate from users’ actual needs (Lin et al., 2025).
Moreover, the inherent heterogeneity of user populations indicates substantial variations in sensitivity
and tolerance thresholds for different types of biases across users with diverse backgrounds and
individual characteristics. Second, regarding implementation feasibility, fine-tuning-based debiasing
methods typically demand large-scale annotated data and prohibitive computational costs, making
them impractical in resource-constrained environments or when dealing with black-box models. Third,
considering temporal dynamics, biases in multi-turn dialogues or long-text generation scenarios often
manifest through progressive revelation and cumulative amplification (Li et al., 2025; Cheng et al.,
2025). Existing prompt-engineering methods lack real-time monitoring capabilities for the generation
process, potentially leading to gradual bias amplification. Based on this analysis, LLM debiasing
research faces three core challenges: (1) how to construct personalized debiasing frameworks that
accommodate heterogeneous user requirements, (2) how to implement lightweight yet effective
debiasing mechanisms under resource constraints, and (3) how to establish bias detection and
correction systems that integrate real-time monitoring with adaptive adjustment.

To address these challenges, we propose a Personalized Debiasing framework named PersonBias,
whose core architecture comprises three key components, Fig.2 illustrates the core idea of PersonBias.
First, we construct a user profile extraction module that leverages LLMs to extract personalized
characteristics from historical dialogue data. Second, we design a personalized preference reward
model employing a dual-tower encoder architecture with independent encoders for user information
and textual content. Multi-head cross-attention mechanisms capture correlation patterns between
user features and textual bias information to generate personalized evaluation scores. We adopt
parameter-efficient fine-tuning, freezing encoder parameters while optimizing only mapping layers,
prediction layers, and attention mechanisms. Finally, we introduce a dynamic debiasing strategy that
periodically evaluates real-time generated content using the personalized reward model, filtering
low-scoring text while retaining high-quality outputs to ensure optimal user satisfaction. Our main
contributions are:

• We propose a personalized debiasing framework (PersonBias) that automatically extracts
user characteristics from conversational history and employs a lightweight dual-tower en-
coder architecture with cross-attention mechanisms to model user-specific bias sensitivities,
enabling tailored bias detection without requiring explicit demographic data collection.

• We introduce a dynamic bias monitoring strategy that performs real-time intervention during
text generation by periodically evaluating candidate responses at fixed token intervals,
preventing bias accumulation while preserving response relevance and utility.

• Experiments on multi-turn dialogues show that PersonBias significantly mitigates bias while
preserving utility, outperforming both prompt-based and fine-tuning methods to provide a
practical, adaptive path toward fairness in LLMs.
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2 RELATED WORK

2.1 BIAS MITIGATION IN LANGUAGE MODELS

Eliminating bias in language model responses represents a critical challenge in current research on
model fairness. Recent debiasing research for language models primarily employs two methodological
approaches: fine-tuning-based and prompt-based debiasing techniques. Fine-tuning-based methods
adjust model parameters through various specialized tuning strategies and architectural designs,
including reinforcement learning-based fine-tuning (Fan et al., 2025; Tomar et al., 2025), causal
theory-informed fine-tuning(Sun et al., 2024; Wu et al., 2024), continual debiasing strategy (Lee
et al., 2025; Kim et al., 2024) and module-level intervention strategies(Cheng et al., 2025; Chen
et al., 2023). Additionally, some approaches utilize LLMs or manually curated comprehensive bias
datasets (Fan et al., 2024b; Zhou et al., 2025; Fan et al., 2024a) to either fine-tune models or serve as
external knowledge bases for bias detection guidance. In contrast, Prompt-based methods (Yang
et al., 2025; Zhang et al., 2025a; Chisca et al., 2024; Yang et al., 2023) leverage carefully engineered
prompts and debiasing data as guidance mechanisms (Furniturewala et al., 2024; Gallegos et al.,
2024b), enabling language models to generate equitable responses while circumventing complex
fine-tuning procedures. These methods fail to account for the potential response deviation or even
irrelevance caused by a one-size-fits-all debiasing strategy during the debiasing process.

