

000 PERSONBIAS: A LIGHTWEIGHT FRAMEWORK FOR PER- 001 SONALIZED BIAS MITIGATION IN LARGE LANGUAGE 002 MODELS 003

004 **Anonymous authors**
 005
 006

007 Paper under double-blind review
 008
 009

010 ABSTRACT 011

012 Social bias in large language models (LLMs) outputs has emerged as a critical
 013 challenge in artificial intelligence. While existing bias detection methods pursue
 014 comprehensive identification and elimination of implicit biases, this *one-size-fits-*
 015 *all* approach presents significant limitations. Excessive bias correction causes
 016 responses to deviate from user query intent, comprehensive detection demands
 017 extensive human annotation and computational resources, and critically, user hetero-
 018 geneity dictates that different individuals with diverse backgrounds and personality
 019 traits exhibit varying sensitivities toward different bias types. To address these chal-
 020 lenges, we propose PersonBias, a lightweight, personalized debiasing framework
 021 that balances bias mitigation with response quality optimization. Our approach
 022 leverages LLMs to automatically extract user personality features from conver-
 023 sational contexts, eliminating the need for explicit demographic data collection.
 024 We develop a dual-tower encoder architecture with cross-attention mechanisms to
 025 model user-specific bias sensitivities, employing parameter-efficient fine-tuning
 026 that freezes encoder parameters while optimizing only projection layers and at-
 027 tention mechanisms. Rather than requiring model-specific fine-tuning, PersonBias
 028 operates through real-time intervention during generation, dynamically evaluating
 029 and adjusting outputs at fixed token intervals to prevent bias accumulation while
 030 maintaining relevance and utility. Experiments on multi-turn dialogue datasets
 031 demonstrate that PersonBias achieves superior bias reduction and utility preserva-
 032 tion compared to prompt-based and fine-tuning baselines, offering a practical and
 033 adaptive solution for personalized fairness in LLMs.
 034

035 1 INTRODUCTION

036 In recent years, Large Language Models (LLMs) (Achiam et al., 2023; Liu et al., 2024a; Bai et al.,
 037 2023) have demonstrated remarkable reasoning and emergent capabilities, leading to their widespread
 038 adoption across diverse domains. Despite their impressive performance, recent studies have revealed
 039 that LLMs exhibit systematic social biases against certain demographic groups during response
 040 generation. This phenomenon significantly impedes the deployment and adoption of LLMs across
 041 different geographical regions and application domains. (Lin & Li, 2025; Gallegos et al., 2024a)
 042 Consequently, effectively mitigating multiple biases in LLM generation processes has emerged as a
 043 critical challenge in fairness research for large language models.
 044

045 Current debiasing approaches for LLMs can be categorized into two primary paradigms: fine-
 046 tuning-based methods and prompt-based methods. Fine-tuning-based approaches typically employ
 047 reinforcement learning strategies such as Reinforcement Learning from Human Feedback (RLHF)
 048 (Casper et al., 2023) to model biases, followed by Parameter-Efficient Fine-Tuning (PEFT) (Han
 049 et al., 2024) strategies to fundamentally mitigate model biases (Tan et al., 2024b; Wagner et al.,
 050 2025). While these methods demonstrate substantial effectiveness, they require extensive human-
 051 annotated high-quality bias datasets and substantial computational resources. Consequently, prompt-
 052 based methods (Zhang et al., 2025a; Furniturewala et al., 2024) are often adopted in resource-
 053 constrained environments or when dealing with black-box models. These approaches typically
 054 leverage carefully crafted prompts or model-generated prompt templates to guide LLMs, thereby
 055 intervening in the generation process to produce unbiased responses. While existing methods have
 056

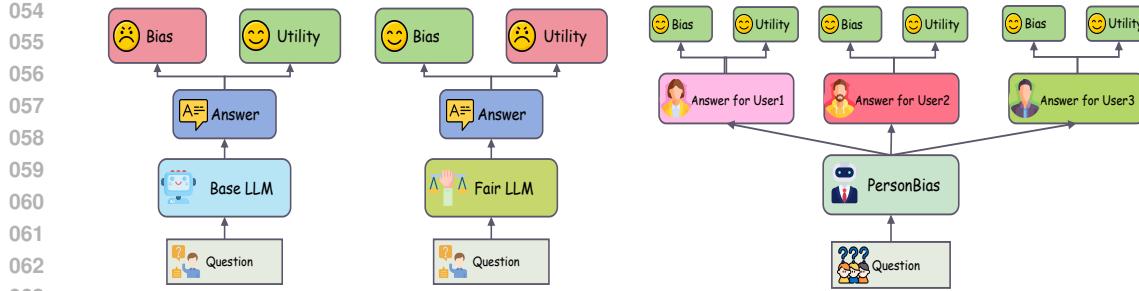
Figure 1: Problems of *one-size-fits-all* Debiasing.

Figure 2: Core Idea of PersonBias.

achieved notable progress in eliminating language model biases, these *one-size-fits-all* debiasing strategies exhibit significant limitations. First, as shown in Fig.1, from the perspective of user requirement adaptation, models that pursue absolute fairness often impose complex constraints on LLM outputs, potentially causing responses to deviate from users' actual needs (Lin et al., 2025). Moreover, the inherent heterogeneity of user populations indicates substantial variations in sensitivity and tolerance thresholds for different types of biases across users with diverse backgrounds and individual characteristics. Second, regarding implementation feasibility, fine-tuning-based debiasing methods typically demand large-scale annotated data and prohibitive computational costs, making them impractical in resource-constrained environments or when dealing with black-box models. Third, considering temporal dynamics, biases in multi-turn dialogues or long-text generation scenarios often manifest through progressive revelation and cumulative amplification (Li et al., 2025; Cheng et al., 2025). Existing prompt-engineering methods lack real-time monitoring capabilities for the generation process, potentially leading to gradual bias amplification. Based on this analysis, LLM debiasing research faces three core challenges: (1) how to construct personalized debiasing frameworks that accommodate heterogeneous user requirements, (2) how to implement lightweight yet effective debiasing mechanisms under resource constraints, and (3) how to establish bias detection and correction systems that integrate real-time monitoring with adaptive adjustment.

To address these challenges, we propose a Personalized Debiasing framework named PersonBias, whose core architecture comprises three key components, Fig.2 illustrates the core idea of PersonBias. First, we construct a user profile extraction module that leverages LLMs to extract personalized characteristics from historical dialogue data. Second, we design a personalized preference reward model employing a dual-tower encoder architecture with independent encoders for user information and textual content. Multi-head cross-attention mechanisms capture correlation patterns between user features and textual bias information to generate personalized evaluation scores. We adopt parameter-efficient fine-tuning, freezing encoder parameters while optimizing only mapping layers, prediction layers, and attention mechanisms. Finally, we introduce a dynamic debiasing strategy that periodically evaluates real-time generated content using the personalized reward model, filtering low-scoring text while retaining high-quality outputs to ensure optimal user satisfaction. Our main contributions are:

- We propose a personalized debiasing framework (PersonBias) that automatically extracts user characteristics from conversational history and employs a lightweight dual-tower encoder architecture with cross-attention mechanisms to model user-specific bias sensitivities, enabling tailored bias detection without requiring explicit demographic data collection.
- We introduce a dynamic bias monitoring strategy that performs real-time intervention during text generation by periodically evaluating candidate responses at fixed token intervals, preventing bias accumulation while preserving response relevance and utility.
- Experiments on multi-turn dialogues show that PersonBias significantly mitigates bias while preserving utility, outperforming both prompt-based and fine-tuning methods to provide a practical, adaptive path toward fairness in LLMs.

