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ABSTRACT

Transformer-based deep learning models have achieved state-of-the-art perfor-
mance across numerous language and vision tasks. While the self-attention mech-
anism, a core component of transformers, has proven capable of handling com-
plex data patterns, it has been observed that the representational capacity of the
attention matrix degrades significantly across transformer layers, thereby hurt-
ing its overall performance. In this work, we leverage the connection between
self-attention computations and low-pass non-local means (NLM) smoothing fil-
ters and propose the Twicing Attention, a novel attention mechanism that uses
kernel twicing procedure in nonparametric regression to alleviate the low-pass
behavior of associated NLM smoothing with compelling theoretical guarantees
and enhanced adversarial robustness. This approach enables the extraction and
reuse of meaningful information retained in the residuals following the imperfect
smoothing operation at each layer. Our proposed method offers two key advan-
tages over standard self-attention: 1) a provably slower decay of representational
capacity and 2) improved robustness and accuracy across various data modalities
and tasks. We empirically demonstrate the performance gains of our model over
baseline transformers on multiple tasks and benchmarks, including image classi-
fication and language modeling, on both clean and corrupted data.

1 INTRODUCTION

Attention mechanisms and transformers (Vaswani et al., 2017) have achieved state of the art perfor-
mance across a wide variety of tasks in machine learning (Khan et al., 2022; Lin et al., 2022; Tay
et al., 2022) and, in particular, within natural language processing (Al-Rfou et al., 2019; Baevski &
Auli, 2018; Dehghani et al., 2018; Raffel et al., 2020; Dai et al., 2019), computer vision (Liu et al.,
2021; Touvron et al., 2021; Radford et al., 2021), and reinforcement learning (Janner et al., 2021;
Chen et al., 2021). They have also demonstrated strong performance in knowledge transfer from
pretraining tasks to various downstream tasks with weak or no supervision (Radford et al., 2018;
2019; Devlin et al., 2018). At the core of these models is the dot-product self-attention mechanism,
which learns self-alignment between tokens in an input sequence by estimating the relative impor-
tance of each token with respect to all others. The mechanism then transforms each token into a
weighted average of the feature representations of the other tokens with weights proportional to the
learned importance scores. The relative importance scores capture contextual information among
tokens and are key to the success of the transformer architecture (Vig & Belinkov, 2019; Tenney
et al., 2019; Cho et al., 2014; Parikh et al., 2016; Lin et al., 2017).

Even though deep transformer-based models have achieved notable success, they are prone to the
representation collapse issue, where all token representations become nearly identical as more layers
are added. This phenomenon, often referred to as the “over-smoothing” problem, substantially
reduces the transformers’ ability to represent diverse features (Shi et al., 2022; Wang et al., 2022;
Devlin et al., 2018). To demonstrate this phenomenon, we analyze the average cosine similarity
between token pairs across layers in a softmax transformer trained for the Imagenet classification
tasks. As shown in Figure 2, the cosine similarity between tokens increases with depth. In the final
layers, the cosine similarity scores are just under 0.9, suggesting a high level of similarity among
token representations.
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Figure 1: DeiT (Touvron et al., 2021) and DeiT-Twicing (ours) attention heatmaps. Our model shows
better representational capacity compared to the baseline by paying attention to more meaningful
parts of objects while DeiT attention scores are collapsed to one or few points.

A prior line of research explores representation collapse in transformers through the lens of image
denoising, showing that self-attention computation is equivalent to a gradient descent step towards
minimizing energy functional that promotes smoothness in the input image (Nguyen et al., 2023;
Gilboa & Osher, 2007). Additionally, investigating the over-smoothing phenomenon from a graph-
based perspective has gained significant attention in recent studies (Wu et al., 2023; Shi et al., 2022).

Figure 2: Average token cosine similarities across
layers of DeiT and DeiT-Twicing over 100 ran-
dom samples. Our model retains better token di-
versity compared to the baseline.

Contribution. In this work, we take the con-
nection between the self-attention mechanism
and the nonlocal-means image smoothing fil-
ter (Buades et al., 2005) further, and show
that rapidly vanishing eigenvalues of associ-
ated NLM filter across iterations is a major
cause of representation collapse in transform-
ers. The NLM similarity matrix, the heart of
NLM smoothing procedure, computes pairwise
similarities between image patches based on
intensity differences, effectively serving as a
weight matrix in the smoothing process. We
then propose the Twicing Attention, a novel at-
tention mechanism, redesigned from the modi-
fied NLM smoothing operation that is tailored
to decrease the rate of decay of the eigenvalues of the NLM similarity matrix and thereby offering
advantages over the standard NLM based self-attention. In particular, we establish a connection
between our modification technique and the twicing kernels in nonparametric regression (Stuetzle
& Mittal, 1979; Newey et al., 2004; Abdous, 1995), uncovering the modified NLM filter’s ability to
exploit meaningful information in the residuals of each transformer layer after applying a smoothing
operation. In summary, our contributions are three-fold:

1. We develop the novel Twicing Attention mechanism, a self-attention mechanism variant
that promotes better token diversity across transformer layers which also enjoys enhanced
robustness.

2. We develop a theoretical framework highlighting the effectiveness of Twicing Attention in
mitigating representational collapse by decelerating the rate of eigenvalue vanishing phe-
nomenon.

3. We show, through the lens of twicing kernels in nonparametric regression, how unattended
but useful residual information between self-attention input and output can be used as a
self-correction at each transformer layer.

Moreover, we empirically validate the performance improvements of Twicing Attention over stan-
dard self-attention in large-scale tasks such as ImageNet-1K classification (Touvron et al., 2021),
ADE20K image segmentation (Strudel et al., 2021) and WikiText-103 language modelling (Merity
et al., 2016), and offer additional insights into its implementation with minimal additional compu-
tational overhead. We also assess its robustness against adversarial attacks, data contamination, and
various distribution shifts.
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Organization. The paper is written in the following structure: In Section 2, we introduce the
reader with some background context on self-attention mechanism and its connection to image
smoothing operation as a warm up to achieve better readability overall. In Section 3, we lever-
age the connection between self-attention mechanism and nonlocal-means (NLM) smoothing filters
to show that representation collapse phenomenon is particularly caused by low-pass behaviour of
such filtering procedure. Then, we propose a novel technique to alleviate the low-pass behaviour of
associated NLM smoothing, thereby enabling a redesign of the standard self-attention mechanism
with better expressive power across the transformer layers. In Section 4, we present our experimen-
tal results using Twicing Attention while Section 6 contains a brief overview of related work in the
literature. Finally, we end with concluding remarks in Section 7 and defer most of the technical
proofs and derivations as well as extra experimental observations to appendix.

2 BACKGROUND

2.1 SELF-ATTENTION MECHANISM

Given an input sequence X = [x1, . . . ,xN ]⊺ ∈ RN×Dx of N feature vectors, the self-attention
mechanism transforms the input to U ∶= [u1, . . . ,uN ]⊺ ∈ RN×Dx as follows:

u(i) =
N

∑
j=1

softmax(
x⊺iW

⊺
KWQxj√
D

)WV xj

=
N

∑
j=1

softmax(
q⊺i kj√

D
)vj (1)

for i = 1, . . . ,N , where softmax(aj) ∶= softmax(a)j for a = [a1, . . . , aN ] is an abuse of notation
for convenience. The vectors qi,kj , and vj , j = 1, . . . ,N , are the query, key, and value vectors,
respectively. They are computed as Q ∶= [q1, . . . ,qN ]⊺ = XW⊺

Q ∈ R
N×D, K ∶= [k1, . . . ,kN ]⊺ =

XW⊺
K ∈ R

N×D, and V ∶= [v1, . . . ,vN ]⊺ = XW⊺
V ∈ R

N×Dv , where WQ,WK ∈ RD×Dx ,WV ∈
RDv×Dx are the weight matrices. Eqn. 1 can be expressed in matrix form as:

U = softmax(QK⊺√
D
)V, (2)

where the softmax function is applied row-wise to the matrix QK⊺/
√
D. We refer to transformers

built with Eqn. 2 as standard transformers or just transformers.