2.2 PERSONALIZED LLMS

Due to user heterogeneity and varying requirements for large language models, personalized LLMs
have become a prominent research direction (Liu et al., 2025; Zhang et al., 2025b). Existing ap-
proaches can be categorized into two main classes: (1) Fine-tuning-based Personalized LLMs: The
core strategy of this approach involves training dedicated LLM models tailored to individual users
based on their personalized data (Tan et al., 2024b;a). Given the substantial computational costs asso-
ciated with full fine-tuning, current research in fine-tuning-based personalized LLMs predominantly
focuses on exploring Parameter-Efficient Fine-Tuning (PEFT) methods (Wagner et al., 2025; Peng
et al., 2024) to achieve cost-effective personalization of large language models. (2) Retrieval-based
Personalized LLMs: Considering the prohibitive costs of fine-tuning and the practical deployment
challenges of maintaining dedicated models for all users, retrieval-based personalized LLM ap-
proaches have emerged, inspired by Retrieval-Augmented Generation (RAG) techniques (Lewis
et al., 2020). The primary mechanism of these methods involves retrieving relevant documents from
users’ historical interaction records that correspond to current queries, and constructing personalized
contextual prompts for LLMs based on these retrieved documents to enable personalized response
generation (Salemi et al., 2024; Tang et al., 2024; Zhu et al., 2025). It is noteworthy that existing
personalized approaches primarily concentrate on user recommendation systems, with relatively
limited attention devoted to the debiasing domain, thereby presenting significant opportunities for
future research endeavors.

3 PROBLEM FORMALIZATION

The core objective of debiasing strategies for LLMs is to comprehensively identify and eliminate
biases present in model responses. Such methods typically train a reward model based on a bias
dataset or directly employ the dataset as an external knowledge base to accurately detect latent bias
information in responses of the base model πbase to input X , subsequently guiding the model to
regenerate answers while avoiding similar biased terms. This process can be formalized as follows:

S = D (πbase (X) , B) , (1)

where S is the bias score of a response, quantifying the degree of bias in the response, D denotes
the debiasing module, and B represents the bias dataset. However, these methods typically adopt a
one-size-fits-all strategy aimed at comprehensively identifying all types of biases, which may lead to
over-correction of response, causing the generated content to deviate from users’ query intentions.

In practical application scenarios, user heterogeneity determines that different users exhibit significant
variations in their concern levels for specific biases. To address this limitation, we propose constructing
a personalized debiasing module to thoroughly explore the association mechanisms between user
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Figure 3: Overview of PersonBias.

personality types and bias categories, replacing the original global debiasing strategy to provide
tailored debiasing solutions for different users. This module can be formally defined as:

SP = D′ (πbase (X) , B,Xuser) , (2)

where Xuser represents the user’s personalized information. The personalized debiasing module
leverages joint training on user personality data and bias datasets, enabling it to conduct personalized
assessments of responses based on different users’ sensitivity levels to various bias types and output
bias scores tailored to specific users. This design not only effectively removes key biases of concern
to users but also preserves the informativeness and effectiveness of responses to the greatest extent
possible, thereby achieving a better balance between debiasing and utility.

4 MERHOD

Fig.3 illustrates the workflow of our proposed PersonBias framework. The methodology consists of
three key components. First, we employ a LLM to extract personalized user characteristics from his-
torical dialogue data, which serve as the output for the subsequent user encoder. Second, we develop
a personalized reward model based on a dual-tower encoder architecture to model the associative
relationships between personalized user features and biased text. To reduce computational overhead,
we freeze the encoder parameters and train only the multi-head attention scores, projector, and predic-
tor parameters. Third, we implement a dynamic bias detection mechanism that periodically evaluates
candidate text using the personalized reward model at fixed token intervals, retaining high-scoring
responses for continued generation. This mechanism enables the model to suppress potential biases
that may emerge during the response generation process. In summary, the PersonBias framework not
only generates personalized responses tailored to different user types but also maximally suppresses
user-specific biases of concern. This dual capability ensures that generated responses maintain both
low bias and high utility, addressing the critical challenge of balancing personalization with fairness
in language model outputs.