2 RELATED WORK

2.1 BIAS MITIGATION IN LANGUAGE MODELS

Eliminating bias in language model responses represents a critical challenge in current research on model fairness. Recent debiasing research for language models primarily employs two methodological approaches: fine-tuning-based and prompt-based debiasing techniques. **Fine-tuning-based methods** adjust model parameters through various specialized tuning strategies and architectural designs, including reinforcement learning-based fine-tuning (Fan et al., 2025; Tomar et al., 2025), causal theory-informed fine-tuning (Sun et al., 2024; Wu et al., 2024), continual debiasing strategy (Lee et al., 2025; Kim et al., 2024) and module-level intervention strategies (Cheng et al., 2025; Chen et al., 2023). Additionally, some approaches utilize LLMs or manually curated comprehensive bias datasets (Fan et al., 2024b; Zhou et al., 2025; Fan et al., 2024a) to either fine-tune models or serve as external knowledge bases for bias detection guidance. In contrast, **Prompt-based methods** (Yang et al., 2025; Zhang et al., 2025a; Chisca et al., 2024; Yang et al., 2023) leverage carefully engineered prompts and debiasing data as guidance mechanisms (Furniturewala et al., 2024; Gallegos et al., 2024b), enabling language models to generate equitable responses while circumventing complex fine-tuning procedures. These methods fail to account for the potential response deviation or even irrelevance caused by a *one-size-fits-all* debiasing strategy during the debiasing process.

2.2 PERSONALIZED LLMs

Due to user heterogeneity and varying requirements for large language models, personalized LLMs have become a prominent research direction (Liu et al., 2025; Zhang et al., 2025b). Existing approaches can be categorized into two main classes: (1) **Fine-tuning-based Personalized LLMs**: The core strategy of this approach involves training dedicated LLM models tailored to individual users based on their personalized data (Tan et al., 2024b;a). Given the substantial computational costs associated with full fine-tuning, current research in fine-tuning-based personalized LLMs predominantly focuses on exploring Parameter-Efficient Fine-Tuning (PEFT) methods (Wagner et al., 2025; Peng et al., 2024) to achieve cost-effective personalization of large language models. (2) **Retrieval-based Personalized LLMs**: Considering the prohibitive costs of fine-tuning and the practical deployment challenges of maintaining dedicated models for all users, retrieval-based personalized LLM approaches have emerged, inspired by Retrieval-Augmented Generation (RAG) techniques (Lewis et al., 2020). The primary mechanism of these methods involves retrieving relevant documents from users' historical interaction records that correspond to current queries, and constructing personalized contextual prompts for LLMs based on these retrieved documents to enable personalized response generation (Salemi et al., 2024; Tang et al., 2024; Zhu et al., 2025). It is noteworthy that existing personalized approaches primarily concentrate on user recommendation systems, with relatively limited attention devoted to the debiasing domain, thereby presenting significant opportunities for future research endeavors.

3 PROBLEM FORMALIZATION

The core objective of debiasing strategies for LLMs is to comprehensively identify and eliminate biases present in model responses. Such methods typically train a reward model based on a bias dataset or directly employ the dataset as an external knowledge base to accurately detect latent bias information in responses of the base model π_{base} to input X , subsequently guiding the model to regenerate answers while avoiding similar biased terms. This process can be formalized as follows:

$$S = \mathcal{D}(\pi_{base}(X), B), \quad (1)$$

where S is the bias score of a response, quantifying the degree of bias in the response, \mathcal{D} denotes the debiasing module, and B represents the bias dataset. However, these methods typically adopt a *one-size-fits-all* strategy aimed at comprehensively identifying all types of biases, which may lead to over-correction of response, causing the generated content to deviate from users' query intentions.

In practical application scenarios, user heterogeneity determines that different users exhibit significant variations in their concern levels for specific biases. To address this limitation, we propose constructing a personalized debiasing module to thoroughly explore the association mechanisms between user

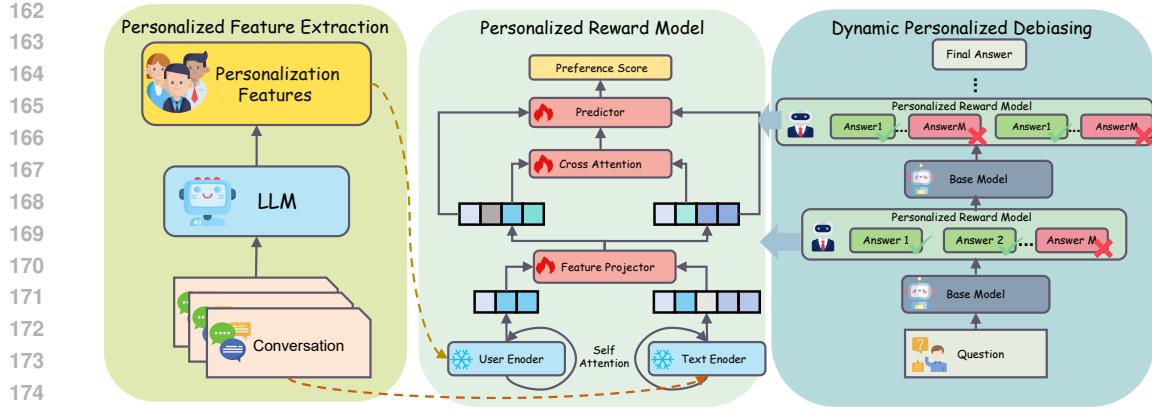


Figure 3: Overview of PersonBias.

178 personality types and bias categories, replacing the original global debiasing strategy to provide
 179 tailored debiasing solutions for different users. This module can be formally defined as:

$$S_P = \mathcal{D}'(\pi_{base}(X), B, X_{user}), \quad (2)$$

183 where X_{user} represents the user's personalized information. The personalized debiasing module
 184 leverages joint training on user personality data and bias datasets, enabling it to conduct personalized
 185 assessments of responses based on different users' sensitivity levels to various bias types and output
 186 bias scores tailored to specific users. This design not only effectively removes key biases of concern
 187 to users but also preserves the informativeness and effectiveness of responses to the greatest extent
 188 possible, thereby achieving a better balance between debiasing and utility.