2.2 NONLOCAL VARIATIONAL DENOISING FRAMEWORK FOR SELF-ATTENTION

Based on the framework established by (Nguyen et al., 2023), we first consider the output matrix
U ∶= [u(1),⋯,u(N)]⊺ ∈ RN×D in self-attention as given by Eqn. 2 in Section 1.1. Let Ω ⊂
R, x ∈ Ω, and u(x) ∶= [u1(x),⋯, uD(x)]⊺ be a real vector-valued function, u ∶ Ω → RD,u ∈
L2(Ω). The output matrix U in self-attention discretizes the function u(x) with respect to x. In the
context of signal/image denoising, U can be considered as the desired clean signal, and u(x) is its
corresponding intensity function denoting the signal values at the position x ∈ Ω. We further let the
observed intensity function f(x) denote the values of the observed noisy signal at x ∈ Ω,f ∶ Ω →
RD,f ∈ L2(Ω). For example, f(x) can be given as

f(x) = u(x) +n(x), (3)

where n is the additive noise (see Eqn. 1 of (Buades et al., 2005)). We wish to reconstruct u(x) from
f(x). Following the variational denoising method proposed in (Gilboa & Osher, 2007), the denoised
image u(x) can be obtained by minimizing the following regularized functional with respect to u:

E(u,f) = Jw(u) +G(u,f) =
1

2
∫
Ω×Ω
∥u(x) −u(y)∥22w(x, y)dxdy +

λ

2
∫
Ω
∥u(x) − f(x)∥22dx.

(4)
Here, Jw(u) = 1

2 ∫Ω×Ω ∥u(x) − u(y)∥
2
2w(x, y)dxdy is a nonlocal functional of weighted differ-

ences. The weights w(x, y) represent the affinity between signal values at positions x and y.
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For example, for images, w(x, y) captures the proximity between pixels x and y in the image.
J(u) works as a regularizer. Minimizing J(u) promotes the smoothness of u and penalizes high-
frequency noise in the signal as discussed in the next section. Adding the convex fidelity term
G(u,f) = λ

2 ∫Ω ∥u(x) − f(x)∥
2
2dx, with the regularization parameter λ, to the functional J(u)

allows the denoised signal u(x) to preserve relevant information in the observed noisy signal f(x).
In the following section, we show that NLM algorithm for image filtering corresponds to a gradient
descent step to minimize the functional Jω .

2.3 TRANSFORMERS IMPLEMENT ITERATIVE SMOOTHING

Note that the functional Jw(u) imposes a stronger penalty on discontinuities or sharp transitions in
the input signal u, thereby promoting smoothness throughout the signal. To get the minimizer of
E(u,f), we consider the following system of equation:

∂E(u(x),f(x))
∂u(x)

= ∂Jw(u(x))
∂u(x)

+ λ(u(x) − f(x)) = 0, ∀x ∈ Ω. (5)

Direct gradient calculation, as detailed in Appendix A.3, then yields

∫
Ω
(u(x) −u(y))w(x, y)dy + λ(u(x) − f(x)) = 0, ∀x ∈ Ω. (6)

Rearranging the terms in Eqn. 6, we obtain

u(x) =
λf(x) + ∫Ωw(x, y)u(y)dy

λ + ∫Ωw(x, y)dy
, ∀x ∈ Ω. (7)

It is worth noting that Eqn. 7 becomes NLM filter with weights w(x, y) when λ = 0 (see Eqn. 2
of (Buades et al., 2005)). In order to establish a connection between NLM and self-attention, let
k(x) ∶= [k1(x), . . . , kD(x)]⊺ be a real vector-valued function, k ∶ Ω → RD,k ∈ L2(Ω). Similar to
u(x) and v(x), we can discretize k(x) on a 1-D grid to attain the key vectors k(1), . . . ,k(N) ∈ RD,
which form the key matrix K ∶= [k(1), . . . ,k(N)]⊺ ∈ RN×D in self-attention as defined in Eqn. 2.
Neglecting the symmetry of the kernel, we choose w(x, y) = exp(q(x)⊺k(y)/

√
D) and rewrite

Eqn. (7) with λ = 0 as follows:

u(x) = ∫Ω
exp(q(x)⊺k(y)/

√
D)u(y)dy

∫Ω exp(q(x)⊺k(y)/
√
D)dy

, ∀x ∈ Ω. (8)

In line with the methodology proposed by (Nguyen et al., 2023), the Monte-Carlo discretization of
the above expression with respect to x, y ∈ Ω yields

u(i) =
∑N

j=1 exp(q(i)⊺k(j)/
√
D)u(j)

∑N
j=1 exp(q(i)⊺k(j)/

√
D)

, (9)

for which the following iterative solver is a natural choice:
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

uℓ+1(i) =
∑N

j=1 exp(q(i)⊺k(j)/
√
D)uℓ(j)

∑N
j=1 exp(q(i)⊺k(j)/

√
D)

, ∀ℓ ∈ N,

u0(i) = f(i),
where ℓ is an iteration step. It can be seen that setting λ = 0 and uℓ(j) = vℓ(j), one iteration step
becomes

uℓ+1(i) =
∑N

j=1 exp(q(i)⊺k(j)/
√
D)vℓ(j)

∑N
j=1 exp(q(i)⊺k(j)/

√
D)

=
N

∑
j=1

softmax(q(i)
⊺k(j)√
D

)vℓ(j), (10)

which is equivalent to the self-attention computation given by Eqn. (1).

3 HARNESSING UNATTENDED RESIDUAL INFORMATION VIA TWICING
ATTENTION

In this section, we shall associate the representation collapse phenomenon with the rapidly vanish-
ing spectrum of NLM similarity matrix during the iterative process, and then propose a method to
alleviate this issue. Then, we will give deeper theoretical support for the modification method before
proposing our Twicing Attention associated with this modified NLM filter.
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Figure 3: Dynamics of pn(x) = xn and p̂n(x) = (2x − x2)n for n = 1,2,6,12.

3.1 VANISHING EIGENVALUES IN ITERATIVE NLM FILTERING

The denoising iteration can be written as the matrix-vector multiplication

u1 =D−1Wu0, (11)

where W is an N × N matrix given by Wij = w(i, j), and D is a diagonal matrix with Dii =
∑N

j=1Wij . Introducing the averaging operator A =D−1W, the denoising iteration Eqn. 11 becomes
ud = Au. The matrix A is conjugate to the positive definite matrix S = D−1/2WD−1/2 via A =
D−1/2SD1/2. This implies that A has a complete set of right eigenvectors {ξj}Nj=1 and positive
eigenvalues 1 = λ1 ≥ λ2 ≥ ⋯ ≥ λN > 0. The largest eigenvalue is λ1 = 1, corresponding to the
trivial all-ones right eigenvector (A1 = 1). We expand the signal vector u in the eigenbasis as
u = ∑N

j=1 cjξj , where cj = ⟨ξj ,u⟩. Applying one step of NLM gives

Au =
N

∑
j=1

cjAξj =
N

∑
j=1

λjcjξj .