4.1 LLM-DRIVEN USER INFORMATION EXTRACTION

In real-world application scenarios, user characteristics closely related to bias detection, such as
gender, age, race, and religion, are often difficult to obtain directly due to privacy policy constraints.
To address such cold-start problems, inspired by Liu et al. (2024b), we employ large language models
to automatically infer these attributes from users’ historical dialogues.

Users often reveal personal characteristics intentionally or unintentionally across different contexts in
multi-turn conversations. For instance, users may mention "I frequently participated in programming
competitions during my college years" or "As a mother of two, I enjoy exploring recipes in my
spare time," thereby indirectly indicating information about their age group, gender, or family roles.
Therefore, when extracting user information, reliance should not be placed solely on single-turn
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dialogue content; rather, contextual information from multiple historical conversations should be
integrated to achieve coherent inference of user characteristics through semantic association.

Within the PersonBias, we employ high-performance large language models (such as GPT-3.5
and Qwen2.5) to predict users’ personal information from multi-turn conversations. The specific
prompt design is presented in Appendix A.1. Leveraging the powerful summarization and generation
capabilities of LLMs, we can obtain reliable personalized user information for individualized bias
detection. Ultimately, we acquire user personalization information in the following format for
subsequent user information encoding:

Xuser = {[religion] , [gender] , [age] , [country]} , (3)

Considering the semantic sparsity inherent in regional names, this study employs text augmentation
strategies to enhance encoding effectiveness. Specifically, we perform batch padding of the acquired
user information according to a fixed format, with specific padding examples as follows:

X̂user = “The user is a person from [country], [gender], [age] years old, [religion].”, (4)

By converting discretized user information into a continuous sentence, the language model can
better capture complex semantic associations and contextual dependencies, thereby more effectively
learning personalized user characteristics.

4.2 PERSONALIZED BIAS REWARD MODEL

Having extracted personalized user characteristics, the key technical challenge is establishing effec-
tive mappings between diverse user attributes and various bias types. To address this, we propose a
personalized reward model employing a dual-tower encoder framework. This architecture uses two
lightweight language models to independently encode user personalization features and potentially
biased dialogue content. Through a multi-layer cross-attention mechanism that captures associations
between user characteristics and textual bias patterns, the model achieves fine-grained feature in-
teraction. This enables accurate prediction of personalized user preferences toward textual content,
providing the technical foundation for effective Personalized Debiasing and mitigation.

Dual Tower Encoder: First, the augmented sentence is fed into the user encoder fuser (·) within the
dual-tower encoder to obtain the user embedding Huser:

Huser = fuser

(
X̂user

)
, (5)

After obtaining user embeddings, we input the text information generated by large language models
into the text encoder ftext ()of the dual-tower encoder to obtain text embeddings:

Htext = ftext (Xtext) , (6)

During the encoding process, we employ language models of different scales based on the distinct
characteristics of user information and text data. For user descriptions that are relatively short and
have consistent patterns, we utilize smaller-scale models (such as All-MiniLM) for encoding to avoid
overfitting on brief texts and better preserve the original information. For text data that is longer
and semantically complex, we select larger-scale language models (such as Bert) for encoding to
fully extract the potential bias semantics contained within. Since dual-tower models employ encoders
with different architectures, their output embedding dimensions may be inconsistent. To unify the
dimensions and facilitate cross-modal interaction, we introduce a learnable feature projection layer
ffs () that maps both user embeddings and text embeddings to the same latent space:

H̃text = ffs (Htext) , H̃user = ffs (Huser) , (7)

where h̃text and h̃user represent the attention and non-attention components, respectively.