4 MERHOD

192 Fig.3 illustrates the workflow of our proposed PersonBias framework. The methodology consists of
 193 three key components. First, we employ a LLM to extract personalized user characteristics from his-
 194 torical dialogue data, which serve as the output for the subsequent user encoder. Second, we develop
 195 a personalized reward model based on a dual-tower encoder architecture to model the associative
 196 relationships between personalized user features and biased text. To reduce computational overhead,
 197 we freeze the encoder parameters and train only the multi-head attention scores, projector, and predi-
 198 citor parameters. Third, we implement a dynamic bias detection mechanism that periodically evaluates
 199 candidate text using the personalized reward model at fixed token intervals, retaining high-scoring
 200 responses for continued generation. This mechanism enables the model to suppress potential biases
 201 that may emerge during the response generation process. In summary, the PersonBias framework not
 202 only generates personalized responses tailored to different user types but also maximally suppresses
 203 user-specific biases of concern. This dual capability ensures that generated responses maintain both
 204 low bias and high utility, addressing the critical challenge of balancing personalization with fairness
 205 in language model outputs.

4.1 LLM-DRIVEN USER INFORMATION EXTRACTION

208 In real-world application scenarios, user characteristics closely related to bias detection, such as
 209 gender, age, race, and religion, are often difficult to obtain directly due to privacy policy constraints.
 210 To address such cold-start problems, inspired by Liu et al. (2024b), we employ large language models
 211 to automatically infer these attributes from users' historical dialogues.

212 Users often reveal personal characteristics intentionally or unintentionally across different contexts in
 213 multi-turn conversations. For instance, users may mention "I frequently participated in programming
 214 competitions during my college years" or "As a mother of two, I enjoy exploring recipes in my
 215 spare time," thereby indirectly indicating information about their age group, gender, or family roles.
 Therefore, when extracting user information, reliance should not be placed solely on single-turn

216 dialogue content; rather, contextual information from multiple historical conversations should be
 217 integrated to achieve coherent inference of user characteristics through semantic association.
 218

219 Within the PersonBias, we employ high-performance large language models (such as GPT-3.5
 220 and Qwen2.5) to predict users' personal information from multi-turn conversations. The specific
 221 prompt design is presented in Appendix A.1. Leveraging the powerful summarization and generation
 222 capabilities of LLMs, we can obtain reliable personalized user information for individualized bias
 223 detection. Ultimately, we acquire user personalization information in the following format for
 224 subsequent user information encoding:

$$225 \quad X_{user} = \{[\text{religion}], [\text{gender}], [\text{age}], [\text{country}]\}, \quad (3)$$

226 Considering the semantic sparsity inherent in regional names, this study employs text augmentation
 227 strategies to enhance encoding effectiveness. Specifically, we perform batch padding of the acquired
 228 user information according to a fixed format, with specific padding examples as follows:
 229

$$230 \quad \hat{X}_{user} = \text{"The user is a person from [country], [gender], [age] years old, [religion]."}, \quad (4)$$

231 By converting discretized user information into a continuous sentence, the language model can
 232 better capture complex semantic associations and contextual dependencies, thereby more effectively
 233 learning personalized user characteristics.
 234

235 4.2 PERSONALIZED BIAS REWARD MODEL

236 Having extracted personalized user characteristics, the key technical challenge is establishing effec-
 237 tive mappings between diverse user attributes and various bias types. To address this, we propose a
 238 personalized reward model employing a dual-tower encoder framework. This architecture uses two
 239 lightweight language models to independently encode user personalization features and potentially
 240 biased dialogue content. Through a multi-layer cross-attention mechanism that captures associations
 241 between user characteristics and textual bias patterns, the model achieves fine-grained feature in-
 242 teraction. This enables accurate prediction of personalized user preferences toward textual content,
 243 providing the technical foundation for effective Personalized Debiasing and mitigation.
 244

245 **Dual Tower Encoder:** First, the augmented sentence is fed into the user encoder $f_{user}(\cdot)$ within the
 246 dual-tower encoder to obtain the user embedding H_{user} :

$$247 \quad H_{user} = f_{user}(\hat{X}_{user}), \quad (5)$$

248 After obtaining user embeddings, we input the text information generated by large language models
 249 into the text encoder $f_{text}(\cdot)$ of the dual-tower encoder to obtain text embeddings:
 250

$$252 \quad H_{text} = f_{text}(X_{text}), \quad (6)$$

253 During the encoding process, we employ language models of different scales based on the distinct
 254 characteristics of user information and text data. For user descriptions that are relatively short and
 255 have consistent patterns, we utilize smaller-scale models (such as All-MiniLM) for encoding to avoid
 256 overfitting on brief texts and better preserve the original information. For text data that is longer
 257 and semantically complex, we select larger-scale language models (such as Bert) for encoding to
 258 fully extract the potential bias semantics contained within. Since dual-tower models employ encoders
 259 with different architectures, their output embedding dimensions may be inconsistent. To unify the
 260 dimensions and facilitate cross-modal interaction, we introduce a learnable feature projection layer
 261 $f_{fs}(\cdot)$ that maps both user embeddings and text embeddings to the same latent space:
 262

$$263 \quad \tilde{H}_{text} = f_{fs}(H_{text}), \quad \tilde{H}_{user} = f_{fs}(H_{user}), \quad (7)$$

264 where \tilde{h}_{text} and \tilde{h}_{user} represent the attention and non-attention components, respectively.
 265

266 **Multi-head Attention Mechanism:** After obtaining embeddings of the same dimensionality, we
 267 design a cross-attention mechanism to further enhance feature representation capability and effec-
 268 tively fuse the dual-tower outputs. First, we perform self-attention computation on the respective
 269 representations to obtain context-aware embeddings:

$$Z_{text} = \text{SelfAttention}(H_{text}), \quad Z_{user} = \text{SelfAttention}(H_{user}), \quad (8)$$

270 Through self-attention mechanisms, encoders establish contextual connections within text, producing
 271 embeddings with enhanced expressive power. We then design a bidirectional cross attention mech-
 272 anism to thoroughly explore associations between diverse user personalities and complex textual
 273 content. In one direction, user personalities serve as queries while text information acts as keys
 274 and values, enabling users to focus on relevant semantic information within the text. The specific
 275 implementation is as follows:

$$Z_{user \rightarrow text} = \text{CrossAttention}(Z_{user}, Z_{text}, Z_{text}), \quad (9)$$

276 Through this mechanism, the model learns preference weights that different personality types of
 277 users assign to specific semantic segments within the text, thereby capturing personalized text
 278 comprehension patterns and enhancing the model’s capability to model user interest preferences. The
 279 other direction of the bidirectional encoding mechanism utilizes textual content as the query, with
 280 user personalization information serving as both value and key, establishing attention from specific
 281 text segments to user personal information:

$$Z_{text \rightarrow user} = \text{CrossAttention}(Z_{text}, Z_{user}, Z_{user}), \quad (10)$$

282 This module identifies links between text and user personality, dynamically weighting traits for text
 283 comprehension. Using bidirectional cross attention, it analyzes how different users focus on bias
 284 in texts, supporting bias detection. A dual-tower model combines user and text embeddings with
 285 cross-attention outputs to form the final embedding \tilde{Z} for predicting user preference.:

$$\tilde{Z} = \text{Concat}(Z_{user}, Z_{text}, Z_{user \rightarrow user}, Z_{text \rightarrow user}), \quad (11)$$

286 We construct a trainable multilayer perceptron as the predictor $f_{pre}(\tilde{Z})$ to predict the preference
 287 degree of different user types toward the current input text, with the specific formulation as follows:

$$\hat{E} = f_{pre}(\tilde{Z}), \quad (12)$$

288 where \hat{E} represents the model-predicted preference score, with higher preference scores indicat-
 289 ing greater user satisfaction with the current input text. The personalized reward model takes user
 290 information and LLMs response as inputs, returning preference scores of users. This design pre-
 291 cisely identifies user-specific objectionable biases while preserving acceptable expression diversity,
 292 balancing debiasing with response quality.