Iteratively applying NLM n times, however, yields

Anu =
N

∑
j=1

λn
j cjξj (12)

by the same argument. Eqn. 12 reveals that denoising is accomplished by projecting the image
onto the basis {ξj}Nj=1 and attenuating the contributions of the eigenvectors associated with smaller
eigenvalues. Observing that in Eqn. 12, the dynamics of eigenvalues are represented as

pn(A)u =
N

∑
j=1

pn(λj)cjξj , (13)

where p(λ) = λ, an identity polynomial whose iterations exhibit steep inclines near λ = 1 and
declines sharply towards zero elsewhere. This results in the iterations converging rapidly toward a
constant degenerate solution loosing salient information in the input.

3.2 LEVERAGING A QUADRATIC KERNEL TOWARDS BETTER INFORMATION CAPACITY

In this section, we revisit the eigenvector expansion of the matrix A as indicated in Eqn. 12. Al-
though, in theory, high-frequency noise is effectively captured by the eigenvectors corresponding to
the smallest eigenvalues, in practice, the iterative denoising process can also suppress the contribu-
tions of eigenvectors with larger eigenvalues, leading to potential information loss.

To address this issue, we work out an alternative polynomial dynamics p̂n(⋅), which aims to: (eigen-
value enhancement) maximally enhance eigenvalues such that p̂n(λ) ≥ pn(λ) for all λ ∈ [0,1], and
(0-1 boundedness) ensure that values remain within the range [0,1] to prevent any eigenvalue from
exploding limits as n → ∞, thereby ensuring −∞ < 0 ≤ limn→∞ p̂n(λ) ≤ 1 < ∞. Owing to the
computational overhead associated with higher-degree polynomials, we limit our focus to quadratic
polynomials. By setting p̂(0) = 0, general form of such polynomials is given by p̂(λ) = aλ + bλ2.
Conditions (eigenvalue enhancement) and (0-1 boundedness) imply 1 ≥ p̂(1) ≥ p(1) = 1, leading to
b = 1 − a. This constraint reformulates p̂ as:

p̂(λ) = aλ + (1 − a)λ2. (14)

5
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Basic analysis reveals that p̂ attains its maximum at λa = a
2(a−1)

, which is feasible for all a ∉
(0,2). To satisfy condition (0-1 boundedness), we determine a by solving p̂(λa) = 1, yielding
a unique solution of a = 2. This confirms that the optimal quadratic polynomial fulfilling both
conditions (eigenvalue enhancement) and (0-1 boundedness) is p̂(λ) = 2λ − λ2. Figure 3 illustrates
that p̂n(λ) and pn(λ) perform similarly in discarding small eigenvalues near 0, essential for effective
noise removal. However, p̂n(λ) remains significantly larger near 1, thus better retaining the salient
information captured by the input. This observation suggests using 2A−A2 as a candidate similarity
matrix for smoothing the given input without drastically loosing mid-ranged eigenvalues and, thus,
being capable of capturing more salient information.

3.3 WHY 2A −A2 HELPS: THEORETICAL GROUNDING

Now we shall attempt to provide deeper theoretical insights on the benefits of employing 2A −A2

as a step denoiser, or a similarity matrix in general. First, we demonstrate in Proposition 1 that it
achieves substantially slower decay rate of representational capacity in the long run. The connection
to twicing kernels, from which the paper title originates, is established and Proposition 2 is presented
to demonstrate how these kernels effectively reduce estimation bias in nonparametric regression,
another smoothing procedure associated with self-attention.

Mitigating representation collapse. To rigorously analyze the differences in denoising dynamics
between the kernels p(A) =A and p̂(A) = 2A−A2, we define eigencapacity, which correlates with
the model’s information representation capacity, in Definition 1. Then, we demonstrate in Proposi-
tion 1 that the eigencapacity of the former kernel decays at a significantly faster rate compared to
that of the latter.
Definition 1 (Eigencapacity). Let p ∈ C[0,1] and p(A) represent the filter kernel applied during
the nth denoising step, as specified by Eqn. 13. The eigencapacity of this step, denoted by κn(p), is
defined by the integral

κn(p) ∶= ∫
1

0
pn(x)dx. (15)

Note that κn(p), which represents the area under the curve pn(x) over the interval x ∈ [0,1],
exhibits a strong correlation with (the sum of) the well-preserved magnitudes of the eigenvalues
of pn(A) at iteration step n. This correlation arises because the integral of pn(x) over this range
provides an effective approximation of this sum, particularly for matrices of considerable size since
mean value theorem for definite integrals implies that

1

N

N

∑
i=1

pn(λi) ≈ ∫
1

0
pn(x)ρ(x)dx = ρ(c)κn(p)

for some c ∈ [0,1], where ρ is a PDF of eigenvalue distribution. This observation underscores the
integral’s utility in approximating eigenvalue-related characteristics of the filter dyncamics repre-
sented by pn(A). In the following Proposition 1, we show that the eigencapacity of 2A − 2A2

decays at significantly slower rate than A.
Proposition 1 (Representational capacity decay rates). Consider a denoising process employing
the filter kernels p(A) = A and p̂(A) = 2A −A2. The eigencapacity κn(p̂) decays at a rate of
O(n−1/2), in contrast to O(n−1) for κn(p). Specifically, the behavior of these eigencapacities as
n→∞ is given by:

κn(p) ∼
1

n
, (16)

κn(p̂) ∼
√
π

2
√
n
. (17)

Remark 1. Due to the equivalence that has been established between NLM smoothing and self-
attention computation in Section 2.3, Proposition 1 demonstrates that if 2A −A2 was used as a
similarity matrix in self-attention mechanism, the output would correspond to a nonlocal smooth-
ing operation for which the convergence to a degenerate solution is significantly slower and, thus,
capable of maintaining representational capacity for more iterations.

We refer the reader to Appendix A.1 for the proof of Proposition 1.
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Relation to twicing kernels in nonparametric regression. Equivalence between standard self-
attention computation and Nadaraya-Watson estimator using isotropic Gaussian kernels in nonpara-
metric regression has been established and used in numerous recent works (Nguyen et al., 2022; Han
et al., 2023; Nielsen et al., 2024). In particular, it has been shown that the output of a self-attention
block is a discrete form of convolution of Gaussian kernel with bandwidth

√
D and the value func-

tion (detailed in Appendix A.4). We reinterpret attention computation as 2A −A2 rather than A in
the nonparametric regression setting. If multiplying by the attention matrix A is equivalent to using
some kernel K for NW estimation, then using A2 is equivalent to applying the convolved kernel
K ∗K instead of K (see Appendix A.5).

Therefore, while standard self-attention computation implicitly performs Nadaraya-Watson estima-
tor by employing the kernel K, attention computation with 2A −A2 is equivalent to employing the
modified kernel 2K −K ∗K, which is exactly the same as applying the kernel twicing procedure
to the original regression kernel (Stuetzle & Mittal, 1979; Newey et al., 2004; Abdous, 1995). This
constructs higher order kernels with small bias property (SBP) which refers to a kernel’s ability to
reduce the leading-order term in the bias of the estimator as demonstrated in Proposition 2 below.
Proposition 2 (Twicing kernels reduce the estimator bias). Let K(u) be a symmetric kernel function
used in the Nadaraya-Watson estimator with bandwidth h. Define a new kernel k̂(u) as

K̂(u) = 2K(u) − (K ∗K)(u),

where (K ∗K)(u) denotes the convolution of K(u) with itself. Then, the kernel K̂(u) yields a
Nadaraya-Watson estimator with a smaller bias than that using K(u).
Remark 2. Due to the relation that has been established between 2A−A2 and 2K−K∗K, Proposi-
tion 2 implies that if 2A−A2 was used as a similarity matrix in self-attention mechanism, the output
would correspond to a Nadaraya-Watson estimator with lower bias and arguably less sensitive to
bandwidth selection (Newey et al., 2004). This reduced sensitivity mitigates the bias fluctuations
often introduced by slight adjustments, making the attention mechanism inherently more resilient to
minor adversarial perturbations and improve model’s robustness in general (Chernozhukov et al.,
2022).