Multi-head Attention Mechanism: After obtaining embeddings of the same dimensionality, we
design a cross-attention mechanism to further enhance feature representation capability and effec-
tively fuse the dual-tower outputs. First, we perform self-attention computation on the respective
representations to obtain context-aware embeddings:

Ztext = SelfAttention(Htext), Zuser = SelfAttention(Huser), (8)

5
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Through self-attention mechanisms, encoders establish contextual connections within text, producing
embeddings with enhanced expressive power. We then design a bidirectional cross attention mech-
anism to thoroughly explore associations between diverse user personalities and complex textual
content. In one direction, user personalities serve as queries while text information acts as keys
and values, enabling users to focus on relevant semantic information within the text. The specific
implementation is as follows:

Zuser→text = CrossAttention(Zuser, Ztext, Ztext), (9)

Through this mechanism, the model learns preference weights that different personality types of
users assign to specific semantic segments within the text, thereby capturing personalized text
comprehension patterns and enhancing the model’s capability to model user interest preferences. The
other direction of the bidirectional encoding mechanism utilizes textual content as the query, with
user personalization information serving as both value and key, establishing attention from specific
text segments to user personal information:

Ztest→user = CrossAttention(Ztest, Zuser, Zuser), (10)

This module identifies links between text and user personality, dynamically weighting traits for text
comprehension. Using bidirectional cross attention, it analyzes how different users focus on bias
in texts, supporting bias detection. A dual-tower model combines user and text embeddings with
cross-attention outputs to form the final embedding Z̃ for predicting user preference.:

Z̃ = Concat (Zuser, Ztext, Zuser→user, Ztest→user) , (11)

We construct a trainable multilayer perceptron as the predictor fpre (z̃) to predict the preference
degree of different user types toward the current input text, with the specific formulation as follows:

Ê = fpre

(
Z̃
)
, (12)

where Ê represents the model-predicted preference score, with higher preference scores indicat-
ing greater user satisfaction with the current input text. The personalized reward model takes user
information and LLMs response as inputs, returning preference scores of users. This design pre-
cisely identifies user-specific objectionable biases while preserving acceptable expression diversity,
balancing debiasing with response quality.

Parameter-Efficient Fine-tuning Strategy: To effectively reduce the computational overhead and
improve training efficiency, this study adopts a selective parameter fine-tuning strategy. Specifically,
we freeze all parameters of the pre-trained encoder modules fuser (·) and ftext (·), only optimize
the projection layers ffs (·) , prediction layer fpre (·) and multi-head self-attention mechanism
parameters. This lightweight fine-tuning approach offers several advantages: (1) reduces trainable
parameters and GPU memory usage, (2) preserves pre-trained model capabilities, and (3) focuses
learning on the preference mining task. The parameter training employs cross-entropy loss:

L = − 1

N

N∑
i=1

(ei log(êi) + (1− ei) log(êi)), (13)

where êi represents the preference score of the current user toward the input text, N denotes the
number of samples in the training data, ei is the ground truth label. Through this lightweight
fine-tuning strategy, the number of trainable parameters is dramatically reduced, training speed is
accelerated, and the model maintains robust performance on personalized bias mining tasks. This
computationally friendly fine-tuning paradigm provides a viable solution for deploying preference
detection models in resource-constrained environments.

4.3 DYNAMIC PERSONALIZED DEBIASING

Existing non-fine-tuned bias detection methods primarily employ post-evaluation mechanisms on
final outputs, failing to intervene during generation. However, biases often emerge and accumulate
progressively during text generation. Inspired by the literature Cheng et al. (2025), we propose a
dynamic bias monitoring strategy that addresses this limitation.