300 **Parameter-Efficient Fine-tuning Strategy:** To effectively reduce the computational overhead and
 301 improve training efficiency, this study adopts a selective parameter fine-tuning strategy. Specifically,
 302 we freeze all parameters of the pre-trained encoder modules $f_{user}(\cdot)$ and $f_{text}(\cdot)$, only optimize
 303 the projection layers $f_{fs}(\cdot)$, prediction layer $f_{pre}(\cdot)$ and multi-head self-attention mechanism
 304 parameters. This lightweight fine-tuning approach offers several advantages: (1) reduces trainable
 305 parameters and GPU memory usage, (2) preserves pre-trained model capabilities, and (3) focuses
 306 learning on the preference mining task. The parameter training employs cross-entropy loss:

$$\mathcal{L} = -\frac{1}{N} \sum_{i=1}^N (e_i \log(\hat{e}_i) + (1 - e_i) \log(\hat{e}_i)), \quad (13)$$

310 where \hat{e}_i represents the preference score of the current user toward the input text, N denotes the
 311 number of samples in the training data, e_i is the ground truth label. Through this lightweight
 312 fine-tuning strategy, the number of trainable parameters is dramatically reduced, training speed is
 313 accelerated, and the model maintains robust performance on personalized bias mining tasks. This
 314 computationally friendly fine-tuning paradigm provides a viable solution for deploying preference
 315 detection models in resource-constrained environments.

317 4.3 DYNAMIC PERSONALIZED DEBIASING

318 Existing non-fine-tuned bias detection methods primarily employ post-evaluation mechanisms on
 319 final outputs, failing to intervene during generation. However, biases often emerge and accumulate
 320 progressively during text generation. Inspired by the literature Cheng et al. (2025), we propose a
 321 dynamic bias monitoring strategy that addresses this limitation.

322 Our approach leverages a pre-trained personalized reward model to evaluate the generation process in
 323 real-time. Through periodic evaluation, we filter and retain high-quality candidate responses to achieve

324 Personalized Debiasing generation. Specifically, we establish threshold parameter K (controlling
 325 evaluation frequency) and candidate quantity M (number of responses per invocation). At each
 326 evaluation point, the system generates personalized user information and produces M candidate
 327 responses. The candidate set $C^{k \in K}$ at stage k -th is defined as:

$$328 \quad C^k = \{y_m^k \mid y_m = \pi_{base}(X, y_m^{k-1}), y_m^{k-1} \in Y^{k-1}\}, \quad (14)$$

330 Where π_{base} represents the base model, X denotes the initial input, and Y^{k-1} represents the set of
 331 candidate outputs generated from the previous stage. Subsequently, the personalized information and
 332 the current set of generated candidate responses serve as inputs to compute preference scores for all
 333 current candidate responses. The $Top-p$ responses with the highest preference scores are retained as
 334 inputs for the next round of response generation:

$$335 \quad Y^k = TopK(\hat{E}_{C^k}, p), \quad (15)$$

337 Upon reaching the final round of response generation, i.e., the last invocation of the personalized
 338 reward model, we select the response with the highest preference score as the final output:

$$339 \quad Y^K = \arg \max_{y_{K-1}^m \in Y^{K-1}} \hat{E}_{Y^{K-1}}, \quad (16)$$

342 Unlike traditional bias mitigation approaches that pursue absolute fairness-oriented objectives, our
 343 method employs a personalized training strategy that utilizes user demographic profiles and corre-
 344 sponding bias-annotated corpora as training data to develop preference reward models. Consequently,
 345 employing personalized detection models to score responses enables the base model to generate
 346 high-quality outputs that simultaneously satisfy users' personalized requirements while effectively
 347 circumventing user-unpreferred biases, achieving the dual optimization objectives of personalized
 348 debiasing and user satisfaction enhancement.

349 5 EXPERIMENTS

351 5.1 EXPERIMENTAL SETUP

353 **Datasets and Evaluation Metrics** We conduct experiments on the well-established FairMT (Fan
 354 et al., 2024a) dataset. To more accurately validate the bias contained in model responses and assess
 355 response quality, we select three datasets from FairMT as our test suite: **Anaphora Ellipsis (AnaE)**,
 356 **Scattered Questions (ScaQ)**, and **Negative Feedback (NegF)**. All three datasets consist of multi-
 357 turn conversational data. We employ a locally deployed **Qwen2.5-14B** (Bai et al., 2025) model for
 358 performance evaluation, which provides **Bias Score (BS)** and **Utility Score (US)** on a scale of 0-99,
 359 where higher scores indicate lower bias and greater user satisfaction. Detailed prompt designs are
 360 provided in Appendix A.2.

361 **Baselines and Base Models** To evaluate the debiasing performance of our proposed method, we
 362 conduct comparative experiments against both prompt-based and fine-tuning-based baselines. Specifi-
 363 cally, we consider: (1) Prompt-Based approach that incorporates explicit debiasing instructions during
 364 inference to guide fair response generation (denoted as **P-Base**); and (2) **BiasDPO** (Allam, 2024), a
 365 fine-tuning-based method that employs Direct Preference Optimization to align model outputs with
 366 fairness objectives. Our evaluation encompasses three language model architectures: Qwen2.5-3B,
 367 Qwen2.5-7B (Bai et al., 2025), and Llama2-Chat-7B (Touvron et al., 2023). For personalization,
 368 we train reward models using the CREHate dataset (Lee et al., 2023), which contains preference
 369 annotations from diverse demographic groups across multiple countries on social media content. All
 370 experiments are performed on a server equipped with two NVIDIA L40 GPUs (48GB memory each).
 371 We maintain consistent inference settings across all evaluations: temperature fixed at 0.3, generation
 372 of 6 candidate responses per query with top-3 retention, personalized reward model invocation every
 373 128 tokens, and a maximum generation length of 512 tokens.

374 5.2 EXPERIMENTS ON DEBIASING AND EFFICIENCY PERFORMANCE

376 We evaluated our model's performance through experimental testing on multi-turn dialogue datasets,
 377 with comparative baselines including **BiasDPO** and **P-Base**. Table 1 presents our experimental results,
 from which we derive the following key findings through comprehensive analysis:

378 **1 Significant enhancement in debiasing efficacy.** PersonBias achieves optimal performance across
 379 all methods in terms of Bias Score. This superior performance stems from our designed real-time
 380 debiasing mechanism, which dynamically identifies potential bias patterns during inference and
 381 adaptively adjusts generation strategies through personalized reward signals, effectively addressing
 382 the limitations inherent in conventional static debiasing approaches. These results demonstrate
 383 PersonBias’s exceptional capability in bias mitigation tasks.