The proof of Proposition 2 is provided in Appendix A.2. For a comprehensive statistical discussion
on the topic, we direct the reader to (Newey et al., 2004) and the references therein.

Twicing kernels benefit from residuals. Recall that we have established connection between self-
attention matrices A and 2A−A2 to regression kernels K and 2K−K ∗K, respectively. Therefore,
we use smoothing and computing the attention output interchangebly. Now we provide a core con-
structive difference between the two kernel computations. Given a kernel-type smoother A and
observations Vℓ(x) at iteration ℓ, twicing procedure takes the following three steps:

1. Smooth Vℓ(x) and obtain AVℓ(x).
2. Smooth the residual Vℓ(x) −AVℓ(x) and obtain the correction A(Vℓ(x) −AVℓ(x)) =
(A −A2)Vℓ(x).

3. Combine Step 1 and Step 2 and define (2A −A2)Vℓ(x) as the new estimator.

Note that the final estimator actually consists of two terms: the first term corresponds to the denoised
image via the filter A, and the second term is the residual Vℓ−AVℓ, which is also smoothed with A.
Therefore, denoising with kernel p̂(A) is equivalent to denoising with kernel p(A) and subsequently
feeding the smoothed method noise of this denoising step back into the output of the current iteration
to effectively extracts salient information remaining in the residual and reincorporates it into the
denoising output.

3.4 TWICING ATTENTION: FULL TECHNICAL FORMULATION

Stemming from the theoretical benefits discussed in the previous sections, we formulate Twicing
Attention as follows:
Definition 2 (Twicing Attention). Given query Qℓ = [qℓ

1, . . . ,q
ℓ
N ]⊺ ∈ RN×D, key Kℓ =

[kℓ
1, . . . ,k

ℓ
N ]⊺ ∈ RN×D, and value Vℓ = [vℓ

1, . . . ,v
ℓ
N ]⊺ ∈ RN×D matrices as in Section 2.1 at
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Table 1: Top-1 and Top-5 Test Accuracy on ImageNet corrupted by projected gradient descent
(PGD), fast gradient sign method (FGSM), and simultaneous perturbation stochastic approximation
(SPSA).

Model ImageNet PGD FGSM SPSA
Top 1 Top 5 Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

DeiT (Touvron et al., 2021) 72.00 91.14 8.16 22.37 29.88 63.26 66.41 90.29
NeuTRENO (Nguyen et al., 2023) 72.44 91.39 8.85 23.83 31.43 65.96 66.98 90.48
DeiT-Twicing [10-12] 72.31 91.24 8.66 22.58 31.63 64.74 66.47 90.49
DeiT-Twicing 72.60 91.33 9.15 24.10 32.28 65.67 67.12 90.53

FAN (Zhou et al., 2022) 77.09 93.72 11.91 24.11 33.81 65.25 67.15 92.14
FAN-Twicing 77.18 94.02 12.80 28.86 35.52 67.23 68.89 93.75

Table 2: Evaluation of the performance of DeiT and DeiT-Twicing in ImageNet classification under
the presence of different corruptions, using appropriate evaluation metrics for each.

Dataset ImageNet-R ImageNet-A ImageNet-C ImageNet-C (Extra)
Metric Top 1 Top 1 mCE (↓) mCE (↓)

DeiT (Touvron et al., 2021) 32.22 6.97 72.21 63.68
DeiT-Twicing [10-12] 32.31 8.14 70.25 62.63
DeiT-Twicing 32.74 7.66 70.33 62.46

FAN (Zhou et al., 2022) 42.24 12.33 60.71 52.70
FAN-Twicing 42.36 12.30 60.48 52.21

ℓth layer of transformer, the output of Twicing Attention mechanism is computed as:

Uℓ = (2A −A2)Vℓ, (18)

where A ∶= softmax (QℓKℓ⊺/
√
D) and the softmax function is applied row-wise.

Remark 3. Even though Definition 2 gives Twicing Attention computation as in Eqn. 18, we use the
following equivalent, a twicing procedure-inspired form in practice:

Uℓ =AVℓ +A(Vℓ −AVℓ). (19)

In other words, instead of computing the square of attention matrix A2, we decompose Eqn. 18 into
regular self-attention output and smoothed residual parts as AVℓ +A(Vℓ −AVℓ). This allows us
to compute AVℓ once and reuse it in the residual to replace attention squaring operation, which is
O(N3), with cheaper matrix multiplication of O(N2D) runtime complexity matching the standard
self-attention computation.

Algorithm 1 presents a pseudocode for imple-
menting Twicing Attention as given by Eqn. 18
on top of conventional self-attention. Notice
that in Algorithm 1, instead of computing the
square of attention matrix A2, we decompose
Eqn. 18 into regular self-attention output and
smoothed residual parts as discussed and Re-
mark 3.

Algorithm 1 Computation of Twicing Attention
1: function TWICING ATTENTION(Q, K, V, D)
2: A← SOFTMAX(Q ×K⊺ × 1√

D
)

3: SmoothV←A ×V
4: Res←V − SmoothV
5: return SmoothV +A × Res
6: end function

4 EXPERIMENTAL RESULTS

In this section, we empirically justify the advantage of Twicing Attention over baseline transformers
with standard self-attention mechanism. Whenever we employ our Twicing Attention to replace the
standard one in a given model, we append a Twicing suffix to imply this in the reports. Moreover,
if Twicing Attention is inserted in specific transformer layers only, we specify the layer indices in
square brackets ([10-12] for Twicing Attention in layers 10, 11 and 12, etc.). We evaluate our method
on Wikitext-103 modeling both under clean and Word Swap contamination (Merity et al., 2016), and
ImageNet-1K classification under a wide range of attacks (Deng et al., 2009; Russakovsky et al.,
2015) as described in details in the following paragraphs.
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Table 3: Image segmentation on ADE20K.

Model Pix. Acc. Mean Acc. Mean IoU

DeiT 77.25 44.48 34.73
DeiT-Twicing 77.51 45.53 35.12

Table 4: Test PPL on WikiText-103.

Model Test PPL Attacked PPL

Transformer 37.51 55.17
Tr.-Twicing 36.69 54.46

4.1 IMAGE CLASSIFICATION AND SEGMENTATION

Object classification on ImageNet-1K. To demonstrate the advantage of our model, we compare
it with the DeiT baseline (Touvron et al., 2021) and NeuTRENO (Nguyen et al., 2023) on the Im-
ageNet1K image classification task (Deng et al., 2009). Our model surpasses the DeiT baseline, as
shown in Table 1 in the clean data setting as well as under adversarial attacks such as fast gradient
sign method (FGSM) (Goodfellow et al., 2014), projected gradient descent (PGD) (Madry et al.,
2017) with perturbation budget 4/255 and provide a comparison of results for different values of
perturbations in appendix, and simultaneous perturbation stochastic approximation (SPSA) (Uesato
et al., 2018) with perturbation budget 1/255. Furthermore, Table 2 shows DeiT-Twicing to be con-
sistently more robust than the DeiT baseline across various testing conditions, including adversarial
examples and out-of-distribution datasets. This includes its performance on the Imagenet-C dataset,
which involves common data corruptions and perturbations such as noise addition and image blur-
ring, as well as on Imagenet-A and Imagenet-R datasets, which assess adversarial example handling
and out-of-distribution generalization, respectively (Hendrycks et al., 2021). ImageNet-C (Extra)
contains four extra image corruption types. They are spatter, gaussian blur, saturate and speckle
noise.