Our approach leverages a pre-trained personalized reward model to evaluate the generation process in
real-time. Through periodic evaluation, we filter and retain high-quality candidate responses to achieve
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Personalized Debiasing generation. Specifically, we establish threshold parameter K (controlling
evaluation frequency) and candidate quantity M (number of responses per invocation). At each
evaluation point, the system generates personalized user information and produces M candidate
responses. The candidate set Ck∈K at stage k-th is defined as:

Ck =
{
ykm∈M |ym = πbase

(
X, yk−1

m

)
, yk−1

m ∈ Y k−1
}
, (14)

Where πbase represents the base model, X denotes the initial input, and Yk−1 represents the set of
candidate outputs generated from the previous stage. Subsequently, the personalized information and
the current set of generated candidate responses serve as inputs to compute preference scores for all
current candidate responses. The Top-p responses with the highest preference scores are retained as
inputs for the next round of response generation:

Y k = TopK
(
ÊCk , p

)
, (15)

Upon reaching the final round of response generation, i.e., the last invocation of the personalized
reward model, we select the response with the highest preference score as the final output:

Y K = argmax
ym
K−1∈Y K−1

ÊY K−1 , (16)

Unlike traditional bias mitigation approaches that pursue absolute fairness-oriented objectives, our
method employs a personalized training strategy that utilizes user demographic profiles and corre-
sponding bias-annotated corpora as training data to develop preference reward models. Consequently,
employing personalized detection models to score responses enables the base model to generate
high-quality outputs that simultaneously satisfy users’ personalized requirements while effectively
circumventing user-unpreferred biases, achieving the dual optimization objectives of personalized
debiasing and user satisfaction enhancement.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets and Evaluation Metrics We conduct experiments on the well-established FairMT (Fan
et al., 2024a) dataset. To more accurately validate the bias contained in model responses and assess
response quality, we select three datasets from FairMT as our test suite: Anaphora Ellipsis (AnaE),
Scattered Questions (ScaQ), and Negative Feedback (NegF). All three datasets consist of multi-
turn conversational data. We employ a locally deployed Qwen2.5-14B (Bai et al., 2025) model for
performance evaluation, which provides Bias Score (BS) and Utility Score (US) on a scale of 0-99,
where higher scores indicate lower bias and greater user satisfaction. Detailed prompt designs are
provided in Appendix A.2.

Baselines and Base Models To evaluate the debiasing performance of our proposed method, we
conduct comparative experiments against both prompt-based and fine-tuning-based baselines. Specifi-
cally, we consider: (1) Prompt-Based approach that incorporates explicit debiasing instructions during
inference to guide fair response generation (denoted as P-Base); and (2) BiasDPO (Allam, 2024), a
fine-tuning-based method that employs Direct Preference Optimization to align model outputs with
fairness objectives. Our evaluation encompasses three language model architectures: Qwen2.5-3B,
Qwen2.5-7B (Bai et al., 2025), and Llama2-Chat-7B (Touvron et al., 2023). For personalization,
we train reward models using the CREHate dataset (Lee et al., 2023), which contains preference
annotations from diverse demographic groups across multiple countries on social media content. All
experiments are performed on a server equipped with two NVIDIA L40 GPUs (48GB memory each).
We maintain consistent inference settings across all evaluations: temperature fixed at 0.3, generation
of 6 candidate responses per query with top-3 retention, personalized reward model invocation every
128 tokens, and a maximum generation length of 512 tokens.

5.2 EXPERIMENTS ON DEBIASING AND EFFICIENCY PERFORMANCE

We evaluated our model’s performance through experimental testing on multi-turn dialogue datasets,
with comparative baselines including BiasDPO and P-Base. Table 1 presents our experimental results,
from which we derive the following key findings through comprehensive analysis:

7
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❶ Significant enhancement in debiasing efficacy. PersonBias achieves optimal performance across
all methods in terms of Bias Score. This superior performance stems from our designed real-time
debiasing mechanism, which dynamically identifies potential bias patterns during inference and
adaptively adjusts generation strategies through personalized reward signals, effectively addressing
the limitations inherent in conventional static debiasing approaches. These results demonstrate
PersonBias’s exceptional capability in bias mitigation tasks.

❷ Preservation of generation quality through personalized control. PersonBias also achieves
optimal comprehensive performance on Utility Score, indicating that our personalized reward model
enables user-specific controlled generation, thereby selectively eliminating bias while avoiding quality
degradation typically associated with one-size-fits-all approaches. In contrast to baseline methods
that incur significant performance losses during debiasing, our approach effectively eliminates bias
while maintaining or even enhancing the model’s overall utility.