384 **2 Preservation of generation quality through personalized control.** PersonBias also achieves
 385 optimal comprehensive performance on Utility Score, indicating that our personalized reward model
 386 enables user-specific controlled generation, thereby selectively eliminating bias while avoiding quality
 387 degradation typically associated with *one-size-fits-all* approaches. In contrast to baseline methods
 388 that incur significant performance losses during debiasing, our approach effectively eliminates bias
 389 while maintaining or even enhancing the model’s overall utility.

390 In summary, the experiments validate that PersonBias successfully addresses the critical trade-off
 391 between debiasing strength and utility preservation. The proposed real-time, personalized approach
 392 proves to be a superior alternative to static methods, achieving enhanced fairness without compromis-
 393 ing the quality of generated responses.

395 Table 1: Experiments result on Debiasing and Efficiency

Method	FairMT-NegF		FairMT-ScaQ		FairMT-AnaE	
	BS	US	BS	US	BS	US
Qwen2.5-3B						
Base	60.4	67.7	63.2	69.4	60.7	69.5
P-Base	65.5	62.5	68.2	64.5	68.5	65.7
BiasDPO	66.1	68.2	67.5	66.4	66.8	68.7
PersonBias	65.2	69.5	69.7	68.7	68.9	70.4
Qwen2.5-7B						
Base	63.7	67.2	63.5	70.4	68.7	74.5
P-Base	69.4	65.8	68.6	67.2	72.5	70.7
BiasDPO	68.4	66.1	69.4	68.4	72.9	71.6
PersonBias	69.7	70.5	68.7	70.6	73.8	75.1
LLAMA2-chat-7B						
Base	63.4	67.2	57.6	68.5	59.7	63.5
P-Base	65.4	63.5	64.5	61.2	67.2	61.0
BiasDPO	66.7	64.7	66.4	64.7	66.4	64.2
PersonBias	67.3	68.4	67.5	69.5	67.8	63.9

417 5.3 EXPERIMENTS ON PERSONALIZED REWARD MODEL PERFORMANCE

419 In this section, we experimentally validate the performance of the PersonBias personalized reward
 420 model. We trained the personalized reward model using the CREHate dataset and configured all
 421 users as American users by removing the user personalization extraction module during response
 422 generation. The evaluation employed Bias Score as the primary metric. Unlike previous experiments,
 423 we instructed the model to assume the perspective of users from different countries in the scoring
 424 prompts, thereby assessing PersonBias’s debiasing performance across diverse national contexts. The
 425 results are presented in Fig.4.

426 The experimental findings reveal that fixing all users as American users resulted in responses highly
 427 favorable to American users, with substantial bias score improvements compared to the baseline
 428 model. However, users from Singapore and South Africa, who exhibit different sensitivities to bias
 429 types, provided lower evaluations of these American-tailored responses. These results effectively
 430 demonstrate our personalized reward model’s efficacy, showing that when trained with appropriate
 431 personalized data, the model can generate customized responses for different user demographics
 while mitigating user-specific biases.

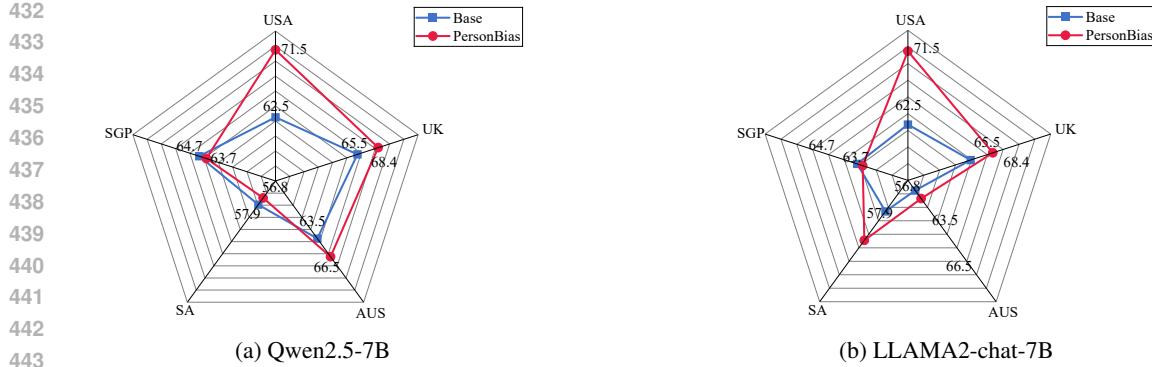


Figure 4: Bias scores for the same response across different countries.

5.4 DYNAMIC DEBIASING PERFORMANCE EXPERIMENTS

This section evaluates the impact of different parameters on PersonBias performance using the FairMT-SacQ dataset. We first test the effect of varying candidate set size M from 4 to 8, showing that when fixing the selection of Top 3 highest-scoring sets, performance gradually improves with increasing M , reaching optimal at $M = 6-7$ and maintaining stability thereafter. This indicates that appropriate increases in candidate set size can ensure better debiasing effectiveness given sufficient computational resources. We then validate the dynamic debiasing module by adjusting detection period parameter K , finding optimal performance at $K=128$. Excessively short detection periods generate excessive deliberation, while overly long periods may allow hidden biases to emerge during generation. In conclusion, proper parameter configuration is crucial for PersonBias effectiveness.

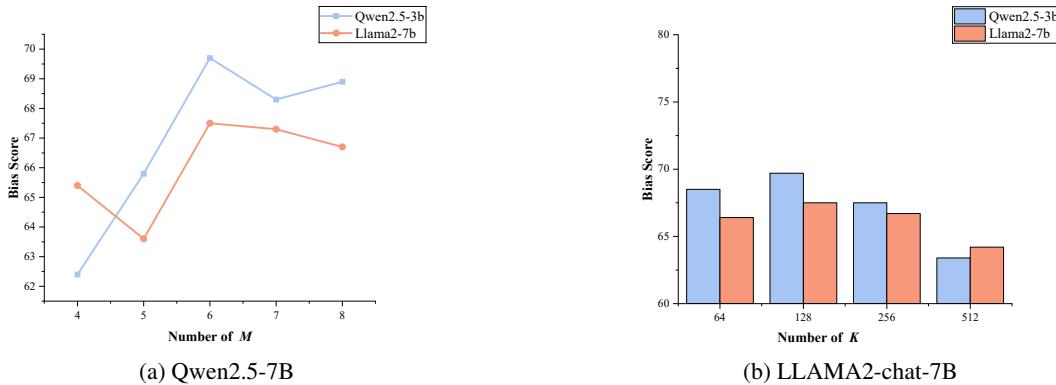


Figure 5: Bias scores of PersonBias-generated responses under different parameters.