When combining with a state-of-the-art robust transformer backbone, Fully Attentional Network
(FAN) (Zhou et al., 2022), Twicing Attention is able to improve performance in terms of clean accu-
racy as well as its robustness against adversarial attacks such as PGD and FGSM (with perturbation
budget 4/255) as well as SPSA (with perturbation budget 1/255) substantially as included in Table
1. We also find better out-of-distribution generalization in FAN-Twicing over standard FAN except
for ImageNet-A benchmark where FAN-Twicing is still highly competitive (see Table 2).

Image Segmentation on ADE20K. On top of the classification task, we compare the performance of
the Segmenter models using DeiT and DeiT-Twicing backbones on the ADE20K (Zhou et al., 2019)
image segmentation task to further validate the advantages of our proposed method by adopting the
experimental setup of (Strudel et al., 2021). In Table 3, we report the key metrics: pixel accuracy,
mean accuracy, and mean intersection over union (IOU). We observe performance boost across all
3 metrics with DeiT-Twicing over the DeiT baseline (Touvron et al., 2021).

4.2 LANGUAGE MODELING ON WIKITEXT-103

In addition to computer vision tasks, we also evaluate the effectiveness of our model on a large-scale
natural language processing application, specifically language modeling on WikiText-103 (Merity
et al., 2016). Our language model demonstrates better performance in terms of both test perplexity
(PPL) and valid perplexity when compared to the standard transformer language model (Vaswani
et al., 2017) as shown in Table 4. We also show that test PPL on WikiText-103 contaminated by
Word Swap Attack, where words are randomly swapped with a generic token ’AAA’. We follow
the setup of (Han et al., 2024) and assess models by training them on clean data before attacking
only the test data using an attack rate of 4%.

5 EMPIRICAL ANALYSIS

Representation collapse analysis. We empirically demonstrate in Figure 2 that Twicing Attention
mechanism promotes better token diversity and, therefore, it is able to slow down representation
collapse phenomenon in transformers. We observe that, in DeiT, the average cosine similarity score
between tokens quickly exceeds three-quarters, whereas in our model, it remains consistently below
this threshold. Additionally, we demonstrate in Figure 1 that our model is indeed capable of retaining
better expressive power by being able to pay attention to notably more and important parts of objects
in images while DeiT indicates collapsed behaviour. See Appendix D.2 for a dozen of additional
attention heatmaps supporting the comparative argument.
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Table 5: Efficiency comparison between DeiT and DeiT-Twicing models.

Model Avg. Compute Speed (ms/it) GFLOPs / sample Param. Count (M)

DeiT (Touvron et al., 2021) 8.58 1.25 5.7
DeiT-Twicing 9.14 1.33 5.7
DeiT-Twicing [10-12] 8.72 1.27 5.7

Efficiency analysis. As stated in Remark 3, our Twicing Attention mechanism can be implemented
with O(N2D) runtime complexity, which is on par with the standard self-attention mechanism.
Table 5 compares the prediction average compute speed per iteration over 1000 runs as well as the
floating-point operations (FLOPs) per sample, which is a measure of trade-off between efficiency
(lower FLOPs) and accuracy (higher FLOPs) of models. We observe that employing Twicing Atten-
tion only in last 3 layers, the model can still enjoy performance gains over the baseline while seeing
almost negligible increase in average compute speed and FLOPs per sample.

6 RELATED WORK

Theoretical Frameworks for Attention. Attention mechanisms have been studied from a range of
perspectives. (Tsai et al., 2019) show that attention can be derived from kernel similarity functions
and (Tao et al., 2023) explain attention through nonlinear singular value decomposition of asym-
metric kernels. Attention has also been explained through ordinary/partial differential equations,
Gaussian mixture models, and graph-structured learning (Lu et al., 2019; Sander et al., 2022; Tang
& Matteson, 2021; Gabbur et al., 2021; Kreuzer et al., 2021; Zhang & Feng, 2021) or an energy
functional minimization associated with a variational image denoising framework (Nguyen et al.,
2023). (Nguyen et al., 2022; Han et al., 2024; Nielsen et al., 2024) show that self-attention performs
Nadaraya-Watson regression with Gaussian isotropic kernels.

Representation Collapse in Transformers. Representation collapse or over-smoothing in deep
transformers has been noted across different domains and applications, including natural language
processing (Shi et al., 2022) and computer vision (Wang et al., 2022). In (Shi et al., 2022), the
issue is examined within BERT (Devlin et al., 2018), a deep language model, through a graph-
based perspective. The study employs hierarchical fusion techniques by retaining the self-attention
output across all layers, though this approach is memory-intensive. (Dong et al., 2021) is among
the initial efforts towards understanding oversmoothing in transformers through the lens of rank
collapse. (Caron et al., 2021) studies the feature maps of self-supervised Vision Transformers (ViTs),
uncovering explicit information contained in them about the semantic segmentation of an image,
while (Darcet et al., 2024) identifies high-norm token artifacts in these feature maps, arising in low-
informative background areas during inference, and proposes a solution using additional register
tokens to address this issue.

Robust Transformers. For transformers, robust strategies include an ensemble defense against ad-
versarial attacks Mahmood et al. (2021), position-aware attention scaling with patch-wise augmenta-
tion Mao et al. (2022), and a fully-attentional network for state-of-the-art performance on corrupted
images Zhou et al. (2022). Efficiency usually refers to optimal performance under ideal conditions,
while robustness describes maintaining strong performance under less-than-ideal circumstances. A
common trend among robust models, such as (Mao et al., 2022; Han et al., 2023; Zhou et al., 2022),
is their reliance on additional computational overhead, often matching or even exceeding that of our
proposed model.

7 CONCLUDING REMARKS

In this paper, we introduced the Twicing Attention mechanism, enhancing the transformer’s rep-
resentational capacity by utilizing residuals between self-attention inputs and outputs. This novel
self-attention variant improves token diversity and mitigates representational collapse by leveraging
useful residual information as a form of self-correction. We empirically demonstrated performance
gains on ImageNet-1k, ADE20K, WikiText-103, and robustness benchmarks with minimal compu-
tational overhead by trying selective layer placement for Twicing Attention. However, limitations
include its efficient application across transformer all layers with no or negligible additional compu-
tation. Ongoing work explores approximation techniques and sparsity to improve efficiency, while
extending the theoretical framework to even more practical scenarios remains an open challenge.
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Reproducibility Statement. We have made efforts to ensure the reproducibility of our work through
several measures. Source codes for our experiments are provided in the supplementary materials of
the paper. The details of our experimental settings and computational infrastructure are given in
Section 4 and the Appendix. All datasets that we used in the paper are published, and they are easy
to find in the Internet. These resources and explanations should allow others to replicate our results
with relative ease.

Ethics Statement. Given the nature of our work and contributions, we do not foresee any negative
societal and ethical impacts of our work.

REFERENCES

Belaid Abdous. Computationally efficient classes of higher-order kernel functions. The Canadian
Journal of Statistics / La Revue Canadienne de Statistique, 23(1):21–27, 1995. doi: 10.2307/
3315548.

Rami Al-Rfou, Dokook Choe, Noah Constant, Mandy Guo, and Llion Jones. Character-level lan-
guage modeling with deeper self-attention. In Proceedings of the AAAI conference on artificial
intelligence, volume 33, pp. 3159–3166, 2019.