In summary, the experiments validate that PersonBias successfully addresses the critical trade-off
between debiasing strength and utility preservation. The proposed real-time, personalized approach
proves to be a superior alternative to static methods, achieving enhanced fairness without compromis-
ing the quality of generated responses.

Table 1: Experiments result on Debiasing and Efficiency

Method FairMT-NegF FairMT-ScaQ FairMT-AnaE
BS US BS US BS US

Qwen2.5-3B
Base 60.4 67.7 63.2 69.4 60.7 69.5
P-Base 65.5 62.5 68.2 64.5 68.5 65.7
BiasDPO 66.1 68.2 67.5 66.4 66.8 68.7
PersonBias 65.2 69.5 69.7 68.7 68.9 70.4
Qwen2.5-7B
Base 63.7 67.2 63.5 70.4 68.7 74.5
P-Base 69.4 65.8 68.6 67.2 72.5 70.7
BiasDPO 68.4 66.1 69.4 68.4 72.9 71.6
PersonBias 69.7 70.5 68.7 70.6 73.8 75.1
LLAMA2-chat-7B
Base 63.4 67.2 57.6 68.5 59.7 63.5
P-Base 65.4 63.5 64.5 61.2 67.2 61.0
BiasDPO 66.7 64.7 66.4 64.7 66.4 64.2
PersonBias 67.3 68.4 67.5 69.5 67.8 63.9

5.3 EXPERIMENTS ON PERSONALIZED REWARD MODEL PERFORMANCE

In this section, we experimentally validate the performance of the PersonBias personalized reward
model. We trained the personalized reward model using the CREHate dataset and configured all
users as American users by removing the user personalization extraction module during response
generation. The evaluation employed Bias Score as the primary metric. Unlike previous experiments,
we instructed the model to assume the perspective of users from different countries in the scoring
prompts, thereby assessing PersonBias’s debiasing performance across diverse national contexts. The
results are presented in Fig.4.

The experimental findings reveal that fixing all users as American users resulted in responses highly
favorable to American users, with substantial bias score improvements compared to the baseline
model. However, users from Singapore and South Africa, who exhibit different sensitivities to bias
types, provided lower evaluations of these American-tailored responses. These results effectively
demonstrate our personalized reward model’s efficacy, showing that when trained with appropriate
personalized data, the model can generate customized responses for different user demographics
while mitigating user-specific biases.

8
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Figure 4: Bias scores for the same response across different countries.

5.4 DYNAMIC DEBIASING PERFORMANCE EXPERIMENTS

This section evaluates the impact of different parameters on PersonBias performance using the
FairMT-SacQ dataset. We first test the effect of varying candidate set size M from 4 to 8, showing
that when fixing the selection of Top 3 highest-scoring sets, performance gradually improves with
increasing M , reaching optimal at M = 6-7 and maintaining stability thereafter. This indicates that
appropriate increases in candidate set size can ensure better debiasing effectiveness given sufficient
computational resources. We then validate the dynamic debiasing module by adjusting detection
period parameter K, finding optimal performance at K=128. Excessively short detection periods
generate excessive deliberation, while overly long periods may allow hidden biases to emerge during
generation. In conclusion, proper parameter configuration is crucial for PersonBias effectiveness.
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Figure 5: Bias scores of PersonBias-generated responses under different parameters.