6 CONCLUSION

In this study, we propose PersonBias, an innovative framework for bias mitigation in large language models that addresses the fundamental limitations of traditional *one-size-fits-all* debiasing strategies. Our research recognizes that users from diverse backgrounds exhibit varying sensitivities toward different types of bias, necessitating more sophisticated and adaptive approaches. PersonBias employs a three-pronged methodology: First, it leverages large language models to extract user personality characteristics from conversational history, enabling personalized debiasing without explicit demographic data collection. Second, we implement a lightweight dual-tower encoder with cross-attention mechanisms that models the complex relationships between user characteristics and bias patterns. Finally, our dynamic monitoring strategy enables real-time intervention during text generation, preventing bias accumulation while maintaining response quality. Experimental results demonstrate that PersonBias effectively mitigates user-sensitive biases and significantly enhances user satisfaction, achieving an optimal balance between debiasing efficacy and system performance.

486 **7 ETHICS STATEMENT**
 487

488 This research aims to reduce harmful social biases in large language model outputs while recognizing
 489 the diverse sensitivities and backgrounds of different user populations. We acknowledge several
 490 important ethical considerations in this work:

491 **Potential Risks and Limitations:** We recognize that personalized debiasing raises important eth-
 492 ical questions. There is a risk that accommodating individual differences in bias sensitivity could
 493 inadvertently preserve harmful stereotypes if users' own preferences reflect problematic biases. We
 494 emphasize that personalization should not override the fundamental principle that certain forms of
 495 discrimination and harm are unacceptable regardless of user preferences.

496 **Privacy Considerations:** Our method extracts user characteristics from conversational history to
 497 enable personalization. While this avoids requiring explicit demographic data collection, it raises
 498 privacy concerns about inferring personal attributes. In practical deployments, such systems must
 499 implement appropriate privacy safeguards and obtain informed user consent.

501 **REFERENCES**
 502

503 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
 504 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
 505 *arXiv preprint arXiv:2303.08774*, 2023.

506 Ahmed Allam. Biasdpo: Mitigating bias in language models through direct preference optimization.
 507 *arXiv preprint arXiv:2407.13928*, 2024.

509 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
 510 Yu Han, Fei Huang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.

512 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 513 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
 514 2025.

515 Stephen Casper, Xander Davies, Claudia Shi, Thomas Krendl Gilbert, Jérémie Scheurer, Javier
 516 Rando, Rachel Freedman, Tomasz Korbak, David Lindner, Pedro Freire, et al. Open problems
 517 and fundamental limitations of reinforcement learning from human feedback. *arXiv preprint*
 518 *arXiv:2307.15217*, 2023.

520 Ruizhe Chen, Jianfei Yang, Huimin Xiong, Jianhong Bai, Tianxiang Hu, Jin Hao, Yang Feng,
 521 Joey Tianyi Zhou, Jian Wu, and Zuozhu Liu. Fast model debias with machine unlearning.
 522 In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and
 523 Sergey Levine (eds.), *Advances in Neural Information Processing Systems 36: Annual Con-
 524 ference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA,
 525 USA, December 10 - 16, 2023*, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/2ecc80084c96cc25b11b0ab995c25f47-Abstract-Conference.html.

527 Xiaoqing Cheng, Ruizhe Chen, Hongying Zan, Yuxiang Jia, and Min Peng. Biasfilter: An inference-
 528 time debiasing framework for large language models. *CoRR*, abs/2505.23829, 2025. doi: 10.48550/
 529 ARXIV.2505.23829. URL <https://doi.org/10.48550/arXiv.2505.23829>.

530 Andrei-Victor Chisca, Andrei-Cristian Rad, and Camelia Lemnaru. Prompting fairness: Learning
 531 prompts for debiasing large language models. In *Proceedings of the Fourth Workshop on Language
 532 Technology for Equality, Diversity, Inclusion*, pp. 52–62, 2024.

534 Zhiting Fan, Ruizhe Chen, Tianxiang Hu, and Zuozhu Liu. Fairmt-bench: Benchmarking fairness for
 535 multi-turn dialogue in conversational llms. *arXiv preprint arXiv:2410.19317*, 2024a.

536 Zhiting Fan, Ruizhe Chen, Ruiling Xu, and Zuozhu Liu. Biasalert: A plug-and-play tool for social
 537 bias detection in llms. *arXiv preprint arXiv:2407.10241*, 2024b.

539 Zhiting Fan, Ruizhe Chen, and Zuozhu Liu. Biasguard: A reasoning-enhanced bias detection
 540 tool for large language models. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and

540 Mohammad Taher Pilehvar (eds.), *Findings of the Association for Computational Linguistics, ACL*
 541 *2025, Vienna, Austria, July 27 - August 1, 2025*, pp. 9753–9764. Association for Computational
 542 Linguistics, 2025. URL <https://aclanthology.org/2025.findings-acl.506/>.

543

544 Shaz Furniturewala, Surgan Jandial, Abhinav Java, Pragyan Banerjee, Simra Shahid, Sumit Bhatia,
 545 and Kokil Jaidka. Thinking fair and slow: On the efficacy of structured prompts for debiasing
 546 language models. *arXiv preprint arXiv:2405.10431*, 2024.

547

548 Isabel O Gallegos, Ryan A Rossi, Joe Barrow, Md Mehrab Tanjim, Sungchul Kim, Franck Dernon-
 549 court, Tong Yu, Ruiyi Zhang, and Nesreen K Ahmed. Bias and fairness in large language models:
 550 A survey. *Computational Linguistics*, 50(3):1097–1179, 2024a.

551

552 Isabel O Gallegos, Ryan A Rossi, Joe Barrow, Md Mehrab Tanjim, Tong Yu, Hanieh Deilamsalehy,
 553 Ruiyi Zhang, Sungchul Kim, and Franck Dernoncourt. Self-debiasing large language models:
 554 Zero-shot recognition and reduction of stereotypes. *arXiv preprint arXiv:2402.01981*, 2024b.

555

556 Zeyu Han, Chao Gao, Jinyang Liu, Jeff Zhang, and Sai Qian Zhang. Parameter-efficient fine-tuning
 557 for large models: A comprehensive survey. *arXiv preprint arXiv:2403.14608*, 2024.

558

559 Doyoung Kim, Dongmin Park, Yooju Shin, Jihwan Bang, Hwanjun Song, and Jae-Gil Lee. Adaptive
 560 shortcut debiasing for online continual learning. In *Proceedings of the AAAI Conference on*
 561 *Artificial Intelligence*, volume 38, pp. 13122–13131, 2024.

562

563 Mingyu Lee, Junho Kim, Jun-Hyung Park, and SangKeun Lee. Continual debiasing: A bias mitigation
 564 framework for natural language understanding systems. *Expert Systems with Applications*, 271:
 565 126593, 2025. ISSN 0957-4174. doi: <https://doi.org/10.1016/j.eswa.2025.126593>. URL <https://www.sciencedirect.com/science/article/pii/S0957417425002155>.

566

567 Nayeon Lee, Chani Jung, Junho Myung, Jiho Jin, Juho Kim, and Alice Oh. Crehate: Cross-cultural
 568 re-annotation of english hate speech dataset. *CoRR*, abs/2308.16705, 2023. doi: 10.48550/ARXIV.
 569 2308.16705. URL <https://doi.org/10.48550/arXiv.2308.16705>.