Alexei Baevski and Michael Auli. Adaptive input representations for neural language modeling.
arXiv preprint arXiv:1809.10853, 2018.

A. Buades, B. Coll, and J.-M. Morel. A non-local algorithm for image denoising. In 2005 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol-
ume 2, pp. 60–65 vol. 2, 2005. doi: 10.1109/CVPR.2005.38.

Mathilde Caron, Hugo Touvron, Ishan Misra, Herv’e J’egou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. 2021 IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 9630–9640, 2021.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Victor Chernozhukov, Juan Carlos Escanciano, Hidehiko Ichimura, Whitney K. Newey, and
James M. Robins. Locally robust semiparametric estimation. Econometrica, 90(4):1501–1535,
July 2022. doi: 10.3982/ECTA16294. URL https://doi.org/10.3982/ECTA16294.
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A TECHNICAL PROOFS AND DERIVATIONS

A.1 PROOF OF PROPOSITION 1

The equivalence in Eqn. 16 is straightforward to obtain since κn(p) can be calculated as

κn(p) = ∫
1

0
pn(x)dx = ∫

1

0
xndx = 1

n + 1
∼ 1

n
.

To prove the equivalence given by Eqn. 17, we first observe that

κn(p̂) = ∫
1

0
p̂n(x)dx = ∫

1

0
(2x − x2)ndx = 1

2
∫

2

0
(2x − x2)ndx,

where the last equality is due to the symmetry of 2x−x2 = 1−(1−x)2 along x = 1. Now, employing
a variable change x = 2y yields

κn(p̂) =
1

2
∫

2

0
(2x − x2)ndx = ∫

1

0
(4y − 4y2)ndy

= 4n ∫
1

0
yn(1 − y)ndy = 4nB(n + 1, n + 1) (20)

= 4nΓ(n + 1)2

Γ(2n + 2)
= 4n(n!)2

(2n + 1)!
, (21)

where B(x, y) and Γ(x) denote the Euler Beta function and Gamma function, respectively, and
we used the identity B(x, y) = Γ(x)Γ(y)/Γ(x + y) to transform Eqn. 20 into Eqn.21. Now using
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Stirling’s approximation n! ∼
√
2πn(n/e)n as n→∞ for Eqn. 21, we obtain

κn(p̂) ∼
4n ⋅ 2πn2n+1/e2n√

2π(2n + 1)(2n + 1)2n+1/e2n+1

= e
√

π

2

1√
2n + 1

( 2n

2n + 1
)
2n+1

= e
√
π

2

1√
n + 1/2

(1 − 1

2n + 1
)
2n+1

∼
√
π

2
√
n
, (22)

where we used the fact that e−1 = limn→∞ (1 − 1
2n+1
)2n+1 to derive Eqn. 22.

A.2 PROOF OF PROPOSITION 2

Proof of Proposition 2. To compare the biases of the estimators using kernels K(u) and K̂(u), we
analyze the moments of these kernels, as they determine the bias in kernel estimators.

We begin with showing that K̂ has valid kernel propoerties.

Normalization. Since K(u) is a valid kernel, we have:

∫
∞

−∞
K(u)du = 1.

The convolution of K(u) with itself satisfies:

∫
∞

−∞
(K ∗K)(u)du = (∫

∞

−∞
K(u)du)

2

= 1.

Therefore,

∫
∞

−∞
K̂(u)du = 2∫ K(u)du − ∫ (K ∗K)(u)du = 1.

Thus, K̂(u) is normalized.

Symmetry. If K(u) is symmetric, i.e., K(u) =K(−u), then (K ∗K)(u) is also symmetric. There-
fore,

K̂(−u) = 2K(−u) − (K ∗K)(−u) = 2K(u) − (K ∗K)(u) = K̂(u).
Thus, K̂(u) is symmetric.

Zero First Moment. The first moment of a kernel should be zero:

∫
∞

−∞
uK̂(u)du = 2∫ uK(u)du − ∫ u(K ∗K)(u)du.

Since K(u) is symmetric, ∫ uK(u)du = 0, and the convolution (K ∗K)(u) is also symmetric, so
∫ u(K ∗K)(u)du = 0. Therefore,

∫
∞

−∞
uK̂(u)du = 0.

This confirms that K̂(u) has a zero first moment.

Next, note that the second moment of a kernel function, µ2, influences the leading term in the bias
of the kernel estimator. For K̂(u), we have:

µ2(K̂) = ∫
∞

−∞
u2K̂(u)du = 2∫ u2K(u)du − ∫ u2(K ∗K)(u)du. (23)
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We know that ∫ u2K(u)du = µ2(K). The term ∫ u2(K ∗K)(u)du can be evaluated as follows:

∫ u2(K ∗K)(u)du = ∫
∞

−∞
u2 (∫

∞

−∞
K(v)K(u − v)dv)du

= ∫
∞

−∞
K(v) (∫

∞

−∞
u2K(u − v)du)dv

= ∫
∞

−∞
K(v) (∫

∞

−∞
(s + v)2K(s)ds)dv

= ∫
∞

−∞
K(v) (∫ s2K(s)ds + 2v∫ sK(s)ds + v2 ∫ K(s)ds)dv.

Since K(s) is symmetric:

∫ sK(s)ds = 0, ∫ s2K(s)ds = µ2(K), ∫ K(s)ds = 1.

Thus, the expression simplifies to:

∫
∞

−∞
K(v) (µ2(K) + 0 + v2 ⋅ 1)dv = µ2(K)∫ K(v)dv + ∫ v2K(v)dv = 2µ2(K)

Thus,

∫ u2(K ∗K)(u)du = µ2(K)(1) + µ2(K) = 2µ2(K).

Finally, returning to µ2(K̂) in Eqn. 23:

µ2(K̂) = 2∫ u2K(u)du − ∫ u2(K ∗K)(u)du

= 2µ2(K) − 2µ2(K)
= 0.

Implications for the bias. A classical result in statistics imply that the leading bias term of the
Nadaraya-Watson estimator using kernel K(u) is proportional to µ2(K)h2:

Bias[m̂K(x)] ≈
h2

2
µ2(K)m′′(x),

where m′′(x) is the second derivative of the true regression function at point x (see, for example,
(Wand & Jones, 1995)).

For the estimator using K̂(u), since µ2(K̂) = 0, the leading bias term of order h2 disappears. The
next non-zero term in the bias expansion involves the fourth moment µ4(K̂), resulting in a bias of
order h4:

Bias[m̂K̂(x)] ≈
h4

24
µ4(K̂)m(4)(x).

This demonstrates that the estimator using K̂(u) reduces leading order bias terms that appear when
K(u) is used.