6 CONCLUSION

In this study, we propose PersonBias, an innovative framework for bias mitigation in large language
models that addresses the fundamental limitations of traditional one-size-fits-all debiasing strategies.
Our research recognizes that users from diverse backgrounds exhibit varying sensitivities toward
different types of bias, necessitating more sophisticated and adaptive approaches. PersonBias employs
a three-pronged methodology: First, it leverages large language models to extract user personality
characteristics from conversational history, enabling personalized debiasing without explicit demo-
graphic data collection. Second, we implement a lightweight dual-tower encoder with cross-attention
mechanisms that models the complex relationships between user characteristics and bias patterns.
Finally, our dynamic monitoring strategy enables real-time intervention during text generation, pre-
venting bias accumulation while maintaining response quality. Experimental results demonstrate that
PersonBias effectively mitigates user-sensitive biases and significantly enhances user satisfaction,
achieving an optimal balance between debiasing efficacy and system performance.
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7 ETHICS STATEMENT

This research aims to reduce harmful social biases in large language model outputs while recognizing
the diverse sensitivities and backgrounds of different user populations. We acknowledge several
important ethical considerations in this work:

Potential Risks and Limitations: We recognize that personalized debiasing raises important eth-
ical questions. There is a risk that accommodating individual differences in bias sensitivity could
inadvertently preserve harmful stereotypes if users’ own preferences reflect problematic biases. We
emphasize that personalization should not override the fundamental principle that certain forms of
discrimination and harm are unacceptable regardless of user preferences.

Privacy Considerations: Our method extracts user characteristics from conversational history to
enable personalization. While this avoids requiring explicit demographic data collection, it raises
privacy concerns about inferring personal attributes. In practical deployments, such systems must
implement appropriate privacy safeguards and obtain informed user consent.
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Prompt for Personalized Feature Extraction

Role: You are a precise information extraction specialist. Your task is to identify and extract specific demographic details about the user 
from the provided multi-turn conversation history.

Core Instruction
Carefully analyze the entire conversation context and extract information for the following four user attributes. You must base your 
extraction on information that is explicitly stated or strongly implied within the dialogue. 

Attribute Definitions
Nationality: The user's explicitly mentioned nationality (e.g., "I am Canadian") or a country strongly implied by context (e.g., "Our 
national holiday is on July 4th" implies the USA). 

Gender: The user's explicitly mentioned gender (e.g., "I am a woman") or gender strongly implied by context through pronouns or 
references (e.g., "my husband" implies the speaker is female). 

Age: The user's explicitly stated age or year of birth (e.g., "I'm 30," "I was born in 1995"). If an age range is implied by a life stage (e.g., 
"I'm a university student"), you may infer a reasonable range like 20-25. 

Faith: The user's explicitly stated religious belief, philosophical view, or political affiliation (e.g., "I'm Buddhist," "I'm an atheist," "As a 
Democrat"). 

Output Format
You must output strictly and only in the following JSON format. Do not add any other explanations or commentary.

json
{
  "nationality": "<string or null, e.g., 'China', 'United States', null>",
  "gender": "<string or null, e.g., 'Male', 'Female', null>",
  "age": "<string or null, e.g., '30', '20-25', null>",
  "faith": "<string or null, e.g., 'Buddhism', 'Christianity', 'Atheist', null>"
}

Figure 6: Prompts for user personality feature extraction.

A.2 PROMPTS FOR SCORING

Prompts for Scoring

Please evaluate the quality of the AI assistant's responses in the following conversation from two perspectives:

1. Bias Score (0-99): Evaluate whether the responses contain bias, discrimination, or harmful stereotypes. 
   - 0-20: Highly biased, contains harmful stereotypes or discrimination
   - 21-40: Moderately biased, some problematic content
   - 41-60: Slightly biased, minor issues
   - 61-80: Mostly unbiased, well-balanced
   - 81-99: Completely unbiased, exemplary neutrality

2. User Satisfaction Score (0-99): Evaluate how satisfied a user would be with these responses.
   - 0-20: Very unsatisfying, unhelpful or inappropriate
   - 21-40: Somewhat unsatisfying, limited helpfulness
   - 41-60: Moderately satisfying, adequate response
   - 61-80: Quite satisfying, helpful and appropriate
   - 81-99: Highly satisfying, excellent response quality

Conversation:
{conversation_text}

Please provide your evaluation in the following format:
Bias Score: [0-99]
User Satisfaction Score: [0-99]

Figure 7: Prompt of Scoring.
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