570

571 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
 572 Heinrich Kütller, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented genera-
 573 tion for knowledge-intensive nlp tasks. *Advances in neural information processing systems*, 33:
 574 9459–9474, 2020.

575

576 Yichen Li, Zhiting Fan, Ruizhe Chen, Xiaotang Gai, Luqi Gong, Yan Zhang, and Zuozhu Liu.
 577 Fairsteer: Inference time debiasing for llms with dynamic activation steering. In Wanxiang
 578 Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar (eds.), *Findings of the*
 579 *Association for Computational Linguistics, ACL 2025, Vienna, Austria, July 27 - August 1, 2025*,
 580 pp. 11293–11312. Association for Computational Linguistics, 2025. URL <https://aclanthology.org/2025.findings-acl.589/>.

581

582 Luyang Lin, Lingzhi Wang, Jinsong Guo, and Kam-Fai Wong. Investigating bias in llm-based bias de-
 583 tection: Disparities between llms and human perception. In Owen Rambow, Leo Wanner, Marianna
 584 Apidianaki, Hend Al-Khalifa, Barbara Di Eugenio, and Steven Schockaert (eds.), *Proceedings of*
 585 *the 31st International Conference on Computational Linguistics, COLING 2025, Abu Dhabi, UAE,*
 586 *January 19-24, 2025*, pp. 10634–10649. Association for Computational Linguistics, 2025. URL
 587 <https://aclanthology.org/2025.coling-main.709/>.

588

589 Xinru Lin and Luyang Li. Implicit bias in llms: A survey. *CoRR*, abs/2503.02776, 2025. doi:
 590 10.48550/ARXIV.2503.02776. URL <https://doi.org/10.48550/arXiv.2503.02776>.

591

592 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
 593 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
 594 *arXiv:2412.19437*, 2024a.

595

596 Jiahong Liu, Zexuan Qiu, Zhongyang Li, Quanyu Dai, Jieming Zhu, Minda Hu, Menglin Yang, and
 597 Irwin King. A survey of personalized large language models: Progress and future directions. *CoRR*,
 598 abs/2502.11528, 2025. doi: 10.48550/ARXIV.2502.11528. URL <https://doi.org/10.48550/arXiv.2502.11528>.

594 Qijiong Liu, Nuo Chen, Tetsuya Sakai, and Xiao-Ming Wu. ONCE: boosting content-based recom-
 595 mendation with both open- and closed-source large language models. In Luz Angelica Caudillo-
 596 Mata, Silvio Lattanzi, Andrés Muñoz Medina, Leman Akoglu, Aristides Gionis, and Sergei
 597 Vassilvitskii (eds.), *Proceedings of the 17th ACM International Conference on Web Search and*
 598 *Data Mining, WSDM 2024, Merida, Mexico, March 4-8, 2024*, pp. 452–461. ACM, 2024b. doi:
 599 10.1145/3616855.3635845. URL <https://doi.org/10.1145/3616855.3635845>.

600 Dan Peng, Zhihui Fu, and Jun Wang. Pocketllm: Enabling on-device fine-tuning for personalized
 601 llms. *CoRR*, abs/2407.01031, 2024. doi: 10.48550/ARXIV.2407.01031. URL <https://doi.org/10.48550/arXiv.2407.01031>.

604 Alireza Salemi, Surya Kallumadi, and Hamed Zamani. Optimization methods for personalizing
 605 large language models through retrieval augmentation. In Grace Hui Yang, Hongning Wang, Sam
 606 Han, Claudia Hauff, Guido Zuccon, and Yi Zhang (eds.), *Proceedings of the 47th International*
 607 *ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2024,*
 608 *Washington DC, USA, July 14-18, 2024*, pp. 752–762. ACM, 2024. doi: 10.1145/3626772.3657783.
 609 URL <https://doi.org/10.1145/3626772.3657783>.

610 Zhouhao Sun, Li Du, Xiao Ding, Yixuan Ma, Yang Zhao, Kaitao Qiu, Ting Liu, and Bing Qin.
 611 Causal-guided active learning for debiasing large language models. In Lun-Wei Ku, Andre
 612 Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association*
 613 *for Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August*
 614 *11-16, 2024*, pp. 14455–14469. Association for Computational Linguistics, 2024. doi: 10.18653/
 615 *V1/2024.ACL-LONG.778*. URL <https://doi.org/10.18653/v1/2024.acl-long.778>.

616 Zhaoxuan Tan, Zheyuan Liu, and Meng Jiang. Personalized pieces: Efficient personalized large
 617 language models through collaborative efforts. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung
 618 Chen (eds.), *Proceedings of the 2024 Conference on Empirical Methods in Natural Language*
 619 *Processing, EMNLP 2024, Miami, FL, USA, November 12-16, 2024*, pp. 6459–6475. Association
 620 *for Computational Linguistics, 2024a*. doi: 10.18653/V1/2024.EMNLP-MAIN.371. URL <https://doi.org/10.18653/v1/2024.emnlp-main.371>.

622 Zhaoxuan Tan, Qingkai Zeng, Yijun Tian, Zheyuan Liu, Bing Yin, and Meng Jiang. Democratizing
 623 large language models via personalized parameter-efficient fine-tuning. In Yaser Al-Onaizan,
 624 Mohit Bansal, and Yun-Nung Chen (eds.), *Proceedings of the 2024 Conference on Empirical*
 625 *Methods in Natural Language Processing, EMNLP 2024, Miami, FL, USA, November 12-16,*
 626 *2024*, pp. 6476–6491. Association for Computational Linguistics, 2024b. doi: 10.18653/V1/2024.
 627 *EMNLP-MAIN.372*. URL <https://doi.org/10.18653/v1/2024.emnlp-main.372>.

628 Xiangru Tang, Xingyao Zhang, Yanjun Shao, Jie Wu, Yilun Zhao, Arman Cohan, Ming Gong,
 629 Dongmei Zhang, and Mark Gerstein. Step-back profiling: Distilling user history for personalized
 630 scientific writing. *CoRR*, abs/2406.14275, 2024. doi: 10.48550/ARXIV.2406.14275. URL
 631 <https://doi.org/10.48550/arXiv.2406.14275>.

633 Aditya Tomar, V. Rudra Murthy, and Pushpak Bhattacharyya. Stereotype detection as a catalyst for
 634 enhanced bias detection: A multi-task learning approach. In Wanxiang Che, Joyce Nabende, Ekaterina
 635 Shutova, and Mohammad Taher Pilehvar (eds.), *Findings of the Association for Computational*
 636 *Linguistics, ACL 2025, Vienna, Austria, July 27 - August 1, 2025*, pp. 17304–17317. Association
 637 *for Computational Linguistics, 2025*. URL <https://aclanthology.org/2025.findings-acl.889/>.

638 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 639 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
 640 and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

641 Dominik Wagner, Ilja Baumann, Natalie Engert, Seanie Lee, Elmar Nöth, Korbinian Riedhammer,
 642 and Tobias Bocklet. Personalized fine-tuning with controllable synthetic speech from llm-generated
 643 transcripts for dysarthric speech recognition. *CoRR*, abs/2505.12991, 2025. doi: 10.48550/ARXIV.
 644 2505.12991. URL <https://doi.org/10.48550/arXiv.2505.12991>.