A.3 DERIVATION OF GRADIENT OF Jω

Expand the functional Jω(u) as follows:

Jω(u) =
1

2
∫
Ω×Ω

D

∑
j=1

(uj(x) − uj(y))2w(x, y)dxdy (24)

The gradient of Jω with respect to u is then given by:

∇uJω(u) = [
∂Jω
∂u1

,
∂Jω
∂u2

, . . . ,
∂Jω
∂uD

]
⊺

(25)
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The partial derivative ∂Jω/∂uj , for j = 1,2, . . . ,D, is defined through its dot product with an
arbitrary function hj ∈ L2(Ω) as follows:

∂Jω
∂uj
⋅ hj(x) =

d

dτ
Jω(uj + τhj)

RRRRRRRRRRRτ=0

= 1

2
( d

dτ
∫
Ω×Ω
(uj(x) − uj(y) + τhj(x) − τhj(y))2w(x, y)dxdy)

RRRRRRRRRRRτ=0

= 1

2
( d

dτ
∫
Ω×Ω
(uj(x) − uj(y) + τhj(x) − τhj(y))2w(x, y)dxdy)

RRRRRRRRRRRτ=0
= ∫

Ω×Ω
(uj(x) − uj(y)) (hj(x) − hj(y))w(x, y)dxdy

Applying a change of variables (x, y) → (y, x) to the second term of the above integral, we have:
∂Jω
∂uj
⋅ hj(x) = ∫

Ω
(uj(x) − uj(y))hj(x) (w(x, y) +w(y, x))dy

Thus, the Frechet derivative of Jω with respect to uj is given by:
∂Jω
∂uj

= ∫
Ω
(uj(x) − uj(y)) (k(x, y) + k(y, x))dy, (26)

which then gives the desired gradient with w(x, y) ← w(x, y) +w(y, x) (Nguyen et al., 2023).

A.4 EQUIVALENCE OF SELF-ATTENTION AND NADARAYA-WATSON ESTIMATOR

We establish the relationship between self-attention, as defined in Eqn. 1, and non-parametric re-
gression following the approaches of (Nguyen et al., 2022; Han et al., 2024; Nielsen et al., 2024).
To begin, let us assume that the key and value vectors {kj ,vj}j∈[N] are generated by the following
data process:

v = f(k) + ϵ, (27)
where ϵ represents random noise with zero mean, i.e., E[ϵ] = 0, and f is the unknown function we
aim to estimate. In this setup, the keys {kj}j∈[N] are independent and identically distributed (i.i.d.)
samples drawn from the marginal distribution p(k), characterizing the random design setting. We
use p(v,k) to denote the joint distribution of the pairs (v,k) generated by the process described in
Eqn. 27. For a new query q, our goal is to estimate the function f(q).
Recall NW estimator is a non-parametric estimator of the unknown f at any given query q described
by

f(k) = E[v ∣ k] = ∫
RD

v ⋅ p(v ∣ k)dv = ∫
RD

v ⋅ p(v,k)
p(k)

dv,

where the first equality comes from the noise being zero mean, the second equality comes from the
definition of conditional expectation and the final equality comes from the definition of conditional
density. Eqn. 27 implies that if we can just obtain good estimates of the joint density p(v,k) and
marginal density p(k) then we can estimate the required f(q). The Gaussian isotropic kernels with
bandwidth σ are given by

p̂σ(v,k) =
1

N
∑

j∈[N]

φσ(v − vj)φσ(k − kj), p̂σ(k) =
1

N
∑

j∈[N]

φσ(k − kj), (28)

where φσ is the multivariate Gaussian density function with diagonal covariance matrix σ2ID.
Given the kernel density estimators in Eqn. 28, the unknown function can be estimated as

f̂σ(k) = ∫
RD

v ⋅ p̂σ(v,k)
p̂σ(k)

dv = ∫
RD

v ⋅ ∑j∈[N] φσ(v − vj)φσ(k − kj)
∑j∈[N] φσ(k − kj)

dv

=
∑j∈[N] φσ(k − kj) ∫ v ⋅ φσ(v − vj)dv

∑j∈[N] φσ(k − kj)
=
∑j∈[N] vjφσ(k − kj)
∑j∈[N] φσ(k − kj)

.
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Figure 4: ImageNet-C corruption error (CE) (↓) and mean CE (mCE) (↓) comparison of our model
and DeiT across all corruption types. Our model consistently outperforms DeiT.

Then, using the definition of the Gaussian isotropic kernel and evaluating the estimated function at
qi we have

f̂(qi) =
∑N

j vj exp (−∥qi − kj∥2/2σ2)

∑N
j exp (−∥qi − kj∥2/2σ2)

=
∑N

j vj exp [−(∥qi∥2 + ∥kj∥2)/2σ2] exp(q⊺i kj/σ2)
∑N

j exp [−(∥qi∥2 + ∥kj∥2)/2σ2] exp(q⊺i kj/σ2)

=
∑N

j vj exp(q⊺i kj/σ2)
∑N

j exp(q⊺i kj/σ2)
=

N

∑
j=1

softmax(q⊺i kj/σ2)vj .

as desired.

A.5 EQUIVALENCE BETWEEN SELF-CONVOLUTION AND SQUARE OF ATTENTION MATRIX

Let K denote the isotropic Gaussian kernel with bandwidth h. Then,

(K ∗K ∗ v)(x) = ∫
Ω
K(x − t)(K ∗ v)(t)dt

= ∫
Ω
K(x − t)∫

Ω
K(t − y)v(y)dy dt

= ∫
Ω
∫
Ω
K(x − t)K(t − y)dtv(y)dy

≈ ∫
Ω

N

∑
l=1

K(x − l)K(l − y)v(y)dy

≈
N

∑
j=1

N

∑
l=1

K(x − l)K(l − j)v(j). (30)

Taking A to be the NLM matrix whose entries are given by Aij = w(i, j) = K(i − j), it becomes
evident that Eqn. 30 can be represented as

(K ∗K ∗ v)(i) ≈
N

∑
j=1

(A2)ijv(j). (31)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 5: Top-1 and Top-5 accuracies on FGSM
attack with 6 increasingly different perturbation
budgets (×255).

Figure 6: Top-1 and Top-5 accuracies on PGD
attack with 6 increasingly different perturbation
budgets (×255).

Figure 7: Validation PPL (↓) training curves for baseline Transformer (higher) and Transformer-
Twicing (lower). Left: small models (9.4M); Right: medium models (21M). We observe relatively
faster convergence for Twicing Attention compared to standard self-attention.

B EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

B.1 WIKITEXT-103 LANGUAGE MODELLING AND WORD SWAP ATTACK

Dataset. The WikiText-1031 dataset contains around 268K words and its training set consists of
about 28K articles with 103M tokens. This corresponds to text blocks of about 3600 words. The
validation set and test sets consist of 60 articles with 218K and 246K tokens respectively.

Corruption. Word Swap Text Attack2 corrupts the data by substituting random words with a generic
token “AAA”. We follow the setup of (Han et al., 2024) and assess models by training them on clean
data before attacing only the evaluation set using a substitution rate of 4%.

Model, Optimizer & Train Specification. We adopt the training regime of (Nguyen et al., 2022).
To this end, the small backbone uses 16 layers, 8 heads of dimension 16, a feedforward layer of size
2048 and an embedding dimension of 128. We use a dropout rate of 0.1. We trained with Adam
using a starting learning rate of 0.00025 and cosine scheduling under default PyTorch settings. We
used a batch size of 96 and trained for 120 epochs and 2000 warmup steps. The train and evaluation
target lengths were set to 256.

Table 6: Valid/Test PPL on WikiText-103.

Model Valid PPL Test PPL

Transformer (small) 38.11 37.51
Tr.-Twicing (small) 37.12 36.69

Transformer (med) 31.98 26.17
Tr.-Twicing (med) 30.90 25.65

Linear Trans. 40.00 41.26
Linear-Twicing 39.45 40.61

Larger Language Modeling. To verify if Twicing
Attention scales, we conduct extra language mod-
eling on Wikitext-103 with medium sized models
(21M parameters) on top of the small models (9.4M
parameters) reported in the main text. The results in
Figure 7 and Table 6 imply a positive answer to this
matter.

Non-conventional attention mechanisms. To fur-
ther validate the broad applicability of Twicing At-
tention (or twicing procedure in general), we conduct additional experiments following the the-
oretical setup of Linear Transformers (Katharopoulos et al., 2020). To be more precise, Ta-
ble 6 (last 2 rows) compares the perplexities recorded for Linear Transformers with feature map
ϕ(x) = elu(x) + 1 matching their original choice, and Linear-Twicing Transformers for which we
apply the twicing transformation 2A −A2 where A = normalize(ϕ(Q)ϕ(K)⊺). Note that we ex-

1www.salesforce.com/products/einstein/ai-research/the-wikitext-dependency-language-modeling-dataset/
2Implementation available at github.com/QData/TextAttack
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Table 7: Top-1 and Top-5 Test Accuracy on ImageNet corrupted by projected gradient descent
(PGD), fast gradient sign method (FGSM), and simultaneous perturbation stochastic approximation
(SPSA).

Model ImageNet PGD FGSM SPSA
Top 1 Top 5 Top 1 Top 5 Top 1 Top 5 Top 1 Top 5

DeiT (Touvron et al., 2021) 72.00 91.14 8.16 22.37 29.88 63.26 66.41 90.29
DeiT-Twicing [1-12] 72.60 91.33 9.15 24.10 32.28 65.67 67.12 90.53
DeiT-Twicing [7-12] 72.45 91.35 8.67 22.90 31.60 64.79 66.48 90.52
DeiT-Twicing [10-12] 72.31 91.24 8.66 22.58 31.63 64.74 66.47 90.49

Table 8: Evaluation of the performance of DeiT and DeiT-Twicing in ImageNet classification under
the presence of different corruptions, using appropriate evaluation metrics for each.

Dataset ImageNet-R ImageNet-A ImageNet-C ImageNet-C (Extra)
Metric Top 1 Top 1 mCE (↓) mCE (↓)

DeiT (Touvron et al., 2021) 32.22 6.97 72.21 63.68
DeiT-Twicing 32.74 7.66 70.33 62.46
DeiT-Twicing [7-12] 32.68 8.10 69.98 62.35
DeiT-Twicing [10-12] 32.31 8.14 70.25 62.63

plicitly construct the similarity matrix A for both of the models for our framework to work. The
positive results indicate that the applicability of Twicing Attention is not limited to standard softmax
self-attention, but any reasonable similarity matrix can be covered.

B.2 IMAGENET IMAGE CLASSIFICATION AND ADVERSARIAL ATTACK

Dataset. We use the full ImageNet dataset that contains 1.28M training images and 50K validation
images. The model learns to predict the class of the input image among 1000 categories. We report
the top-1 and top-5 accuracy on all experiments.

Corruption. We use attacks FGSM (Goodfellow et al., 2014) and PGD (Madry et al., 2017) with
perturbation budget 4/255 while SPSA (Uesato et al., 2018) uses a perturbation budget 1/255. All
attacks perturb under l∞ norm. PGD attack uses 20 steps with step size of 0.15.

Model, Optimizer & Train Specification. The configuration follows the default DeiT tiny config-
uration (Touvron et al., 2021). In particular, we follow the experimental setup of (Han et al., 2024;
Nguyen et al., 2022). To this end, the DeiT backbone uses 12 layers, 3 heads of dimension 64, patch
size 16, feedforward layer of size 768 and embedding dimension of 192. We train using Adam with
a starting learning rate of 0.0005 using cosine scheduling under default PyTorch settings, momen-
tum of 0.9, batch size of 256, 5 warmup epochs starting from 0.000001 and 10 cooldown epochs,
for an overall train run of 300 epochs. The input size is 224 and we follow the default AutoAugment
policy and color jitter 0.4.

Extra results. In Figure 5 and Figure 6, we report that our model consistently outperforms the
baseline across increasing six levels of severity under FGSM and PGD attacks.

B.3 OUT-OF-DISTRIBUTION ROBUSTNESS AND DATA CORRUPTION ON IMAGENET-A,R,C

ImageNet-A,R,C are benchmarks capturing a range of out-of-distribution and corrupted samples
(Hendrycks et al., 2021). ImageNet-A contains real world adversarially filtered images that fool
current ImageNet classifiers. ImageNet-R contains various artistic renditions of object classes from
the original ImageNet. ImageNet-C consists of 15 types of algorithmically generated corruptions
with 5 levels of severity. (e.g blurring, pixelation, speckle noise etc). Figure 4 shows that DeiT-
Twicing (our) model outperforms DieT baseline in all 15 main types of ImageNet-C corruptions.

B.4 ADE20K IMAGE SEGMENTATION

Experimental setup. We adopt the setup in Strudel et al. (2021). The encoder is pretrained on
ImageNet-1K following the same specification described in Appendix B.2. In particular, the encoder
is a DeiT-tiny backbone of 5.7M parameters pretrained for 300 epochs. After pretraining, we then
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Figure 8: Comparison of average token cosine similarities across layers for DeiT and DeiT-Twicing
models. Subfigure (a) uses ImageNet, while subfigure (b) evaluates ADE20K segmentation.

attach a decoder that contains 2-layer masked transformer and finetune the full encoder-decoder
model for 64 epochs on the ADE20K Zhou et al. (2019) image segmentation dataset.

C COMPUTE RESOURCES

Training. All models are trained using four NVIDIA A100 SXM4 40GB GPUs including both
language and vision models.

Evaluation. Imagenet Classification under adversarial attacks are evaluated using two NVIDIA
A100 SXM4 40GB GPUs while only one of such GPUs was used to evaluate against ImageNet-
A,R,C and Word Swap Attack for language modelling.

D ADDITIONAL EMPIRICAL ANALYSIS

D.1 TRAINING ANALYSIS

The trajectory of training curves for train loss, validation loss and Top-1 accuracies on ImageNet
classification are shown on Figure 9.

Figure 9: Comparison of Training Loss, Validation Loss, and Top-1 Accuracy

D.2 EXTRA ATTENTION HEATMAP ANALYSIS

Figure 10: Evolution of attention heatmaps
from early to late layers. Odd rows: DeiT-
Twicing; Even rows: DeiT.

Extending the visualizations in the main text, Figure
10 illustrates how attention heatmaps evolve from
early to late layers for DeiT and DeiT-Twicing mod-
els given the input images. In Figure 11, we pro-
vide 12 more examples to show that when employed
Twicing Attention, DeiT-Twicing is usually more ac-
curate to recognize objects in images and shows sub-
stantially better expressive power by capturing more
meaningful parts of objects without missing target.
We also show the layer-wise over-smoothing anal-
ysis on both ImageNet classification and ADE20K
image segmentation in Figure 8. We observe that
in both cases, average token cosine similarities with
Twicing Attention grow slower than those with stan-
dard self-attention, once again validating our theo-
retical findings.
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Figure 11: More examples showing how Twicing Attention is capable of retaining model’s expres-
sive power. The DeiT baseline model frequently collapses the entire image into the background,
particularly when the background occupies a significant portion of the image, making it challenging
to distinguish object details. Only in few cases, such as the example in bottom right, trying to cap-
ture more information was not as successful while still being highly competitive.

E ABLATION STUDIES

Since our proposed method does not require any additional parameters nor learnable, neither tunable,
we only study the layer placement for Twicing Attention. Table 7 demonstrates 3 different layer
placements of Twicing Attention - 1 to 12 (full), 7 to 12 (last six), and 10 to 12 (last three). We
find that as long as Twicing Attention is placed starting from later layer till the end, the performance
improvements are almost always proportional to the number of layers employing Twicing Attention.
In Table 8, however, we observe that this proportionality does not happen in general since all three
types of layer placements lead to good results in different categories, but all beating the baseline by
notable margins. We also find that putting Twicing Attention only in few inital layers may not offer
significant overall improvements.
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