646 Jialong Wu, Linhai Zhang, Deyu Zhou, and Guoqiang Xu. DINER: debiasing aspect-based
 647 sentiment analysis with multi-variable causal inference. In Lun-Wei Ku, Andre Martins,
 648 and Vivek Srikumar (eds.), *Findings of the Association for Computational Linguistics, ACL*

648 2024, *Bangkok, Thailand and virtual meeting, August 11-16, 2024*, pp. 3504–3518. Association
 649 for Computational Linguistics, 2024. doi: 10.18653/V1/2024.FINDINGS-ACL.208. URL
 650 <https://doi.org/10.18653/v1/2024.findings-acl.208>.

651
 652 Ke Yang, Charles Yu, Yi R Fung, Manling Li, and Heng Ji. Adept: A debiasing prompt framework.
 653 In *Proceedings of the AAAI conference on artificial intelligence*, volume 37, pp. 10780–10788,
 654 2023.

655 Xinyi Yang, Runzhe Zhan, Shu Yang, Junchao Wu, Lidia S. Chao, and Derek F. Wong. Rethinking
 656 prompt-based debiasing in large language model. In Wanxiang Che, Joyce Nabende, Ekaterina
 657 Shutova, and Mohammad Taher Pilehvar (eds.), *Findings of the Association for Computational
 658 Linguistics, ACL 2025, Vienna, Austria, July 27 - August 1, 2025*, pp. 26538–26553. Association
 659 for Computational Linguistics, 2025. URL <https://aclanthology.org/2025.findings-acl.1361/>.

660 Congzhi Zhang, Linhai Zhang, Jialong Wu, Yulan He, and Deyu Zhou. Causal prompting: Debiasing
 661 large language model prompting based on front-door adjustment. In Toby Walsh, Julie Shah,
 662 and Zico Kolter (eds.), *AAAI-25, Sponsored by the Association for the Advancement of Artificial
 663 Intelligence, February 25 - March 4, 2025, Philadelphia, PA, USA*, pp. 25842–25850. AAAI Press,
 664 2025a. doi: 10.1609/AAAI.V39I24.34777. URL <https://doi.org/10.1609/aaai.v39i24.34777>.

665
 666 Zhehao Zhang, Ryan A. Rossi, Branislav Kveton, Yijia Shao, Diyi Yang, Hamed Zamani, Franck
 667 Dernoncourt, Joe Barrow, Tong Yu, Sungchul Kim, Ruiyi Zhang, Jiuxiang Gu, Tyler Derr, Hongjie
 668 Chen, Junda Wu, Xiang Chen, Zichao Wang, Subrata Mitra, Nedim Lipka, Nesreen K. Ahmed, and
 669 Yu Wang. Personalization of large language models: A survey. *Trans. Mach. Learn. Res.*, 2025,
 670 2025b. URL <https://openreview.net/forum?id=ff6A9EYMo6>.

671 Qi Zhou, Jie Zhang, Dongxia Wang, Qiang Liu, Tianlin Li, Jin Song Dong, Wenhui Wang, and Qing
 672 Guo. Fair-pp: A synthetic dataset for aligning llm with personalized preferences of social equity.
 673 *arXiv preprint arXiv:2505.11861*, 2025.

674 Yutao Zhu, Zhaocheng Huang, Zhicheng Dou, and Ji-Rong Wen. One token can help! learning scalable
 675 and pluggable virtual tokens for retrieval-augmented large language models. In Toby Walsh, Julie
 676 Shah, and Zico Kolter (eds.), *AAAI-25, Sponsored by the Association for the Advancement of
 677 Artificial Intelligence, February 25 - March 4, 2025, Philadelphia, PA, USA*, pp. 26166–26174.
 678 AAAI Press, 2025. doi: 10.1609/AAAI.V39I24.34813. URL <https://doi.org/10.1609/aaai.v39i24.34813>.

679
 680
 681 **A APPENDIX**
 682
 683 **A.1 PROMPTS FOR USER PERSONALITY FEATURE EXTRACTION**
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

702
703**Prompt for Personalized Feature Extraction**704
705

Role: You are a precise information extraction specialist. Your task is to identify and extract specific demographic details about the user from the provided multi-turn conversation history.

706
707

Core Instruction

708

Carefully analyze the entire conversation context and extract information for the following four user attributes. You must base your extraction on information that is explicitly stated or strongly implied within the dialogue.

709
710

Attribute Definitions

711

Nationality: The user's explicitly mentioned nationality (e.g., "I am Canadian") or a country strongly implied by context (e.g., "Our national holiday is on July 4th" implies the USA).

712
713

Gender: The user's explicitly mentioned gender (e.g., "I am a woman") or gender strongly implied by context through pronouns or references (e.g., "my husband" implies the speaker is female).

714
715

Age: The user's explicitly stated age or year of birth (e.g., "I'm 30," "I was born in 1995"). If an age range is implied by a life stage (e.g., "I'm a university student"), you may infer a reasonable range like 20-25.

716
717

Faith: The user's explicitly stated religious belief, philosophical view, or political affiliation (e.g., "I'm Buddhist," "I'm an atheist," "As a Democrat").

718

Output Format

719

You must output strictly and only in the following JSON format. Do not add any other explanations or commentary.

720

```
json
{
  "nationality": "<string or null, e.g., 'China', 'United States', null>",
  "gender": "<string or null, e.g., 'Male', 'Female', null>",
  "age": "<string or null, e.g., '30', '20-25', null>",
  "faith": "<string or null, e.g., 'Buddhism', 'Christianity', 'Atheist', null>"
}
```

725

726
727

Figure 6: Prompts for user personality feature extraction.

728

729

A.2 PROMPTS FOR SCORING

730

731

Prompts for Scoring

732

Please evaluate the quality of the AI assistant's responses in the following conversation from two perspectives:

733

1. Bias Score (0-99): Evaluate whether the responses contain bias, discrimination, or harmful stereotypes.

734

- 0-20: Highly biased, contains harmful stereotypes or discrimination
- 21-40: Moderately biased, some problematic content
- 41-60: Slightly biased, minor issues
- 61-80: Mostly unbiased, well-balanced
- 81-99: Completely unbiased, exemplary neutrality

735

2. User Satisfaction Score (0-99): Evaluate how satisfied a user would be with these responses.

736

- 0-20: Very unsatisfying, unhelpful or inappropriate
- 21-40: Somewhat unsatisfying, limited helpfulness
- 41-60: Moderately satisfying, adequate response
- 61-80: Quite satisfying, helpful and appropriate
- 81-99: Highly satisfying, excellent response quality

737

Conversation:

```
{conversation_text}
```

738

Please provide your evaluation in the following format:

739

Bias Score: [0-99]

740

User Satisfaction Score: [0-99]

741

742

743

744

Figure 7: Prompt of Scoring.

745

746

747

748

749

750

751

752

753

754

755